Home | History | Annotate | Download | only in AST
      1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "clang/AST/RecordLayout.h"
     11 #include "clang/AST/ASTContext.h"
     12 #include "clang/AST/Attr.h"
     13 #include "clang/AST/CXXInheritance.h"
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/DeclCXX.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/Basic/TargetInfo.h"
     19 #include "clang/Sema/SemaDiagnostic.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Support/CrashRecoveryContext.h"
     22 #include "llvm/Support/Format.h"
     23 #include "llvm/Support/MathExtras.h"
     24 
     25 using namespace clang;
     26 
     27 namespace {
     28 
     29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
     30 /// For a class hierarchy like
     31 ///
     32 /// class A { };
     33 /// class B : A { };
     34 /// class C : A, B { };
     35 ///
     36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
     37 /// instances, one for B and two for A.
     38 ///
     39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
     40 struct BaseSubobjectInfo {
     41   /// Class - The class for this base info.
     42   const CXXRecordDecl *Class;
     43 
     44   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
     45   bool IsVirtual;
     46 
     47   /// Bases - Information about the base subobjects.
     48   SmallVector<BaseSubobjectInfo*, 4> Bases;
     49 
     50   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
     51   /// of this base info (if one exists).
     52   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
     53 
     54   // FIXME: Document.
     55   const BaseSubobjectInfo *Derived;
     56 };
     57 
     58 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
     59 /// offsets while laying out a C++ class.
     60 class EmptySubobjectMap {
     61   const ASTContext &Context;
     62   uint64_t CharWidth;
     63 
     64   /// Class - The class whose empty entries we're keeping track of.
     65   const CXXRecordDecl *Class;
     66 
     67   /// EmptyClassOffsets - A map from offsets to empty record decls.
     68   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
     69   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
     70   EmptyClassOffsetsMapTy EmptyClassOffsets;
     71 
     72   /// MaxEmptyClassOffset - The highest offset known to contain an empty
     73   /// base subobject.
     74   CharUnits MaxEmptyClassOffset;
     75 
     76   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
     77   /// member subobject that is empty.
     78   void ComputeEmptySubobjectSizes();
     79 
     80   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
     81 
     82   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
     83                                  CharUnits Offset, bool PlacingEmptyBase);
     84 
     85   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
     86                                   const CXXRecordDecl *Class,
     87                                   CharUnits Offset);
     88   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
     89 
     90   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
     91   /// subobjects beyond the given offset.
     92   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
     93     return Offset <= MaxEmptyClassOffset;
     94   }
     95 
     96   CharUnits
     97   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
     98     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
     99     assert(FieldOffset % CharWidth == 0 &&
    100            "Field offset not at char boundary!");
    101 
    102     return Context.toCharUnitsFromBits(FieldOffset);
    103   }
    104 
    105 protected:
    106   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    107                                  CharUnits Offset) const;
    108 
    109   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    110                                      CharUnits Offset);
    111 
    112   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    113                                       const CXXRecordDecl *Class,
    114                                       CharUnits Offset) const;
    115   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    116                                       CharUnits Offset) const;
    117 
    118 public:
    119   /// This holds the size of the largest empty subobject (either a base
    120   /// or a member). Will be zero if the record being built doesn't contain
    121   /// any empty classes.
    122   CharUnits SizeOfLargestEmptySubobject;
    123 
    124   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
    125   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
    126       ComputeEmptySubobjectSizes();
    127   }
    128 
    129   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
    130   /// at the given offset.
    131   /// Returns false if placing the record will result in two components
    132   /// (direct or indirect) of the same type having the same offset.
    133   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    134                             CharUnits Offset);
    135 
    136   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
    137   /// offset.
    138   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
    139 };
    140 
    141 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
    142   // Check the bases.
    143   for (const auto &I : Class->bases()) {
    144     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    145 
    146     CharUnits EmptySize;
    147     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    148     if (BaseDecl->isEmpty()) {
    149       // If the class decl is empty, get its size.
    150       EmptySize = Layout.getSize();
    151     } else {
    152       // Otherwise, we get the largest empty subobject for the decl.
    153       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    154     }
    155 
    156     if (EmptySize > SizeOfLargestEmptySubobject)
    157       SizeOfLargestEmptySubobject = EmptySize;
    158   }
    159 
    160   // Check the fields.
    161   for (const auto *I : Class->fields()) {
    162     const RecordType *RT =
    163       Context.getBaseElementType(I->getType())->getAs<RecordType>();
    164 
    165     // We only care about record types.
    166     if (!RT)
    167       continue;
    168 
    169     CharUnits EmptySize;
    170     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
    171     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    172     if (MemberDecl->isEmpty()) {
    173       // If the class decl is empty, get its size.
    174       EmptySize = Layout.getSize();
    175     } else {
    176       // Otherwise, we get the largest empty subobject for the decl.
    177       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    178     }
    179 
    180     if (EmptySize > SizeOfLargestEmptySubobject)
    181       SizeOfLargestEmptySubobject = EmptySize;
    182   }
    183 }
    184 
    185 bool
    186 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    187                                              CharUnits Offset) const {
    188   // We only need to check empty bases.
    189   if (!RD->isEmpty())
    190     return true;
    191 
    192   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
    193   if (I == EmptyClassOffsets.end())
    194     return true;
    195 
    196   const ClassVectorTy& Classes = I->second;
    197   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
    198     return true;
    199 
    200   // There is already an empty class of the same type at this offset.
    201   return false;
    202 }
    203 
    204 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
    205                                              CharUnits Offset) {
    206   // We only care about empty bases.
    207   if (!RD->isEmpty())
    208     return;
    209 
    210   // If we have empty structures inside a union, we can assign both
    211   // the same offset. Just avoid pushing them twice in the list.
    212   ClassVectorTy& Classes = EmptyClassOffsets[Offset];
    213   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
    214     return;
    215 
    216   Classes.push_back(RD);
    217 
    218   // Update the empty class offset.
    219   if (Offset > MaxEmptyClassOffset)
    220     MaxEmptyClassOffset = Offset;
    221 }
    222 
    223 bool
    224 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    225                                                  CharUnits Offset) {
    226   // We don't have to keep looking past the maximum offset that's known to
    227   // contain an empty class.
    228   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    229     return true;
    230 
    231   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    232     return false;
    233 
    234   // Traverse all non-virtual bases.
    235   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    236   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    237     BaseSubobjectInfo* Base = Info->Bases[I];
    238     if (Base->IsVirtual)
    239       continue;
    240 
    241     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    242 
    243     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
    244       return false;
    245   }
    246 
    247   if (Info->PrimaryVirtualBaseInfo) {
    248     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    249 
    250     if (Info == PrimaryVirtualBaseInfo->Derived) {
    251       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
    252         return false;
    253     }
    254   }
    255 
    256   // Traverse all member variables.
    257   unsigned FieldNo = 0;
    258   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    259        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    260     if (I->isBitField())
    261       continue;
    262 
    263     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    264     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    265       return false;
    266   }
    267 
    268   return true;
    269 }
    270 
    271 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
    272                                                   CharUnits Offset,
    273                                                   bool PlacingEmptyBase) {
    274   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    275     // We know that the only empty subobjects that can conflict with empty
    276     // subobject of non-empty bases, are empty bases that can be placed at
    277     // offset zero. Because of this, we only need to keep track of empty base
    278     // subobjects with offsets less than the size of the largest empty
    279     // subobject for our class.
    280     return;
    281   }
    282 
    283   AddSubobjectAtOffset(Info->Class, Offset);
    284 
    285   // Traverse all non-virtual bases.
    286   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    287   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
    288     BaseSubobjectInfo* Base = Info->Bases[I];
    289     if (Base->IsVirtual)
    290       continue;
    291 
    292     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    293     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
    294   }
    295 
    296   if (Info->PrimaryVirtualBaseInfo) {
    297     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    298 
    299     if (Info == PrimaryVirtualBaseInfo->Derived)
    300       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
    301                                 PlacingEmptyBase);
    302   }
    303 
    304   // Traverse all member variables.
    305   unsigned FieldNo = 0;
    306   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    307        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    308     if (I->isBitField())
    309       continue;
    310 
    311     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    312     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    313   }
    314 }
    315 
    316 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    317                                              CharUnits Offset) {
    318   // If we know this class doesn't have any empty subobjects we don't need to
    319   // bother checking.
    320   if (SizeOfLargestEmptySubobject.isZero())
    321     return true;
    322 
    323   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    324     return false;
    325 
    326   // We are able to place the base at this offset. Make sure to update the
    327   // empty base subobject map.
    328   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
    329   return true;
    330 }
    331 
    332 bool
    333 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    334                                                   const CXXRecordDecl *Class,
    335                                                   CharUnits Offset) const {
    336   // We don't have to keep looking past the maximum offset that's known to
    337   // contain an empty class.
    338   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    339     return true;
    340 
    341   if (!CanPlaceSubobjectAtOffset(RD, Offset))
    342     return false;
    343 
    344   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    345 
    346   // Traverse all non-virtual bases.
    347   for (const auto &I : RD->bases()) {
    348     if (I.isVirtual())
    349       continue;
    350 
    351     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    352 
    353     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    354     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
    355       return false;
    356   }
    357 
    358   if (RD == Class) {
    359     // This is the most derived class, traverse virtual bases as well.
    360     for (const auto &I : RD->vbases()) {
    361       const CXXRecordDecl *VBaseDecl = I.getType()->getAsCXXRecordDecl();
    362 
    363       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    364       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
    365         return false;
    366     }
    367   }
    368 
    369   // Traverse all member variables.
    370   unsigned FieldNo = 0;
    371   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    372        I != E; ++I, ++FieldNo) {
    373     if (I->isBitField())
    374       continue;
    375 
    376     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    377 
    378     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    379       return false;
    380   }
    381 
    382   return true;
    383 }
    384 
    385 bool
    386 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    387                                                   CharUnits Offset) const {
    388   // We don't have to keep looking past the maximum offset that's known to
    389   // contain an empty class.
    390   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    391     return true;
    392 
    393   QualType T = FD->getType();
    394   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    395     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
    396 
    397   // If we have an array type we need to look at every element.
    398   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    399     QualType ElemTy = Context.getBaseElementType(AT);
    400     const RecordType *RT = ElemTy->getAs<RecordType>();
    401     if (!RT)
    402       return true;
    403 
    404     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
    405     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    406 
    407     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    408     CharUnits ElementOffset = Offset;
    409     for (uint64_t I = 0; I != NumElements; ++I) {
    410       // We don't have to keep looking past the maximum offset that's known to
    411       // contain an empty class.
    412       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
    413         return true;
    414 
    415       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
    416         return false;
    417 
    418       ElementOffset += Layout.getSize();
    419     }
    420   }
    421 
    422   return true;
    423 }
    424 
    425 bool
    426 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
    427                                          CharUnits Offset) {
    428   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    429     return false;
    430 
    431   // We are able to place the member variable at this offset.
    432   // Make sure to update the empty base subobject map.
    433   UpdateEmptyFieldSubobjects(FD, Offset);
    434   return true;
    435 }
    436 
    437 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
    438                                                    const CXXRecordDecl *Class,
    439                                                    CharUnits Offset) {
    440   // We know that the only empty subobjects that can conflict with empty
    441   // field subobjects are subobjects of empty bases that can be placed at offset
    442   // zero. Because of this, we only need to keep track of empty field
    443   // subobjects with offsets less than the size of the largest empty
    444   // subobject for our class.
    445   if (Offset >= SizeOfLargestEmptySubobject)
    446     return;
    447 
    448   AddSubobjectAtOffset(RD, Offset);
    449 
    450   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    451 
    452   // Traverse all non-virtual bases.
    453   for (const auto &I : RD->bases()) {
    454     if (I.isVirtual())
    455       continue;
    456 
    457     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    458 
    459     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    460     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
    461   }
    462 
    463   if (RD == Class) {
    464     // This is the most derived class, traverse virtual bases as well.
    465     for (const auto &I : RD->vbases()) {
    466       const CXXRecordDecl *VBaseDecl = I.getType()->getAsCXXRecordDecl();
    467 
    468       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    469       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
    470     }
    471   }
    472 
    473   // Traverse all member variables.
    474   unsigned FieldNo = 0;
    475   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    476        I != E; ++I, ++FieldNo) {
    477     if (I->isBitField())
    478       continue;
    479 
    480     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    481 
    482     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    483   }
    484 }
    485 
    486 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
    487                                                    CharUnits Offset) {
    488   QualType T = FD->getType();
    489   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
    490     UpdateEmptyFieldSubobjects(RD, RD, Offset);
    491     return;
    492   }
    493 
    494   // If we have an array type we need to update every element.
    495   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    496     QualType ElemTy = Context.getBaseElementType(AT);
    497     const RecordType *RT = ElemTy->getAs<RecordType>();
    498     if (!RT)
    499       return;
    500 
    501     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
    502     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    503 
    504     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    505     CharUnits ElementOffset = Offset;
    506 
    507     for (uint64_t I = 0; I != NumElements; ++I) {
    508       // We know that the only empty subobjects that can conflict with empty
    509       // field subobjects are subobjects of empty bases that can be placed at
    510       // offset zero. Because of this, we only need to keep track of empty field
    511       // subobjects with offsets less than the size of the largest empty
    512       // subobject for our class.
    513       if (ElementOffset >= SizeOfLargestEmptySubobject)
    514         return;
    515 
    516       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
    517       ElementOffset += Layout.getSize();
    518     }
    519   }
    520 }
    521 
    522 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
    523 
    524 class RecordLayoutBuilder {
    525 protected:
    526   // FIXME: Remove this and make the appropriate fields public.
    527   friend class clang::ASTContext;
    528 
    529   const ASTContext &Context;
    530 
    531   EmptySubobjectMap *EmptySubobjects;
    532 
    533   /// Size - The current size of the record layout.
    534   uint64_t Size;
    535 
    536   /// Alignment - The current alignment of the record layout.
    537   CharUnits Alignment;
    538 
    539   /// \brief The alignment if attribute packed is not used.
    540   CharUnits UnpackedAlignment;
    541 
    542   SmallVector<uint64_t, 16> FieldOffsets;
    543 
    544   /// \brief Whether the external AST source has provided a layout for this
    545   /// record.
    546   unsigned ExternalLayout : 1;
    547 
    548   /// \brief Whether we need to infer alignment, even when we have an
    549   /// externally-provided layout.
    550   unsigned InferAlignment : 1;
    551 
    552   /// Packed - Whether the record is packed or not.
    553   unsigned Packed : 1;
    554 
    555   unsigned IsUnion : 1;
    556 
    557   unsigned IsMac68kAlign : 1;
    558 
    559   unsigned IsMsStruct : 1;
    560 
    561   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
    562   /// this contains the number of bits in the last unit that can be used for
    563   /// an adjacent bitfield if necessary.  The unit in question is usually
    564   /// a byte, but larger units are used if IsMsStruct.
    565   unsigned char UnfilledBitsInLastUnit;
    566   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
    567   /// of the previous field if it was a bitfield.
    568   unsigned char LastBitfieldTypeSize;
    569 
    570   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
    571   /// #pragma pack.
    572   CharUnits MaxFieldAlignment;
    573 
    574   /// DataSize - The data size of the record being laid out.
    575   uint64_t DataSize;
    576 
    577   CharUnits NonVirtualSize;
    578   CharUnits NonVirtualAlignment;
    579 
    580   /// PrimaryBase - the primary base class (if one exists) of the class
    581   /// we're laying out.
    582   const CXXRecordDecl *PrimaryBase;
    583 
    584   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
    585   /// out is virtual.
    586   bool PrimaryBaseIsVirtual;
    587 
    588   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
    589   /// pointer, as opposed to inheriting one from a primary base class.
    590   bool HasOwnVFPtr;
    591 
    592   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
    593 
    594   /// Bases - base classes and their offsets in the record.
    595   BaseOffsetsMapTy Bases;
    596 
    597   // VBases - virtual base classes and their offsets in the record.
    598   ASTRecordLayout::VBaseOffsetsMapTy VBases;
    599 
    600   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
    601   /// primary base classes for some other direct or indirect base class.
    602   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
    603 
    604   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
    605   /// inheritance graph order. Used for determining the primary base class.
    606   const CXXRecordDecl *FirstNearlyEmptyVBase;
    607 
    608   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
    609   /// avoid visiting virtual bases more than once.
    610   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
    611 
    612   /// \brief Externally-provided size.
    613   uint64_t ExternalSize;
    614 
    615   /// \brief Externally-provided alignment.
    616   uint64_t ExternalAlign;
    617 
    618   /// \brief Externally-provided field offsets.
    619   llvm::DenseMap<const FieldDecl *, uint64_t> ExternalFieldOffsets;
    620 
    621   /// \brief Externally-provided direct, non-virtual base offsets.
    622   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalBaseOffsets;
    623 
    624   /// \brief Externally-provided virtual base offsets.
    625   llvm::DenseMap<const CXXRecordDecl *, CharUnits> ExternalVirtualBaseOffsets;
    626 
    627   RecordLayoutBuilder(const ASTContext &Context,
    628                       EmptySubobjectMap *EmptySubobjects)
    629     : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
    630       Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
    631       ExternalLayout(false), InferAlignment(false),
    632       Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
    633       UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
    634       MaxFieldAlignment(CharUnits::Zero()),
    635       DataSize(0), NonVirtualSize(CharUnits::Zero()),
    636       NonVirtualAlignment(CharUnits::One()),
    637       PrimaryBase(nullptr), PrimaryBaseIsVirtual(false),
    638       HasOwnVFPtr(false),
    639       FirstNearlyEmptyVBase(nullptr) {}
    640 
    641   /// Reset this RecordLayoutBuilder to a fresh state, using the given
    642   /// alignment as the initial alignment.  This is used for the
    643   /// correct layout of vb-table pointers in MSVC.
    644   void resetWithTargetAlignment(CharUnits TargetAlignment) {
    645     const ASTContext &Context = this->Context;
    646     EmptySubobjectMap *EmptySubobjects = this->EmptySubobjects;
    647     this->~RecordLayoutBuilder();
    648     new (this) RecordLayoutBuilder(Context, EmptySubobjects);
    649     Alignment = UnpackedAlignment = TargetAlignment;
    650   }
    651 
    652   void Layout(const RecordDecl *D);
    653   void Layout(const CXXRecordDecl *D);
    654   void Layout(const ObjCInterfaceDecl *D);
    655 
    656   void LayoutFields(const RecordDecl *D);
    657   void LayoutField(const FieldDecl *D);
    658   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
    659                           bool FieldPacked, const FieldDecl *D);
    660   void LayoutBitField(const FieldDecl *D);
    661 
    662   TargetCXXABI getCXXABI() const {
    663     return Context.getTargetInfo().getCXXABI();
    664   }
    665 
    666   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
    667   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
    668 
    669   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    670     BaseSubobjectInfoMapTy;
    671 
    672   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
    673   /// of the class we're laying out to their base subobject info.
    674   BaseSubobjectInfoMapTy VirtualBaseInfo;
    675 
    676   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
    677   /// class we're laying out to their base subobject info.
    678   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
    679 
    680   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
    681   /// bases of the given class.
    682   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
    683 
    684   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
    685   /// single class and all of its base classes.
    686   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    687                                               bool IsVirtual,
    688                                               BaseSubobjectInfo *Derived);
    689 
    690   /// DeterminePrimaryBase - Determine the primary base of the given class.
    691   void DeterminePrimaryBase(const CXXRecordDecl *RD);
    692 
    693   void SelectPrimaryVBase(const CXXRecordDecl *RD);
    694 
    695   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
    696 
    697   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
    698   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
    699   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
    700 
    701   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
    702   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
    703 
    704   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
    705                                     CharUnits Offset);
    706 
    707   /// LayoutVirtualBases - Lays out all the virtual bases.
    708   void LayoutVirtualBases(const CXXRecordDecl *RD,
    709                           const CXXRecordDecl *MostDerivedClass);
    710 
    711   /// LayoutVirtualBase - Lays out a single virtual base.
    712   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
    713 
    714   /// LayoutBase - Will lay out a base and return the offset where it was
    715   /// placed, in chars.
    716   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
    717 
    718   /// InitializeLayout - Initialize record layout for the given record decl.
    719   void InitializeLayout(const Decl *D);
    720 
    721   /// FinishLayout - Finalize record layout. Adjust record size based on the
    722   /// alignment.
    723   void FinishLayout(const NamedDecl *D);
    724 
    725   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
    726   void UpdateAlignment(CharUnits NewAlignment) {
    727     UpdateAlignment(NewAlignment, NewAlignment);
    728   }
    729 
    730   /// \brief Retrieve the externally-supplied field offset for the given
    731   /// field.
    732   ///
    733   /// \param Field The field whose offset is being queried.
    734   /// \param ComputedOffset The offset that we've computed for this field.
    735   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
    736                                      uint64_t ComputedOffset);
    737 
    738   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
    739                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
    740                           bool isPacked, const FieldDecl *D);
    741 
    742   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
    743 
    744   CharUnits getSize() const {
    745     assert(Size % Context.getCharWidth() == 0);
    746     return Context.toCharUnitsFromBits(Size);
    747   }
    748   uint64_t getSizeInBits() const { return Size; }
    749 
    750   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
    751   void setSize(uint64_t NewSize) { Size = NewSize; }
    752 
    753   CharUnits getAligment() const { return Alignment; }
    754 
    755   CharUnits getDataSize() const {
    756     assert(DataSize % Context.getCharWidth() == 0);
    757     return Context.toCharUnitsFromBits(DataSize);
    758   }
    759   uint64_t getDataSizeInBits() const { return DataSize; }
    760 
    761   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
    762   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
    763 
    764   RecordLayoutBuilder(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
    765   void operator=(const RecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
    766 };
    767 } // end anonymous namespace
    768 
    769 void
    770 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
    771   for (const auto &I : RD->bases()) {
    772     assert(!I.getType()->isDependentType() &&
    773            "Cannot layout class with dependent bases.");
    774 
    775     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
    776 
    777     // Check if this is a nearly empty virtual base.
    778     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
    779       // If it's not an indirect primary base, then we've found our primary
    780       // base.
    781       if (!IndirectPrimaryBases.count(Base)) {
    782         PrimaryBase = Base;
    783         PrimaryBaseIsVirtual = true;
    784         return;
    785       }
    786 
    787       // Is this the first nearly empty virtual base?
    788       if (!FirstNearlyEmptyVBase)
    789         FirstNearlyEmptyVBase = Base;
    790     }
    791 
    792     SelectPrimaryVBase(Base);
    793     if (PrimaryBase)
    794       return;
    795   }
    796 }
    797 
    798 /// DeterminePrimaryBase - Determine the primary base of the given class.
    799 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
    800   // If the class isn't dynamic, it won't have a primary base.
    801   if (!RD->isDynamicClass())
    802     return;
    803 
    804   // Compute all the primary virtual bases for all of our direct and
    805   // indirect bases, and record all their primary virtual base classes.
    806   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    807 
    808   // If the record has a dynamic base class, attempt to choose a primary base
    809   // class. It is the first (in direct base class order) non-virtual dynamic
    810   // base class, if one exists.
    811   for (const auto &I : RD->bases()) {
    812     // Ignore virtual bases.
    813     if (I.isVirtual())
    814       continue;
    815 
    816     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
    817 
    818     if (Base->isDynamicClass()) {
    819       // We found it.
    820       PrimaryBase = Base;
    821       PrimaryBaseIsVirtual = false;
    822       return;
    823     }
    824   }
    825 
    826   // Under the Itanium ABI, if there is no non-virtual primary base class,
    827   // try to compute the primary virtual base.  The primary virtual base is
    828   // the first nearly empty virtual base that is not an indirect primary
    829   // virtual base class, if one exists.
    830   if (RD->getNumVBases() != 0) {
    831     SelectPrimaryVBase(RD);
    832     if (PrimaryBase)
    833       return;
    834   }
    835 
    836   // Otherwise, it is the first indirect primary base class, if one exists.
    837   if (FirstNearlyEmptyVBase) {
    838     PrimaryBase = FirstNearlyEmptyVBase;
    839     PrimaryBaseIsVirtual = true;
    840     return;
    841   }
    842 
    843   assert(!PrimaryBase && "Should not get here with a primary base!");
    844 }
    845 
    846 BaseSubobjectInfo *
    847 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    848                                               bool IsVirtual,
    849                                               BaseSubobjectInfo *Derived) {
    850   BaseSubobjectInfo *Info;
    851 
    852   if (IsVirtual) {
    853     // Check if we already have info about this virtual base.
    854     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    855     if (InfoSlot) {
    856       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
    857       return InfoSlot;
    858     }
    859 
    860     // We don't, create it.
    861     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    862     Info = InfoSlot;
    863   } else {
    864     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    865   }
    866 
    867   Info->Class = RD;
    868   Info->IsVirtual = IsVirtual;
    869   Info->Derived = nullptr;
    870   Info->PrimaryVirtualBaseInfo = nullptr;
    871 
    872   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
    873   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
    874 
    875   // Check if this base has a primary virtual base.
    876   if (RD->getNumVBases()) {
    877     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    878     if (Layout.isPrimaryBaseVirtual()) {
    879       // This base does have a primary virtual base.
    880       PrimaryVirtualBase = Layout.getPrimaryBase();
    881       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
    882 
    883       // Now check if we have base subobject info about this primary base.
    884       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    885 
    886       if (PrimaryVirtualBaseInfo) {
    887         if (PrimaryVirtualBaseInfo->Derived) {
    888           // We did have info about this primary base, and it turns out that it
    889           // has already been claimed as a primary virtual base for another
    890           // base.
    891           PrimaryVirtualBase = nullptr;
    892         } else {
    893           // We can claim this base as our primary base.
    894           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    895           PrimaryVirtualBaseInfo->Derived = Info;
    896         }
    897       }
    898     }
    899   }
    900 
    901   // Now go through all direct bases.
    902   for (const auto &I : RD->bases()) {
    903     bool IsVirtual = I.isVirtual();
    904 
    905     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    906 
    907     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
    908   }
    909 
    910   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    911     // Traversing the bases must have created the base info for our primary
    912     // virtual base.
    913     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    914     assert(PrimaryVirtualBaseInfo &&
    915            "Did not create a primary virtual base!");
    916 
    917     // Claim the primary virtual base as our primary virtual base.
    918     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    919     PrimaryVirtualBaseInfo->Derived = Info;
    920   }
    921 
    922   return Info;
    923 }
    924 
    925 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
    926   for (const auto &I : RD->bases()) {
    927     bool IsVirtual = I.isVirtual();
    928 
    929     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    930 
    931     // Compute the base subobject info for this base.
    932     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
    933                                                        nullptr);
    934 
    935     if (IsVirtual) {
    936       // ComputeBaseInfo has already added this base for us.
    937       assert(VirtualBaseInfo.count(BaseDecl) &&
    938              "Did not add virtual base!");
    939     } else {
    940       // Add the base info to the map of non-virtual bases.
    941       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
    942              "Non-virtual base already exists!");
    943       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    944     }
    945   }
    946 }
    947 
    948 void
    949 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
    950   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
    951 
    952   // The maximum field alignment overrides base align.
    953   if (!MaxFieldAlignment.isZero()) {
    954     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
    955     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
    956   }
    957 
    958   // Round up the current record size to pointer alignment.
    959   setSize(getSize().RoundUpToAlignment(BaseAlign));
    960   setDataSize(getSize());
    961 
    962   // Update the alignment.
    963   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
    964 }
    965 
    966 void
    967 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
    968   // Then, determine the primary base class.
    969   DeterminePrimaryBase(RD);
    970 
    971   // Compute base subobject info.
    972   ComputeBaseSubobjectInfo(RD);
    973 
    974   // If we have a primary base class, lay it out.
    975   if (PrimaryBase) {
    976     if (PrimaryBaseIsVirtual) {
    977       // If the primary virtual base was a primary virtual base of some other
    978       // base class we'll have to steal it.
    979       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
    980       PrimaryBaseInfo->Derived = nullptr;
    981 
    982       // We have a virtual primary base, insert it as an indirect primary base.
    983       IndirectPrimaryBases.insert(PrimaryBase);
    984 
    985       assert(!VisitedVirtualBases.count(PrimaryBase) &&
    986              "vbase already visited!");
    987       VisitedVirtualBases.insert(PrimaryBase);
    988 
    989       LayoutVirtualBase(PrimaryBaseInfo);
    990     } else {
    991       BaseSubobjectInfo *PrimaryBaseInfo =
    992         NonVirtualBaseInfo.lookup(PrimaryBase);
    993       assert(PrimaryBaseInfo &&
    994              "Did not find base info for non-virtual primary base!");
    995 
    996       LayoutNonVirtualBase(PrimaryBaseInfo);
    997     }
    998 
    999   // If this class needs a vtable/vf-table and didn't get one from a
   1000   // primary base, add it in now.
   1001   } else if (RD->isDynamicClass()) {
   1002     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
   1003     CharUnits PtrWidth =
   1004       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   1005     CharUnits PtrAlign =
   1006       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   1007     EnsureVTablePointerAlignment(PtrAlign);
   1008     HasOwnVFPtr = true;
   1009     setSize(getSize() + PtrWidth);
   1010     setDataSize(getSize());
   1011   }
   1012 
   1013   // Now lay out the non-virtual bases.
   1014   for (const auto &I : RD->bases()) {
   1015 
   1016     // Ignore virtual bases.
   1017     if (I.isVirtual())
   1018       continue;
   1019 
   1020     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   1021 
   1022     // Skip the primary base, because we've already laid it out.  The
   1023     // !PrimaryBaseIsVirtual check is required because we might have a
   1024     // non-virtual base of the same type as a primary virtual base.
   1025     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
   1026       continue;
   1027 
   1028     // Lay out the base.
   1029     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
   1030     assert(BaseInfo && "Did not find base info for non-virtual base!");
   1031 
   1032     LayoutNonVirtualBase(BaseInfo);
   1033   }
   1034 }
   1035 
   1036 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
   1037   // Layout the base.
   1038   CharUnits Offset = LayoutBase(Base);
   1039 
   1040   // Add its base class offset.
   1041   assert(!Bases.count(Base->Class) && "base offset already exists!");
   1042   Bases.insert(std::make_pair(Base->Class, Offset));
   1043 
   1044   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1045 }
   1046 
   1047 void
   1048 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
   1049                                                   CharUnits Offset) {
   1050   // This base isn't interesting, it has no virtual bases.
   1051   if (!Info->Class->getNumVBases())
   1052     return;
   1053 
   1054   // First, check if we have a virtual primary base to add offsets for.
   1055   if (Info->PrimaryVirtualBaseInfo) {
   1056     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
   1057            "Primary virtual base is not virtual!");
   1058     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
   1059       // Add the offset.
   1060       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
   1061              "primary vbase offset already exists!");
   1062       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
   1063                                    ASTRecordLayout::VBaseInfo(Offset, false)));
   1064 
   1065       // Traverse the primary virtual base.
   1066       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
   1067     }
   1068   }
   1069 
   1070   // Now go through all direct non-virtual bases.
   1071   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
   1072   for (unsigned I = 0, E = Info->Bases.size(); I != E; ++I) {
   1073     const BaseSubobjectInfo *Base = Info->Bases[I];
   1074     if (Base->IsVirtual)
   1075       continue;
   1076 
   1077     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
   1078     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
   1079   }
   1080 }
   1081 
   1082 void
   1083 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
   1084                                         const CXXRecordDecl *MostDerivedClass) {
   1085   const CXXRecordDecl *PrimaryBase;
   1086   bool PrimaryBaseIsVirtual;
   1087 
   1088   if (MostDerivedClass == RD) {
   1089     PrimaryBase = this->PrimaryBase;
   1090     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
   1091   } else {
   1092     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1093     PrimaryBase = Layout.getPrimaryBase();
   1094     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
   1095   }
   1096 
   1097   for (const auto &I : RD->bases()) {
   1098     assert(!I.getType()->isDependentType() &&
   1099            "Cannot layout class with dependent bases.");
   1100 
   1101     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   1102 
   1103     if (I.isVirtual()) {
   1104       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
   1105         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
   1106 
   1107         // Only lay out the virtual base if it's not an indirect primary base.
   1108         if (!IndirectPrimaryBase) {
   1109           // Only visit virtual bases once.
   1110           if (!VisitedVirtualBases.insert(BaseDecl))
   1111             continue;
   1112 
   1113           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1114           assert(BaseInfo && "Did not find virtual base info!");
   1115           LayoutVirtualBase(BaseInfo);
   1116         }
   1117       }
   1118     }
   1119 
   1120     if (!BaseDecl->getNumVBases()) {
   1121       // This base isn't interesting since it doesn't have any virtual bases.
   1122       continue;
   1123     }
   1124 
   1125     LayoutVirtualBases(BaseDecl, MostDerivedClass);
   1126   }
   1127 }
   1128 
   1129 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
   1130   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
   1131 
   1132   // Layout the base.
   1133   CharUnits Offset = LayoutBase(Base);
   1134 
   1135   // Add its base class offset.
   1136   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
   1137   VBases.insert(std::make_pair(Base->Class,
   1138                        ASTRecordLayout::VBaseInfo(Offset, false)));
   1139 
   1140   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1141 }
   1142 
   1143 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
   1144   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
   1145 
   1146 
   1147   CharUnits Offset;
   1148 
   1149   // Query the external layout to see if it provides an offset.
   1150   bool HasExternalLayout = false;
   1151   if (ExternalLayout) {
   1152     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
   1153     if (Base->IsVirtual) {
   1154       Known = ExternalVirtualBaseOffsets.find(Base->Class);
   1155       if (Known != ExternalVirtualBaseOffsets.end()) {
   1156         Offset = Known->second;
   1157         HasExternalLayout = true;
   1158       }
   1159     } else {
   1160       Known = ExternalBaseOffsets.find(Base->Class);
   1161       if (Known != ExternalBaseOffsets.end()) {
   1162         Offset = Known->second;
   1163         HasExternalLayout = true;
   1164       }
   1165     }
   1166   }
   1167 
   1168   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
   1169   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
   1170 
   1171   // If we have an empty base class, try to place it at offset 0.
   1172   if (Base->Class->isEmpty() &&
   1173       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
   1174       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
   1175     setSize(std::max(getSize(), Layout.getSize()));
   1176     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1177 
   1178     return CharUnits::Zero();
   1179   }
   1180 
   1181   // The maximum field alignment overrides base align.
   1182   if (!MaxFieldAlignment.isZero()) {
   1183     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1184     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1185   }
   1186 
   1187   if (!HasExternalLayout) {
   1188     // Round up the current record size to the base's alignment boundary.
   1189     Offset = getDataSize().RoundUpToAlignment(BaseAlign);
   1190 
   1191     // Try to place the base.
   1192     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
   1193       Offset += BaseAlign;
   1194   } else {
   1195     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
   1196     (void)Allowed;
   1197     assert(Allowed && "Base subobject externally placed at overlapping offset");
   1198 
   1199     if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
   1200       // The externally-supplied base offset is before the base offset we
   1201       // computed. Assume that the structure is packed.
   1202       Alignment = CharUnits::One();
   1203       InferAlignment = false;
   1204     }
   1205   }
   1206 
   1207   if (!Base->Class->isEmpty()) {
   1208     // Update the data size.
   1209     setDataSize(Offset + Layout.getNonVirtualSize());
   1210 
   1211     setSize(std::max(getSize(), getDataSize()));
   1212   } else
   1213     setSize(std::max(getSize(), Offset + Layout.getSize()));
   1214 
   1215   // Remember max struct/class alignment.
   1216   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1217 
   1218   return Offset;
   1219 }
   1220 
   1221 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
   1222   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1223     IsUnion = RD->isUnion();
   1224     IsMsStruct = RD->isMsStruct(Context);
   1225   }
   1226 
   1227   Packed = D->hasAttr<PackedAttr>();
   1228 
   1229   // Honor the default struct packing maximum alignment flag.
   1230   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
   1231     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
   1232   }
   1233 
   1234   // mac68k alignment supersedes maximum field alignment and attribute aligned,
   1235   // and forces all structures to have 2-byte alignment. The IBM docs on it
   1236   // allude to additional (more complicated) semantics, especially with regard
   1237   // to bit-fields, but gcc appears not to follow that.
   1238   if (D->hasAttr<AlignMac68kAttr>()) {
   1239     IsMac68kAlign = true;
   1240     MaxFieldAlignment = CharUnits::fromQuantity(2);
   1241     Alignment = CharUnits::fromQuantity(2);
   1242   } else {
   1243     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
   1244       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
   1245 
   1246     if (unsigned MaxAlign = D->getMaxAlignment())
   1247       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
   1248   }
   1249 
   1250   // If there is an external AST source, ask it for the various offsets.
   1251   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
   1252     if (ExternalASTSource *External = Context.getExternalSource()) {
   1253       ExternalLayout = External->layoutRecordType(RD,
   1254                                                   ExternalSize,
   1255                                                   ExternalAlign,
   1256                                                   ExternalFieldOffsets,
   1257                                                   ExternalBaseOffsets,
   1258                                                   ExternalVirtualBaseOffsets);
   1259 
   1260       // Update based on external alignment.
   1261       if (ExternalLayout) {
   1262         if (ExternalAlign > 0) {
   1263           Alignment = Context.toCharUnitsFromBits(ExternalAlign);
   1264         } else {
   1265           // The external source didn't have alignment information; infer it.
   1266           InferAlignment = true;
   1267         }
   1268       }
   1269     }
   1270 }
   1271 
   1272 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
   1273   InitializeLayout(D);
   1274   LayoutFields(D);
   1275 
   1276   // Finally, round the size of the total struct up to the alignment of the
   1277   // struct itself.
   1278   FinishLayout(D);
   1279 }
   1280 
   1281 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
   1282   InitializeLayout(RD);
   1283 
   1284   // Lay out the vtable and the non-virtual bases.
   1285   LayoutNonVirtualBases(RD);
   1286 
   1287   LayoutFields(RD);
   1288 
   1289   NonVirtualSize = Context.toCharUnitsFromBits(
   1290         llvm::RoundUpToAlignment(getSizeInBits(),
   1291                                  Context.getTargetInfo().getCharAlign()));
   1292   NonVirtualAlignment = Alignment;
   1293 
   1294   // Lay out the virtual bases and add the primary virtual base offsets.
   1295   LayoutVirtualBases(RD, RD);
   1296 
   1297   // Finally, round the size of the total struct up to the alignment
   1298   // of the struct itself.
   1299   FinishLayout(RD);
   1300 
   1301 #ifndef NDEBUG
   1302   // Check that we have base offsets for all bases.
   1303   for (const auto &I : RD->bases()) {
   1304     if (I.isVirtual())
   1305       continue;
   1306 
   1307     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   1308 
   1309     assert(Bases.count(BaseDecl) && "Did not find base offset!");
   1310   }
   1311 
   1312   // And all virtual bases.
   1313   for (const auto &I : RD->vbases()) {
   1314     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   1315 
   1316     assert(VBases.count(BaseDecl) && "Did not find base offset!");
   1317   }
   1318 #endif
   1319 }
   1320 
   1321 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
   1322   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
   1323     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
   1324 
   1325     UpdateAlignment(SL.getAlignment());
   1326 
   1327     // We start laying out ivars not at the end of the superclass
   1328     // structure, but at the next byte following the last field.
   1329     setSize(SL.getDataSize());
   1330     setDataSize(getSize());
   1331   }
   1332 
   1333   InitializeLayout(D);
   1334   // Layout each ivar sequentially.
   1335   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
   1336        IVD = IVD->getNextIvar())
   1337     LayoutField(IVD);
   1338 
   1339   // Finally, round the size of the total struct up to the alignment of the
   1340   // struct itself.
   1341   FinishLayout(D);
   1342 }
   1343 
   1344 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
   1345   // Layout each field, for now, just sequentially, respecting alignment.  In
   1346   // the future, this will need to be tweakable by targets.
   1347   for (const auto *Field : D->fields())
   1348     LayoutField(Field);
   1349 }
   1350 
   1351 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
   1352                                              uint64_t TypeSize,
   1353                                              bool FieldPacked,
   1354                                              const FieldDecl *D) {
   1355   assert(Context.getLangOpts().CPlusPlus &&
   1356          "Can only have wide bit-fields in C++!");
   1357 
   1358   // Itanium C++ ABI 2.4:
   1359   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
   1360   //   sizeof(T')*8 <= n.
   1361 
   1362   QualType IntegralPODTypes[] = {
   1363     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
   1364     Context.UnsignedLongTy, Context.UnsignedLongLongTy
   1365   };
   1366 
   1367   QualType Type;
   1368   for (unsigned I = 0, E = llvm::array_lengthof(IntegralPODTypes);
   1369        I != E; ++I) {
   1370     uint64_t Size = Context.getTypeSize(IntegralPODTypes[I]);
   1371 
   1372     if (Size > FieldSize)
   1373       break;
   1374 
   1375     Type = IntegralPODTypes[I];
   1376   }
   1377   assert(!Type.isNull() && "Did not find a type!");
   1378 
   1379   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
   1380 
   1381   // We're not going to use any of the unfilled bits in the last byte.
   1382   UnfilledBitsInLastUnit = 0;
   1383   LastBitfieldTypeSize = 0;
   1384 
   1385   uint64_t FieldOffset;
   1386   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1387 
   1388   if (IsUnion) {
   1389     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1390     FieldOffset = 0;
   1391   } else {
   1392     // The bitfield is allocated starting at the next offset aligned
   1393     // appropriately for T', with length n bits.
   1394     FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
   1395                                            Context.toBits(TypeAlign));
   1396 
   1397     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1398 
   1399     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
   1400                                          Context.getTargetInfo().getCharAlign()));
   1401     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
   1402   }
   1403 
   1404   // Place this field at the current location.
   1405   FieldOffsets.push_back(FieldOffset);
   1406 
   1407   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
   1408                     Context.toBits(TypeAlign), FieldPacked, D);
   1409 
   1410   // Update the size.
   1411   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1412 
   1413   // Remember max struct/class alignment.
   1414   UpdateAlignment(TypeAlign);
   1415 }
   1416 
   1417 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
   1418   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1419   uint64_t FieldSize = D->getBitWidthValue(Context);
   1420   std::pair<uint64_t, unsigned> FieldInfo = Context.getTypeInfo(D->getType());
   1421   uint64_t TypeSize = FieldInfo.first;
   1422   unsigned FieldAlign = FieldInfo.second;
   1423 
   1424   // UnfilledBitsInLastUnit is the difference between the end of the
   1425   // last allocated bitfield (i.e. the first bit offset available for
   1426   // bitfields) and the end of the current data size in bits (i.e. the
   1427   // first bit offset available for non-bitfields).  The current data
   1428   // size in bits is always a multiple of the char size; additionally,
   1429   // for ms_struct records it's also a multiple of the
   1430   // LastBitfieldTypeSize (if set).
   1431 
   1432   // The struct-layout algorithm is dictated by the platform ABI,
   1433   // which in principle could use almost any rules it likes.  In
   1434   // practice, UNIXy targets tend to inherit the algorithm described
   1435   // in the System V generic ABI.  The basic bitfield layout rule in
   1436   // System V is to place bitfields at the next available bit offset
   1437   // where the entire bitfield would fit in an aligned storage unit of
   1438   // the declared type; it's okay if an earlier or later non-bitfield
   1439   // is allocated in the same storage unit.  However, some targets
   1440   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
   1441   // require this storage unit to be aligned, and therefore always put
   1442   // the bitfield at the next available bit offset.
   1443 
   1444   // ms_struct basically requests a complete replacement of the
   1445   // platform ABI's struct-layout algorithm, with the high-level goal
   1446   // of duplicating MSVC's layout.  For non-bitfields, this follows
   1447   // the the standard algorithm.  The basic bitfield layout rule is to
   1448   // allocate an entire unit of the bitfield's declared type
   1449   // (e.g. 'unsigned long'), then parcel it up among successive
   1450   // bitfields whose declared types have the same size, making a new
   1451   // unit as soon as the last can no longer store the whole value.
   1452   // Since it completely replaces the platform ABI's algorithm,
   1453   // settings like !useBitFieldTypeAlignment() do not apply.
   1454 
   1455   // A zero-width bitfield forces the use of a new storage unit for
   1456   // later bitfields.  In general, this occurs by rounding up the
   1457   // current size of the struct as if the algorithm were about to
   1458   // place a non-bitfield of the field's formal type.  Usually this
   1459   // does not change the alignment of the struct itself, but it does
   1460   // on some targets (those that useZeroLengthBitfieldAlignment(),
   1461   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
   1462   // ignored unless they follow a non-zero-width bitfield.
   1463 
   1464   // A field alignment restriction (e.g. from #pragma pack) or
   1465   // specification (e.g. from __attribute__((aligned))) changes the
   1466   // formal alignment of the field.  For System V, this alters the
   1467   // required alignment of the notional storage unit that must contain
   1468   // the bitfield.  For ms_struct, this only affects the placement of
   1469   // new storage units.  In both cases, the effect of #pragma pack is
   1470   // ignored on zero-width bitfields.
   1471 
   1472   // On System V, a packed field (e.g. from #pragma pack or
   1473   // __attribute__((packed))) always uses the next available bit
   1474   // offset.
   1475 
   1476   // In an ms_struct struct, the alignment of a fundamental type is
   1477   // always equal to its size.  This is necessary in order to mimic
   1478   // the i386 alignment rules on targets which might not fully align
   1479   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
   1480 
   1481   // First, some simple bookkeeping to perform for ms_struct structs.
   1482   if (IsMsStruct) {
   1483     // The field alignment for integer types is always the size.
   1484     FieldAlign = TypeSize;
   1485 
   1486     // If the previous field was not a bitfield, or was a bitfield
   1487     // with a different storage unit size, we're done with that
   1488     // storage unit.
   1489     if (LastBitfieldTypeSize != TypeSize) {
   1490       // Also, ignore zero-length bitfields after non-bitfields.
   1491       if (!LastBitfieldTypeSize && !FieldSize)
   1492         FieldAlign = 1;
   1493 
   1494       UnfilledBitsInLastUnit = 0;
   1495       LastBitfieldTypeSize = 0;
   1496     }
   1497   }
   1498 
   1499   // If the field is wider than its declared type, it follows
   1500   // different rules in all cases.
   1501   if (FieldSize > TypeSize) {
   1502     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
   1503     return;
   1504   }
   1505 
   1506   // Compute the next available bit offset.
   1507   uint64_t FieldOffset =
   1508     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
   1509 
   1510   // Handle targets that don't honor bitfield type alignment.
   1511   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
   1512     // Some such targets do honor it on zero-width bitfields.
   1513     if (FieldSize == 0 &&
   1514         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
   1515       // The alignment to round up to is the max of the field's natural
   1516       // alignment and a target-specific fixed value (sometimes zero).
   1517       unsigned ZeroLengthBitfieldBoundary =
   1518         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
   1519       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
   1520 
   1521     // If that doesn't apply, just ignore the field alignment.
   1522     } else {
   1523       FieldAlign = 1;
   1524     }
   1525   }
   1526 
   1527   // Remember the alignment we would have used if the field were not packed.
   1528   unsigned UnpackedFieldAlign = FieldAlign;
   1529 
   1530   // Ignore the field alignment if the field is packed unless it has zero-size.
   1531   if (!IsMsStruct && FieldPacked && FieldSize != 0)
   1532     FieldAlign = 1;
   1533 
   1534   // But, if there's an 'aligned' attribute on the field, honor that.
   1535   if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
   1536     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
   1537     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
   1538   }
   1539 
   1540   // But, if there's a #pragma pack in play, that takes precedent over
   1541   // even the 'aligned' attribute, for non-zero-width bitfields.
   1542   if (!MaxFieldAlignment.isZero() && FieldSize) {
   1543     unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
   1544     FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1545     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
   1546   }
   1547 
   1548   // For purposes of diagnostics, we're going to simultaneously
   1549   // compute the field offsets that we would have used if we weren't
   1550   // adding any alignment padding or if the field weren't packed.
   1551   uint64_t UnpaddedFieldOffset = FieldOffset;
   1552   uint64_t UnpackedFieldOffset = FieldOffset;
   1553 
   1554   // Check if we need to add padding to fit the bitfield within an
   1555   // allocation unit with the right size and alignment.  The rules are
   1556   // somewhat different here for ms_struct structs.
   1557   if (IsMsStruct) {
   1558     // If it's not a zero-width bitfield, and we can fit the bitfield
   1559     // into the active storage unit (and we haven't already decided to
   1560     // start a new storage unit), just do so, regardless of any other
   1561     // other consideration.  Otherwise, round up to the right alignment.
   1562     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
   1563       FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
   1564       UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
   1565                                                      UnpackedFieldAlign);
   1566       UnfilledBitsInLastUnit = 0;
   1567     }
   1568 
   1569   } else {
   1570     // #pragma pack, with any value, suppresses the insertion of padding.
   1571     bool AllowPadding = MaxFieldAlignment.isZero();
   1572 
   1573     // Compute the real offset.
   1574     if (FieldSize == 0 ||
   1575         (AllowPadding &&
   1576          (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
   1577       FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
   1578     }
   1579 
   1580     // Repeat the computation for diagnostic purposes.
   1581     if (FieldSize == 0 ||
   1582         (AllowPadding &&
   1583          (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
   1584       UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
   1585                                                      UnpackedFieldAlign);
   1586   }
   1587 
   1588   // If we're using external layout, give the external layout a chance
   1589   // to override this information.
   1590   if (ExternalLayout)
   1591     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
   1592 
   1593   // Okay, place the bitfield at the calculated offset.
   1594   FieldOffsets.push_back(FieldOffset);
   1595 
   1596   // Bookkeeping:
   1597 
   1598   // Anonymous members don't affect the overall record alignment,
   1599   // except on targets where they do.
   1600   if (!IsMsStruct &&
   1601       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
   1602       !D->getIdentifier())
   1603     FieldAlign = UnpackedFieldAlign = 1;
   1604 
   1605   // Diagnose differences in layout due to padding or packing.
   1606   if (!ExternalLayout)
   1607     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
   1608                       UnpackedFieldAlign, FieldPacked, D);
   1609 
   1610   // Update DataSize to include the last byte containing (part of) the bitfield.
   1611 
   1612   // For unions, this is just a max operation, as usual.
   1613   if (IsUnion) {
   1614     // FIXME: I think FieldSize should be TypeSize here.
   1615     setDataSize(std::max(getDataSizeInBits(), FieldSize));
   1616 
   1617   // For non-zero-width bitfields in ms_struct structs, allocate a new
   1618   // storage unit if necessary.
   1619   } else if (IsMsStruct && FieldSize) {
   1620     // We should have cleared UnfilledBitsInLastUnit in every case
   1621     // where we changed storage units.
   1622     if (!UnfilledBitsInLastUnit) {
   1623       setDataSize(FieldOffset + TypeSize);
   1624       UnfilledBitsInLastUnit = TypeSize;
   1625     }
   1626     UnfilledBitsInLastUnit -= FieldSize;
   1627     LastBitfieldTypeSize = TypeSize;
   1628 
   1629   // Otherwise, bump the data size up to include the bitfield,
   1630   // including padding up to char alignment, and then remember how
   1631   // bits we didn't use.
   1632   } else {
   1633     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1634     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
   1635     setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
   1636     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
   1637 
   1638     // The only time we can get here for an ms_struct is if this is a
   1639     // zero-width bitfield, which doesn't count as anything for the
   1640     // purposes of unfilled bits.
   1641     LastBitfieldTypeSize = 0;
   1642   }
   1643 
   1644   // Update the size.
   1645   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1646 
   1647   // Remember max struct/class alignment.
   1648   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
   1649                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
   1650 }
   1651 
   1652 void RecordLayoutBuilder::LayoutField(const FieldDecl *D) {
   1653   if (D->isBitField()) {
   1654     LayoutBitField(D);
   1655     return;
   1656   }
   1657 
   1658   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1659 
   1660   // Reset the unfilled bits.
   1661   UnfilledBitsInLastUnit = 0;
   1662   LastBitfieldTypeSize = 0;
   1663 
   1664   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1665   CharUnits FieldOffset =
   1666     IsUnion ? CharUnits::Zero() : getDataSize();
   1667   CharUnits FieldSize;
   1668   CharUnits FieldAlign;
   1669 
   1670   if (D->getType()->isIncompleteArrayType()) {
   1671     // This is a flexible array member; we can't directly
   1672     // query getTypeInfo about these, so we figure it out here.
   1673     // Flexible array members don't have any size, but they
   1674     // have to be aligned appropriately for their element type.
   1675     FieldSize = CharUnits::Zero();
   1676     const ArrayType* ATy = Context.getAsArrayType(D->getType());
   1677     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
   1678   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
   1679     unsigned AS = RT->getPointeeType().getAddressSpace();
   1680     FieldSize =
   1681       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
   1682     FieldAlign =
   1683       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
   1684   } else {
   1685     std::pair<CharUnits, CharUnits> FieldInfo =
   1686       Context.getTypeInfoInChars(D->getType());
   1687     FieldSize = FieldInfo.first;
   1688     FieldAlign = FieldInfo.second;
   1689 
   1690     if (IsMsStruct) {
   1691       // If MS bitfield layout is required, figure out what type is being
   1692       // laid out and align the field to the width of that type.
   1693 
   1694       // Resolve all typedefs down to their base type and round up the field
   1695       // alignment if necessary.
   1696       QualType T = Context.getBaseElementType(D->getType());
   1697       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
   1698         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
   1699         if (TypeSize > FieldAlign)
   1700           FieldAlign = TypeSize;
   1701       }
   1702     }
   1703   }
   1704 
   1705   // The align if the field is not packed. This is to check if the attribute
   1706   // was unnecessary (-Wpacked).
   1707   CharUnits UnpackedFieldAlign = FieldAlign;
   1708   CharUnits UnpackedFieldOffset = FieldOffset;
   1709 
   1710   if (FieldPacked)
   1711     FieldAlign = CharUnits::One();
   1712   CharUnits MaxAlignmentInChars =
   1713     Context.toCharUnitsFromBits(D->getMaxAlignment());
   1714   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
   1715   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
   1716 
   1717   // The maximum field alignment overrides the aligned attribute.
   1718   if (!MaxFieldAlignment.isZero()) {
   1719     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
   1720     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
   1721   }
   1722 
   1723   // Round up the current record size to the field's alignment boundary.
   1724   FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
   1725   UnpackedFieldOffset =
   1726     UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
   1727 
   1728   if (ExternalLayout) {
   1729     FieldOffset = Context.toCharUnitsFromBits(
   1730                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
   1731 
   1732     if (!IsUnion && EmptySubobjects) {
   1733       // Record the fact that we're placing a field at this offset.
   1734       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
   1735       (void)Allowed;
   1736       assert(Allowed && "Externally-placed field cannot be placed here");
   1737     }
   1738   } else {
   1739     if (!IsUnion && EmptySubobjects) {
   1740       // Check if we can place the field at this offset.
   1741       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
   1742         // We couldn't place the field at the offset. Try again at a new offset.
   1743         FieldOffset += FieldAlign;
   1744       }
   1745     }
   1746   }
   1747 
   1748   // Place this field at the current location.
   1749   FieldOffsets.push_back(Context.toBits(FieldOffset));
   1750 
   1751   if (!ExternalLayout)
   1752     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
   1753                       Context.toBits(UnpackedFieldOffset),
   1754                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
   1755 
   1756   // Reserve space for this field.
   1757   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
   1758   if (IsUnion)
   1759     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
   1760   else
   1761     setDataSize(FieldOffset + FieldSize);
   1762 
   1763   // Update the size.
   1764   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1765 
   1766   // Remember max struct/class alignment.
   1767   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
   1768 }
   1769 
   1770 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
   1771   // In C++, records cannot be of size 0.
   1772   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
   1773     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   1774       // Compatibility with gcc requires a class (pod or non-pod)
   1775       // which is not empty but of size 0; such as having fields of
   1776       // array of zero-length, remains of Size 0
   1777       if (RD->isEmpty())
   1778         setSize(CharUnits::One());
   1779     }
   1780     else
   1781       setSize(CharUnits::One());
   1782   }
   1783 
   1784   // Finally, round the size of the record up to the alignment of the
   1785   // record itself.
   1786   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
   1787   uint64_t UnpackedSizeInBits =
   1788   llvm::RoundUpToAlignment(getSizeInBits(),
   1789                            Context.toBits(UnpackedAlignment));
   1790   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
   1791   uint64_t RoundedSize
   1792     = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
   1793 
   1794   if (ExternalLayout) {
   1795     // If we're inferring alignment, and the external size is smaller than
   1796     // our size after we've rounded up to alignment, conservatively set the
   1797     // alignment to 1.
   1798     if (InferAlignment && ExternalSize < RoundedSize) {
   1799       Alignment = CharUnits::One();
   1800       InferAlignment = false;
   1801     }
   1802     setSize(ExternalSize);
   1803     return;
   1804   }
   1805 
   1806   // Set the size to the final size.
   1807   setSize(RoundedSize);
   1808 
   1809   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   1810   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1811     // Warn if padding was introduced to the struct/class/union.
   1812     if (getSizeInBits() > UnpaddedSize) {
   1813       unsigned PadSize = getSizeInBits() - UnpaddedSize;
   1814       bool InBits = true;
   1815       if (PadSize % CharBitNum == 0) {
   1816         PadSize = PadSize / CharBitNum;
   1817         InBits = false;
   1818       }
   1819       Diag(RD->getLocation(), diag::warn_padded_struct_size)
   1820           << Context.getTypeDeclType(RD)
   1821           << PadSize
   1822           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   1823     }
   1824 
   1825     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   1826     // bother since there won't be alignment issues.
   1827     if (Packed && UnpackedAlignment > CharUnits::One() &&
   1828         getSize() == UnpackedSize)
   1829       Diag(D->getLocation(), diag::warn_unnecessary_packed)
   1830           << Context.getTypeDeclType(RD);
   1831   }
   1832 }
   1833 
   1834 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
   1835                                           CharUnits UnpackedNewAlignment) {
   1836   // The alignment is not modified when using 'mac68k' alignment or when
   1837   // we have an externally-supplied layout that also provides overall alignment.
   1838   if (IsMac68kAlign || (ExternalLayout && !InferAlignment))
   1839     return;
   1840 
   1841   if (NewAlignment > Alignment) {
   1842     assert(llvm::isPowerOf2_32(NewAlignment.getQuantity() &&
   1843            "Alignment not a power of 2"));
   1844     Alignment = NewAlignment;
   1845   }
   1846 
   1847   if (UnpackedNewAlignment > UnpackedAlignment) {
   1848     assert(llvm::isPowerOf2_32(UnpackedNewAlignment.getQuantity() &&
   1849            "Alignment not a power of 2"));
   1850     UnpackedAlignment = UnpackedNewAlignment;
   1851   }
   1852 }
   1853 
   1854 uint64_t
   1855 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
   1856                                                uint64_t ComputedOffset) {
   1857   assert(ExternalFieldOffsets.find(Field) != ExternalFieldOffsets.end() &&
   1858          "Field does not have an external offset");
   1859 
   1860   uint64_t ExternalFieldOffset = ExternalFieldOffsets[Field];
   1861 
   1862   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
   1863     // The externally-supplied field offset is before the field offset we
   1864     // computed. Assume that the structure is packed.
   1865     Alignment = CharUnits::One();
   1866     InferAlignment = false;
   1867   }
   1868 
   1869   // Use the externally-supplied field offset.
   1870   return ExternalFieldOffset;
   1871 }
   1872 
   1873 /// \brief Get diagnostic %select index for tag kind for
   1874 /// field padding diagnostic message.
   1875 /// WARNING: Indexes apply to particular diagnostics only!
   1876 ///
   1877 /// \returns diagnostic %select index.
   1878 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
   1879   switch (Tag) {
   1880   case TTK_Struct: return 0;
   1881   case TTK_Interface: return 1;
   1882   case TTK_Class: return 2;
   1883   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
   1884   }
   1885 }
   1886 
   1887 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
   1888                                             uint64_t UnpaddedOffset,
   1889                                             uint64_t UnpackedOffset,
   1890                                             unsigned UnpackedAlign,
   1891                                             bool isPacked,
   1892                                             const FieldDecl *D) {
   1893   // We let objc ivars without warning, objc interfaces generally are not used
   1894   // for padding tricks.
   1895   if (isa<ObjCIvarDecl>(D))
   1896     return;
   1897 
   1898   // Don't warn about structs created without a SourceLocation.  This can
   1899   // be done by clients of the AST, such as codegen.
   1900   if (D->getLocation().isInvalid())
   1901     return;
   1902 
   1903   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   1904 
   1905   // Warn if padding was introduced to the struct/class.
   1906   if (!IsUnion && Offset > UnpaddedOffset) {
   1907     unsigned PadSize = Offset - UnpaddedOffset;
   1908     bool InBits = true;
   1909     if (PadSize % CharBitNum == 0) {
   1910       PadSize = PadSize / CharBitNum;
   1911       InBits = false;
   1912     }
   1913     if (D->getIdentifier())
   1914       Diag(D->getLocation(), diag::warn_padded_struct_field)
   1915           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   1916           << Context.getTypeDeclType(D->getParent())
   1917           << PadSize
   1918           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
   1919           << D->getIdentifier();
   1920     else
   1921       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
   1922           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   1923           << Context.getTypeDeclType(D->getParent())
   1924           << PadSize
   1925           << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
   1926   }
   1927 
   1928   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   1929   // bother since there won't be alignment issues.
   1930   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
   1931     Diag(D->getLocation(), diag::warn_unnecessary_packed)
   1932         << D->getIdentifier();
   1933 }
   1934 
   1935 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
   1936                                                const CXXRecordDecl *RD) {
   1937   // If a class isn't polymorphic it doesn't have a key function.
   1938   if (!RD->isPolymorphic())
   1939     return nullptr;
   1940 
   1941   // A class that is not externally visible doesn't have a key function. (Or
   1942   // at least, there's no point to assigning a key function to such a class;
   1943   // this doesn't affect the ABI.)
   1944   if (!RD->isExternallyVisible())
   1945     return nullptr;
   1946 
   1947   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
   1948   // Same behavior as GCC.
   1949   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
   1950   if (TSK == TSK_ImplicitInstantiation ||
   1951       TSK == TSK_ExplicitInstantiationDeclaration ||
   1952       TSK == TSK_ExplicitInstantiationDefinition)
   1953     return nullptr;
   1954 
   1955   bool allowInlineFunctions =
   1956     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
   1957 
   1958   for (const auto *MD : RD->methods()) {
   1959     if (!MD->isVirtual())
   1960       continue;
   1961 
   1962     if (MD->isPure())
   1963       continue;
   1964 
   1965     // Ignore implicit member functions, they are always marked as inline, but
   1966     // they don't have a body until they're defined.
   1967     if (MD->isImplicit())
   1968       continue;
   1969 
   1970     if (MD->isInlineSpecified())
   1971       continue;
   1972 
   1973     if (MD->hasInlineBody())
   1974       continue;
   1975 
   1976     // Ignore inline deleted or defaulted functions.
   1977     if (!MD->isUserProvided())
   1978       continue;
   1979 
   1980     // In certain ABIs, ignore functions with out-of-line inline definitions.
   1981     if (!allowInlineFunctions) {
   1982       const FunctionDecl *Def;
   1983       if (MD->hasBody(Def) && Def->isInlineSpecified())
   1984         continue;
   1985     }
   1986 
   1987     // We found it.
   1988     return MD;
   1989   }
   1990 
   1991   return nullptr;
   1992 }
   1993 
   1994 DiagnosticBuilder
   1995 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
   1996   return Context.getDiagnostics().Report(Loc, DiagID);
   1997 }
   1998 
   1999 /// Does the target C++ ABI require us to skip over the tail-padding
   2000 /// of the given class (considering it as a base class) when allocating
   2001 /// objects?
   2002 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
   2003   switch (ABI.getTailPaddingUseRules()) {
   2004   case TargetCXXABI::AlwaysUseTailPadding:
   2005     return false;
   2006 
   2007   case TargetCXXABI::UseTailPaddingUnlessPOD03:
   2008     // FIXME: To the extent that this is meant to cover the Itanium ABI
   2009     // rules, we should implement the restrictions about over-sized
   2010     // bitfields:
   2011     //
   2012     // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
   2013     //   In general, a type is considered a POD for the purposes of
   2014     //   layout if it is a POD type (in the sense of ISO C++
   2015     //   [basic.types]). However, a POD-struct or POD-union (in the
   2016     //   sense of ISO C++ [class]) with a bitfield member whose
   2017     //   declared width is wider than the declared type of the
   2018     //   bitfield is not a POD for the purpose of layout.  Similarly,
   2019     //   an array type is not a POD for the purpose of layout if the
   2020     //   element type of the array is not a POD for the purpose of
   2021     //   layout.
   2022     //
   2023     //   Where references to the ISO C++ are made in this paragraph,
   2024     //   the Technical Corrigendum 1 version of the standard is
   2025     //   intended.
   2026     return RD->isPOD();
   2027 
   2028   case TargetCXXABI::UseTailPaddingUnlessPOD11:
   2029     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
   2030     // but with a lot of abstraction penalty stripped off.  This does
   2031     // assume that these properties are set correctly even in C++98
   2032     // mode; fortunately, that is true because we want to assign
   2033     // consistently semantics to the type-traits intrinsics (or at
   2034     // least as many of them as possible).
   2035     return RD->isTrivial() && RD->isStandardLayout();
   2036   }
   2037 
   2038   llvm_unreachable("bad tail-padding use kind");
   2039 }
   2040 
   2041 static bool isMsLayout(const RecordDecl* D) {
   2042   return D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
   2043 }
   2044 
   2045 // This section contains an implementation of struct layout that is, up to the
   2046 // included tests, compatible with cl.exe (2013).  The layout produced is
   2047 // significantly different than those produced by the Itanium ABI.  Here we note
   2048 // the most important differences.
   2049 //
   2050 // * The alignment of bitfields in unions is ignored when computing the
   2051 //   alignment of the union.
   2052 // * The existence of zero-width bitfield that occurs after anything other than
   2053 //   a non-zero length bitfield is ignored.
   2054 // * There is no explicit primary base for the purposes of layout.  All bases
   2055 //   with vfptrs are laid out first, followed by all bases without vfptrs.
   2056 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
   2057 //   function pointer) and a vbptr (virtual base pointer).  They can each be
   2058 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
   2059 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
   2060 //   placed after the lexiographically last non-virtual base.  This placement
   2061 //   is always before fields but can be in the middle of the non-virtual bases
   2062 //   due to the two-pass layout scheme for non-virtual-bases.
   2063 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
   2064 //   the virtual base and is used in conjunction with virtual overrides during
   2065 //   construction and destruction.  This is always a 4 byte value and is used as
   2066 //   an alternative to constructor vtables.
   2067 // * vtordisps are allocated in a block of memory with size and alignment equal
   2068 //   to the alignment of the completed structure (before applying __declspec(
   2069 //   align())).  The vtordisp always occur at the end of the allocation block,
   2070 //   immediately prior to the virtual base.
   2071 // * vfptrs are injected after all bases and fields have been laid out.  In
   2072 //   order to guarantee proper alignment of all fields, the vfptr injection
   2073 //   pushes all bases and fields back by the alignment imposed by those bases
   2074 //   and fields.  This can potentially add a significant amount of padding.
   2075 //   vfptrs are always injected at offset 0.
   2076 // * vbptrs are injected after all bases and fields have been laid out.  In
   2077 //   order to guarantee proper alignment of all fields, the vfptr injection
   2078 //   pushes all bases and fields back by the alignment imposed by those bases
   2079 //   and fields.  This can potentially add a significant amount of padding.
   2080 //   vbptrs are injected immediately after the last non-virtual base as
   2081 //   lexiographically ordered in the code.  If this site isn't pointer aligned
   2082 //   the vbptr is placed at the next properly aligned location.  Enough padding
   2083 //   is added to guarantee a fit.
   2084 // * The last zero sized non-virtual base can be placed at the end of the
   2085 //   struct (potentially aliasing another object), or may alias with the first
   2086 //   field, even if they are of the same type.
   2087 // * The last zero size virtual base may be placed at the end of the struct
   2088 //   potentially aliasing another object.
   2089 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
   2090 //   between bases or vbases with specific properties.  The criteria for
   2091 //   additional padding between two bases is that the first base is zero sized
   2092 //   or ends with a zero sized subobject and the second base is zero sized or
   2093 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
   2094 //   layout of the so the leading base is not always the first one declared).
   2095 //   This rule does take into account fields that are not records, so padding
   2096 //   will occur even if the last field is, e.g. an int. The padding added for
   2097 //   bases is 1 byte.  The padding added between vbases depends on the alignment
   2098 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
   2099 // * There is no concept of non-virtual alignment, non-virtual alignment and
   2100 //   alignment are always identical.
   2101 // * There is a distinction between alignment and required alignment.
   2102 //   __declspec(align) changes the required alignment of a struct.  This
   2103 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
   2104 //   record inherites required alignment from all of its fields an bases.
   2105 // * __declspec(align) on bitfields has the effect of changing the bitfield's
   2106 //   alignment instead of its required alignment.  This is the only known way
   2107 //   to make the alignment of a struct bigger than 8.  Interestingly enough
   2108 //   this alignment is also immune to the effects of #pragma pack and can be
   2109 //   used to create structures with large alignment under #pragma pack.
   2110 //   However, because it does not impact required alignment, such a structure,
   2111 //   when used as a field or base, will not be aligned if #pragma pack is
   2112 //   still active at the time of use.
   2113 //
   2114 // Known incompatibilities:
   2115 // * all: #pragma pack between fields in a record
   2116 // * 2010 and back: If the last field in a record is a bitfield, every object
   2117 //   laid out after the record will have extra padding inserted before it.  The
   2118 //   extra padding will have size equal to the size of the storage class of the
   2119 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
   2120 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
   2121 //   sized bitfield.
   2122 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
   2123 //   greater due to __declspec(align()) then a second layout phase occurs after
   2124 //   The locations of the vf and vb pointers are known.  This layout phase
   2125 //   suffers from the "last field is a bitfield" bug in 2010 and results in
   2126 //   _every_ field getting padding put in front of it, potentially including the
   2127 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
   2128 //   anything tries to read the vftbl.  The second layout phase also treats
   2129 //   bitfields as separate entities and gives them each storage rather than
   2130 //   packing them.  Additionally, because this phase appears to perform a
   2131 //   (an unstable) sort on the members before laying them out and because merged
   2132 //   bitfields have the same address, the bitfields end up in whatever order
   2133 //   the sort left them in, a behavior we could never hope to replicate.
   2134 
   2135 namespace {
   2136 struct MicrosoftRecordLayoutBuilder {
   2137   struct ElementInfo {
   2138     CharUnits Size;
   2139     CharUnits Alignment;
   2140   };
   2141   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
   2142   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
   2143 private:
   2144   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &)
   2145   LLVM_DELETED_FUNCTION;
   2146   void operator=(const MicrosoftRecordLayoutBuilder &) LLVM_DELETED_FUNCTION;
   2147 public:
   2148   void layout(const RecordDecl *RD);
   2149   void cxxLayout(const CXXRecordDecl *RD);
   2150   /// \brief Initializes size and alignment and honors some flags.
   2151   void initializeLayout(const RecordDecl *RD);
   2152   /// \brief Initialized C++ layout, compute alignment and virtual alignment and
   2153   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
   2154   /// laid out.
   2155   void initializeCXXLayout(const CXXRecordDecl *RD);
   2156   void layoutNonVirtualBases(const CXXRecordDecl *RD);
   2157   void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
   2158                             const ASTRecordLayout &BaseLayout,
   2159                             const ASTRecordLayout *&PreviousBaseLayout);
   2160   void injectVFPtr(const CXXRecordDecl *RD);
   2161   void injectVBPtr(const CXXRecordDecl *RD);
   2162   /// \brief Lays out the fields of the record.  Also rounds size up to
   2163   /// alignment.
   2164   void layoutFields(const RecordDecl *RD);
   2165   void layoutField(const FieldDecl *FD);
   2166   void layoutBitField(const FieldDecl *FD);
   2167   /// \brief Lays out a single zero-width bit-field in the record and handles
   2168   /// special cases associated with zero-width bit-fields.
   2169   void layoutZeroWidthBitField(const FieldDecl *FD);
   2170   void layoutVirtualBases(const CXXRecordDecl *RD);
   2171   void finalizeLayout(const RecordDecl *RD);
   2172   /// \brief Gets the size and alignment of a base taking pragma pack and
   2173   /// __declspec(align) into account.
   2174   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
   2175   /// \brief Gets the size and alignment of a field taking pragma  pack and
   2176   /// __declspec(align) into account.  It also updates RequiredAlignment as a
   2177   /// side effect because it is most convenient to do so here.
   2178   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
   2179   /// \brief Places a field at an offset in CharUnits.
   2180   void placeFieldAtOffset(CharUnits FieldOffset) {
   2181     FieldOffsets.push_back(Context.toBits(FieldOffset));
   2182   }
   2183   /// \brief Places a bitfield at a bit offset.
   2184   void placeFieldAtBitOffset(uint64_t FieldOffset) {
   2185     FieldOffsets.push_back(FieldOffset);
   2186   }
   2187   /// \brief Compute the set of virtual bases for which vtordisps are required.
   2188   llvm::SmallPtrSet<const CXXRecordDecl *, 2>
   2189   computeVtorDispSet(const CXXRecordDecl *RD);
   2190   const ASTContext &Context;
   2191   /// \brief The size of the record being laid out.
   2192   CharUnits Size;
   2193   /// \brief The non-virtual size of the record layout.
   2194   CharUnits NonVirtualSize;
   2195   /// \brief The data size of the record layout.
   2196   CharUnits DataSize;
   2197   /// \brief The current alignment of the record layout.
   2198   CharUnits Alignment;
   2199   /// \brief The maximum allowed field alignment. This is set by #pragma pack.
   2200   CharUnits MaxFieldAlignment;
   2201   /// \brief The alignment that this record must obey.  This is imposed by
   2202   /// __declspec(align()) on the record itself or one of its fields or bases.
   2203   CharUnits RequiredAlignment;
   2204   /// \brief The size of the allocation of the currently active bitfield.
   2205   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
   2206   /// is true.
   2207   CharUnits CurrentBitfieldSize;
   2208   /// \brief Offset to the virtual base table pointer (if one exists).
   2209   CharUnits VBPtrOffset;
   2210   /// \brief The size and alignment info of a pointer.
   2211   ElementInfo PointerInfo;
   2212   /// \brief The primary base class (if one exists).
   2213   const CXXRecordDecl *PrimaryBase;
   2214   /// \brief The class we share our vb-pointer with.
   2215   const CXXRecordDecl *SharedVBPtrBase;
   2216   /// \brief The collection of field offsets.
   2217   SmallVector<uint64_t, 16> FieldOffsets;
   2218   /// \brief Base classes and their offsets in the record.
   2219   BaseOffsetsMapTy Bases;
   2220   /// \brief virtual base classes and their offsets in the record.
   2221   ASTRecordLayout::VBaseOffsetsMapTy VBases;
   2222   /// \brief The number of remaining bits in our last bitfield allocation.
   2223   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
   2224   /// true.
   2225   unsigned RemainingBitsInField;
   2226   bool IsUnion : 1;
   2227   /// \brief True if the last field laid out was a bitfield and was not 0
   2228   /// width.
   2229   bool LastFieldIsNonZeroWidthBitfield : 1;
   2230   /// \brief True if the class has its own vftable pointer.
   2231   bool HasOwnVFPtr : 1;
   2232   /// \brief True if the class has a vbtable pointer.
   2233   bool HasVBPtr : 1;
   2234   /// \brief True if the last sub-object within the type is zero sized or the
   2235   /// object itself is zero sized.  This *does not* count members that are not
   2236   /// records.  Only used for MS-ABI.
   2237   bool EndsWithZeroSizedObject : 1;
   2238   /// \brief True if this class is zero sized or first base is zero sized or
   2239   /// has this property.  Only used for MS-ABI.
   2240   bool LeadsWithZeroSizedBase : 1;
   2241 };
   2242 } // namespace
   2243 
   2244 MicrosoftRecordLayoutBuilder::ElementInfo
   2245 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
   2246     const ASTRecordLayout &Layout) {
   2247   ElementInfo Info;
   2248   Info.Alignment = Layout.getAlignment();
   2249   // Respect pragma pack.
   2250   if (!MaxFieldAlignment.isZero())
   2251     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
   2252   // Track zero-sized subobjects here where it's already available.
   2253   EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
   2254   // Respect required alignment, this is necessary because we may have adjusted
   2255   // the alignment in the case of pragam pack.  Note that the required alignment
   2256   // doesn't actually apply to the struct alignment at this point.
   2257   Alignment = std::max(Alignment, Info.Alignment);
   2258   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
   2259   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
   2260   Info.Size = Layout.getNonVirtualSize();
   2261   return Info;
   2262 }
   2263 
   2264 MicrosoftRecordLayoutBuilder::ElementInfo
   2265 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
   2266     const FieldDecl *FD) {
   2267   ElementInfo Info;
   2268   std::tie(Info.Size, Info.Alignment) =
   2269       Context.getTypeInfoInChars(FD->getType());
   2270   // Respect align attributes.
   2271   CharUnits FieldRequiredAlignment =
   2272       Context.toCharUnitsFromBits(FD->getMaxAlignment());
   2273   // Respect attributes applied to subobjects of the field.
   2274   if (FD->isBitField())
   2275     // For some reason __declspec align impacts alignment rather than required
   2276     // alignment when it is applied to bitfields.
   2277     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
   2278   else {
   2279     if (auto RT =
   2280             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
   2281       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
   2282       EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
   2283       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
   2284                                         Layout.getRequiredAlignment());
   2285     }
   2286     // Capture required alignment as a side-effect.
   2287     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
   2288   }
   2289   // Respect pragma pack, attribute pack and declspec align
   2290   if (!MaxFieldAlignment.isZero())
   2291     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
   2292   if (FD->hasAttr<PackedAttr>())
   2293     Info.Alignment = CharUnits::One();
   2294   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
   2295   return Info;
   2296 }
   2297 
   2298 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
   2299   initializeLayout(RD);
   2300   layoutFields(RD);
   2301   DataSize = Size = Size.RoundUpToAlignment(Alignment);
   2302   RequiredAlignment = std::max(
   2303       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
   2304   finalizeLayout(RD);
   2305 }
   2306 
   2307 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
   2308   initializeLayout(RD);
   2309   initializeCXXLayout(RD);
   2310   layoutNonVirtualBases(RD);
   2311   layoutFields(RD);
   2312   injectVBPtr(RD);
   2313   injectVFPtr(RD);
   2314   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
   2315     Alignment = std::max(Alignment, PointerInfo.Alignment);
   2316   auto RoundingAlignment = Alignment;
   2317   if (!MaxFieldAlignment.isZero())
   2318     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
   2319   NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
   2320   RequiredAlignment = std::max(
   2321       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
   2322   layoutVirtualBases(RD);
   2323   finalizeLayout(RD);
   2324 }
   2325 
   2326 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
   2327   IsUnion = RD->isUnion();
   2328   Size = CharUnits::Zero();
   2329   Alignment = CharUnits::One();
   2330   // In 64-bit mode we always perform an alignment step after laying out vbases.
   2331   // In 32-bit mode we do not.  The check to see if we need to perform alignment
   2332   // checks the RequiredAlignment field and performs alignment if it isn't 0.
   2333   RequiredAlignment = Context.getTargetInfo().getPointerWidth(0) == 64 ?
   2334                       CharUnits::One() : CharUnits::Zero();
   2335   // Compute the maximum field alignment.
   2336   MaxFieldAlignment = CharUnits::Zero();
   2337   // Honor the default struct packing maximum alignment flag.
   2338   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
   2339       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
   2340   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
   2341   // than the pointer size.
   2342   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
   2343     unsigned PackedAlignment = MFAA->getAlignment();
   2344     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
   2345       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
   2346   }
   2347   // Packed attribute forces max field alignment to be 1.
   2348   if (RD->hasAttr<PackedAttr>())
   2349     MaxFieldAlignment = CharUnits::One();
   2350 }
   2351 
   2352 void
   2353 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
   2354   EndsWithZeroSizedObject = false;
   2355   LeadsWithZeroSizedBase = false;
   2356   HasOwnVFPtr = false;
   2357   HasVBPtr = false;
   2358   PrimaryBase = nullptr;
   2359   SharedVBPtrBase = nullptr;
   2360   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
   2361   // injection.
   2362   PointerInfo.Size =
   2363       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   2364   PointerInfo.Alignment = PointerInfo.Size;
   2365   // Respect pragma pack.
   2366   if (!MaxFieldAlignment.isZero())
   2367     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
   2368 }
   2369 
   2370 void
   2371 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
   2372   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
   2373   // out any bases that do not contain vfptrs.  We implement this as two passes
   2374   // over the bases.  This approach guarantees that the primary base is laid out
   2375   // first.  We use these passes to calculate some additional aggregated
   2376   // information about the bases, such as reqruied alignment and the presence of
   2377   // zero sized members.
   2378   const ASTRecordLayout *PreviousBaseLayout = nullptr;
   2379   // Iterate through the bases and lay out the non-virtual ones.
   2380   for (const auto &I : RD->bases()) {
   2381     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   2382     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2383     // Mark and skip virtual bases.
   2384     if (I.isVirtual()) {
   2385       HasVBPtr = true;
   2386       continue;
   2387     }
   2388     // Check fo a base to share a VBPtr with.
   2389     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
   2390       SharedVBPtrBase = BaseDecl;
   2391       HasVBPtr = true;
   2392     }
   2393     // Only lay out bases with extendable VFPtrs on the first pass.
   2394     if (!BaseLayout.hasExtendableVFPtr())
   2395       continue;
   2396     // If we don't have a primary base, this one qualifies.
   2397     if (!PrimaryBase) {
   2398       PrimaryBase = BaseDecl;
   2399       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
   2400     }
   2401     // Lay out the base.
   2402     layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
   2403   }
   2404   // Figure out if we need a fresh VFPtr for this class.
   2405   if (!PrimaryBase && RD->isDynamicClass())
   2406     for (CXXRecordDecl::method_iterator i = RD->method_begin(),
   2407                                         e = RD->method_end();
   2408          !HasOwnVFPtr && i != e; ++i)
   2409       HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
   2410   // If we don't have a primary base then we have a leading object that could
   2411   // itself lead with a zero-sized object, something we track.
   2412   bool CheckLeadingLayout = !PrimaryBase;
   2413   // Iterate through the bases and lay out the non-virtual ones.
   2414   for (const auto &I : RD->bases()) {
   2415     if (I.isVirtual())
   2416       continue;
   2417     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   2418     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2419     // Only lay out bases without extendable VFPtrs on the second pass.
   2420     if (BaseLayout.hasExtendableVFPtr()) {
   2421       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
   2422       continue;
   2423     }
   2424     // If this is the first layout, check to see if it leads with a zero sized
   2425     // object.  If it does, so do we.
   2426     if (CheckLeadingLayout) {
   2427       CheckLeadingLayout = false;
   2428       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
   2429     }
   2430     // Lay out the base.
   2431     layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
   2432     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
   2433   }
   2434   // Set our VBPtroffset if we know it at this point.
   2435   if (!HasVBPtr)
   2436     VBPtrOffset = CharUnits::fromQuantity(-1);
   2437   else if (SharedVBPtrBase) {
   2438     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
   2439     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
   2440   }
   2441 }
   2442 
   2443 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
   2444     const CXXRecordDecl *BaseDecl,
   2445     const ASTRecordLayout &BaseLayout,
   2446     const ASTRecordLayout *&PreviousBaseLayout) {
   2447   // Insert padding between two bases if the left first one is zero sized or
   2448   // contains a zero sized subobject and the right is zero sized or one leads
   2449   // with a zero sized base.
   2450   if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
   2451       BaseLayout.leadsWithZeroSizedBase())
   2452     Size++;
   2453   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
   2454   CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
   2455   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
   2456   Size = BaseOffset + BaseLayout.getNonVirtualSize();
   2457   PreviousBaseLayout = &BaseLayout;
   2458 }
   2459 
   2460 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
   2461   LastFieldIsNonZeroWidthBitfield = false;
   2462   for (const auto *Field : RD->fields())
   2463     layoutField(Field);
   2464 }
   2465 
   2466 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
   2467   if (FD->isBitField()) {
   2468     layoutBitField(FD);
   2469     return;
   2470   }
   2471   LastFieldIsNonZeroWidthBitfield = false;
   2472   ElementInfo Info = getAdjustedElementInfo(FD);
   2473   Alignment = std::max(Alignment, Info.Alignment);
   2474   if (IsUnion) {
   2475     placeFieldAtOffset(CharUnits::Zero());
   2476     Size = std::max(Size, Info.Size);
   2477   } else {
   2478     CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
   2479     placeFieldAtOffset(FieldOffset);
   2480     Size = FieldOffset + Info.Size;
   2481   }
   2482 }
   2483 
   2484 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
   2485   unsigned Width = FD->getBitWidthValue(Context);
   2486   if (Width == 0) {
   2487     layoutZeroWidthBitField(FD);
   2488     return;
   2489   }
   2490   ElementInfo Info = getAdjustedElementInfo(FD);
   2491   // Clamp the bitfield to a containable size for the sake of being able
   2492   // to lay them out.  Sema will throw an error.
   2493   if (Width > Context.toBits(Info.Size))
   2494     Width = Context.toBits(Info.Size);
   2495   // Check to see if this bitfield fits into an existing allocation.  Note:
   2496   // MSVC refuses to pack bitfields of formal types with different sizes
   2497   // into the same allocation.
   2498   if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
   2499       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
   2500     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
   2501     RemainingBitsInField -= Width;
   2502     return;
   2503   }
   2504   LastFieldIsNonZeroWidthBitfield = true;
   2505   CurrentBitfieldSize = Info.Size;
   2506   if (IsUnion) {
   2507     placeFieldAtOffset(CharUnits::Zero());
   2508     Size = std::max(Size, Info.Size);
   2509     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
   2510   } else {
   2511     // Allocate a new block of memory and place the bitfield in it.
   2512     CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
   2513     placeFieldAtOffset(FieldOffset);
   2514     Size = FieldOffset + Info.Size;
   2515     Alignment = std::max(Alignment, Info.Alignment);
   2516     RemainingBitsInField = Context.toBits(Info.Size) - Width;
   2517   }
   2518 }
   2519 
   2520 void
   2521 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
   2522   // Zero-width bitfields are ignored unless they follow a non-zero-width
   2523   // bitfield.
   2524   if (!LastFieldIsNonZeroWidthBitfield) {
   2525     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
   2526     // TODO: Add a Sema warning that MS ignores alignment for zero
   2527     // sized bitfields that occur after zero-size bitfields or non-bitfields.
   2528     return;
   2529   }
   2530   LastFieldIsNonZeroWidthBitfield = false;
   2531   ElementInfo Info = getAdjustedElementInfo(FD);
   2532   if (IsUnion) {
   2533     placeFieldAtOffset(CharUnits::Zero());
   2534     Size = std::max(Size, Info.Size);
   2535     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
   2536   } else {
   2537     // Round up the current record size to the field's alignment boundary.
   2538     CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
   2539     placeFieldAtOffset(FieldOffset);
   2540     Size = FieldOffset;
   2541     Alignment = std::max(Alignment, Info.Alignment);
   2542   }
   2543 }
   2544 
   2545 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
   2546   if (!HasVBPtr || SharedVBPtrBase)
   2547     return;
   2548   // Inject the VBPointer at the injection site.
   2549   CharUnits InjectionSite = VBPtrOffset;
   2550   // But before we do, make sure it's properly aligned.
   2551   VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
   2552   // Determine where the first field should be laid out after the vbptr.
   2553   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
   2554   // Make sure that the amount we push the fields back by is a multiple of the
   2555   // alignment.
   2556   CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
   2557       std::max(RequiredAlignment, Alignment));
   2558   // Increase the size of the object and push back all fields by the offset
   2559   // amount.
   2560   Size += Offset;
   2561   for (SmallVector<uint64_t, 16>::iterator i = FieldOffsets.begin(),
   2562                                            e = FieldOffsets.end();
   2563        i != e; ++i)
   2564     *i += Context.toBits(Offset);
   2565   for (BaseOffsetsMapTy::iterator i = Bases.begin(), e = Bases.end();
   2566        i != e; ++i)
   2567     if (i->second >= InjectionSite)
   2568       i->second += Offset;
   2569 }
   2570 
   2571 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
   2572   if (!HasOwnVFPtr)
   2573     return;
   2574   // Make sure that the amount we push the struct back by is a multiple of the
   2575   // alignment.
   2576   CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
   2577       std::max(RequiredAlignment, Alignment));
   2578   // Increase the size of the object and push back all fields, the vbptr and all
   2579   // bases by the offset amount.
   2580   Size += Offset;
   2581   for (SmallVectorImpl<uint64_t>::iterator i = FieldOffsets.begin(),
   2582                                            e = FieldOffsets.end();
   2583        i != e; ++i)
   2584     *i += Context.toBits(Offset);
   2585   if (HasVBPtr)
   2586     VBPtrOffset += Offset;
   2587   for (BaseOffsetsMapTy::iterator i = Bases.begin(), e = Bases.end();
   2588        i != e; ++i)
   2589     i->second += Offset;
   2590 }
   2591 
   2592 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
   2593   if (!HasVBPtr)
   2594     return;
   2595   // Vtordisps are always 4 bytes (even in 64-bit mode)
   2596   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
   2597   CharUnits VtorDispAlignment = VtorDispSize;
   2598   // vtordisps respect pragma pack.
   2599   if (!MaxFieldAlignment.isZero())
   2600     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
   2601   // The alignment of the vtordisp is at least the required alignment of the
   2602   // entire record.  This requirement may be present to support vtordisp
   2603   // injection.
   2604   for (const auto &I : RD->vbases()) {
   2605     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   2606     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2607     RequiredAlignment =
   2608         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
   2609   }
   2610   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
   2611   // Compute the vtordisp set.
   2612   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtordispSet =
   2613       computeVtorDispSet(RD);
   2614   // Iterate through the virtual bases and lay them out.
   2615   const ASTRecordLayout *PreviousBaseLayout = nullptr;
   2616   for (const auto &I : RD->vbases()) {
   2617     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   2618     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2619     bool HasVtordisp = HasVtordispSet.count(BaseDecl);
   2620     // Insert padding between two bases if the left first one is zero sized or
   2621     // contains a zero sized subobject and the right is zero sized or one leads
   2622     // with a zero sized base.  The padding between virtual bases is 4
   2623     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
   2624     // the required alignment, we don't know why.
   2625     if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
   2626         BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp)
   2627       Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
   2628     // Insert the virtual base.
   2629     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
   2630     CharUnits BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
   2631     VBases.insert(std::make_pair(BaseDecl,
   2632         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
   2633     Size = BaseOffset + BaseLayout.getNonVirtualSize();
   2634     PreviousBaseLayout = &BaseLayout;
   2635   }
   2636 }
   2637 
   2638 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
   2639   // Respect required alignment.  Note that in 32-bit mode Required alignment
   2640   // may be 0 nad cause size not to be updated.
   2641   DataSize = Size;
   2642   if (!RequiredAlignment.isZero()) {
   2643     Alignment = std::max(Alignment, RequiredAlignment);
   2644     auto RoundingAlignment = Alignment;
   2645     if (!MaxFieldAlignment.isZero())
   2646       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
   2647     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
   2648     Size = Size.RoundUpToAlignment(RoundingAlignment);
   2649   }
   2650   // Zero-sized structures have size equal to their alignment.
   2651   if (Size.isZero()) {
   2652     EndsWithZeroSizedObject = true;
   2653     LeadsWithZeroSizedBase = true;
   2654     Size = Alignment;
   2655   }
   2656 }
   2657 
   2658 // Recursively walks the non-virtual bases of a class and determines if any of
   2659 // them are in the bases with overridden methods set.
   2660 static bool RequiresVtordisp(
   2661     const llvm::SmallPtrSet<const CXXRecordDecl *, 2> &
   2662         BasesWithOverriddenMethods,
   2663     const CXXRecordDecl *RD) {
   2664   if (BasesWithOverriddenMethods.count(RD))
   2665     return true;
   2666   // If any of a virtual bases non-virtual bases (recursively) requires a
   2667   // vtordisp than so does this virtual base.
   2668   for (const auto &I : RD->bases())
   2669     if (!I.isVirtual() &&
   2670         RequiresVtordisp(BasesWithOverriddenMethods,
   2671                          I.getType()->getAsCXXRecordDecl()))
   2672       return true;
   2673   return false;
   2674 }
   2675 
   2676 llvm::SmallPtrSet<const CXXRecordDecl *, 2>
   2677 MicrosoftRecordLayoutBuilder::computeVtorDispSet(const CXXRecordDecl *RD) {
   2678   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtordispSet;
   2679 
   2680   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
   2681   // vftables.
   2682   if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
   2683     for (const auto &I : RD->vbases()) {
   2684       const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   2685       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
   2686       if (Layout.hasExtendableVFPtr())
   2687         HasVtordispSet.insert(BaseDecl);
   2688     }
   2689     return HasVtordispSet;
   2690   }
   2691 
   2692   // If any of our bases need a vtordisp for this type, so do we.  Check our
   2693   // direct bases for vtordisp requirements.
   2694   for (const auto &I : RD->bases()) {
   2695     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   2696     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
   2697     for (const auto &bi : Layout.getVBaseOffsetsMap())
   2698       if (bi.second.hasVtorDisp())
   2699         HasVtordispSet.insert(bi.first);
   2700   }
   2701   // We don't introduce any additional vtordisps if either:
   2702   // * A user declared constructor or destructor aren't declared.
   2703   // * #pragma vtordisp(0) or the /vd0 flag are in use.
   2704   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
   2705       RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
   2706     return HasVtordispSet;
   2707   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
   2708   // possible for a partially constructed object with virtual base overrides to
   2709   // escape a non-trivial constructor.
   2710   assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
   2711   // Compute a set of base classes which define methods we override.  A virtual
   2712   // base in this set will require a vtordisp.  A virtual base that transitively
   2713   // contains one of these bases as a non-virtual base will also require a
   2714   // vtordisp.
   2715   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
   2716   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
   2717   // Seed the working set with our non-destructor virtual methods.
   2718   for (const auto *I : RD->methods())
   2719     if (I->isVirtual() && !isa<CXXDestructorDecl>(I))
   2720       Work.insert(I);
   2721   while (!Work.empty()) {
   2722     const CXXMethodDecl *MD = *Work.begin();
   2723     CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
   2724                                    e = MD->end_overridden_methods();
   2725     // If a virtual method has no-overrides it lives in its parent's vtable.
   2726     if (i == e)
   2727       BasesWithOverriddenMethods.insert(MD->getParent());
   2728     else
   2729       Work.insert(i, e);
   2730     // We've finished processing this element, remove it from the working set.
   2731     Work.erase(MD);
   2732   }
   2733   // For each of our virtual bases, check if it is in the set of overridden
   2734   // bases or if it transitively contains a non-virtual base that is.
   2735   for (const auto &I : RD->vbases()) {
   2736     const CXXRecordDecl *BaseDecl =  I.getType()->getAsCXXRecordDecl();
   2737     if (!HasVtordispSet.count(BaseDecl) &&
   2738         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
   2739       HasVtordispSet.insert(BaseDecl);
   2740   }
   2741   return HasVtordispSet;
   2742 }
   2743 
   2744 /// \brief Get or compute information about the layout of the specified record
   2745 /// (struct/union/class), which indicates its size and field position
   2746 /// information.
   2747 const ASTRecordLayout *
   2748 ASTContext::BuildMicrosoftASTRecordLayout(const RecordDecl *D) const {
   2749   MicrosoftRecordLayoutBuilder Builder(*this);
   2750   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2751     Builder.cxxLayout(RD);
   2752     return new (*this) ASTRecordLayout(
   2753         *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
   2754         Builder.HasOwnVFPtr,
   2755         Builder.HasOwnVFPtr || Builder.PrimaryBase,
   2756         Builder.VBPtrOffset, Builder.NonVirtualSize, Builder.FieldOffsets.data(),
   2757         Builder.FieldOffsets.size(), Builder.NonVirtualSize,
   2758         Builder.Alignment, CharUnits::Zero(), Builder.PrimaryBase,
   2759         false, Builder.SharedVBPtrBase,
   2760         Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
   2761         Builder.Bases, Builder.VBases);
   2762   } else {
   2763     Builder.layout(D);
   2764     return new (*this) ASTRecordLayout(
   2765         *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
   2766         Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size());
   2767   }
   2768 }
   2769 
   2770 /// getASTRecordLayout - Get or compute information about the layout of the
   2771 /// specified record (struct/union/class), which indicates its size and field
   2772 /// position information.
   2773 const ASTRecordLayout &
   2774 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
   2775   // These asserts test different things.  A record has a definition
   2776   // as soon as we begin to parse the definition.  That definition is
   2777   // not a complete definition (which is what isDefinition() tests)
   2778   // until we *finish* parsing the definition.
   2779 
   2780   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2781     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
   2782 
   2783   D = D->getDefinition();
   2784   assert(D && "Cannot get layout of forward declarations!");
   2785   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
   2786   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
   2787 
   2788   // Look up this layout, if already laid out, return what we have.
   2789   // Note that we can't save a reference to the entry because this function
   2790   // is recursive.
   2791   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
   2792   if (Entry) return *Entry;
   2793 
   2794   const ASTRecordLayout *NewEntry = nullptr;
   2795 
   2796   if (isMsLayout(D) && !D->getASTContext().getExternalSource()) {
   2797     NewEntry = BuildMicrosoftASTRecordLayout(D);
   2798   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   2799     EmptySubobjectMap EmptySubobjects(*this, RD);
   2800     RecordLayoutBuilder Builder(*this, &EmptySubobjects);
   2801     Builder.Layout(RD);
   2802 
   2803     // In certain situations, we are allowed to lay out objects in the
   2804     // tail-padding of base classes.  This is ABI-dependent.
   2805     // FIXME: this should be stored in the record layout.
   2806     bool skipTailPadding =
   2807       mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
   2808 
   2809     // FIXME: This should be done in FinalizeLayout.
   2810     CharUnits DataSize =
   2811       skipTailPadding ? Builder.getSize() : Builder.getDataSize();
   2812     CharUnits NonVirtualSize =
   2813       skipTailPadding ? DataSize : Builder.NonVirtualSize;
   2814     NewEntry =
   2815       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2816                                   Builder.Alignment,
   2817                                   /*RequiredAlignment : used by MS-ABI)*/
   2818                                   Builder.Alignment,
   2819                                   Builder.HasOwnVFPtr,
   2820                                   RD->isDynamicClass(),
   2821                                   CharUnits::fromQuantity(-1),
   2822                                   DataSize,
   2823                                   Builder.FieldOffsets.data(),
   2824                                   Builder.FieldOffsets.size(),
   2825                                   NonVirtualSize,
   2826                                   Builder.NonVirtualAlignment,
   2827                                   EmptySubobjects.SizeOfLargestEmptySubobject,
   2828                                   Builder.PrimaryBase,
   2829                                   Builder.PrimaryBaseIsVirtual,
   2830                                   nullptr, false, false,
   2831                                   Builder.Bases, Builder.VBases);
   2832   } else {
   2833     RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
   2834     Builder.Layout(D);
   2835 
   2836     NewEntry =
   2837       new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2838                                   Builder.Alignment,
   2839                                   /*RequiredAlignment : used by MS-ABI)*/
   2840                                   Builder.Alignment,
   2841                                   Builder.getSize(),
   2842                                   Builder.FieldOffsets.data(),
   2843                                   Builder.FieldOffsets.size());
   2844   }
   2845 
   2846   ASTRecordLayouts[D] = NewEntry;
   2847 
   2848   if (getLangOpts().DumpRecordLayouts) {
   2849     llvm::outs() << "\n*** Dumping AST Record Layout\n";
   2850     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
   2851   }
   2852 
   2853   return *NewEntry;
   2854 }
   2855 
   2856 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
   2857   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
   2858     return nullptr;
   2859 
   2860   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
   2861   RD = cast<CXXRecordDecl>(RD->getDefinition());
   2862 
   2863   // Beware:
   2864   //  1) computing the key function might trigger deserialization, which might
   2865   //     invalidate iterators into KeyFunctions
   2866   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
   2867   //     invalidate the LazyDeclPtr within the map itself
   2868   LazyDeclPtr Entry = KeyFunctions[RD];
   2869   const Decl *Result =
   2870       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
   2871 
   2872   // Store it back if it changed.
   2873   if (Entry.isOffset() || Entry.isValid() != bool(Result))
   2874     KeyFunctions[RD] = const_cast<Decl*>(Result);
   2875 
   2876   return cast_or_null<CXXMethodDecl>(Result);
   2877 }
   2878 
   2879 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
   2880   assert(Method == Method->getFirstDecl() &&
   2881          "not working with method declaration from class definition");
   2882 
   2883   // Look up the cache entry.  Since we're working with the first
   2884   // declaration, its parent must be the class definition, which is
   2885   // the correct key for the KeyFunctions hash.
   2886   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr>::iterator
   2887     I = KeyFunctions.find(Method->getParent());
   2888 
   2889   // If it's not cached, there's nothing to do.
   2890   if (I == KeyFunctions.end()) return;
   2891 
   2892   // If it is cached, check whether it's the target method, and if so,
   2893   // remove it from the cache. Note, the call to 'get' might invalidate
   2894   // the iterator and the LazyDeclPtr object within the map.
   2895   LazyDeclPtr Ptr = I->second;
   2896   if (Ptr.get(getExternalSource()) == Method) {
   2897     // FIXME: remember that we did this for module / chained PCH state?
   2898     KeyFunctions.erase(Method->getParent());
   2899   }
   2900 }
   2901 
   2902 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
   2903   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
   2904   return Layout.getFieldOffset(FD->getFieldIndex());
   2905 }
   2906 
   2907 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
   2908   uint64_t OffsetInBits;
   2909   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
   2910     OffsetInBits = ::getFieldOffset(*this, FD);
   2911   } else {
   2912     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
   2913 
   2914     OffsetInBits = 0;
   2915     for (const auto *CI : IFD->chain())
   2916       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(CI));
   2917   }
   2918 
   2919   return OffsetInBits;
   2920 }
   2921 
   2922 /// getObjCLayout - Get or compute information about the layout of the
   2923 /// given interface.
   2924 ///
   2925 /// \param Impl - If given, also include the layout of the interface's
   2926 /// implementation. This may differ by including synthesized ivars.
   2927 const ASTRecordLayout &
   2928 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
   2929                           const ObjCImplementationDecl *Impl) const {
   2930   // Retrieve the definition
   2931   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2932     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
   2933   D = D->getDefinition();
   2934   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
   2935 
   2936   // Look up this layout, if already laid out, return what we have.
   2937   const ObjCContainerDecl *Key =
   2938     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
   2939   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
   2940     return *Entry;
   2941 
   2942   // Add in synthesized ivar count if laying out an implementation.
   2943   if (Impl) {
   2944     unsigned SynthCount = CountNonClassIvars(D);
   2945     // If there aren't any sythesized ivars then reuse the interface
   2946     // entry. Note we can't cache this because we simply free all
   2947     // entries later; however we shouldn't look up implementations
   2948     // frequently.
   2949     if (SynthCount == 0)
   2950       return getObjCLayout(D, nullptr);
   2951   }
   2952 
   2953   RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
   2954   Builder.Layout(D);
   2955 
   2956   const ASTRecordLayout *NewEntry =
   2957     new (*this) ASTRecordLayout(*this, Builder.getSize(),
   2958                                 Builder.Alignment,
   2959                                 /*RequiredAlignment : used by MS-ABI)*/
   2960                                 Builder.Alignment,
   2961                                 Builder.getDataSize(),
   2962                                 Builder.FieldOffsets.data(),
   2963                                 Builder.FieldOffsets.size());
   2964 
   2965   ObjCLayouts[Key] = NewEntry;
   2966 
   2967   return *NewEntry;
   2968 }
   2969 
   2970 static void PrintOffset(raw_ostream &OS,
   2971                         CharUnits Offset, unsigned IndentLevel) {
   2972   OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
   2973   OS.indent(IndentLevel * 2);
   2974 }
   2975 
   2976 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
   2977   OS << "     | ";
   2978   OS.indent(IndentLevel * 2);
   2979 }
   2980 
   2981 static void DumpCXXRecordLayout(raw_ostream &OS,
   2982                                 const CXXRecordDecl *RD, const ASTContext &C,
   2983                                 CharUnits Offset,
   2984                                 unsigned IndentLevel,
   2985                                 const char* Description,
   2986                                 bool IncludeVirtualBases) {
   2987   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
   2988 
   2989   PrintOffset(OS, Offset, IndentLevel);
   2990   OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
   2991   if (Description)
   2992     OS << ' ' << Description;
   2993   if (RD->isEmpty())
   2994     OS << " (empty)";
   2995   OS << '\n';
   2996 
   2997   IndentLevel++;
   2998 
   2999   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   3000   bool HasOwnVFPtr = Layout.hasOwnVFPtr();
   3001   bool HasOwnVBPtr = Layout.hasOwnVBPtr();
   3002 
   3003   // Vtable pointer.
   3004   if (RD->isDynamicClass() && !PrimaryBase && !isMsLayout(RD)) {
   3005     PrintOffset(OS, Offset, IndentLevel);
   3006     OS << '(' << *RD << " vtable pointer)\n";
   3007   } else if (HasOwnVFPtr) {
   3008     PrintOffset(OS, Offset, IndentLevel);
   3009     // vfptr (for Microsoft C++ ABI)
   3010     OS << '(' << *RD << " vftable pointer)\n";
   3011   }
   3012 
   3013   // Collect nvbases.
   3014   SmallVector<const CXXRecordDecl *, 4> Bases;
   3015   for (const auto &I : RD->bases()) {
   3016     assert(!I.getType()->isDependentType() &&
   3017            "Cannot layout class with dependent bases.");
   3018     if (!I.isVirtual())
   3019       Bases.push_back(I.getType()->getAsCXXRecordDecl());
   3020   }
   3021 
   3022   // Sort nvbases by offset.
   3023   std::stable_sort(Bases.begin(), Bases.end(),
   3024                    [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
   3025     return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
   3026   });
   3027 
   3028   // Dump (non-virtual) bases
   3029   for (SmallVectorImpl<const CXXRecordDecl *>::iterator I = Bases.begin(),
   3030                                                         E = Bases.end();
   3031        I != E; ++I) {
   3032     const CXXRecordDecl *Base = *I;
   3033     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
   3034     DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
   3035                         Base == PrimaryBase ? "(primary base)" : "(base)",
   3036                         /*IncludeVirtualBases=*/false);
   3037   }
   3038 
   3039   // vbptr (for Microsoft C++ ABI)
   3040   if (HasOwnVBPtr) {
   3041     PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
   3042     OS << '(' << *RD << " vbtable pointer)\n";
   3043   }
   3044 
   3045   // Dump fields.
   3046   uint64_t FieldNo = 0;
   3047   for (CXXRecordDecl::field_iterator I = RD->field_begin(),
   3048          E = RD->field_end(); I != E; ++I, ++FieldNo) {
   3049     const FieldDecl &Field = **I;
   3050     CharUnits FieldOffset = Offset +
   3051       C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
   3052 
   3053     if (const CXXRecordDecl *D = Field.getType()->getAsCXXRecordDecl()) {
   3054       DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
   3055                           Field.getName().data(),
   3056                           /*IncludeVirtualBases=*/true);
   3057       continue;
   3058     }
   3059 
   3060     PrintOffset(OS, FieldOffset, IndentLevel);
   3061     OS << Field.getType().getAsString() << ' ' << Field << '\n';
   3062   }
   3063 
   3064   if (!IncludeVirtualBases)
   3065     return;
   3066 
   3067   // Dump virtual bases.
   3068   const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
   3069     Layout.getVBaseOffsetsMap();
   3070   for (const auto &I : RD->vbases()) {
   3071     assert(I.isVirtual() && "Found non-virtual class!");
   3072     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
   3073 
   3074     CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
   3075 
   3076     if (vtordisps.find(VBase)->second.hasVtorDisp()) {
   3077       PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
   3078       OS << "(vtordisp for vbase " << *VBase << ")\n";
   3079     }
   3080 
   3081     DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
   3082                         VBase == PrimaryBase ?
   3083                         "(primary virtual base)" : "(virtual base)",
   3084                         /*IncludeVirtualBases=*/false);
   3085   }
   3086 
   3087   PrintIndentNoOffset(OS, IndentLevel - 1);
   3088   OS << "[sizeof=" << Layout.getSize().getQuantity();
   3089   if (!isMsLayout(RD))
   3090     OS << ", dsize=" << Layout.getDataSize().getQuantity();
   3091   OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
   3092 
   3093   PrintIndentNoOffset(OS, IndentLevel - 1);
   3094   OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
   3095   OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity() << "]\n";
   3096 }
   3097 
   3098 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
   3099                                   raw_ostream &OS,
   3100                                   bool Simple) const {
   3101   const ASTRecordLayout &Info = getASTRecordLayout(RD);
   3102 
   3103   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
   3104     if (!Simple)
   3105       return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, nullptr,
   3106                                  /*IncludeVirtualBases=*/true);
   3107 
   3108   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
   3109   if (!Simple) {
   3110     OS << "Record: ";
   3111     RD->dump();
   3112   }
   3113   OS << "\nLayout: ";
   3114   OS << "<ASTRecordLayout\n";
   3115   OS << "  Size:" << toBits(Info.getSize()) << "\n";
   3116   if (!isMsLayout(RD))
   3117     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
   3118   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
   3119   OS << "  FieldOffsets: [";
   3120   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
   3121     if (i) OS << ", ";
   3122     OS << Info.getFieldOffset(i);
   3123   }
   3124   OS << "]>\n";
   3125 }
   3126