Home | History | Annotate | Download | only in AST
      1 //===--- Type.h - C Language Family Type Representation ---------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the Type interface and subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_AST_TYPE_H
     15 #define LLVM_CLANG_AST_TYPE_H
     16 
     17 #include "clang/AST/NestedNameSpecifier.h"
     18 #include "clang/AST/TemplateName.h"
     19 #include "clang/Basic/Diagnostic.h"
     20 #include "clang/Basic/ExceptionSpecificationType.h"
     21 #include "clang/Basic/LLVM.h"
     22 #include "clang/Basic/Linkage.h"
     23 #include "clang/Basic/PartialDiagnostic.h"
     24 #include "clang/Basic/Specifiers.h"
     25 #include "clang/Basic/Visibility.h"
     26 #include "llvm/ADT/APInt.h"
     27 #include "llvm/ADT/FoldingSet.h"
     28 #include "llvm/ADT/iterator_range.h"
     29 #include "llvm/ADT/Optional.h"
     30 #include "llvm/ADT/PointerIntPair.h"
     31 #include "llvm/ADT/PointerUnion.h"
     32 #include "llvm/ADT/Twine.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 
     35 namespace clang {
     36   enum {
     37     TypeAlignmentInBits = 4,
     38     TypeAlignment = 1 << TypeAlignmentInBits
     39   };
     40   class Type;
     41   class ExtQuals;
     42   class QualType;
     43 }
     44 
     45 namespace llvm {
     46   template <typename T>
     47   class PointerLikeTypeTraits;
     48   template<>
     49   class PointerLikeTypeTraits< ::clang::Type*> {
     50   public:
     51     static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
     52     static inline ::clang::Type *getFromVoidPointer(void *P) {
     53       return static_cast< ::clang::Type*>(P);
     54     }
     55     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     56   };
     57   template<>
     58   class PointerLikeTypeTraits< ::clang::ExtQuals*> {
     59   public:
     60     static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
     61     static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
     62       return static_cast< ::clang::ExtQuals*>(P);
     63     }
     64     enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
     65   };
     66 
     67   template <>
     68   struct isPodLike<clang::QualType> { static const bool value = true; };
     69 }
     70 
     71 namespace clang {
     72   class ASTContext;
     73   class TypedefNameDecl;
     74   class TemplateDecl;
     75   class TemplateTypeParmDecl;
     76   class NonTypeTemplateParmDecl;
     77   class TemplateTemplateParmDecl;
     78   class TagDecl;
     79   class RecordDecl;
     80   class CXXRecordDecl;
     81   class EnumDecl;
     82   class FieldDecl;
     83   class FunctionDecl;
     84   class ObjCInterfaceDecl;
     85   class ObjCProtocolDecl;
     86   class ObjCMethodDecl;
     87   class UnresolvedUsingTypenameDecl;
     88   class Expr;
     89   class Stmt;
     90   class SourceLocation;
     91   class StmtIteratorBase;
     92   class TemplateArgument;
     93   class TemplateArgumentLoc;
     94   class TemplateArgumentListInfo;
     95   class ElaboratedType;
     96   class ExtQuals;
     97   class ExtQualsTypeCommonBase;
     98   struct PrintingPolicy;
     99 
    100   template <typename> class CanQual;
    101   typedef CanQual<Type> CanQualType;
    102 
    103   // Provide forward declarations for all of the *Type classes
    104 #define TYPE(Class, Base) class Class##Type;
    105 #include "clang/AST/TypeNodes.def"
    106 
    107 /// Qualifiers - The collection of all-type qualifiers we support.
    108 /// Clang supports five independent qualifiers:
    109 /// * C99: const, volatile, and restrict
    110 /// * Embedded C (TR18037): address spaces
    111 /// * Objective C: the GC attributes (none, weak, or strong)
    112 class Qualifiers {
    113 public:
    114   enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
    115     Const    = 0x1,
    116     Restrict = 0x2,
    117     Volatile = 0x4,
    118     CVRMask = Const | Volatile | Restrict
    119   };
    120 
    121   enum GC {
    122     GCNone = 0,
    123     Weak,
    124     Strong
    125   };
    126 
    127   enum ObjCLifetime {
    128     /// There is no lifetime qualification on this type.
    129     OCL_None,
    130 
    131     /// This object can be modified without requiring retains or
    132     /// releases.
    133     OCL_ExplicitNone,
    134 
    135     /// Assigning into this object requires the old value to be
    136     /// released and the new value to be retained.  The timing of the
    137     /// release of the old value is inexact: it may be moved to
    138     /// immediately after the last known point where the value is
    139     /// live.
    140     OCL_Strong,
    141 
    142     /// Reading or writing from this object requires a barrier call.
    143     OCL_Weak,
    144 
    145     /// Assigning into this object requires a lifetime extension.
    146     OCL_Autoreleasing
    147   };
    148 
    149   enum {
    150     /// The maximum supported address space number.
    151     /// 24 bits should be enough for anyone.
    152     MaxAddressSpace = 0xffffffu,
    153 
    154     /// The width of the "fast" qualifier mask.
    155     FastWidth = 3,
    156 
    157     /// The fast qualifier mask.
    158     FastMask = (1 << FastWidth) - 1
    159   };
    160 
    161   Qualifiers() : Mask(0) {}
    162 
    163   /// \brief Returns the common set of qualifiers while removing them from
    164   /// the given sets.
    165   static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
    166     // If both are only CVR-qualified, bit operations are sufficient.
    167     if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
    168       Qualifiers Q;
    169       Q.Mask = L.Mask & R.Mask;
    170       L.Mask &= ~Q.Mask;
    171       R.Mask &= ~Q.Mask;
    172       return Q;
    173     }
    174 
    175     Qualifiers Q;
    176     unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
    177     Q.addCVRQualifiers(CommonCRV);
    178     L.removeCVRQualifiers(CommonCRV);
    179     R.removeCVRQualifiers(CommonCRV);
    180 
    181     if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
    182       Q.setObjCGCAttr(L.getObjCGCAttr());
    183       L.removeObjCGCAttr();
    184       R.removeObjCGCAttr();
    185     }
    186 
    187     if (L.getObjCLifetime() == R.getObjCLifetime()) {
    188       Q.setObjCLifetime(L.getObjCLifetime());
    189       L.removeObjCLifetime();
    190       R.removeObjCLifetime();
    191     }
    192 
    193     if (L.getAddressSpace() == R.getAddressSpace()) {
    194       Q.setAddressSpace(L.getAddressSpace());
    195       L.removeAddressSpace();
    196       R.removeAddressSpace();
    197     }
    198     return Q;
    199   }
    200 
    201   static Qualifiers fromFastMask(unsigned Mask) {
    202     Qualifiers Qs;
    203     Qs.addFastQualifiers(Mask);
    204     return Qs;
    205   }
    206 
    207   static Qualifiers fromCVRMask(unsigned CVR) {
    208     Qualifiers Qs;
    209     Qs.addCVRQualifiers(CVR);
    210     return Qs;
    211   }
    212 
    213   // Deserialize qualifiers from an opaque representation.
    214   static Qualifiers fromOpaqueValue(unsigned opaque) {
    215     Qualifiers Qs;
    216     Qs.Mask = opaque;
    217     return Qs;
    218   }
    219 
    220   // Serialize these qualifiers into an opaque representation.
    221   unsigned getAsOpaqueValue() const {
    222     return Mask;
    223   }
    224 
    225   bool hasConst() const { return Mask & Const; }
    226   void setConst(bool flag) {
    227     Mask = (Mask & ~Const) | (flag ? Const : 0);
    228   }
    229   void removeConst() { Mask &= ~Const; }
    230   void addConst() { Mask |= Const; }
    231 
    232   bool hasVolatile() const { return Mask & Volatile; }
    233   void setVolatile(bool flag) {
    234     Mask = (Mask & ~Volatile) | (flag ? Volatile : 0);
    235   }
    236   void removeVolatile() { Mask &= ~Volatile; }
    237   void addVolatile() { Mask |= Volatile; }
    238 
    239   bool hasRestrict() const { return Mask & Restrict; }
    240   void setRestrict(bool flag) {
    241     Mask = (Mask & ~Restrict) | (flag ? Restrict : 0);
    242   }
    243   void removeRestrict() { Mask &= ~Restrict; }
    244   void addRestrict() { Mask |= Restrict; }
    245 
    246   bool hasCVRQualifiers() const { return getCVRQualifiers(); }
    247   unsigned getCVRQualifiers() const { return Mask & CVRMask; }
    248   void setCVRQualifiers(unsigned mask) {
    249     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    250     Mask = (Mask & ~CVRMask) | mask;
    251   }
    252   void removeCVRQualifiers(unsigned mask) {
    253     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    254     Mask &= ~mask;
    255   }
    256   void removeCVRQualifiers() {
    257     removeCVRQualifiers(CVRMask);
    258   }
    259   void addCVRQualifiers(unsigned mask) {
    260     assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits");
    261     Mask |= mask;
    262   }
    263 
    264   bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
    265   GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
    266   void setObjCGCAttr(GC type) {
    267     Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
    268   }
    269   void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
    270   void addObjCGCAttr(GC type) {
    271     assert(type);
    272     setObjCGCAttr(type);
    273   }
    274   Qualifiers withoutObjCGCAttr() const {
    275     Qualifiers qs = *this;
    276     qs.removeObjCGCAttr();
    277     return qs;
    278   }
    279   Qualifiers withoutObjCLifetime() const {
    280     Qualifiers qs = *this;
    281     qs.removeObjCLifetime();
    282     return qs;
    283   }
    284 
    285   bool hasObjCLifetime() const { return Mask & LifetimeMask; }
    286   ObjCLifetime getObjCLifetime() const {
    287     return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
    288   }
    289   void setObjCLifetime(ObjCLifetime type) {
    290     Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
    291   }
    292   void removeObjCLifetime() { setObjCLifetime(OCL_None); }
    293   void addObjCLifetime(ObjCLifetime type) {
    294     assert(type);
    295     assert(!hasObjCLifetime());
    296     Mask |= (type << LifetimeShift);
    297   }
    298 
    299   /// True if the lifetime is neither None or ExplicitNone.
    300   bool hasNonTrivialObjCLifetime() const {
    301     ObjCLifetime lifetime = getObjCLifetime();
    302     return (lifetime > OCL_ExplicitNone);
    303   }
    304 
    305   /// True if the lifetime is either strong or weak.
    306   bool hasStrongOrWeakObjCLifetime() const {
    307     ObjCLifetime lifetime = getObjCLifetime();
    308     return (lifetime == OCL_Strong || lifetime == OCL_Weak);
    309   }
    310 
    311   bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
    312   unsigned getAddressSpace() const { return Mask >> AddressSpaceShift; }
    313   void setAddressSpace(unsigned space) {
    314     assert(space <= MaxAddressSpace);
    315     Mask = (Mask & ~AddressSpaceMask)
    316          | (((uint32_t) space) << AddressSpaceShift);
    317   }
    318   void removeAddressSpace() { setAddressSpace(0); }
    319   void addAddressSpace(unsigned space) {
    320     assert(space);
    321     setAddressSpace(space);
    322   }
    323 
    324   // Fast qualifiers are those that can be allocated directly
    325   // on a QualType object.
    326   bool hasFastQualifiers() const { return getFastQualifiers(); }
    327   unsigned getFastQualifiers() const { return Mask & FastMask; }
    328   void setFastQualifiers(unsigned mask) {
    329     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    330     Mask = (Mask & ~FastMask) | mask;
    331   }
    332   void removeFastQualifiers(unsigned mask) {
    333     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    334     Mask &= ~mask;
    335   }
    336   void removeFastQualifiers() {
    337     removeFastQualifiers(FastMask);
    338   }
    339   void addFastQualifiers(unsigned mask) {
    340     assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits");
    341     Mask |= mask;
    342   }
    343 
    344   /// hasNonFastQualifiers - Return true if the set contains any
    345   /// qualifiers which require an ExtQuals node to be allocated.
    346   bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
    347   Qualifiers getNonFastQualifiers() const {
    348     Qualifiers Quals = *this;
    349     Quals.setFastQualifiers(0);
    350     return Quals;
    351   }
    352 
    353   /// hasQualifiers - Return true if the set contains any qualifiers.
    354   bool hasQualifiers() const { return Mask; }
    355   bool empty() const { return !Mask; }
    356 
    357   /// \brief Add the qualifiers from the given set to this set.
    358   void addQualifiers(Qualifiers Q) {
    359     // If the other set doesn't have any non-boolean qualifiers, just
    360     // bit-or it in.
    361     if (!(Q.Mask & ~CVRMask))
    362       Mask |= Q.Mask;
    363     else {
    364       Mask |= (Q.Mask & CVRMask);
    365       if (Q.hasAddressSpace())
    366         addAddressSpace(Q.getAddressSpace());
    367       if (Q.hasObjCGCAttr())
    368         addObjCGCAttr(Q.getObjCGCAttr());
    369       if (Q.hasObjCLifetime())
    370         addObjCLifetime(Q.getObjCLifetime());
    371     }
    372   }
    373 
    374   /// \brief Remove the qualifiers from the given set from this set.
    375   void removeQualifiers(Qualifiers Q) {
    376     // If the other set doesn't have any non-boolean qualifiers, just
    377     // bit-and the inverse in.
    378     if (!(Q.Mask & ~CVRMask))
    379       Mask &= ~Q.Mask;
    380     else {
    381       Mask &= ~(Q.Mask & CVRMask);
    382       if (getObjCGCAttr() == Q.getObjCGCAttr())
    383         removeObjCGCAttr();
    384       if (getObjCLifetime() == Q.getObjCLifetime())
    385         removeObjCLifetime();
    386       if (getAddressSpace() == Q.getAddressSpace())
    387         removeAddressSpace();
    388     }
    389   }
    390 
    391   /// \brief Add the qualifiers from the given set to this set, given that
    392   /// they don't conflict.
    393   void addConsistentQualifiers(Qualifiers qs) {
    394     assert(getAddressSpace() == qs.getAddressSpace() ||
    395            !hasAddressSpace() || !qs.hasAddressSpace());
    396     assert(getObjCGCAttr() == qs.getObjCGCAttr() ||
    397            !hasObjCGCAttr() || !qs.hasObjCGCAttr());
    398     assert(getObjCLifetime() == qs.getObjCLifetime() ||
    399            !hasObjCLifetime() || !qs.hasObjCLifetime());
    400     Mask |= qs.Mask;
    401   }
    402 
    403   /// \brief Determines if these qualifiers compatibly include another set.
    404   /// Generally this answers the question of whether an object with the other
    405   /// qualifiers can be safely used as an object with these qualifiers.
    406   bool compatiblyIncludes(Qualifiers other) const {
    407     return
    408       // Address spaces must match exactly.
    409       getAddressSpace() == other.getAddressSpace() &&
    410       // ObjC GC qualifiers can match, be added, or be removed, but can't be
    411       // changed.
    412       (getObjCGCAttr() == other.getObjCGCAttr() ||
    413        !hasObjCGCAttr() || !other.hasObjCGCAttr()) &&
    414       // ObjC lifetime qualifiers must match exactly.
    415       getObjCLifetime() == other.getObjCLifetime() &&
    416       // CVR qualifiers may subset.
    417       (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask));
    418   }
    419 
    420   /// \brief Determines if these qualifiers compatibly include another set of
    421   /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
    422   ///
    423   /// One set of Objective-C lifetime qualifiers compatibly includes the other
    424   /// if the lifetime qualifiers match, or if both are non-__weak and the
    425   /// including set also contains the 'const' qualifier.
    426   bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
    427     if (getObjCLifetime() == other.getObjCLifetime())
    428       return true;
    429 
    430     if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
    431       return false;
    432 
    433     return hasConst();
    434   }
    435 
    436   /// \brief Determine whether this set of qualifiers is a strict superset of
    437   /// another set of qualifiers, not considering qualifier compatibility.
    438   bool isStrictSupersetOf(Qualifiers Other) const;
    439 
    440   bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
    441   bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
    442 
    443   LLVM_EXPLICIT operator bool() const { return hasQualifiers(); }
    444 
    445   Qualifiers &operator+=(Qualifiers R) {
    446     addQualifiers(R);
    447     return *this;
    448   }
    449 
    450   // Union two qualifier sets.  If an enumerated qualifier appears
    451   // in both sets, use the one from the right.
    452   friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
    453     L += R;
    454     return L;
    455   }
    456 
    457   Qualifiers &operator-=(Qualifiers R) {
    458     removeQualifiers(R);
    459     return *this;
    460   }
    461 
    462   /// \brief Compute the difference between two qualifier sets.
    463   friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
    464     L -= R;
    465     return L;
    466   }
    467 
    468   std::string getAsString() const;
    469   std::string getAsString(const PrintingPolicy &Policy) const;
    470 
    471   bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
    472   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    473              bool appendSpaceIfNonEmpty = false) const;
    474 
    475   void Profile(llvm::FoldingSetNodeID &ID) const {
    476     ID.AddInteger(Mask);
    477   }
    478 
    479 private:
    480 
    481   // bits:     |0 1 2|3 .. 4|5  ..  7|8   ...   31|
    482   //           |C R V|GCAttr|Lifetime|AddressSpace|
    483   uint32_t Mask;
    484 
    485   static const uint32_t GCAttrMask = 0x18;
    486   static const uint32_t GCAttrShift = 3;
    487   static const uint32_t LifetimeMask = 0xE0;
    488   static const uint32_t LifetimeShift = 5;
    489   static const uint32_t AddressSpaceMask = ~(CVRMask|GCAttrMask|LifetimeMask);
    490   static const uint32_t AddressSpaceShift = 8;
    491 };
    492 
    493 /// A std::pair-like structure for storing a qualified type split
    494 /// into its local qualifiers and its locally-unqualified type.
    495 struct SplitQualType {
    496   /// The locally-unqualified type.
    497   const Type *Ty;
    498 
    499   /// The local qualifiers.
    500   Qualifiers Quals;
    501 
    502   SplitQualType() : Ty(nullptr), Quals() {}
    503   SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
    504 
    505   SplitQualType getSingleStepDesugaredType() const; // end of this file
    506 
    507   // Make std::tie work.
    508   std::pair<const Type *,Qualifiers> asPair() const {
    509     return std::pair<const Type *, Qualifiers>(Ty, Quals);
    510   }
    511 
    512   friend bool operator==(SplitQualType a, SplitQualType b) {
    513     return a.Ty == b.Ty && a.Quals == b.Quals;
    514   }
    515   friend bool operator!=(SplitQualType a, SplitQualType b) {
    516     return a.Ty != b.Ty || a.Quals != b.Quals;
    517   }
    518 };
    519 
    520 /// QualType - For efficiency, we don't store CV-qualified types as nodes on
    521 /// their own: instead each reference to a type stores the qualifiers.  This
    522 /// greatly reduces the number of nodes we need to allocate for types (for
    523 /// example we only need one for 'int', 'const int', 'volatile int',
    524 /// 'const volatile int', etc).
    525 ///
    526 /// As an added efficiency bonus, instead of making this a pair, we
    527 /// just store the two bits we care about in the low bits of the
    528 /// pointer.  To handle the packing/unpacking, we make QualType be a
    529 /// simple wrapper class that acts like a smart pointer.  A third bit
    530 /// indicates whether there are extended qualifiers present, in which
    531 /// case the pointer points to a special structure.
    532 class QualType {
    533   // Thankfully, these are efficiently composable.
    534   llvm::PointerIntPair<llvm::PointerUnion<const Type*,const ExtQuals*>,
    535                        Qualifiers::FastWidth> Value;
    536 
    537   const ExtQuals *getExtQualsUnsafe() const {
    538     return Value.getPointer().get<const ExtQuals*>();
    539   }
    540 
    541   const Type *getTypePtrUnsafe() const {
    542     return Value.getPointer().get<const Type*>();
    543   }
    544 
    545   const ExtQualsTypeCommonBase *getCommonPtr() const {
    546     assert(!isNull() && "Cannot retrieve a NULL type pointer");
    547     uintptr_t CommonPtrVal
    548       = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
    549     CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
    550     return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
    551   }
    552 
    553   friend class QualifierCollector;
    554 public:
    555   QualType() {}
    556 
    557   QualType(const Type *Ptr, unsigned Quals)
    558     : Value(Ptr, Quals) {}
    559   QualType(const ExtQuals *Ptr, unsigned Quals)
    560     : Value(Ptr, Quals) {}
    561 
    562   unsigned getLocalFastQualifiers() const { return Value.getInt(); }
    563   void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
    564 
    565   /// Retrieves a pointer to the underlying (unqualified) type.
    566   ///
    567   /// This function requires that the type not be NULL. If the type might be
    568   /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
    569   const Type *getTypePtr() const;
    570 
    571   const Type *getTypePtrOrNull() const;
    572 
    573   /// Retrieves a pointer to the name of the base type.
    574   const IdentifierInfo *getBaseTypeIdentifier() const;
    575 
    576   /// Divides a QualType into its unqualified type and a set of local
    577   /// qualifiers.
    578   SplitQualType split() const;
    579 
    580   void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
    581   static QualType getFromOpaquePtr(const void *Ptr) {
    582     QualType T;
    583     T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
    584     return T;
    585   }
    586 
    587   const Type &operator*() const {
    588     return *getTypePtr();
    589   }
    590 
    591   const Type *operator->() const {
    592     return getTypePtr();
    593   }
    594 
    595   bool isCanonical() const;
    596   bool isCanonicalAsParam() const;
    597 
    598   /// isNull - Return true if this QualType doesn't point to a type yet.
    599   bool isNull() const {
    600     return Value.getPointer().isNull();
    601   }
    602 
    603   /// \brief Determine whether this particular QualType instance has the
    604   /// "const" qualifier set, without looking through typedefs that may have
    605   /// added "const" at a different level.
    606   bool isLocalConstQualified() const {
    607     return (getLocalFastQualifiers() & Qualifiers::Const);
    608   }
    609 
    610   /// \brief Determine whether this type is const-qualified.
    611   bool isConstQualified() const;
    612 
    613   /// \brief Determine whether this particular QualType instance has the
    614   /// "restrict" qualifier set, without looking through typedefs that may have
    615   /// added "restrict" at a different level.
    616   bool isLocalRestrictQualified() const {
    617     return (getLocalFastQualifiers() & Qualifiers::Restrict);
    618   }
    619 
    620   /// \brief Determine whether this type is restrict-qualified.
    621   bool isRestrictQualified() const;
    622 
    623   /// \brief Determine whether this particular QualType instance has the
    624   /// "volatile" qualifier set, without looking through typedefs that may have
    625   /// added "volatile" at a different level.
    626   bool isLocalVolatileQualified() const {
    627     return (getLocalFastQualifiers() & Qualifiers::Volatile);
    628   }
    629 
    630   /// \brief Determine whether this type is volatile-qualified.
    631   bool isVolatileQualified() const;
    632 
    633   /// \brief Determine whether this particular QualType instance has any
    634   /// qualifiers, without looking through any typedefs that might add
    635   /// qualifiers at a different level.
    636   bool hasLocalQualifiers() const {
    637     return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
    638   }
    639 
    640   /// \brief Determine whether this type has any qualifiers.
    641   bool hasQualifiers() const;
    642 
    643   /// \brief Determine whether this particular QualType instance has any
    644   /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
    645   /// instance.
    646   bool hasLocalNonFastQualifiers() const {
    647     return Value.getPointer().is<const ExtQuals*>();
    648   }
    649 
    650   /// \brief Retrieve the set of qualifiers local to this particular QualType
    651   /// instance, not including any qualifiers acquired through typedefs or
    652   /// other sugar.
    653   Qualifiers getLocalQualifiers() const;
    654 
    655   /// \brief Retrieve the set of qualifiers applied to this type.
    656   Qualifiers getQualifiers() const;
    657 
    658   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    659   /// local to this particular QualType instance, not including any qualifiers
    660   /// acquired through typedefs or other sugar.
    661   unsigned getLocalCVRQualifiers() const {
    662     return getLocalFastQualifiers();
    663   }
    664 
    665   /// \brief Retrieve the set of CVR (const-volatile-restrict) qualifiers
    666   /// applied to this type.
    667   unsigned getCVRQualifiers() const;
    668 
    669   bool isConstant(ASTContext& Ctx) const {
    670     return QualType::isConstant(*this, Ctx);
    671   }
    672 
    673   /// \brief Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
    674   bool isPODType(ASTContext &Context) const;
    675 
    676   /// isCXX98PODType() - Return true if this is a POD type according to the
    677   /// rules of the C++98 standard, regardless of the current compilation's
    678   /// language.
    679   bool isCXX98PODType(ASTContext &Context) const;
    680 
    681   /// isCXX11PODType() - Return true if this is a POD type according to the
    682   /// more relaxed rules of the C++11 standard, regardless of the current
    683   /// compilation's language.
    684   /// (C++0x [basic.types]p9)
    685   bool isCXX11PODType(ASTContext &Context) const;
    686 
    687   /// isTrivialType - Return true if this is a trivial type
    688   /// (C++0x [basic.types]p9)
    689   bool isTrivialType(ASTContext &Context) const;
    690 
    691   /// isTriviallyCopyableType - Return true if this is a trivially
    692   /// copyable type (C++0x [basic.types]p9)
    693   bool isTriviallyCopyableType(ASTContext &Context) const;
    694 
    695   // Don't promise in the API that anything besides 'const' can be
    696   // easily added.
    697 
    698   /// addConst - add the specified type qualifier to this QualType.
    699   void addConst() {
    700     addFastQualifiers(Qualifiers::Const);
    701   }
    702   QualType withConst() const {
    703     return withFastQualifiers(Qualifiers::Const);
    704   }
    705 
    706   /// addVolatile - add the specified type qualifier to this QualType.
    707   void addVolatile() {
    708     addFastQualifiers(Qualifiers::Volatile);
    709   }
    710   QualType withVolatile() const {
    711     return withFastQualifiers(Qualifiers::Volatile);
    712   }
    713 
    714   /// Add the restrict qualifier to this QualType.
    715   void addRestrict() {
    716     addFastQualifiers(Qualifiers::Restrict);
    717   }
    718   QualType withRestrict() const {
    719     return withFastQualifiers(Qualifiers::Restrict);
    720   }
    721 
    722   QualType withCVRQualifiers(unsigned CVR) const {
    723     return withFastQualifiers(CVR);
    724   }
    725 
    726   void addFastQualifiers(unsigned TQs) {
    727     assert(!(TQs & ~Qualifiers::FastMask)
    728            && "non-fast qualifier bits set in mask!");
    729     Value.setInt(Value.getInt() | TQs);
    730   }
    731 
    732   void removeLocalConst();
    733   void removeLocalVolatile();
    734   void removeLocalRestrict();
    735   void removeLocalCVRQualifiers(unsigned Mask);
    736 
    737   void removeLocalFastQualifiers() { Value.setInt(0); }
    738   void removeLocalFastQualifiers(unsigned Mask) {
    739     assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers");
    740     Value.setInt(Value.getInt() & ~Mask);
    741   }
    742 
    743   // Creates a type with the given qualifiers in addition to any
    744   // qualifiers already on this type.
    745   QualType withFastQualifiers(unsigned TQs) const {
    746     QualType T = *this;
    747     T.addFastQualifiers(TQs);
    748     return T;
    749   }
    750 
    751   // Creates a type with exactly the given fast qualifiers, removing
    752   // any existing fast qualifiers.
    753   QualType withExactLocalFastQualifiers(unsigned TQs) const {
    754     return withoutLocalFastQualifiers().withFastQualifiers(TQs);
    755   }
    756 
    757   // Removes fast qualifiers, but leaves any extended qualifiers in place.
    758   QualType withoutLocalFastQualifiers() const {
    759     QualType T = *this;
    760     T.removeLocalFastQualifiers();
    761     return T;
    762   }
    763 
    764   QualType getCanonicalType() const;
    765 
    766   /// \brief Return this type with all of the instance-specific qualifiers
    767   /// removed, but without removing any qualifiers that may have been applied
    768   /// through typedefs.
    769   QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
    770 
    771   /// \brief Retrieve the unqualified variant of the given type,
    772   /// removing as little sugar as possible.
    773   ///
    774   /// This routine looks through various kinds of sugar to find the
    775   /// least-desugared type that is unqualified. For example, given:
    776   ///
    777   /// \code
    778   /// typedef int Integer;
    779   /// typedef const Integer CInteger;
    780   /// typedef CInteger DifferenceType;
    781   /// \endcode
    782   ///
    783   /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
    784   /// desugar until we hit the type \c Integer, which has no qualifiers on it.
    785   ///
    786   /// The resulting type might still be qualified if it's sugar for an array
    787   /// type.  To strip qualifiers even from within a sugared array type, use
    788   /// ASTContext::getUnqualifiedArrayType.
    789   inline QualType getUnqualifiedType() const;
    790 
    791   /// getSplitUnqualifiedType - Retrieve the unqualified variant of the
    792   /// given type, removing as little sugar as possible.
    793   ///
    794   /// Like getUnqualifiedType(), but also returns the set of
    795   /// qualifiers that were built up.
    796   ///
    797   /// The resulting type might still be qualified if it's sugar for an array
    798   /// type.  To strip qualifiers even from within a sugared array type, use
    799   /// ASTContext::getUnqualifiedArrayType.
    800   inline SplitQualType getSplitUnqualifiedType() const;
    801 
    802   /// \brief Determine whether this type is more qualified than the other
    803   /// given type, requiring exact equality for non-CVR qualifiers.
    804   bool isMoreQualifiedThan(QualType Other) const;
    805 
    806   /// \brief Determine whether this type is at least as qualified as the other
    807   /// given type, requiring exact equality for non-CVR qualifiers.
    808   bool isAtLeastAsQualifiedAs(QualType Other) const;
    809 
    810   QualType getNonReferenceType() const;
    811 
    812   /// \brief Determine the type of a (typically non-lvalue) expression with the
    813   /// specified result type.
    814   ///
    815   /// This routine should be used for expressions for which the return type is
    816   /// explicitly specified (e.g., in a cast or call) and isn't necessarily
    817   /// an lvalue. It removes a top-level reference (since there are no
    818   /// expressions of reference type) and deletes top-level cvr-qualifiers
    819   /// from non-class types (in C++) or all types (in C).
    820   QualType getNonLValueExprType(const ASTContext &Context) const;
    821 
    822   /// getDesugaredType - Return the specified type with any "sugar" removed from
    823   /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    824   /// the type is already concrete, it returns it unmodified.  This is similar
    825   /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    826   /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    827   /// concrete.
    828   ///
    829   /// Qualifiers are left in place.
    830   QualType getDesugaredType(const ASTContext &Context) const {
    831     return getDesugaredType(*this, Context);
    832   }
    833 
    834   SplitQualType getSplitDesugaredType() const {
    835     return getSplitDesugaredType(*this);
    836   }
    837 
    838   /// \brief Return the specified type with one level of "sugar" removed from
    839   /// the type.
    840   ///
    841   /// This routine takes off the first typedef, typeof, etc. If the outer level
    842   /// of the type is already concrete, it returns it unmodified.
    843   QualType getSingleStepDesugaredType(const ASTContext &Context) const {
    844     return getSingleStepDesugaredTypeImpl(*this, Context);
    845   }
    846 
    847   /// IgnoreParens - Returns the specified type after dropping any
    848   /// outer-level parentheses.
    849   QualType IgnoreParens() const {
    850     if (isa<ParenType>(*this))
    851       return QualType::IgnoreParens(*this);
    852     return *this;
    853   }
    854 
    855   /// operator==/!= - Indicate whether the specified types and qualifiers are
    856   /// identical.
    857   friend bool operator==(const QualType &LHS, const QualType &RHS) {
    858     return LHS.Value == RHS.Value;
    859   }
    860   friend bool operator!=(const QualType &LHS, const QualType &RHS) {
    861     return LHS.Value != RHS.Value;
    862   }
    863   std::string getAsString() const {
    864     return getAsString(split());
    865   }
    866   static std::string getAsString(SplitQualType split) {
    867     return getAsString(split.Ty, split.Quals);
    868   }
    869   static std::string getAsString(const Type *ty, Qualifiers qs);
    870 
    871   std::string getAsString(const PrintingPolicy &Policy) const;
    872 
    873   void print(raw_ostream &OS, const PrintingPolicy &Policy,
    874              const Twine &PlaceHolder = Twine()) const {
    875     print(split(), OS, Policy, PlaceHolder);
    876   }
    877   static void print(SplitQualType split, raw_ostream &OS,
    878                     const PrintingPolicy &policy, const Twine &PlaceHolder) {
    879     return print(split.Ty, split.Quals, OS, policy, PlaceHolder);
    880   }
    881   static void print(const Type *ty, Qualifiers qs,
    882                     raw_ostream &OS, const PrintingPolicy &policy,
    883                     const Twine &PlaceHolder);
    884 
    885   void getAsStringInternal(std::string &Str,
    886                            const PrintingPolicy &Policy) const {
    887     return getAsStringInternal(split(), Str, Policy);
    888   }
    889   static void getAsStringInternal(SplitQualType split, std::string &out,
    890                                   const PrintingPolicy &policy) {
    891     return getAsStringInternal(split.Ty, split.Quals, out, policy);
    892   }
    893   static void getAsStringInternal(const Type *ty, Qualifiers qs,
    894                                   std::string &out,
    895                                   const PrintingPolicy &policy);
    896 
    897   class StreamedQualTypeHelper {
    898     const QualType &T;
    899     const PrintingPolicy &Policy;
    900     const Twine &PlaceHolder;
    901   public:
    902     StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
    903                            const Twine &PlaceHolder)
    904       : T(T), Policy(Policy), PlaceHolder(PlaceHolder) { }
    905 
    906     friend raw_ostream &operator<<(raw_ostream &OS,
    907                                    const StreamedQualTypeHelper &SQT) {
    908       SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder);
    909       return OS;
    910     }
    911   };
    912 
    913   StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
    914                                 const Twine &PlaceHolder = Twine()) const {
    915     return StreamedQualTypeHelper(*this, Policy, PlaceHolder);
    916   }
    917 
    918   void dump(const char *s) const;
    919   void dump() const;
    920 
    921   void Profile(llvm::FoldingSetNodeID &ID) const {
    922     ID.AddPointer(getAsOpaquePtr());
    923   }
    924 
    925   /// getAddressSpace - Return the address space of this type.
    926   inline unsigned getAddressSpace() const;
    927 
    928   /// getObjCGCAttr - Returns gc attribute of this type.
    929   inline Qualifiers::GC getObjCGCAttr() const;
    930 
    931   /// isObjCGCWeak true when Type is objc's weak.
    932   bool isObjCGCWeak() const {
    933     return getObjCGCAttr() == Qualifiers::Weak;
    934   }
    935 
    936   /// isObjCGCStrong true when Type is objc's strong.
    937   bool isObjCGCStrong() const {
    938     return getObjCGCAttr() == Qualifiers::Strong;
    939   }
    940 
    941   /// getObjCLifetime - Returns lifetime attribute of this type.
    942   Qualifiers::ObjCLifetime getObjCLifetime() const {
    943     return getQualifiers().getObjCLifetime();
    944   }
    945 
    946   bool hasNonTrivialObjCLifetime() const {
    947     return getQualifiers().hasNonTrivialObjCLifetime();
    948   }
    949 
    950   bool hasStrongOrWeakObjCLifetime() const {
    951     return getQualifiers().hasStrongOrWeakObjCLifetime();
    952   }
    953 
    954   enum DestructionKind {
    955     DK_none,
    956     DK_cxx_destructor,
    957     DK_objc_strong_lifetime,
    958     DK_objc_weak_lifetime
    959   };
    960 
    961   /// isDestructedType - nonzero if objects of this type require
    962   /// non-trivial work to clean up after.  Non-zero because it's
    963   /// conceivable that qualifiers (objc_gc(weak)?) could make
    964   /// something require destruction.
    965   DestructionKind isDestructedType() const {
    966     return isDestructedTypeImpl(*this);
    967   }
    968 
    969   /// \brief Determine whether expressions of the given type are forbidden
    970   /// from being lvalues in C.
    971   ///
    972   /// The expression types that are forbidden to be lvalues are:
    973   ///   - 'void', but not qualified void
    974   ///   - function types
    975   ///
    976   /// The exact rule here is C99 6.3.2.1:
    977   ///   An lvalue is an expression with an object type or an incomplete
    978   ///   type other than void.
    979   bool isCForbiddenLValueType() const;
    980 
    981 private:
    982   // These methods are implemented in a separate translation unit;
    983   // "static"-ize them to avoid creating temporary QualTypes in the
    984   // caller.
    985   static bool isConstant(QualType T, ASTContext& Ctx);
    986   static QualType getDesugaredType(QualType T, const ASTContext &Context);
    987   static SplitQualType getSplitDesugaredType(QualType T);
    988   static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
    989   static QualType getSingleStepDesugaredTypeImpl(QualType type,
    990                                                  const ASTContext &C);
    991   static QualType IgnoreParens(QualType T);
    992   static DestructionKind isDestructedTypeImpl(QualType type);
    993 };
    994 
    995 } // end clang.
    996 
    997 namespace llvm {
    998 /// Implement simplify_type for QualType, so that we can dyn_cast from QualType
    999 /// to a specific Type class.
   1000 template<> struct simplify_type< ::clang::QualType> {
   1001   typedef const ::clang::Type *SimpleType;
   1002   static SimpleType getSimplifiedValue(::clang::QualType Val) {
   1003     return Val.getTypePtr();
   1004   }
   1005 };
   1006 
   1007 // Teach SmallPtrSet that QualType is "basically a pointer".
   1008 template<>
   1009 class PointerLikeTypeTraits<clang::QualType> {
   1010 public:
   1011   static inline void *getAsVoidPointer(clang::QualType P) {
   1012     return P.getAsOpaquePtr();
   1013   }
   1014   static inline clang::QualType getFromVoidPointer(void *P) {
   1015     return clang::QualType::getFromOpaquePtr(P);
   1016   }
   1017   // Various qualifiers go in low bits.
   1018   enum { NumLowBitsAvailable = 0 };
   1019 };
   1020 
   1021 } // end namespace llvm
   1022 
   1023 namespace clang {
   1024 
   1025 /// \brief Base class that is common to both the \c ExtQuals and \c Type
   1026 /// classes, which allows \c QualType to access the common fields between the
   1027 /// two.
   1028 ///
   1029 class ExtQualsTypeCommonBase {
   1030   ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
   1031     : BaseType(baseType), CanonicalType(canon) {}
   1032 
   1033   /// \brief The "base" type of an extended qualifiers type (\c ExtQuals) or
   1034   /// a self-referential pointer (for \c Type).
   1035   ///
   1036   /// This pointer allows an efficient mapping from a QualType to its
   1037   /// underlying type pointer.
   1038   const Type *const BaseType;
   1039 
   1040   /// \brief The canonical type of this type.  A QualType.
   1041   QualType CanonicalType;
   1042 
   1043   friend class QualType;
   1044   friend class Type;
   1045   friend class ExtQuals;
   1046 };
   1047 
   1048 /// ExtQuals - We can encode up to four bits in the low bits of a
   1049 /// type pointer, but there are many more type qualifiers that we want
   1050 /// to be able to apply to an arbitrary type.  Therefore we have this
   1051 /// struct, intended to be heap-allocated and used by QualType to
   1052 /// store qualifiers.
   1053 ///
   1054 /// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
   1055 /// in three low bits on the QualType pointer; a fourth bit records whether
   1056 /// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
   1057 /// Objective-C GC attributes) are much more rare.
   1058 class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
   1059   // NOTE: changing the fast qualifiers should be straightforward as
   1060   // long as you don't make 'const' non-fast.
   1061   // 1. Qualifiers:
   1062   //    a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
   1063   //       Fast qualifiers must occupy the low-order bits.
   1064   //    b) Update Qualifiers::FastWidth and FastMask.
   1065   // 2. QualType:
   1066   //    a) Update is{Volatile,Restrict}Qualified(), defined inline.
   1067   //    b) Update remove{Volatile,Restrict}, defined near the end of
   1068   //       this header.
   1069   // 3. ASTContext:
   1070   //    a) Update get{Volatile,Restrict}Type.
   1071 
   1072   /// Quals - the immutable set of qualifiers applied by this
   1073   /// node;  always contains extended qualifiers.
   1074   Qualifiers Quals;
   1075 
   1076   ExtQuals *this_() { return this; }
   1077 
   1078 public:
   1079   ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
   1080     : ExtQualsTypeCommonBase(baseType,
   1081                              canon.isNull() ? QualType(this_(), 0) : canon),
   1082       Quals(quals)
   1083   {
   1084     assert(Quals.hasNonFastQualifiers()
   1085            && "ExtQuals created with no fast qualifiers");
   1086     assert(!Quals.hasFastQualifiers()
   1087            && "ExtQuals created with fast qualifiers");
   1088   }
   1089 
   1090   Qualifiers getQualifiers() const { return Quals; }
   1091 
   1092   bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
   1093   Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
   1094 
   1095   bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
   1096   Qualifiers::ObjCLifetime getObjCLifetime() const {
   1097     return Quals.getObjCLifetime();
   1098   }
   1099 
   1100   bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
   1101   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
   1102 
   1103   const Type *getBaseType() const { return BaseType; }
   1104 
   1105 public:
   1106   void Profile(llvm::FoldingSetNodeID &ID) const {
   1107     Profile(ID, getBaseType(), Quals);
   1108   }
   1109   static void Profile(llvm::FoldingSetNodeID &ID,
   1110                       const Type *BaseType,
   1111                       Qualifiers Quals) {
   1112     assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!");
   1113     ID.AddPointer(BaseType);
   1114     Quals.Profile(ID);
   1115   }
   1116 };
   1117 
   1118 /// \brief The kind of C++0x ref-qualifier associated with a function type,
   1119 /// which determines whether a member function's "this" object can be an
   1120 /// lvalue, rvalue, or neither.
   1121 enum RefQualifierKind {
   1122   /// \brief No ref-qualifier was provided.
   1123   RQ_None = 0,
   1124   /// \brief An lvalue ref-qualifier was provided (\c &).
   1125   RQ_LValue,
   1126   /// \brief An rvalue ref-qualifier was provided (\c &&).
   1127   RQ_RValue
   1128 };
   1129 
   1130 /// Type - This is the base class of the type hierarchy.  A central concept
   1131 /// with types is that each type always has a canonical type.  A canonical type
   1132 /// is the type with any typedef names stripped out of it or the types it
   1133 /// references.  For example, consider:
   1134 ///
   1135 ///  typedef int  foo;
   1136 ///  typedef foo* bar;
   1137 ///    'int *'    'foo *'    'bar'
   1138 ///
   1139 /// There will be a Type object created for 'int'.  Since int is canonical, its
   1140 /// canonicaltype pointer points to itself.  There is also a Type for 'foo' (a
   1141 /// TypedefType).  Its CanonicalType pointer points to the 'int' Type.  Next
   1142 /// there is a PointerType that represents 'int*', which, like 'int', is
   1143 /// canonical.  Finally, there is a PointerType type for 'foo*' whose canonical
   1144 /// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
   1145 /// is also 'int*'.
   1146 ///
   1147 /// Non-canonical types are useful for emitting diagnostics, without losing
   1148 /// information about typedefs being used.  Canonical types are useful for type
   1149 /// comparisons (they allow by-pointer equality tests) and useful for reasoning
   1150 /// about whether something has a particular form (e.g. is a function type),
   1151 /// because they implicitly, recursively, strip all typedefs out of a type.
   1152 ///
   1153 /// Types, once created, are immutable.
   1154 ///
   1155 class Type : public ExtQualsTypeCommonBase {
   1156 public:
   1157   enum TypeClass {
   1158 #define TYPE(Class, Base) Class,
   1159 #define LAST_TYPE(Class) TypeLast = Class,
   1160 #define ABSTRACT_TYPE(Class, Base)
   1161 #include "clang/AST/TypeNodes.def"
   1162     TagFirst = Record, TagLast = Enum
   1163   };
   1164 
   1165 private:
   1166   Type(const Type &) LLVM_DELETED_FUNCTION;
   1167   void operator=(const Type &) LLVM_DELETED_FUNCTION;
   1168 
   1169   /// Bitfields required by the Type class.
   1170   class TypeBitfields {
   1171     friend class Type;
   1172     template <class T> friend class TypePropertyCache;
   1173 
   1174     /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
   1175     unsigned TC : 8;
   1176 
   1177     /// Dependent - Whether this type is a dependent type (C++ [temp.dep.type]).
   1178     unsigned Dependent : 1;
   1179 
   1180     /// \brief Whether this type somehow involves a template parameter, even
   1181     /// if the resolution of the type does not depend on a template parameter.
   1182     unsigned InstantiationDependent : 1;
   1183 
   1184     /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1185     unsigned VariablyModified : 1;
   1186 
   1187     /// \brief Whether this type contains an unexpanded parameter pack
   1188     /// (for C++0x variadic templates).
   1189     unsigned ContainsUnexpandedParameterPack : 1;
   1190 
   1191     /// \brief True if the cache (i.e. the bitfields here starting with
   1192     /// 'Cache') is valid.
   1193     mutable unsigned CacheValid : 1;
   1194 
   1195     /// \brief Linkage of this type.
   1196     mutable unsigned CachedLinkage : 3;
   1197 
   1198     /// \brief Whether this type involves and local or unnamed types.
   1199     mutable unsigned CachedLocalOrUnnamed : 1;
   1200 
   1201     /// \brief FromAST - Whether this type comes from an AST file.
   1202     mutable unsigned FromAST : 1;
   1203 
   1204     bool isCacheValid() const {
   1205       return CacheValid;
   1206     }
   1207     Linkage getLinkage() const {
   1208       assert(isCacheValid() && "getting linkage from invalid cache");
   1209       return static_cast<Linkage>(CachedLinkage);
   1210     }
   1211     bool hasLocalOrUnnamedType() const {
   1212       assert(isCacheValid() && "getting linkage from invalid cache");
   1213       return CachedLocalOrUnnamed;
   1214     }
   1215   };
   1216   enum { NumTypeBits = 18 };
   1217 
   1218 protected:
   1219   // These classes allow subclasses to somewhat cleanly pack bitfields
   1220   // into Type.
   1221 
   1222   class ArrayTypeBitfields {
   1223     friend class ArrayType;
   1224 
   1225     unsigned : NumTypeBits;
   1226 
   1227     /// IndexTypeQuals - CVR qualifiers from declarations like
   1228     /// 'int X[static restrict 4]'. For function parameters only.
   1229     unsigned IndexTypeQuals : 3;
   1230 
   1231     /// SizeModifier - storage class qualifiers from declarations like
   1232     /// 'int X[static restrict 4]'. For function parameters only.
   1233     /// Actually an ArrayType::ArraySizeModifier.
   1234     unsigned SizeModifier : 3;
   1235   };
   1236 
   1237   class BuiltinTypeBitfields {
   1238     friend class BuiltinType;
   1239 
   1240     unsigned : NumTypeBits;
   1241 
   1242     /// The kind (BuiltinType::Kind) of builtin type this is.
   1243     unsigned Kind : 8;
   1244   };
   1245 
   1246   class FunctionTypeBitfields {
   1247     friend class FunctionType;
   1248 
   1249     unsigned : NumTypeBits;
   1250 
   1251     /// Extra information which affects how the function is called, like
   1252     /// regparm and the calling convention.
   1253     unsigned ExtInfo : 9;
   1254 
   1255     /// TypeQuals - Used only by FunctionProtoType, put here to pack with the
   1256     /// other bitfields.
   1257     /// The qualifiers are part of FunctionProtoType because...
   1258     ///
   1259     /// C++ 8.3.5p4: The return type, the parameter type list and the
   1260     /// cv-qualifier-seq, [...], are part of the function type.
   1261     unsigned TypeQuals : 3;
   1262   };
   1263 
   1264   class ObjCObjectTypeBitfields {
   1265     friend class ObjCObjectType;
   1266 
   1267     unsigned : NumTypeBits;
   1268 
   1269     /// NumProtocols - The number of protocols stored directly on this
   1270     /// object type.
   1271     unsigned NumProtocols : 32 - NumTypeBits;
   1272   };
   1273 
   1274   class ReferenceTypeBitfields {
   1275     friend class ReferenceType;
   1276 
   1277     unsigned : NumTypeBits;
   1278 
   1279     /// True if the type was originally spelled with an lvalue sigil.
   1280     /// This is never true of rvalue references but can also be false
   1281     /// on lvalue references because of C++0x [dcl.typedef]p9,
   1282     /// as follows:
   1283     ///
   1284     ///   typedef int &ref;    // lvalue, spelled lvalue
   1285     ///   typedef int &&rvref; // rvalue
   1286     ///   ref &a;              // lvalue, inner ref, spelled lvalue
   1287     ///   ref &&a;             // lvalue, inner ref
   1288     ///   rvref &a;            // lvalue, inner ref, spelled lvalue
   1289     ///   rvref &&a;           // rvalue, inner ref
   1290     unsigned SpelledAsLValue : 1;
   1291 
   1292     /// True if the inner type is a reference type.  This only happens
   1293     /// in non-canonical forms.
   1294     unsigned InnerRef : 1;
   1295   };
   1296 
   1297   class TypeWithKeywordBitfields {
   1298     friend class TypeWithKeyword;
   1299 
   1300     unsigned : NumTypeBits;
   1301 
   1302     /// An ElaboratedTypeKeyword.  8 bits for efficient access.
   1303     unsigned Keyword : 8;
   1304   };
   1305 
   1306   class VectorTypeBitfields {
   1307     friend class VectorType;
   1308 
   1309     unsigned : NumTypeBits;
   1310 
   1311     /// VecKind - The kind of vector, either a generic vector type or some
   1312     /// target-specific vector type such as for AltiVec or Neon.
   1313     unsigned VecKind : 3;
   1314 
   1315     /// NumElements - The number of elements in the vector.
   1316     unsigned NumElements : 29 - NumTypeBits;
   1317 
   1318     enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
   1319   };
   1320 
   1321   class AttributedTypeBitfields {
   1322     friend class AttributedType;
   1323 
   1324     unsigned : NumTypeBits;
   1325 
   1326     /// AttrKind - an AttributedType::Kind
   1327     unsigned AttrKind : 32 - NumTypeBits;
   1328   };
   1329 
   1330   class AutoTypeBitfields {
   1331     friend class AutoType;
   1332 
   1333     unsigned : NumTypeBits;
   1334 
   1335     /// Was this placeholder type spelled as 'decltype(auto)'?
   1336     unsigned IsDecltypeAuto : 1;
   1337   };
   1338 
   1339   union {
   1340     TypeBitfields TypeBits;
   1341     ArrayTypeBitfields ArrayTypeBits;
   1342     AttributedTypeBitfields AttributedTypeBits;
   1343     AutoTypeBitfields AutoTypeBits;
   1344     BuiltinTypeBitfields BuiltinTypeBits;
   1345     FunctionTypeBitfields FunctionTypeBits;
   1346     ObjCObjectTypeBitfields ObjCObjectTypeBits;
   1347     ReferenceTypeBitfields ReferenceTypeBits;
   1348     TypeWithKeywordBitfields TypeWithKeywordBits;
   1349     VectorTypeBitfields VectorTypeBits;
   1350   };
   1351 
   1352 private:
   1353   /// \brief Set whether this type comes from an AST file.
   1354   void setFromAST(bool V = true) const {
   1355     TypeBits.FromAST = V;
   1356   }
   1357 
   1358   template <class T> friend class TypePropertyCache;
   1359 
   1360 protected:
   1361   // silence VC++ warning C4355: 'this' : used in base member initializer list
   1362   Type *this_() { return this; }
   1363   Type(TypeClass tc, QualType canon, bool Dependent,
   1364        bool InstantiationDependent, bool VariablyModified,
   1365        bool ContainsUnexpandedParameterPack)
   1366     : ExtQualsTypeCommonBase(this,
   1367                              canon.isNull() ? QualType(this_(), 0) : canon) {
   1368     TypeBits.TC = tc;
   1369     TypeBits.Dependent = Dependent;
   1370     TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
   1371     TypeBits.VariablyModified = VariablyModified;
   1372     TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
   1373     TypeBits.CacheValid = false;
   1374     TypeBits.CachedLocalOrUnnamed = false;
   1375     TypeBits.CachedLinkage = NoLinkage;
   1376     TypeBits.FromAST = false;
   1377   }
   1378   friend class ASTContext;
   1379 
   1380   void setDependent(bool D = true) {
   1381     TypeBits.Dependent = D;
   1382     if (D)
   1383       TypeBits.InstantiationDependent = true;
   1384   }
   1385   void setInstantiationDependent(bool D = true) {
   1386     TypeBits.InstantiationDependent = D; }
   1387   void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM;
   1388   }
   1389   void setContainsUnexpandedParameterPack(bool PP = true) {
   1390     TypeBits.ContainsUnexpandedParameterPack = PP;
   1391   }
   1392 
   1393 public:
   1394   TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
   1395 
   1396   /// \brief Whether this type comes from an AST file.
   1397   bool isFromAST() const { return TypeBits.FromAST; }
   1398 
   1399   /// \brief Whether this type is or contains an unexpanded parameter
   1400   /// pack, used to support C++0x variadic templates.
   1401   ///
   1402   /// A type that contains a parameter pack shall be expanded by the
   1403   /// ellipsis operator at some point. For example, the typedef in the
   1404   /// following example contains an unexpanded parameter pack 'T':
   1405   ///
   1406   /// \code
   1407   /// template<typename ...T>
   1408   /// struct X {
   1409   ///   typedef T* pointer_types; // ill-formed; T is a parameter pack.
   1410   /// };
   1411   /// \endcode
   1412   ///
   1413   /// Note that this routine does not specify which
   1414   bool containsUnexpandedParameterPack() const {
   1415     return TypeBits.ContainsUnexpandedParameterPack;
   1416   }
   1417 
   1418   /// Determines if this type would be canonical if it had no further
   1419   /// qualification.
   1420   bool isCanonicalUnqualified() const {
   1421     return CanonicalType == QualType(this, 0);
   1422   }
   1423 
   1424   /// Pull a single level of sugar off of this locally-unqualified type.
   1425   /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
   1426   /// or QualType::getSingleStepDesugaredType(const ASTContext&).
   1427   QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
   1428 
   1429   /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
   1430   /// object types, function types, and incomplete types.
   1431 
   1432   /// isIncompleteType - Return true if this is an incomplete type.
   1433   /// A type that can describe objects, but which lacks information needed to
   1434   /// determine its size (e.g. void, or a fwd declared struct). Clients of this
   1435   /// routine will need to determine if the size is actually required.
   1436   ///
   1437   /// \brief Def If non-NULL, and the type refers to some kind of declaration
   1438   /// that can be completed (such as a C struct, C++ class, or Objective-C
   1439   /// class), will be set to the declaration.
   1440   bool isIncompleteType(NamedDecl **Def = nullptr) const;
   1441 
   1442   /// isIncompleteOrObjectType - Return true if this is an incomplete or object
   1443   /// type, in other words, not a function type.
   1444   bool isIncompleteOrObjectType() const {
   1445     return !isFunctionType();
   1446   }
   1447 
   1448   /// \brief Determine whether this type is an object type.
   1449   bool isObjectType() const {
   1450     // C++ [basic.types]p8:
   1451     //   An object type is a (possibly cv-qualified) type that is not a
   1452     //   function type, not a reference type, and not a void type.
   1453     return !isReferenceType() && !isFunctionType() && !isVoidType();
   1454   }
   1455 
   1456   /// isLiteralType - Return true if this is a literal type
   1457   /// (C++11 [basic.types]p10)
   1458   bool isLiteralType(const ASTContext &Ctx) const;
   1459 
   1460   /// \brief Test if this type is a standard-layout type.
   1461   /// (C++0x [basic.type]p9)
   1462   bool isStandardLayoutType() const;
   1463 
   1464   /// Helper methods to distinguish type categories. All type predicates
   1465   /// operate on the canonical type, ignoring typedefs and qualifiers.
   1466 
   1467   /// isBuiltinType - returns true if the type is a builtin type.
   1468   bool isBuiltinType() const;
   1469 
   1470   /// isSpecificBuiltinType - Test for a particular builtin type.
   1471   bool isSpecificBuiltinType(unsigned K) const;
   1472 
   1473   /// isPlaceholderType - Test for a type which does not represent an
   1474   /// actual type-system type but is instead used as a placeholder for
   1475   /// various convenient purposes within Clang.  All such types are
   1476   /// BuiltinTypes.
   1477   bool isPlaceholderType() const;
   1478   const BuiltinType *getAsPlaceholderType() const;
   1479 
   1480   /// isSpecificPlaceholderType - Test for a specific placeholder type.
   1481   bool isSpecificPlaceholderType(unsigned K) const;
   1482 
   1483   /// isNonOverloadPlaceholderType - Test for a placeholder type
   1484   /// other than Overload;  see BuiltinType::isNonOverloadPlaceholderType.
   1485   bool isNonOverloadPlaceholderType() const;
   1486 
   1487   /// isIntegerType() does *not* include complex integers (a GCC extension).
   1488   /// isComplexIntegerType() can be used to test for complex integers.
   1489   bool isIntegerType() const;     // C99 6.2.5p17 (int, char, bool, enum)
   1490   bool isEnumeralType() const;
   1491   bool isBooleanType() const;
   1492   bool isCharType() const;
   1493   bool isWideCharType() const;
   1494   bool isChar16Type() const;
   1495   bool isChar32Type() const;
   1496   bool isAnyCharacterType() const;
   1497   bool isIntegralType(ASTContext &Ctx) const;
   1498 
   1499   /// \brief Determine whether this type is an integral or enumeration type.
   1500   bool isIntegralOrEnumerationType() const;
   1501   /// \brief Determine whether this type is an integral or unscoped enumeration
   1502   /// type.
   1503   bool isIntegralOrUnscopedEnumerationType() const;
   1504 
   1505   /// Floating point categories.
   1506   bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
   1507   /// isComplexType() does *not* include complex integers (a GCC extension).
   1508   /// isComplexIntegerType() can be used to test for complex integers.
   1509   bool isComplexType() const;      // C99 6.2.5p11 (complex)
   1510   bool isAnyComplexType() const;   // C99 6.2.5p11 (complex) + Complex Int.
   1511   bool isFloatingType() const;     // C99 6.2.5p11 (real floating + complex)
   1512   bool isHalfType() const;         // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
   1513   bool isRealType() const;         // C99 6.2.5p17 (real floating + integer)
   1514   bool isArithmeticType() const;   // C99 6.2.5p18 (integer + floating)
   1515   bool isVoidType() const;         // C99 6.2.5p19
   1516   bool isScalarType() const;       // C99 6.2.5p21 (arithmetic + pointers)
   1517   bool isAggregateType() const;
   1518   bool isFundamentalType() const;
   1519   bool isCompoundType() const;
   1520 
   1521   // Type Predicates: Check to see if this type is structurally the specified
   1522   // type, ignoring typedefs and qualifiers.
   1523   bool isFunctionType() const;
   1524   bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
   1525   bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
   1526   bool isPointerType() const;
   1527   bool isAnyPointerType() const;   // Any C pointer or ObjC object pointer
   1528   bool isBlockPointerType() const;
   1529   bool isVoidPointerType() const;
   1530   bool isReferenceType() const;
   1531   bool isLValueReferenceType() const;
   1532   bool isRValueReferenceType() const;
   1533   bool isFunctionPointerType() const;
   1534   bool isMemberPointerType() const;
   1535   bool isMemberFunctionPointerType() const;
   1536   bool isMemberDataPointerType() const;
   1537   bool isArrayType() const;
   1538   bool isConstantArrayType() const;
   1539   bool isIncompleteArrayType() const;
   1540   bool isVariableArrayType() const;
   1541   bool isDependentSizedArrayType() const;
   1542   bool isRecordType() const;
   1543   bool isClassType() const;
   1544   bool isStructureType() const;
   1545   bool isInterfaceType() const;
   1546   bool isStructureOrClassType() const;
   1547   bool isUnionType() const;
   1548   bool isComplexIntegerType() const;            // GCC _Complex integer type.
   1549   bool isVectorType() const;                    // GCC vector type.
   1550   bool isExtVectorType() const;                 // Extended vector type.
   1551   bool isObjCObjectPointerType() const;         // pointer to ObjC object
   1552   bool isObjCRetainableType() const;            // ObjC object or block pointer
   1553   bool isObjCLifetimeType() const;              // (array of)* retainable type
   1554   bool isObjCIndirectLifetimeType() const;      // (pointer to)* lifetime type
   1555   bool isObjCNSObjectType() const;              // __attribute__((NSObject))
   1556   // FIXME: change this to 'raw' interface type, so we can used 'interface' type
   1557   // for the common case.
   1558   bool isObjCObjectType() const;                // NSString or typeof(*(id)0)
   1559   bool isObjCQualifiedInterfaceType() const;    // NSString<foo>
   1560   bool isObjCQualifiedIdType() const;           // id<foo>
   1561   bool isObjCQualifiedClassType() const;        // Class<foo>
   1562   bool isObjCObjectOrInterfaceType() const;
   1563   bool isObjCIdType() const;                    // id
   1564   bool isObjCClassType() const;                 // Class
   1565   bool isObjCSelType() const;                 // Class
   1566   bool isObjCBuiltinType() const;               // 'id' or 'Class'
   1567   bool isObjCARCBridgableType() const;
   1568   bool isCARCBridgableType() const;
   1569   bool isTemplateTypeParmType() const;          // C++ template type parameter
   1570   bool isNullPtrType() const;                   // C++0x nullptr_t
   1571   bool isAtomicType() const;                    // C11 _Atomic()
   1572 
   1573   bool isImage1dT() const;                      // OpenCL image1d_t
   1574   bool isImage1dArrayT() const;                 // OpenCL image1d_array_t
   1575   bool isImage1dBufferT() const;                // OpenCL image1d_buffer_t
   1576   bool isImage2dT() const;                      // OpenCL image2d_t
   1577   bool isImage2dArrayT() const;                 // OpenCL image2d_array_t
   1578   bool isImage3dT() const;                      // OpenCL image3d_t
   1579 
   1580   bool isImageType() const;                     // Any OpenCL image type
   1581 
   1582   bool isSamplerT() const;                      // OpenCL sampler_t
   1583   bool isEventT() const;                        // OpenCL event_t
   1584 
   1585   bool isOpenCLSpecificType() const;            // Any OpenCL specific type
   1586 
   1587   /// Determines if this type, which must satisfy
   1588   /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
   1589   /// than implicitly __strong.
   1590   bool isObjCARCImplicitlyUnretainedType() const;
   1591 
   1592   /// Return the implicit lifetime for this type, which must not be dependent.
   1593   Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
   1594 
   1595   enum ScalarTypeKind {
   1596     STK_CPointer,
   1597     STK_BlockPointer,
   1598     STK_ObjCObjectPointer,
   1599     STK_MemberPointer,
   1600     STK_Bool,
   1601     STK_Integral,
   1602     STK_Floating,
   1603     STK_IntegralComplex,
   1604     STK_FloatingComplex
   1605   };
   1606   /// getScalarTypeKind - Given that this is a scalar type, classify it.
   1607   ScalarTypeKind getScalarTypeKind() const;
   1608 
   1609   /// isDependentType - Whether this type is a dependent type, meaning
   1610   /// that its definition somehow depends on a template parameter
   1611   /// (C++ [temp.dep.type]).
   1612   bool isDependentType() const { return TypeBits.Dependent; }
   1613 
   1614   /// \brief Determine whether this type is an instantiation-dependent type,
   1615   /// meaning that the type involves a template parameter (even if the
   1616   /// definition does not actually depend on the type substituted for that
   1617   /// template parameter).
   1618   bool isInstantiationDependentType() const {
   1619     return TypeBits.InstantiationDependent;
   1620   }
   1621 
   1622   /// \brief Determine whether this type is an undeduced type, meaning that
   1623   /// it somehow involves a C++11 'auto' type which has not yet been deduced.
   1624   bool isUndeducedType() const;
   1625 
   1626   /// \brief Whether this type is a variably-modified type (C99 6.7.5).
   1627   bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
   1628 
   1629   /// \brief Whether this type involves a variable-length array type
   1630   /// with a definite size.
   1631   bool hasSizedVLAType() const;
   1632 
   1633   /// \brief Whether this type is or contains a local or unnamed type.
   1634   bool hasUnnamedOrLocalType() const;
   1635 
   1636   bool isOverloadableType() const;
   1637 
   1638   /// \brief Determine wither this type is a C++ elaborated-type-specifier.
   1639   bool isElaboratedTypeSpecifier() const;
   1640 
   1641   bool canDecayToPointerType() const;
   1642 
   1643   /// hasPointerRepresentation - Whether this type is represented
   1644   /// natively as a pointer; this includes pointers, references, block
   1645   /// pointers, and Objective-C interface, qualified id, and qualified
   1646   /// interface types, as well as nullptr_t.
   1647   bool hasPointerRepresentation() const;
   1648 
   1649   /// hasObjCPointerRepresentation - Whether this type can represent
   1650   /// an objective pointer type for the purpose of GC'ability
   1651   bool hasObjCPointerRepresentation() const;
   1652 
   1653   /// \brief Determine whether this type has an integer representation
   1654   /// of some sort, e.g., it is an integer type or a vector.
   1655   bool hasIntegerRepresentation() const;
   1656 
   1657   /// \brief Determine whether this type has an signed integer representation
   1658   /// of some sort, e.g., it is an signed integer type or a vector.
   1659   bool hasSignedIntegerRepresentation() const;
   1660 
   1661   /// \brief Determine whether this type has an unsigned integer representation
   1662   /// of some sort, e.g., it is an unsigned integer type or a vector.
   1663   bool hasUnsignedIntegerRepresentation() const;
   1664 
   1665   /// \brief Determine whether this type has a floating-point representation
   1666   /// of some sort, e.g., it is a floating-point type or a vector thereof.
   1667   bool hasFloatingRepresentation() const;
   1668 
   1669   // Type Checking Functions: Check to see if this type is structurally the
   1670   // specified type, ignoring typedefs and qualifiers, and return a pointer to
   1671   // the best type we can.
   1672   const RecordType *getAsStructureType() const;
   1673   /// NOTE: getAs*ArrayType are methods on ASTContext.
   1674   const RecordType *getAsUnionType() const;
   1675   const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
   1676   // The following is a convenience method that returns an ObjCObjectPointerType
   1677   // for object declared using an interface.
   1678   const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
   1679   const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
   1680   const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
   1681   const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
   1682 
   1683   /// \brief Retrieves the CXXRecordDecl that this type refers to, either
   1684   /// because the type is a RecordType or because it is the injected-class-name
   1685   /// type of a class template or class template partial specialization.
   1686   CXXRecordDecl *getAsCXXRecordDecl() const;
   1687 
   1688   /// If this is a pointer or reference to a RecordType, return the
   1689   /// CXXRecordDecl that that type refers to.
   1690   ///
   1691   /// If this is not a pointer or reference, or the type being pointed to does
   1692   /// not refer to a CXXRecordDecl, returns NULL.
   1693   const CXXRecordDecl *getPointeeCXXRecordDecl() const;
   1694 
   1695   /// \brief Get the AutoType whose type will be deduced for a variable with
   1696   /// an initializer of this type. This looks through declarators like pointer
   1697   /// types, but not through decltype or typedefs.
   1698   AutoType *getContainedAutoType() const;
   1699 
   1700   /// Member-template getAs<specific type>'.  Look through sugar for
   1701   /// an instance of \<specific type>.   This scheme will eventually
   1702   /// replace the specific getAsXXXX methods above.
   1703   ///
   1704   /// There are some specializations of this member template listed
   1705   /// immediately following this class.
   1706   template <typename T> const T *getAs() const;
   1707 
   1708   /// A variant of getAs<> for array types which silently discards
   1709   /// qualifiers from the outermost type.
   1710   const ArrayType *getAsArrayTypeUnsafe() const;
   1711 
   1712   /// Member-template castAs<specific type>.  Look through sugar for
   1713   /// the underlying instance of \<specific type>.
   1714   ///
   1715   /// This method has the same relationship to getAs<T> as cast<T> has
   1716   /// to dyn_cast<T>; which is to say, the underlying type *must*
   1717   /// have the intended type, and this method will never return null.
   1718   template <typename T> const T *castAs() const;
   1719 
   1720   /// A variant of castAs<> for array type which silently discards
   1721   /// qualifiers from the outermost type.
   1722   const ArrayType *castAsArrayTypeUnsafe() const;
   1723 
   1724   /// getBaseElementTypeUnsafe - Get the base element type of this
   1725   /// type, potentially discarding type qualifiers.  This method
   1726   /// should never be used when type qualifiers are meaningful.
   1727   const Type *getBaseElementTypeUnsafe() const;
   1728 
   1729   /// getArrayElementTypeNoTypeQual - If this is an array type, return the
   1730   /// element type of the array, potentially with type qualifiers missing.
   1731   /// This method should never be used when type qualifiers are meaningful.
   1732   const Type *getArrayElementTypeNoTypeQual() const;
   1733 
   1734   /// getPointeeType - If this is a pointer, ObjC object pointer, or block
   1735   /// pointer, this returns the respective pointee.
   1736   QualType getPointeeType() const;
   1737 
   1738   /// getUnqualifiedDesugaredType() - Return the specified type with
   1739   /// any "sugar" removed from the type, removing any typedefs,
   1740   /// typeofs, etc., as well as any qualifiers.
   1741   const Type *getUnqualifiedDesugaredType() const;
   1742 
   1743   /// More type predicates useful for type checking/promotion
   1744   bool isPromotableIntegerType() const; // C99 6.3.1.1p2
   1745 
   1746   /// isSignedIntegerType - Return true if this is an integer type that is
   1747   /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1748   /// or an enum decl which has a signed representation.
   1749   bool isSignedIntegerType() const;
   1750 
   1751   /// isUnsignedIntegerType - Return true if this is an integer type that is
   1752   /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
   1753   /// or an enum decl which has an unsigned representation.
   1754   bool isUnsignedIntegerType() const;
   1755 
   1756   /// Determines whether this is an integer type that is signed or an
   1757   /// enumeration types whose underlying type is a signed integer type.
   1758   bool isSignedIntegerOrEnumerationType() const;
   1759 
   1760   /// Determines whether this is an integer type that is unsigned or an
   1761   /// enumeration types whose underlying type is a unsigned integer type.
   1762   bool isUnsignedIntegerOrEnumerationType() const;
   1763 
   1764   /// isConstantSizeType - Return true if this is not a variable sized type,
   1765   /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1766   /// incomplete types.
   1767   bool isConstantSizeType() const;
   1768 
   1769   /// isSpecifierType - Returns true if this type can be represented by some
   1770   /// set of type specifiers.
   1771   bool isSpecifierType() const;
   1772 
   1773   /// \brief Determine the linkage of this type.
   1774   Linkage getLinkage() const;
   1775 
   1776   /// \brief Determine the visibility of this type.
   1777   Visibility getVisibility() const {
   1778     return getLinkageAndVisibility().getVisibility();
   1779   }
   1780 
   1781   /// \brief Return true if the visibility was explicitly set is the code.
   1782   bool isVisibilityExplicit() const {
   1783     return getLinkageAndVisibility().isVisibilityExplicit();
   1784   }
   1785 
   1786   /// \brief Determine the linkage and visibility of this type.
   1787   LinkageInfo getLinkageAndVisibility() const;
   1788 
   1789   /// \brief True if the computed linkage is valid. Used for consistency
   1790   /// checking. Should always return true.
   1791   bool isLinkageValid() const;
   1792 
   1793   const char *getTypeClassName() const;
   1794 
   1795   QualType getCanonicalTypeInternal() const {
   1796     return CanonicalType;
   1797   }
   1798   CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
   1799   void dump() const;
   1800 
   1801   friend class ASTReader;
   1802   friend class ASTWriter;
   1803 };
   1804 
   1805 /// \brief This will check for a TypedefType by removing any existing sugar
   1806 /// until it reaches a TypedefType or a non-sugared type.
   1807 template <> const TypedefType *Type::getAs() const;
   1808 
   1809 /// \brief This will check for a TemplateSpecializationType by removing any
   1810 /// existing sugar until it reaches a TemplateSpecializationType or a
   1811 /// non-sugared type.
   1812 template <> const TemplateSpecializationType *Type::getAs() const;
   1813 
   1814 /// \brief This will check for an AttributedType by removing any existing sugar
   1815 /// until it reaches an AttributedType or a non-sugared type.
   1816 template <> const AttributedType *Type::getAs() const;
   1817 
   1818 // We can do canonical leaf types faster, because we don't have to
   1819 // worry about preserving child type decoration.
   1820 #define TYPE(Class, Base)
   1821 #define LEAF_TYPE(Class) \
   1822 template <> inline const Class##Type *Type::getAs() const { \
   1823   return dyn_cast<Class##Type>(CanonicalType); \
   1824 } \
   1825 template <> inline const Class##Type *Type::castAs() const { \
   1826   return cast<Class##Type>(CanonicalType); \
   1827 }
   1828 #include "clang/AST/TypeNodes.def"
   1829 
   1830 
   1831 /// BuiltinType - This class is used for builtin types like 'int'.  Builtin
   1832 /// types are always canonical and have a literal name field.
   1833 class BuiltinType : public Type {
   1834 public:
   1835   enum Kind {
   1836 #define BUILTIN_TYPE(Id, SingletonId) Id,
   1837 #define LAST_BUILTIN_TYPE(Id) LastKind = Id
   1838 #include "clang/AST/BuiltinTypes.def"
   1839   };
   1840 
   1841 public:
   1842   BuiltinType(Kind K)
   1843     : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
   1844            /*InstantiationDependent=*/(K == Dependent),
   1845            /*VariablyModified=*/false,
   1846            /*Unexpanded paramter pack=*/false) {
   1847     BuiltinTypeBits.Kind = K;
   1848   }
   1849 
   1850   Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
   1851   StringRef getName(const PrintingPolicy &Policy) const;
   1852   const char *getNameAsCString(const PrintingPolicy &Policy) const {
   1853     // The StringRef is null-terminated.
   1854     StringRef str = getName(Policy);
   1855     assert(!str.empty() && str.data()[str.size()] == '\0');
   1856     return str.data();
   1857   }
   1858 
   1859   bool isSugared() const { return false; }
   1860   QualType desugar() const { return QualType(this, 0); }
   1861 
   1862   bool isInteger() const {
   1863     return getKind() >= Bool && getKind() <= Int128;
   1864   }
   1865 
   1866   bool isSignedInteger() const {
   1867     return getKind() >= Char_S && getKind() <= Int128;
   1868   }
   1869 
   1870   bool isUnsignedInteger() const {
   1871     return getKind() >= Bool && getKind() <= UInt128;
   1872   }
   1873 
   1874   bool isFloatingPoint() const {
   1875     return getKind() >= Half && getKind() <= LongDouble;
   1876   }
   1877 
   1878   /// Determines whether the given kind corresponds to a placeholder type.
   1879   static bool isPlaceholderTypeKind(Kind K) {
   1880     return K >= Overload;
   1881   }
   1882 
   1883   /// Determines whether this type is a placeholder type, i.e. a type
   1884   /// which cannot appear in arbitrary positions in a fully-formed
   1885   /// expression.
   1886   bool isPlaceholderType() const {
   1887     return isPlaceholderTypeKind(getKind());
   1888   }
   1889 
   1890   /// Determines whether this type is a placeholder type other than
   1891   /// Overload.  Most placeholder types require only syntactic
   1892   /// information about their context in order to be resolved (e.g.
   1893   /// whether it is a call expression), which means they can (and
   1894   /// should) be resolved in an earlier "phase" of analysis.
   1895   /// Overload expressions sometimes pick up further information
   1896   /// from their context, like whether the context expects a
   1897   /// specific function-pointer type, and so frequently need
   1898   /// special treatment.
   1899   bool isNonOverloadPlaceholderType() const {
   1900     return getKind() > Overload;
   1901   }
   1902 
   1903   static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
   1904 };
   1905 
   1906 /// ComplexType - C99 6.2.5p11 - Complex values.  This supports the C99 complex
   1907 /// types (_Complex float etc) as well as the GCC integer complex extensions.
   1908 ///
   1909 class ComplexType : public Type, public llvm::FoldingSetNode {
   1910   QualType ElementType;
   1911   ComplexType(QualType Element, QualType CanonicalPtr) :
   1912     Type(Complex, CanonicalPtr, Element->isDependentType(),
   1913          Element->isInstantiationDependentType(),
   1914          Element->isVariablyModifiedType(),
   1915          Element->containsUnexpandedParameterPack()),
   1916     ElementType(Element) {
   1917   }
   1918   friend class ASTContext;  // ASTContext creates these.
   1919 
   1920 public:
   1921   QualType getElementType() const { return ElementType; }
   1922 
   1923   bool isSugared() const { return false; }
   1924   QualType desugar() const { return QualType(this, 0); }
   1925 
   1926   void Profile(llvm::FoldingSetNodeID &ID) {
   1927     Profile(ID, getElementType());
   1928   }
   1929   static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
   1930     ID.AddPointer(Element.getAsOpaquePtr());
   1931   }
   1932 
   1933   static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
   1934 };
   1935 
   1936 /// ParenType - Sugar for parentheses used when specifying types.
   1937 ///
   1938 class ParenType : public Type, public llvm::FoldingSetNode {
   1939   QualType Inner;
   1940 
   1941   ParenType(QualType InnerType, QualType CanonType) :
   1942     Type(Paren, CanonType, InnerType->isDependentType(),
   1943          InnerType->isInstantiationDependentType(),
   1944          InnerType->isVariablyModifiedType(),
   1945          InnerType->containsUnexpandedParameterPack()),
   1946     Inner(InnerType) {
   1947   }
   1948   friend class ASTContext;  // ASTContext creates these.
   1949 
   1950 public:
   1951 
   1952   QualType getInnerType() const { return Inner; }
   1953 
   1954   bool isSugared() const { return true; }
   1955   QualType desugar() const { return getInnerType(); }
   1956 
   1957   void Profile(llvm::FoldingSetNodeID &ID) {
   1958     Profile(ID, getInnerType());
   1959   }
   1960   static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
   1961     Inner.Profile(ID);
   1962   }
   1963 
   1964   static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
   1965 };
   1966 
   1967 /// PointerType - C99 6.7.5.1 - Pointer Declarators.
   1968 ///
   1969 class PointerType : public Type, public llvm::FoldingSetNode {
   1970   QualType PointeeType;
   1971 
   1972   PointerType(QualType Pointee, QualType CanonicalPtr) :
   1973     Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
   1974          Pointee->isInstantiationDependentType(),
   1975          Pointee->isVariablyModifiedType(),
   1976          Pointee->containsUnexpandedParameterPack()),
   1977     PointeeType(Pointee) {
   1978   }
   1979   friend class ASTContext;  // ASTContext creates these.
   1980 
   1981 public:
   1982 
   1983   QualType getPointeeType() const { return PointeeType; }
   1984 
   1985   bool isSugared() const { return false; }
   1986   QualType desugar() const { return QualType(this, 0); }
   1987 
   1988   void Profile(llvm::FoldingSetNodeID &ID) {
   1989     Profile(ID, getPointeeType());
   1990   }
   1991   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   1992     ID.AddPointer(Pointee.getAsOpaquePtr());
   1993   }
   1994 
   1995   static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
   1996 };
   1997 
   1998 /// \brief Represents a type which was implicitly adjusted by the semantic
   1999 /// engine for arbitrary reasons.  For example, array and function types can
   2000 /// decay, and function types can have their calling conventions adjusted.
   2001 class AdjustedType : public Type, public llvm::FoldingSetNode {
   2002   QualType OriginalTy;
   2003   QualType AdjustedTy;
   2004 
   2005 protected:
   2006   AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
   2007                QualType CanonicalPtr)
   2008       : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
   2009              OriginalTy->isInstantiationDependentType(),
   2010              OriginalTy->isVariablyModifiedType(),
   2011              OriginalTy->containsUnexpandedParameterPack()),
   2012         OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
   2013 
   2014   friend class ASTContext;  // ASTContext creates these.
   2015 
   2016 public:
   2017   QualType getOriginalType() const { return OriginalTy; }
   2018   QualType getAdjustedType() const { return AdjustedTy; }
   2019 
   2020   bool isSugared() const { return true; }
   2021   QualType desugar() const { return AdjustedTy; }
   2022 
   2023   void Profile(llvm::FoldingSetNodeID &ID) {
   2024     Profile(ID, OriginalTy, AdjustedTy);
   2025   }
   2026   static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
   2027     ID.AddPointer(Orig.getAsOpaquePtr());
   2028     ID.AddPointer(New.getAsOpaquePtr());
   2029   }
   2030 
   2031   static bool classof(const Type *T) {
   2032     return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
   2033   }
   2034 };
   2035 
   2036 /// \brief Represents a pointer type decayed from an array or function type.
   2037 class DecayedType : public AdjustedType {
   2038 
   2039   DecayedType(QualType OriginalType, QualType DecayedPtr, QualType CanonicalPtr)
   2040       : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
   2041     assert(isa<PointerType>(getAdjustedType()));
   2042   }
   2043 
   2044   friend class ASTContext;  // ASTContext creates these.
   2045 
   2046 public:
   2047   QualType getDecayedType() const { return getAdjustedType(); }
   2048 
   2049   QualType getPointeeType() const {
   2050     return cast<PointerType>(getDecayedType())->getPointeeType();
   2051   }
   2052 
   2053   static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
   2054 };
   2055 
   2056 /// BlockPointerType - pointer to a block type.
   2057 /// This type is to represent types syntactically represented as
   2058 /// "void (^)(int)", etc. Pointee is required to always be a function type.
   2059 ///
   2060 class BlockPointerType : public Type, public llvm::FoldingSetNode {
   2061   QualType PointeeType;  // Block is some kind of pointer type
   2062   BlockPointerType(QualType Pointee, QualType CanonicalCls) :
   2063     Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
   2064          Pointee->isInstantiationDependentType(),
   2065          Pointee->isVariablyModifiedType(),
   2066          Pointee->containsUnexpandedParameterPack()),
   2067     PointeeType(Pointee) {
   2068   }
   2069   friend class ASTContext;  // ASTContext creates these.
   2070 
   2071 public:
   2072 
   2073   // Get the pointee type. Pointee is required to always be a function type.
   2074   QualType getPointeeType() const { return PointeeType; }
   2075 
   2076   bool isSugared() const { return false; }
   2077   QualType desugar() const { return QualType(this, 0); }
   2078 
   2079   void Profile(llvm::FoldingSetNodeID &ID) {
   2080       Profile(ID, getPointeeType());
   2081   }
   2082   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
   2083       ID.AddPointer(Pointee.getAsOpaquePtr());
   2084   }
   2085 
   2086   static bool classof(const Type *T) {
   2087     return T->getTypeClass() == BlockPointer;
   2088   }
   2089 };
   2090 
   2091 /// ReferenceType - Base for LValueReferenceType and RValueReferenceType
   2092 ///
   2093 class ReferenceType : public Type, public llvm::FoldingSetNode {
   2094   QualType PointeeType;
   2095 
   2096 protected:
   2097   ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
   2098                 bool SpelledAsLValue) :
   2099     Type(tc, CanonicalRef, Referencee->isDependentType(),
   2100          Referencee->isInstantiationDependentType(),
   2101          Referencee->isVariablyModifiedType(),
   2102          Referencee->containsUnexpandedParameterPack()),
   2103     PointeeType(Referencee)
   2104   {
   2105     ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
   2106     ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
   2107   }
   2108 
   2109 public:
   2110   bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
   2111   bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
   2112 
   2113   QualType getPointeeTypeAsWritten() const { return PointeeType; }
   2114   QualType getPointeeType() const {
   2115     // FIXME: this might strip inner qualifiers; okay?
   2116     const ReferenceType *T = this;
   2117     while (T->isInnerRef())
   2118       T = T->PointeeType->castAs<ReferenceType>();
   2119     return T->PointeeType;
   2120   }
   2121 
   2122   void Profile(llvm::FoldingSetNodeID &ID) {
   2123     Profile(ID, PointeeType, isSpelledAsLValue());
   2124   }
   2125   static void Profile(llvm::FoldingSetNodeID &ID,
   2126                       QualType Referencee,
   2127                       bool SpelledAsLValue) {
   2128     ID.AddPointer(Referencee.getAsOpaquePtr());
   2129     ID.AddBoolean(SpelledAsLValue);
   2130   }
   2131 
   2132   static bool classof(const Type *T) {
   2133     return T->getTypeClass() == LValueReference ||
   2134            T->getTypeClass() == RValueReference;
   2135   }
   2136 };
   2137 
   2138 /// LValueReferenceType - C++ [dcl.ref] - Lvalue reference
   2139 ///
   2140 class LValueReferenceType : public ReferenceType {
   2141   LValueReferenceType(QualType Referencee, QualType CanonicalRef,
   2142                       bool SpelledAsLValue) :
   2143     ReferenceType(LValueReference, Referencee, CanonicalRef, SpelledAsLValue)
   2144   {}
   2145   friend class ASTContext; // ASTContext creates these
   2146 public:
   2147   bool isSugared() const { return false; }
   2148   QualType desugar() const { return QualType(this, 0); }
   2149 
   2150   static bool classof(const Type *T) {
   2151     return T->getTypeClass() == LValueReference;
   2152   }
   2153 };
   2154 
   2155 /// RValueReferenceType - C++0x [dcl.ref] - Rvalue reference
   2156 ///
   2157 class RValueReferenceType : public ReferenceType {
   2158   RValueReferenceType(QualType Referencee, QualType CanonicalRef) :
   2159     ReferenceType(RValueReference, Referencee, CanonicalRef, false) {
   2160   }
   2161   friend class ASTContext; // ASTContext creates these
   2162 public:
   2163   bool isSugared() const { return false; }
   2164   QualType desugar() const { return QualType(this, 0); }
   2165 
   2166   static bool classof(const Type *T) {
   2167     return T->getTypeClass() == RValueReference;
   2168   }
   2169 };
   2170 
   2171 /// MemberPointerType - C++ 8.3.3 - Pointers to members
   2172 ///
   2173 class MemberPointerType : public Type, public llvm::FoldingSetNode {
   2174   QualType PointeeType;
   2175   /// The class of which the pointee is a member. Must ultimately be a
   2176   /// RecordType, but could be a typedef or a template parameter too.
   2177   const Type *Class;
   2178 
   2179   MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr) :
   2180     Type(MemberPointer, CanonicalPtr,
   2181          Cls->isDependentType() || Pointee->isDependentType(),
   2182          (Cls->isInstantiationDependentType() ||
   2183           Pointee->isInstantiationDependentType()),
   2184          Pointee->isVariablyModifiedType(),
   2185          (Cls->containsUnexpandedParameterPack() ||
   2186           Pointee->containsUnexpandedParameterPack())),
   2187     PointeeType(Pointee), Class(Cls) {
   2188   }
   2189   friend class ASTContext; // ASTContext creates these.
   2190 
   2191 public:
   2192   QualType getPointeeType() const { return PointeeType; }
   2193 
   2194   /// Returns true if the member type (i.e. the pointee type) is a
   2195   /// function type rather than a data-member type.
   2196   bool isMemberFunctionPointer() const {
   2197     return PointeeType->isFunctionProtoType();
   2198   }
   2199 
   2200   /// Returns true if the member type (i.e. the pointee type) is a
   2201   /// data type rather than a function type.
   2202   bool isMemberDataPointer() const {
   2203     return !PointeeType->isFunctionProtoType();
   2204   }
   2205 
   2206   const Type *getClass() const { return Class; }
   2207   CXXRecordDecl *getMostRecentCXXRecordDecl() const;
   2208 
   2209   bool isSugared() const { return false; }
   2210   QualType desugar() const { return QualType(this, 0); }
   2211 
   2212   void Profile(llvm::FoldingSetNodeID &ID) {
   2213     Profile(ID, getPointeeType(), getClass());
   2214   }
   2215   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
   2216                       const Type *Class) {
   2217     ID.AddPointer(Pointee.getAsOpaquePtr());
   2218     ID.AddPointer(Class);
   2219   }
   2220 
   2221   static bool classof(const Type *T) {
   2222     return T->getTypeClass() == MemberPointer;
   2223   }
   2224 };
   2225 
   2226 /// ArrayType - C99 6.7.5.2 - Array Declarators.
   2227 ///
   2228 class ArrayType : public Type, public llvm::FoldingSetNode {
   2229 public:
   2230   /// ArraySizeModifier - Capture whether this is a normal array (e.g. int X[4])
   2231   /// an array with a static size (e.g. int X[static 4]), or an array
   2232   /// with a star size (e.g. int X[*]).
   2233   /// 'static' is only allowed on function parameters.
   2234   enum ArraySizeModifier {
   2235     Normal, Static, Star
   2236   };
   2237 private:
   2238   /// ElementType - The element type of the array.
   2239   QualType ElementType;
   2240 
   2241 protected:
   2242   // C++ [temp.dep.type]p1:
   2243   //   A type is dependent if it is...
   2244   //     - an array type constructed from any dependent type or whose
   2245   //       size is specified by a constant expression that is
   2246   //       value-dependent,
   2247   ArrayType(TypeClass tc, QualType et, QualType can,
   2248             ArraySizeModifier sm, unsigned tq,
   2249             bool ContainsUnexpandedParameterPack)
   2250     : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
   2251            et->isInstantiationDependentType() || tc == DependentSizedArray,
   2252            (tc == VariableArray || et->isVariablyModifiedType()),
   2253            ContainsUnexpandedParameterPack),
   2254       ElementType(et) {
   2255     ArrayTypeBits.IndexTypeQuals = tq;
   2256     ArrayTypeBits.SizeModifier = sm;
   2257   }
   2258 
   2259   friend class ASTContext;  // ASTContext creates these.
   2260 
   2261 public:
   2262   QualType getElementType() const { return ElementType; }
   2263   ArraySizeModifier getSizeModifier() const {
   2264     return ArraySizeModifier(ArrayTypeBits.SizeModifier);
   2265   }
   2266   Qualifiers getIndexTypeQualifiers() const {
   2267     return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
   2268   }
   2269   unsigned getIndexTypeCVRQualifiers() const {
   2270     return ArrayTypeBits.IndexTypeQuals;
   2271   }
   2272 
   2273   static bool classof(const Type *T) {
   2274     return T->getTypeClass() == ConstantArray ||
   2275            T->getTypeClass() == VariableArray ||
   2276            T->getTypeClass() == IncompleteArray ||
   2277            T->getTypeClass() == DependentSizedArray;
   2278   }
   2279 };
   2280 
   2281 /// ConstantArrayType - This class represents the canonical version of
   2282 /// C arrays with a specified constant size.  For example, the canonical
   2283 /// type for 'int A[4 + 4*100]' is a ConstantArrayType where the element
   2284 /// type is 'int' and the size is 404.
   2285 class ConstantArrayType : public ArrayType {
   2286   llvm::APInt Size; // Allows us to unique the type.
   2287 
   2288   ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
   2289                     ArraySizeModifier sm, unsigned tq)
   2290     : ArrayType(ConstantArray, et, can, sm, tq,
   2291                 et->containsUnexpandedParameterPack()),
   2292       Size(size) {}
   2293 protected:
   2294   ConstantArrayType(TypeClass tc, QualType et, QualType can,
   2295                     const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
   2296     : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
   2297       Size(size) {}
   2298   friend class ASTContext;  // ASTContext creates these.
   2299 public:
   2300   const llvm::APInt &getSize() const { return Size; }
   2301   bool isSugared() const { return false; }
   2302   QualType desugar() const { return QualType(this, 0); }
   2303 
   2304 
   2305   /// \brief Determine the number of bits required to address a member of
   2306   // an array with the given element type and number of elements.
   2307   static unsigned getNumAddressingBits(ASTContext &Context,
   2308                                        QualType ElementType,
   2309                                        const llvm::APInt &NumElements);
   2310 
   2311   /// \brief Determine the maximum number of active bits that an array's size
   2312   /// can require, which limits the maximum size of the array.
   2313   static unsigned getMaxSizeBits(ASTContext &Context);
   2314 
   2315   void Profile(llvm::FoldingSetNodeID &ID) {
   2316     Profile(ID, getElementType(), getSize(),
   2317             getSizeModifier(), getIndexTypeCVRQualifiers());
   2318   }
   2319   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2320                       const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
   2321                       unsigned TypeQuals) {
   2322     ID.AddPointer(ET.getAsOpaquePtr());
   2323     ID.AddInteger(ArraySize.getZExtValue());
   2324     ID.AddInteger(SizeMod);
   2325     ID.AddInteger(TypeQuals);
   2326   }
   2327   static bool classof(const Type *T) {
   2328     return T->getTypeClass() == ConstantArray;
   2329   }
   2330 };
   2331 
   2332 /// IncompleteArrayType - This class represents C arrays with an unspecified
   2333 /// size.  For example 'int A[]' has an IncompleteArrayType where the element
   2334 /// type is 'int' and the size is unspecified.
   2335 class IncompleteArrayType : public ArrayType {
   2336 
   2337   IncompleteArrayType(QualType et, QualType can,
   2338                       ArraySizeModifier sm, unsigned tq)
   2339     : ArrayType(IncompleteArray, et, can, sm, tq,
   2340                 et->containsUnexpandedParameterPack()) {}
   2341   friend class ASTContext;  // ASTContext creates these.
   2342 public:
   2343   bool isSugared() const { return false; }
   2344   QualType desugar() const { return QualType(this, 0); }
   2345 
   2346   static bool classof(const Type *T) {
   2347     return T->getTypeClass() == IncompleteArray;
   2348   }
   2349 
   2350   friend class StmtIteratorBase;
   2351 
   2352   void Profile(llvm::FoldingSetNodeID &ID) {
   2353     Profile(ID, getElementType(), getSizeModifier(),
   2354             getIndexTypeCVRQualifiers());
   2355   }
   2356 
   2357   static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
   2358                       ArraySizeModifier SizeMod, unsigned TypeQuals) {
   2359     ID.AddPointer(ET.getAsOpaquePtr());
   2360     ID.AddInteger(SizeMod);
   2361     ID.AddInteger(TypeQuals);
   2362   }
   2363 };
   2364 
   2365 /// VariableArrayType - This class represents C arrays with a specified size
   2366 /// which is not an integer-constant-expression.  For example, 'int s[x+foo()]'.
   2367 /// Since the size expression is an arbitrary expression, we store it as such.
   2368 ///
   2369 /// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
   2370 /// should not be: two lexically equivalent variable array types could mean
   2371 /// different things, for example, these variables do not have the same type
   2372 /// dynamically:
   2373 ///
   2374 /// void foo(int x) {
   2375 ///   int Y[x];
   2376 ///   ++x;
   2377 ///   int Z[x];
   2378 /// }
   2379 ///
   2380 class VariableArrayType : public ArrayType {
   2381   /// SizeExpr - An assignment expression. VLA's are only permitted within
   2382   /// a function block.
   2383   Stmt *SizeExpr;
   2384   /// Brackets - The left and right array brackets.
   2385   SourceRange Brackets;
   2386 
   2387   VariableArrayType(QualType et, QualType can, Expr *e,
   2388                     ArraySizeModifier sm, unsigned tq,
   2389                     SourceRange brackets)
   2390     : ArrayType(VariableArray, et, can, sm, tq,
   2391                 et->containsUnexpandedParameterPack()),
   2392       SizeExpr((Stmt*) e), Brackets(brackets) {}
   2393   friend class ASTContext;  // ASTContext creates these.
   2394 
   2395 public:
   2396   Expr *getSizeExpr() const {
   2397     // We use C-style casts instead of cast<> here because we do not wish
   2398     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2399     return (Expr*) SizeExpr;
   2400   }
   2401   SourceRange getBracketsRange() const { return Brackets; }
   2402   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2403   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2404 
   2405   bool isSugared() const { return false; }
   2406   QualType desugar() const { return QualType(this, 0); }
   2407 
   2408   static bool classof(const Type *T) {
   2409     return T->getTypeClass() == VariableArray;
   2410   }
   2411 
   2412   friend class StmtIteratorBase;
   2413 
   2414   void Profile(llvm::FoldingSetNodeID &ID) {
   2415     llvm_unreachable("Cannot unique VariableArrayTypes.");
   2416   }
   2417 };
   2418 
   2419 /// DependentSizedArrayType - This type represents an array type in
   2420 /// C++ whose size is a value-dependent expression. For example:
   2421 ///
   2422 /// \code
   2423 /// template<typename T, int Size>
   2424 /// class array {
   2425 ///   T data[Size];
   2426 /// };
   2427 /// \endcode
   2428 ///
   2429 /// For these types, we won't actually know what the array bound is
   2430 /// until template instantiation occurs, at which point this will
   2431 /// become either a ConstantArrayType or a VariableArrayType.
   2432 class DependentSizedArrayType : public ArrayType {
   2433   const ASTContext &Context;
   2434 
   2435   /// \brief An assignment expression that will instantiate to the
   2436   /// size of the array.
   2437   ///
   2438   /// The expression itself might be NULL, in which case the array
   2439   /// type will have its size deduced from an initializer.
   2440   Stmt *SizeExpr;
   2441 
   2442   /// Brackets - The left and right array brackets.
   2443   SourceRange Brackets;
   2444 
   2445   DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
   2446                           Expr *e, ArraySizeModifier sm, unsigned tq,
   2447                           SourceRange brackets);
   2448 
   2449   friend class ASTContext;  // ASTContext creates these.
   2450 
   2451 public:
   2452   Expr *getSizeExpr() const {
   2453     // We use C-style casts instead of cast<> here because we do not wish
   2454     // to have a dependency of Type.h on Stmt.h/Expr.h.
   2455     return (Expr*) SizeExpr;
   2456   }
   2457   SourceRange getBracketsRange() const { return Brackets; }
   2458   SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
   2459   SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
   2460 
   2461   bool isSugared() const { return false; }
   2462   QualType desugar() const { return QualType(this, 0); }
   2463 
   2464   static bool classof(const Type *T) {
   2465     return T->getTypeClass() == DependentSizedArray;
   2466   }
   2467 
   2468   friend class StmtIteratorBase;
   2469 
   2470 
   2471   void Profile(llvm::FoldingSetNodeID &ID) {
   2472     Profile(ID, Context, getElementType(),
   2473             getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
   2474   }
   2475 
   2476   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2477                       QualType ET, ArraySizeModifier SizeMod,
   2478                       unsigned TypeQuals, Expr *E);
   2479 };
   2480 
   2481 /// DependentSizedExtVectorType - This type represent an extended vector type
   2482 /// where either the type or size is dependent. For example:
   2483 /// @code
   2484 /// template<typename T, int Size>
   2485 /// class vector {
   2486 ///   typedef T __attribute__((ext_vector_type(Size))) type;
   2487 /// }
   2488 /// @endcode
   2489 class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
   2490   const ASTContext &Context;
   2491   Expr *SizeExpr;
   2492   /// ElementType - The element type of the array.
   2493   QualType ElementType;
   2494   SourceLocation loc;
   2495 
   2496   DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
   2497                               QualType can, Expr *SizeExpr, SourceLocation loc);
   2498 
   2499   friend class ASTContext;
   2500 
   2501 public:
   2502   Expr *getSizeExpr() const { return SizeExpr; }
   2503   QualType getElementType() const { return ElementType; }
   2504   SourceLocation getAttributeLoc() const { return loc; }
   2505 
   2506   bool isSugared() const { return false; }
   2507   QualType desugar() const { return QualType(this, 0); }
   2508 
   2509   static bool classof(const Type *T) {
   2510     return T->getTypeClass() == DependentSizedExtVector;
   2511   }
   2512 
   2513   void Profile(llvm::FoldingSetNodeID &ID) {
   2514     Profile(ID, Context, getElementType(), getSizeExpr());
   2515   }
   2516 
   2517   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   2518                       QualType ElementType, Expr *SizeExpr);
   2519 };
   2520 
   2521 
   2522 /// VectorType - GCC generic vector type. This type is created using
   2523 /// __attribute__((vector_size(n)), where "n" specifies the vector size in
   2524 /// bytes; or from an Altivec __vector or vector declaration.
   2525 /// Since the constructor takes the number of vector elements, the
   2526 /// client is responsible for converting the size into the number of elements.
   2527 class VectorType : public Type, public llvm::FoldingSetNode {
   2528 public:
   2529   enum VectorKind {
   2530     GenericVector,  // not a target-specific vector type
   2531     AltiVecVector,  // is AltiVec vector
   2532     AltiVecPixel,   // is AltiVec 'vector Pixel'
   2533     AltiVecBool,    // is AltiVec 'vector bool ...'
   2534     NeonVector,     // is ARM Neon vector
   2535     NeonPolyVector  // is ARM Neon polynomial vector
   2536   };
   2537 protected:
   2538   /// ElementType - The element type of the vector.
   2539   QualType ElementType;
   2540 
   2541   VectorType(QualType vecType, unsigned nElements, QualType canonType,
   2542              VectorKind vecKind);
   2543 
   2544   VectorType(TypeClass tc, QualType vecType, unsigned nElements,
   2545              QualType canonType, VectorKind vecKind);
   2546 
   2547   friend class ASTContext;  // ASTContext creates these.
   2548 
   2549 public:
   2550 
   2551   QualType getElementType() const { return ElementType; }
   2552   unsigned getNumElements() const { return VectorTypeBits.NumElements; }
   2553   static bool isVectorSizeTooLarge(unsigned NumElements) {
   2554     return NumElements > VectorTypeBitfields::MaxNumElements;
   2555   }
   2556 
   2557   bool isSugared() const { return false; }
   2558   QualType desugar() const { return QualType(this, 0); }
   2559 
   2560   VectorKind getVectorKind() const {
   2561     return VectorKind(VectorTypeBits.VecKind);
   2562   }
   2563 
   2564   void Profile(llvm::FoldingSetNodeID &ID) {
   2565     Profile(ID, getElementType(), getNumElements(),
   2566             getTypeClass(), getVectorKind());
   2567   }
   2568   static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
   2569                       unsigned NumElements, TypeClass TypeClass,
   2570                       VectorKind VecKind) {
   2571     ID.AddPointer(ElementType.getAsOpaquePtr());
   2572     ID.AddInteger(NumElements);
   2573     ID.AddInteger(TypeClass);
   2574     ID.AddInteger(VecKind);
   2575   }
   2576 
   2577   static bool classof(const Type *T) {
   2578     return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
   2579   }
   2580 };
   2581 
   2582 /// ExtVectorType - Extended vector type. This type is created using
   2583 /// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
   2584 /// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
   2585 /// class enables syntactic extensions, like Vector Components for accessing
   2586 /// points, colors, and textures (modeled after OpenGL Shading Language).
   2587 class ExtVectorType : public VectorType {
   2588   ExtVectorType(QualType vecType, unsigned nElements, QualType canonType) :
   2589     VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
   2590   friend class ASTContext;  // ASTContext creates these.
   2591 public:
   2592   static int getPointAccessorIdx(char c) {
   2593     switch (c) {
   2594     default: return -1;
   2595     case 'x': case 'r': return 0;
   2596     case 'y': case 'g': return 1;
   2597     case 'z': case 'b': return 2;
   2598     case 'w': case 'a': return 3;
   2599     }
   2600   }
   2601   static int getNumericAccessorIdx(char c) {
   2602     switch (c) {
   2603       default: return -1;
   2604       case '0': return 0;
   2605       case '1': return 1;
   2606       case '2': return 2;
   2607       case '3': return 3;
   2608       case '4': return 4;
   2609       case '5': return 5;
   2610       case '6': return 6;
   2611       case '7': return 7;
   2612       case '8': return 8;
   2613       case '9': return 9;
   2614       case 'A':
   2615       case 'a': return 10;
   2616       case 'B':
   2617       case 'b': return 11;
   2618       case 'C':
   2619       case 'c': return 12;
   2620       case 'D':
   2621       case 'd': return 13;
   2622       case 'E':
   2623       case 'e': return 14;
   2624       case 'F':
   2625       case 'f': return 15;
   2626     }
   2627   }
   2628 
   2629   static int getAccessorIdx(char c) {
   2630     if (int idx = getPointAccessorIdx(c)+1) return idx-1;
   2631     return getNumericAccessorIdx(c);
   2632   }
   2633 
   2634   bool isAccessorWithinNumElements(char c) const {
   2635     if (int idx = getAccessorIdx(c)+1)
   2636       return unsigned(idx-1) < getNumElements();
   2637     return false;
   2638   }
   2639   bool isSugared() const { return false; }
   2640   QualType desugar() const { return QualType(this, 0); }
   2641 
   2642   static bool classof(const Type *T) {
   2643     return T->getTypeClass() == ExtVector;
   2644   }
   2645 };
   2646 
   2647 /// FunctionType - C99 6.7.5.3 - Function Declarators.  This is the common base
   2648 /// class of FunctionNoProtoType and FunctionProtoType.
   2649 ///
   2650 class FunctionType : public Type {
   2651   // The type returned by the function.
   2652   QualType ResultType;
   2653 
   2654  public:
   2655   /// ExtInfo - A class which abstracts out some details necessary for
   2656   /// making a call.
   2657   ///
   2658   /// It is not actually used directly for storing this information in
   2659   /// a FunctionType, although FunctionType does currently use the
   2660   /// same bit-pattern.
   2661   ///
   2662   // If you add a field (say Foo), other than the obvious places (both,
   2663   // constructors, compile failures), what you need to update is
   2664   // * Operator==
   2665   // * getFoo
   2666   // * withFoo
   2667   // * functionType. Add Foo, getFoo.
   2668   // * ASTContext::getFooType
   2669   // * ASTContext::mergeFunctionTypes
   2670   // * FunctionNoProtoType::Profile
   2671   // * FunctionProtoType::Profile
   2672   // * TypePrinter::PrintFunctionProto
   2673   // * AST read and write
   2674   // * Codegen
   2675   class ExtInfo {
   2676     // Feel free to rearrange or add bits, but if you go over 9,
   2677     // you'll need to adjust both the Bits field below and
   2678     // Type::FunctionTypeBitfields.
   2679 
   2680     //   |  CC  |noreturn|produces|regparm|
   2681     //   |0 .. 3|   4    |    5   | 6 .. 8|
   2682     //
   2683     // regparm is either 0 (no regparm attribute) or the regparm value+1.
   2684     enum { CallConvMask = 0xF };
   2685     enum { NoReturnMask = 0x10 };
   2686     enum { ProducesResultMask = 0x20 };
   2687     enum { RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask),
   2688            RegParmOffset = 6 }; // Assumed to be the last field
   2689 
   2690     uint16_t Bits;
   2691 
   2692     ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
   2693 
   2694     friend class FunctionType;
   2695 
   2696    public:
   2697     // Constructor with no defaults. Use this when you know that you
   2698     // have all the elements (when reading an AST file for example).
   2699     ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
   2700             bool producesResult) {
   2701       assert((!hasRegParm || regParm < 7) && "Invalid regparm value");
   2702       Bits = ((unsigned) cc) |
   2703              (noReturn ? NoReturnMask : 0) |
   2704              (producesResult ? ProducesResultMask : 0) |
   2705              (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0);
   2706     }
   2707 
   2708     // Constructor with all defaults. Use when for example creating a
   2709     // function know to use defaults.
   2710     ExtInfo() : Bits(CC_C) { }
   2711 
   2712     // Constructor with just the calling convention, which is an important part
   2713     // of the canonical type.
   2714     ExtInfo(CallingConv CC) : Bits(CC) { }
   2715 
   2716     bool getNoReturn() const { return Bits & NoReturnMask; }
   2717     bool getProducesResult() const { return Bits & ProducesResultMask; }
   2718     bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
   2719     unsigned getRegParm() const {
   2720       unsigned RegParm = Bits >> RegParmOffset;
   2721       if (RegParm > 0)
   2722         --RegParm;
   2723       return RegParm;
   2724     }
   2725     CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
   2726 
   2727     bool operator==(ExtInfo Other) const {
   2728       return Bits == Other.Bits;
   2729     }
   2730     bool operator!=(ExtInfo Other) const {
   2731       return Bits != Other.Bits;
   2732     }
   2733 
   2734     // Note that we don't have setters. That is by design, use
   2735     // the following with methods instead of mutating these objects.
   2736 
   2737     ExtInfo withNoReturn(bool noReturn) const {
   2738       if (noReturn)
   2739         return ExtInfo(Bits | NoReturnMask);
   2740       else
   2741         return ExtInfo(Bits & ~NoReturnMask);
   2742     }
   2743 
   2744     ExtInfo withProducesResult(bool producesResult) const {
   2745       if (producesResult)
   2746         return ExtInfo(Bits | ProducesResultMask);
   2747       else
   2748         return ExtInfo(Bits & ~ProducesResultMask);
   2749     }
   2750 
   2751     ExtInfo withRegParm(unsigned RegParm) const {
   2752       assert(RegParm < 7 && "Invalid regparm value");
   2753       return ExtInfo((Bits & ~RegParmMask) |
   2754                      ((RegParm + 1) << RegParmOffset));
   2755     }
   2756 
   2757     ExtInfo withCallingConv(CallingConv cc) const {
   2758       return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
   2759     }
   2760 
   2761     void Profile(llvm::FoldingSetNodeID &ID) const {
   2762       ID.AddInteger(Bits);
   2763     }
   2764   };
   2765 
   2766 protected:
   2767   FunctionType(TypeClass tc, QualType res,
   2768                unsigned typeQuals, QualType Canonical, bool Dependent,
   2769                bool InstantiationDependent,
   2770                bool VariablyModified, bool ContainsUnexpandedParameterPack,
   2771                ExtInfo Info)
   2772     : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   2773            ContainsUnexpandedParameterPack),
   2774       ResultType(res) {
   2775     FunctionTypeBits.ExtInfo = Info.Bits;
   2776     FunctionTypeBits.TypeQuals = typeQuals;
   2777   }
   2778   unsigned getTypeQuals() const { return FunctionTypeBits.TypeQuals; }
   2779 
   2780 public:
   2781   QualType getReturnType() const { return ResultType; }
   2782 
   2783   bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
   2784   unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
   2785   /// \brief Determine whether this function type includes the GNU noreturn
   2786   /// attribute. The C++11 [[noreturn]] attribute does not affect the function
   2787   /// type.
   2788   bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
   2789   CallingConv getCallConv() const { return getExtInfo().getCC(); }
   2790   ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
   2791   bool isConst() const { return getTypeQuals() & Qualifiers::Const; }
   2792   bool isVolatile() const { return getTypeQuals() & Qualifiers::Volatile; }
   2793   bool isRestrict() const { return getTypeQuals() & Qualifiers::Restrict; }
   2794 
   2795   /// \brief Determine the type of an expression that calls a function of
   2796   /// this type.
   2797   QualType getCallResultType(ASTContext &Context) const {
   2798     return getReturnType().getNonLValueExprType(Context);
   2799   }
   2800 
   2801   static StringRef getNameForCallConv(CallingConv CC);
   2802 
   2803   static bool classof(const Type *T) {
   2804     return T->getTypeClass() == FunctionNoProto ||
   2805            T->getTypeClass() == FunctionProto;
   2806   }
   2807 };
   2808 
   2809 /// FunctionNoProtoType - Represents a K&R-style 'int foo()' function, which has
   2810 /// no information available about its arguments.
   2811 class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
   2812   FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
   2813     : FunctionType(FunctionNoProto, Result, 0, Canonical,
   2814                    /*Dependent=*/false, /*InstantiationDependent=*/false,
   2815                    Result->isVariablyModifiedType(),
   2816                    /*ContainsUnexpandedParameterPack=*/false, Info) {}
   2817 
   2818   friend class ASTContext;  // ASTContext creates these.
   2819 
   2820 public:
   2821   // No additional state past what FunctionType provides.
   2822 
   2823   bool isSugared() const { return false; }
   2824   QualType desugar() const { return QualType(this, 0); }
   2825 
   2826   void Profile(llvm::FoldingSetNodeID &ID) {
   2827     Profile(ID, getReturnType(), getExtInfo());
   2828   }
   2829   static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
   2830                       ExtInfo Info) {
   2831     Info.Profile(ID);
   2832     ID.AddPointer(ResultType.getAsOpaquePtr());
   2833   }
   2834 
   2835   static bool classof(const Type *T) {
   2836     return T->getTypeClass() == FunctionNoProto;
   2837   }
   2838 };
   2839 
   2840 /// FunctionProtoType - Represents a prototype with parameter type info, e.g.
   2841 /// 'int foo(int)' or 'int foo(void)'.  'void' is represented as having no
   2842 /// parameters, not as having a single void parameter. Such a type can have an
   2843 /// exception specification, but this specification is not part of the canonical
   2844 /// type.
   2845 class FunctionProtoType : public FunctionType, public llvm::FoldingSetNode {
   2846 public:
   2847   /// ExtProtoInfo - Extra information about a function prototype.
   2848   struct ExtProtoInfo {
   2849     ExtProtoInfo()
   2850         : Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   2851           ExceptionSpecType(EST_None), RefQualifier(RQ_None), NumExceptions(0),
   2852           Exceptions(nullptr), NoexceptExpr(nullptr),
   2853           ExceptionSpecDecl(nullptr), ExceptionSpecTemplate(nullptr),
   2854           ConsumedParameters(nullptr) {}
   2855 
   2856     ExtProtoInfo(CallingConv CC)
   2857         : ExtInfo(CC), Variadic(false), HasTrailingReturn(false), TypeQuals(0),
   2858           ExceptionSpecType(EST_None), RefQualifier(RQ_None), NumExceptions(0),
   2859           Exceptions(nullptr), NoexceptExpr(nullptr),
   2860           ExceptionSpecDecl(nullptr), ExceptionSpecTemplate(nullptr),
   2861           ConsumedParameters(nullptr) {}
   2862 
   2863     FunctionType::ExtInfo ExtInfo;
   2864     bool Variadic : 1;
   2865     bool HasTrailingReturn : 1;
   2866     unsigned char TypeQuals;
   2867     ExceptionSpecificationType ExceptionSpecType;
   2868     RefQualifierKind RefQualifier;
   2869     unsigned NumExceptions;
   2870     const QualType *Exceptions;
   2871     Expr *NoexceptExpr;
   2872     FunctionDecl *ExceptionSpecDecl;
   2873     FunctionDecl *ExceptionSpecTemplate;
   2874     const bool *ConsumedParameters;
   2875   };
   2876 
   2877 private:
   2878   /// \brief Determine whether there are any argument types that
   2879   /// contain an unexpanded parameter pack.
   2880   static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
   2881                                                  unsigned numArgs) {
   2882     for (unsigned Idx = 0; Idx < numArgs; ++Idx)
   2883       if (ArgArray[Idx]->containsUnexpandedParameterPack())
   2884         return true;
   2885 
   2886     return false;
   2887   }
   2888 
   2889   FunctionProtoType(QualType result, ArrayRef<QualType> params,
   2890                     QualType canonical, const ExtProtoInfo &epi);
   2891 
   2892   /// The number of parameters this function has, not counting '...'.
   2893   unsigned NumParams : 15;
   2894 
   2895   /// NumExceptions - The number of types in the exception spec, if any.
   2896   unsigned NumExceptions : 9;
   2897 
   2898   /// ExceptionSpecType - The type of exception specification this function has.
   2899   unsigned ExceptionSpecType : 3;
   2900 
   2901   /// HasAnyConsumedParams - Whether this function has any consumed parameters.
   2902   unsigned HasAnyConsumedParams : 1;
   2903 
   2904   /// Variadic - Whether the function is variadic.
   2905   unsigned Variadic : 1;
   2906 
   2907   /// HasTrailingReturn - Whether this function has a trailing return type.
   2908   unsigned HasTrailingReturn : 1;
   2909 
   2910   /// \brief The ref-qualifier associated with a \c FunctionProtoType.
   2911   ///
   2912   /// This is a value of type \c RefQualifierKind.
   2913   unsigned RefQualifier : 2;
   2914 
   2915   // ParamInfo - There is an variable size array after the class in memory that
   2916   // holds the parameter types.
   2917 
   2918   // Exceptions - There is another variable size array after ArgInfo that
   2919   // holds the exception types.
   2920 
   2921   // NoexceptExpr - Instead of Exceptions, there may be a single Expr* pointing
   2922   // to the expression in the noexcept() specifier.
   2923 
   2924   // ExceptionSpecDecl, ExceptionSpecTemplate - Instead of Exceptions, there may
   2925   // be a pair of FunctionDecl* pointing to the function which should be used to
   2926   // instantiate this function type's exception specification, and the function
   2927   // from which it should be instantiated.
   2928 
   2929   // ConsumedParameters - A variable size array, following Exceptions
   2930   // and of length NumParams, holding flags indicating which parameters
   2931   // are consumed.  This only appears if HasAnyConsumedParams is true.
   2932 
   2933   friend class ASTContext;  // ASTContext creates these.
   2934 
   2935   const bool *getConsumedParamsBuffer() const {
   2936     assert(hasAnyConsumedParams());
   2937 
   2938     // Find the end of the exceptions.
   2939     Expr *const *eh_end = reinterpret_cast<Expr *const *>(param_type_end());
   2940     if (getExceptionSpecType() != EST_ComputedNoexcept)
   2941       eh_end += NumExceptions;
   2942     else
   2943       eh_end += 1; // NoexceptExpr
   2944 
   2945     return reinterpret_cast<const bool*>(eh_end);
   2946   }
   2947 
   2948 public:
   2949   unsigned getNumParams() const { return NumParams; }
   2950   QualType getParamType(unsigned i) const {
   2951     assert(i < NumParams && "invalid parameter index");
   2952     return param_type_begin()[i];
   2953   }
   2954   ArrayRef<QualType> getParamTypes() const {
   2955     return ArrayRef<QualType>(param_type_begin(), param_type_end());
   2956   }
   2957 
   2958   ExtProtoInfo getExtProtoInfo() const {
   2959     ExtProtoInfo EPI;
   2960     EPI.ExtInfo = getExtInfo();
   2961     EPI.Variadic = isVariadic();
   2962     EPI.HasTrailingReturn = hasTrailingReturn();
   2963     EPI.ExceptionSpecType = getExceptionSpecType();
   2964     EPI.TypeQuals = static_cast<unsigned char>(getTypeQuals());
   2965     EPI.RefQualifier = getRefQualifier();
   2966     if (EPI.ExceptionSpecType == EST_Dynamic) {
   2967       EPI.NumExceptions = NumExceptions;
   2968       EPI.Exceptions = exception_begin();
   2969     } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
   2970       EPI.NoexceptExpr = getNoexceptExpr();
   2971     } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
   2972       EPI.ExceptionSpecDecl = getExceptionSpecDecl();
   2973       EPI.ExceptionSpecTemplate = getExceptionSpecTemplate();
   2974     } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
   2975       EPI.ExceptionSpecDecl = getExceptionSpecDecl();
   2976     }
   2977     if (hasAnyConsumedParams())
   2978       EPI.ConsumedParameters = getConsumedParamsBuffer();
   2979     return EPI;
   2980   }
   2981 
   2982   /// \brief Get the kind of exception specification on this function.
   2983   ExceptionSpecificationType getExceptionSpecType() const {
   2984     return static_cast<ExceptionSpecificationType>(ExceptionSpecType);
   2985   }
   2986   /// \brief Return whether this function has any kind of exception spec.
   2987   bool hasExceptionSpec() const {
   2988     return getExceptionSpecType() != EST_None;
   2989   }
   2990   /// \brief Return whether this function has a dynamic (throw) exception spec.
   2991   bool hasDynamicExceptionSpec() const {
   2992     return isDynamicExceptionSpec(getExceptionSpecType());
   2993   }
   2994   /// \brief Return whether this function has a noexcept exception spec.
   2995   bool hasNoexceptExceptionSpec() const {
   2996     return isNoexceptExceptionSpec(getExceptionSpecType());
   2997   }
   2998   /// \brief Result type of getNoexceptSpec().
   2999   enum NoexceptResult {
   3000     NR_NoNoexcept,  ///< There is no noexcept specifier.
   3001     NR_BadNoexcept, ///< The noexcept specifier has a bad expression.
   3002     NR_Dependent,   ///< The noexcept specifier is dependent.
   3003     NR_Throw,       ///< The noexcept specifier evaluates to false.
   3004     NR_Nothrow      ///< The noexcept specifier evaluates to true.
   3005   };
   3006   /// \brief Get the meaning of the noexcept spec on this function, if any.
   3007   NoexceptResult getNoexceptSpec(const ASTContext &Ctx) const;
   3008   unsigned getNumExceptions() const { return NumExceptions; }
   3009   QualType getExceptionType(unsigned i) const {
   3010     assert(i < NumExceptions && "Invalid exception number!");
   3011     return exception_begin()[i];
   3012   }
   3013   Expr *getNoexceptExpr() const {
   3014     if (getExceptionSpecType() != EST_ComputedNoexcept)
   3015       return nullptr;
   3016     // NoexceptExpr sits where the arguments end.
   3017     return *reinterpret_cast<Expr *const *>(param_type_end());
   3018   }
   3019   /// \brief If this function type has an exception specification which hasn't
   3020   /// been determined yet (either because it has not been evaluated or because
   3021   /// it has not been instantiated), this is the function whose exception
   3022   /// specification is represented by this type.
   3023   FunctionDecl *getExceptionSpecDecl() const {
   3024     if (getExceptionSpecType() != EST_Uninstantiated &&
   3025         getExceptionSpecType() != EST_Unevaluated)
   3026       return nullptr;
   3027     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[0];
   3028   }
   3029   /// \brief If this function type has an uninstantiated exception
   3030   /// specification, this is the function whose exception specification
   3031   /// should be instantiated to find the exception specification for
   3032   /// this type.
   3033   FunctionDecl *getExceptionSpecTemplate() const {
   3034     if (getExceptionSpecType() != EST_Uninstantiated)
   3035       return nullptr;
   3036     return reinterpret_cast<FunctionDecl *const *>(param_type_end())[1];
   3037   }
   3038   /// \brief Determine whether this function type has a non-throwing exception
   3039   /// specification. If this depends on template arguments, returns
   3040   /// \c ResultIfDependent.
   3041   bool isNothrow(const ASTContext &Ctx, bool ResultIfDependent = false) const;
   3042 
   3043   bool isVariadic() const { return Variadic; }
   3044 
   3045   /// \brief Determines whether this function prototype contains a
   3046   /// parameter pack at the end.
   3047   ///
   3048   /// A function template whose last parameter is a parameter pack can be
   3049   /// called with an arbitrary number of arguments, much like a variadic
   3050   /// function.
   3051   bool isTemplateVariadic() const;
   3052 
   3053   bool hasTrailingReturn() const { return HasTrailingReturn; }
   3054 
   3055   unsigned getTypeQuals() const { return FunctionType::getTypeQuals(); }
   3056 
   3057 
   3058   /// \brief Retrieve the ref-qualifier associated with this function type.
   3059   RefQualifierKind getRefQualifier() const {
   3060     return static_cast<RefQualifierKind>(RefQualifier);
   3061   }
   3062 
   3063   typedef const QualType *param_type_iterator;
   3064   typedef llvm::iterator_range<param_type_iterator> param_type_range;
   3065 
   3066   param_type_range param_types() const {
   3067     return param_type_range(param_type_begin(), param_type_end());
   3068   }
   3069   param_type_iterator param_type_begin() const {
   3070     return reinterpret_cast<const QualType *>(this+1);
   3071   }
   3072   param_type_iterator param_type_end() const {
   3073     return param_type_begin() + NumParams;
   3074   }
   3075 
   3076   typedef const QualType *exception_iterator;
   3077   typedef llvm::iterator_range<exception_iterator> exception_range;
   3078 
   3079   exception_range exceptions() const {
   3080     return exception_range(exception_begin(), exception_end());
   3081   }
   3082   exception_iterator exception_begin() const {
   3083     // exceptions begin where arguments end
   3084     return param_type_end();
   3085   }
   3086   exception_iterator exception_end() const {
   3087     if (getExceptionSpecType() != EST_Dynamic)
   3088       return exception_begin();
   3089     return exception_begin() + NumExceptions;
   3090   }
   3091 
   3092   bool hasAnyConsumedParams() const { return HasAnyConsumedParams; }
   3093   bool isParamConsumed(unsigned I) const {
   3094     assert(I < getNumParams() && "parameter index out of range");
   3095     if (hasAnyConsumedParams())
   3096       return getConsumedParamsBuffer()[I];
   3097     return false;
   3098   }
   3099 
   3100   bool isSugared() const { return false; }
   3101   QualType desugar() const { return QualType(this, 0); }
   3102 
   3103   void printExceptionSpecification(raw_ostream &OS,
   3104                                    const PrintingPolicy &Policy) const;
   3105 
   3106   static bool classof(const Type *T) {
   3107     return T->getTypeClass() == FunctionProto;
   3108   }
   3109 
   3110   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
   3111   static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   3112                       param_type_iterator ArgTys, unsigned NumArgs,
   3113                       const ExtProtoInfo &EPI, const ASTContext &Context);
   3114 };
   3115 
   3116 
   3117 /// \brief Represents the dependent type named by a dependently-scoped
   3118 /// typename using declaration, e.g.
   3119 ///   using typename Base<T>::foo;
   3120 /// Template instantiation turns these into the underlying type.
   3121 class UnresolvedUsingType : public Type {
   3122   UnresolvedUsingTypenameDecl *Decl;
   3123 
   3124   UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
   3125     : Type(UnresolvedUsing, QualType(), true, true, false,
   3126            /*ContainsUnexpandedParameterPack=*/false),
   3127       Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
   3128   friend class ASTContext; // ASTContext creates these.
   3129 public:
   3130 
   3131   UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
   3132 
   3133   bool isSugared() const { return false; }
   3134   QualType desugar() const { return QualType(this, 0); }
   3135 
   3136   static bool classof(const Type *T) {
   3137     return T->getTypeClass() == UnresolvedUsing;
   3138   }
   3139 
   3140   void Profile(llvm::FoldingSetNodeID &ID) {
   3141     return Profile(ID, Decl);
   3142   }
   3143   static void Profile(llvm::FoldingSetNodeID &ID,
   3144                       UnresolvedUsingTypenameDecl *D) {
   3145     ID.AddPointer(D);
   3146   }
   3147 };
   3148 
   3149 
   3150 class TypedefType : public Type {
   3151   TypedefNameDecl *Decl;
   3152 protected:
   3153   TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
   3154     : Type(tc, can, can->isDependentType(),
   3155            can->isInstantiationDependentType(),
   3156            can->isVariablyModifiedType(),
   3157            /*ContainsUnexpandedParameterPack=*/false),
   3158       Decl(const_cast<TypedefNameDecl*>(D)) {
   3159     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3160   }
   3161   friend class ASTContext;  // ASTContext creates these.
   3162 public:
   3163 
   3164   TypedefNameDecl *getDecl() const { return Decl; }
   3165 
   3166   bool isSugared() const { return true; }
   3167   QualType desugar() const;
   3168 
   3169   static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
   3170 };
   3171 
   3172 /// TypeOfExprType (GCC extension).
   3173 class TypeOfExprType : public Type {
   3174   Expr *TOExpr;
   3175 
   3176 protected:
   3177   TypeOfExprType(Expr *E, QualType can = QualType());
   3178   friend class ASTContext;  // ASTContext creates these.
   3179 public:
   3180   Expr *getUnderlyingExpr() const { return TOExpr; }
   3181 
   3182   /// \brief Remove a single level of sugar.
   3183   QualType desugar() const;
   3184 
   3185   /// \brief Returns whether this type directly provides sugar.
   3186   bool isSugared() const;
   3187 
   3188   static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
   3189 };
   3190 
   3191 /// \brief Internal representation of canonical, dependent
   3192 /// typeof(expr) types.
   3193 ///
   3194 /// This class is used internally by the ASTContext to manage
   3195 /// canonical, dependent types, only. Clients will only see instances
   3196 /// of this class via TypeOfExprType nodes.
   3197 class DependentTypeOfExprType
   3198   : public TypeOfExprType, public llvm::FoldingSetNode {
   3199   const ASTContext &Context;
   3200 
   3201 public:
   3202   DependentTypeOfExprType(const ASTContext &Context, Expr *E)
   3203     : TypeOfExprType(E), Context(Context) { }
   3204 
   3205   void Profile(llvm::FoldingSetNodeID &ID) {
   3206     Profile(ID, Context, getUnderlyingExpr());
   3207   }
   3208 
   3209   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3210                       Expr *E);
   3211 };
   3212 
   3213 /// TypeOfType (GCC extension).
   3214 class TypeOfType : public Type {
   3215   QualType TOType;
   3216   TypeOfType(QualType T, QualType can)
   3217     : Type(TypeOf, can, T->isDependentType(),
   3218            T->isInstantiationDependentType(),
   3219            T->isVariablyModifiedType(),
   3220            T->containsUnexpandedParameterPack()),
   3221       TOType(T) {
   3222     assert(!isa<TypedefType>(can) && "Invalid canonical type");
   3223   }
   3224   friend class ASTContext;  // ASTContext creates these.
   3225 public:
   3226   QualType getUnderlyingType() const { return TOType; }
   3227 
   3228   /// \brief Remove a single level of sugar.
   3229   QualType desugar() const { return getUnderlyingType(); }
   3230 
   3231   /// \brief Returns whether this type directly provides sugar.
   3232   bool isSugared() const { return true; }
   3233 
   3234   static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
   3235 };
   3236 
   3237 /// DecltypeType (C++0x)
   3238 class DecltypeType : public Type {
   3239   Expr *E;
   3240   QualType UnderlyingType;
   3241 
   3242 protected:
   3243   DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
   3244   friend class ASTContext;  // ASTContext creates these.
   3245 public:
   3246   Expr *getUnderlyingExpr() const { return E; }
   3247   QualType getUnderlyingType() const { return UnderlyingType; }
   3248 
   3249   /// \brief Remove a single level of sugar.
   3250   QualType desugar() const;
   3251 
   3252   /// \brief Returns whether this type directly provides sugar.
   3253   bool isSugared() const;
   3254 
   3255   static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
   3256 };
   3257 
   3258 /// \brief Internal representation of canonical, dependent
   3259 /// decltype(expr) types.
   3260 ///
   3261 /// This class is used internally by the ASTContext to manage
   3262 /// canonical, dependent types, only. Clients will only see instances
   3263 /// of this class via DecltypeType nodes.
   3264 class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
   3265   const ASTContext &Context;
   3266 
   3267 public:
   3268   DependentDecltypeType(const ASTContext &Context, Expr *E);
   3269 
   3270   void Profile(llvm::FoldingSetNodeID &ID) {
   3271     Profile(ID, Context, getUnderlyingExpr());
   3272   }
   3273 
   3274   static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
   3275                       Expr *E);
   3276 };
   3277 
   3278 /// \brief A unary type transform, which is a type constructed from another
   3279 class UnaryTransformType : public Type {
   3280 public:
   3281   enum UTTKind {
   3282     EnumUnderlyingType
   3283   };
   3284 
   3285 private:
   3286   /// The untransformed type.
   3287   QualType BaseType;
   3288   /// The transformed type if not dependent, otherwise the same as BaseType.
   3289   QualType UnderlyingType;
   3290 
   3291   UTTKind UKind;
   3292 protected:
   3293   UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
   3294                      QualType CanonicalTy);
   3295   friend class ASTContext;
   3296 public:
   3297   bool isSugared() const { return !isDependentType(); }
   3298   QualType desugar() const { return UnderlyingType; }
   3299 
   3300   QualType getUnderlyingType() const { return UnderlyingType; }
   3301   QualType getBaseType() const { return BaseType; }
   3302 
   3303   UTTKind getUTTKind() const { return UKind; }
   3304 
   3305   static bool classof(const Type *T) {
   3306     return T->getTypeClass() == UnaryTransform;
   3307   }
   3308 };
   3309 
   3310 class TagType : public Type {
   3311   /// Stores the TagDecl associated with this type. The decl may point to any
   3312   /// TagDecl that declares the entity.
   3313   TagDecl * decl;
   3314 
   3315   friend class ASTReader;
   3316 
   3317 protected:
   3318   TagType(TypeClass TC, const TagDecl *D, QualType can);
   3319 
   3320 public:
   3321   TagDecl *getDecl() const;
   3322 
   3323   /// @brief Determines whether this type is in the process of being
   3324   /// defined.
   3325   bool isBeingDefined() const;
   3326 
   3327   static bool classof(const Type *T) {
   3328     return T->getTypeClass() >= TagFirst && T->getTypeClass() <= TagLast;
   3329   }
   3330 };
   3331 
   3332 /// RecordType - This is a helper class that allows the use of isa/cast/dyncast
   3333 /// to detect TagType objects of structs/unions/classes.
   3334 class RecordType : public TagType {
   3335 protected:
   3336   explicit RecordType(const RecordDecl *D)
   3337     : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3338   explicit RecordType(TypeClass TC, RecordDecl *D)
   3339     : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3340   friend class ASTContext;   // ASTContext creates these.
   3341 public:
   3342 
   3343   RecordDecl *getDecl() const {
   3344     return reinterpret_cast<RecordDecl*>(TagType::getDecl());
   3345   }
   3346 
   3347   // FIXME: This predicate is a helper to QualType/Type. It needs to
   3348   // recursively check all fields for const-ness. If any field is declared
   3349   // const, it needs to return false.
   3350   bool hasConstFields() const { return false; }
   3351 
   3352   bool isSugared() const { return false; }
   3353   QualType desugar() const { return QualType(this, 0); }
   3354 
   3355   static bool classof(const Type *T) { return T->getTypeClass() == Record; }
   3356 };
   3357 
   3358 /// EnumType - This is a helper class that allows the use of isa/cast/dyncast
   3359 /// to detect TagType objects of enums.
   3360 class EnumType : public TagType {
   3361   explicit EnumType(const EnumDecl *D)
   3362     : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) { }
   3363   friend class ASTContext;   // ASTContext creates these.
   3364 public:
   3365 
   3366   EnumDecl *getDecl() const {
   3367     return reinterpret_cast<EnumDecl*>(TagType::getDecl());
   3368   }
   3369 
   3370   bool isSugared() const { return false; }
   3371   QualType desugar() const { return QualType(this, 0); }
   3372 
   3373   static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
   3374 };
   3375 
   3376 /// AttributedType - An attributed type is a type to which a type
   3377 /// attribute has been applied.  The "modified type" is the
   3378 /// fully-sugared type to which the attributed type was applied;
   3379 /// generally it is not canonically equivalent to the attributed type.
   3380 /// The "equivalent type" is the minimally-desugared type which the
   3381 /// type is canonically equivalent to.
   3382 ///
   3383 /// For example, in the following attributed type:
   3384 ///     int32_t __attribute__((vector_size(16)))
   3385 ///   - the modified type is the TypedefType for int32_t
   3386 ///   - the equivalent type is VectorType(16, int32_t)
   3387 ///   - the canonical type is VectorType(16, int)
   3388 class AttributedType : public Type, public llvm::FoldingSetNode {
   3389 public:
   3390   // It is really silly to have yet another attribute-kind enum, but
   3391   // clang::attr::Kind doesn't currently cover the pure type attrs.
   3392   enum Kind {
   3393     // Expression operand.
   3394     attr_address_space,
   3395     attr_regparm,
   3396     attr_vector_size,
   3397     attr_neon_vector_type,
   3398     attr_neon_polyvector_type,
   3399 
   3400     FirstExprOperandKind = attr_address_space,
   3401     LastExprOperandKind = attr_neon_polyvector_type,
   3402 
   3403     // Enumerated operand (string or keyword).
   3404     attr_objc_gc,
   3405     attr_objc_ownership,
   3406     attr_pcs,
   3407     attr_pcs_vfp,
   3408 
   3409     FirstEnumOperandKind = attr_objc_gc,
   3410     LastEnumOperandKind = attr_pcs_vfp,
   3411 
   3412     // No operand.
   3413     attr_noreturn,
   3414     attr_cdecl,
   3415     attr_fastcall,
   3416     attr_stdcall,
   3417     attr_thiscall,
   3418     attr_pascal,
   3419     attr_pnaclcall,
   3420     attr_inteloclbicc,
   3421     attr_ms_abi,
   3422     attr_sysv_abi,
   3423     attr_ptr32,
   3424     attr_ptr64,
   3425     attr_sptr,
   3426     attr_uptr
   3427   };
   3428 
   3429 private:
   3430   QualType ModifiedType;
   3431   QualType EquivalentType;
   3432 
   3433   friend class ASTContext; // creates these
   3434 
   3435   AttributedType(QualType canon, Kind attrKind,
   3436                  QualType modified, QualType equivalent)
   3437     : Type(Attributed, canon, canon->isDependentType(),
   3438            canon->isInstantiationDependentType(),
   3439            canon->isVariablyModifiedType(),
   3440            canon->containsUnexpandedParameterPack()),
   3441       ModifiedType(modified), EquivalentType(equivalent) {
   3442     AttributedTypeBits.AttrKind = attrKind;
   3443   }
   3444 
   3445 public:
   3446   Kind getAttrKind() const {
   3447     return static_cast<Kind>(AttributedTypeBits.AttrKind);
   3448   }
   3449 
   3450   QualType getModifiedType() const { return ModifiedType; }
   3451   QualType getEquivalentType() const { return EquivalentType; }
   3452 
   3453   bool isSugared() const { return true; }
   3454   QualType desugar() const { return getEquivalentType(); }
   3455 
   3456   bool isMSTypeSpec() const;
   3457 
   3458   bool isCallingConv() const;
   3459 
   3460   void Profile(llvm::FoldingSetNodeID &ID) {
   3461     Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
   3462   }
   3463 
   3464   static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
   3465                       QualType modified, QualType equivalent) {
   3466     ID.AddInteger(attrKind);
   3467     ID.AddPointer(modified.getAsOpaquePtr());
   3468     ID.AddPointer(equivalent.getAsOpaquePtr());
   3469   }
   3470 
   3471   static bool classof(const Type *T) {
   3472     return T->getTypeClass() == Attributed;
   3473   }
   3474 };
   3475 
   3476 class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3477   // Helper data collector for canonical types.
   3478   struct CanonicalTTPTInfo {
   3479     unsigned Depth : 15;
   3480     unsigned ParameterPack : 1;
   3481     unsigned Index : 16;
   3482   };
   3483 
   3484   union {
   3485     // Info for the canonical type.
   3486     CanonicalTTPTInfo CanTTPTInfo;
   3487     // Info for the non-canonical type.
   3488     TemplateTypeParmDecl *TTPDecl;
   3489   };
   3490 
   3491   /// Build a non-canonical type.
   3492   TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
   3493     : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
   3494            /*InstantiationDependent=*/true,
   3495            /*VariablyModified=*/false,
   3496            Canon->containsUnexpandedParameterPack()),
   3497       TTPDecl(TTPDecl) { }
   3498 
   3499   /// Build the canonical type.
   3500   TemplateTypeParmType(unsigned D, unsigned I, bool PP)
   3501     : Type(TemplateTypeParm, QualType(this, 0),
   3502            /*Dependent=*/true,
   3503            /*InstantiationDependent=*/true,
   3504            /*VariablyModified=*/false, PP) {
   3505     CanTTPTInfo.Depth = D;
   3506     CanTTPTInfo.Index = I;
   3507     CanTTPTInfo.ParameterPack = PP;
   3508   }
   3509 
   3510   friend class ASTContext;  // ASTContext creates these
   3511 
   3512   const CanonicalTTPTInfo& getCanTTPTInfo() const {
   3513     QualType Can = getCanonicalTypeInternal();
   3514     return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
   3515   }
   3516 
   3517 public:
   3518   unsigned getDepth() const { return getCanTTPTInfo().Depth; }
   3519   unsigned getIndex() const { return getCanTTPTInfo().Index; }
   3520   bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
   3521 
   3522   TemplateTypeParmDecl *getDecl() const {
   3523     return isCanonicalUnqualified() ? nullptr : TTPDecl;
   3524   }
   3525 
   3526   IdentifierInfo *getIdentifier() const;
   3527 
   3528   bool isSugared() const { return false; }
   3529   QualType desugar() const { return QualType(this, 0); }
   3530 
   3531   void Profile(llvm::FoldingSetNodeID &ID) {
   3532     Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
   3533   }
   3534 
   3535   static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
   3536                       unsigned Index, bool ParameterPack,
   3537                       TemplateTypeParmDecl *TTPDecl) {
   3538     ID.AddInteger(Depth);
   3539     ID.AddInteger(Index);
   3540     ID.AddBoolean(ParameterPack);
   3541     ID.AddPointer(TTPDecl);
   3542   }
   3543 
   3544   static bool classof(const Type *T) {
   3545     return T->getTypeClass() == TemplateTypeParm;
   3546   }
   3547 };
   3548 
   3549 /// \brief Represents the result of substituting a type for a template
   3550 /// type parameter.
   3551 ///
   3552 /// Within an instantiated template, all template type parameters have
   3553 /// been replaced with these.  They are used solely to record that a
   3554 /// type was originally written as a template type parameter;
   3555 /// therefore they are never canonical.
   3556 class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
   3557   // The original type parameter.
   3558   const TemplateTypeParmType *Replaced;
   3559 
   3560   SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
   3561     : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
   3562            Canon->isInstantiationDependentType(),
   3563            Canon->isVariablyModifiedType(),
   3564            Canon->containsUnexpandedParameterPack()),
   3565       Replaced(Param) { }
   3566 
   3567   friend class ASTContext;
   3568 
   3569 public:
   3570   /// Gets the template parameter that was substituted for.
   3571   const TemplateTypeParmType *getReplacedParameter() const {
   3572     return Replaced;
   3573   }
   3574 
   3575   /// Gets the type that was substituted for the template
   3576   /// parameter.
   3577   QualType getReplacementType() const {
   3578     return getCanonicalTypeInternal();
   3579   }
   3580 
   3581   bool isSugared() const { return true; }
   3582   QualType desugar() const { return getReplacementType(); }
   3583 
   3584   void Profile(llvm::FoldingSetNodeID &ID) {
   3585     Profile(ID, getReplacedParameter(), getReplacementType());
   3586   }
   3587   static void Profile(llvm::FoldingSetNodeID &ID,
   3588                       const TemplateTypeParmType *Replaced,
   3589                       QualType Replacement) {
   3590     ID.AddPointer(Replaced);
   3591     ID.AddPointer(Replacement.getAsOpaquePtr());
   3592   }
   3593 
   3594   static bool classof(const Type *T) {
   3595     return T->getTypeClass() == SubstTemplateTypeParm;
   3596   }
   3597 };
   3598 
   3599 /// \brief Represents the result of substituting a set of types for a template
   3600 /// type parameter pack.
   3601 ///
   3602 /// When a pack expansion in the source code contains multiple parameter packs
   3603 /// and those parameter packs correspond to different levels of template
   3604 /// parameter lists, this type node is used to represent a template type
   3605 /// parameter pack from an outer level, which has already had its argument pack
   3606 /// substituted but that still lives within a pack expansion that itself
   3607 /// could not be instantiated. When actually performing a substitution into
   3608 /// that pack expansion (e.g., when all template parameters have corresponding
   3609 /// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
   3610 /// at the current pack substitution index.
   3611 class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
   3612   /// \brief The original type parameter.
   3613   const TemplateTypeParmType *Replaced;
   3614 
   3615   /// \brief A pointer to the set of template arguments that this
   3616   /// parameter pack is instantiated with.
   3617   const TemplateArgument *Arguments;
   3618 
   3619   /// \brief The number of template arguments in \c Arguments.
   3620   unsigned NumArguments;
   3621 
   3622   SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   3623                                 QualType Canon,
   3624                                 const TemplateArgument &ArgPack);
   3625 
   3626   friend class ASTContext;
   3627 
   3628 public:
   3629   IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
   3630 
   3631   /// Gets the template parameter that was substituted for.
   3632   const TemplateTypeParmType *getReplacedParameter() const {
   3633     return Replaced;
   3634   }
   3635 
   3636   bool isSugared() const { return false; }
   3637   QualType desugar() const { return QualType(this, 0); }
   3638 
   3639   TemplateArgument getArgumentPack() const;
   3640 
   3641   void Profile(llvm::FoldingSetNodeID &ID);
   3642   static void Profile(llvm::FoldingSetNodeID &ID,
   3643                       const TemplateTypeParmType *Replaced,
   3644                       const TemplateArgument &ArgPack);
   3645 
   3646   static bool classof(const Type *T) {
   3647     return T->getTypeClass() == SubstTemplateTypeParmPack;
   3648   }
   3649 };
   3650 
   3651 /// \brief Represents a C++11 auto or C++1y decltype(auto) type.
   3652 ///
   3653 /// These types are usually a placeholder for a deduced type. However, before
   3654 /// the initializer is attached, or if the initializer is type-dependent, there
   3655 /// is no deduced type and an auto type is canonical. In the latter case, it is
   3656 /// also a dependent type.
   3657 class AutoType : public Type, public llvm::FoldingSetNode {
   3658   AutoType(QualType DeducedType, bool IsDecltypeAuto,
   3659            bool IsDependent)
   3660     : Type(Auto, DeducedType.isNull() ? QualType(this, 0) : DeducedType,
   3661            /*Dependent=*/IsDependent, /*InstantiationDependent=*/IsDependent,
   3662            /*VariablyModified=*/false,
   3663            /*ContainsParameterPack=*/DeducedType.isNull()
   3664                ? false : DeducedType->containsUnexpandedParameterPack()) {
   3665     assert((DeducedType.isNull() || !IsDependent) &&
   3666            "auto deduced to dependent type");
   3667     AutoTypeBits.IsDecltypeAuto = IsDecltypeAuto;
   3668   }
   3669 
   3670   friend class ASTContext;  // ASTContext creates these
   3671 
   3672 public:
   3673   bool isDecltypeAuto() const { return AutoTypeBits.IsDecltypeAuto; }
   3674 
   3675   bool isSugared() const { return !isCanonicalUnqualified(); }
   3676   QualType desugar() const { return getCanonicalTypeInternal(); }
   3677 
   3678   /// \brief Get the type deduced for this auto type, or null if it's either
   3679   /// not been deduced or was deduced to a dependent type.
   3680   QualType getDeducedType() const {
   3681     return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
   3682   }
   3683   bool isDeduced() const {
   3684     return !isCanonicalUnqualified() || isDependentType();
   3685   }
   3686 
   3687   void Profile(llvm::FoldingSetNodeID &ID) {
   3688     Profile(ID, getDeducedType(), isDecltypeAuto(),
   3689 		    isDependentType());
   3690   }
   3691 
   3692   static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
   3693                       bool IsDecltypeAuto, bool IsDependent) {
   3694     ID.AddPointer(Deduced.getAsOpaquePtr());
   3695     ID.AddBoolean(IsDecltypeAuto);
   3696     ID.AddBoolean(IsDependent);
   3697   }
   3698 
   3699   static bool classof(const Type *T) {
   3700     return T->getTypeClass() == Auto;
   3701   }
   3702 };
   3703 
   3704 /// \brief Represents a type template specialization; the template
   3705 /// must be a class template, a type alias template, or a template
   3706 /// template parameter.  A template which cannot be resolved to one of
   3707 /// these, e.g. because it is written with a dependent scope
   3708 /// specifier, is instead represented as a
   3709 /// @c DependentTemplateSpecializationType.
   3710 ///
   3711 /// A non-dependent template specialization type is always "sugar",
   3712 /// typically for a @c RecordType.  For example, a class template
   3713 /// specialization type of @c vector<int> will refer to a tag type for
   3714 /// the instantiation @c std::vector<int, std::allocator<int>>
   3715 ///
   3716 /// Template specializations are dependent if either the template or
   3717 /// any of the template arguments are dependent, in which case the
   3718 /// type may also be canonical.
   3719 ///
   3720 /// Instances of this type are allocated with a trailing array of
   3721 /// TemplateArguments, followed by a QualType representing the
   3722 /// non-canonical aliased type when the template is a type alias
   3723 /// template.
   3724 class TemplateSpecializationType
   3725   : public Type, public llvm::FoldingSetNode {
   3726   /// \brief The name of the template being specialized.  This is
   3727   /// either a TemplateName::Template (in which case it is a
   3728   /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
   3729   /// TypeAliasTemplateDecl*), a
   3730   /// TemplateName::SubstTemplateTemplateParmPack, or a
   3731   /// TemplateName::SubstTemplateTemplateParm (in which case the
   3732   /// replacement must, recursively, be one of these).
   3733   TemplateName Template;
   3734 
   3735   /// \brief - The number of template arguments named in this class
   3736   /// template specialization.
   3737   unsigned NumArgs : 31;
   3738 
   3739   /// \brief Whether this template specialization type is a substituted
   3740   /// type alias.
   3741   bool TypeAlias : 1;
   3742 
   3743   TemplateSpecializationType(TemplateName T,
   3744                              const TemplateArgument *Args,
   3745                              unsigned NumArgs, QualType Canon,
   3746                              QualType Aliased);
   3747 
   3748   friend class ASTContext;  // ASTContext creates these
   3749 
   3750 public:
   3751   /// \brief Determine whether any of the given template arguments are
   3752   /// dependent.
   3753   static bool anyDependentTemplateArguments(const TemplateArgumentLoc *Args,
   3754                                             unsigned NumArgs,
   3755                                             bool &InstantiationDependent);
   3756 
   3757   static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
   3758                                             bool &InstantiationDependent);
   3759 
   3760   /// \brief Print a template argument list, including the '<' and '>'
   3761   /// enclosing the template arguments.
   3762   static void PrintTemplateArgumentList(raw_ostream &OS,
   3763                                         const TemplateArgument *Args,
   3764                                         unsigned NumArgs,
   3765                                         const PrintingPolicy &Policy,
   3766                                         bool SkipBrackets = false);
   3767 
   3768   static void PrintTemplateArgumentList(raw_ostream &OS,
   3769                                         const TemplateArgumentLoc *Args,
   3770                                         unsigned NumArgs,
   3771                                         const PrintingPolicy &Policy);
   3772 
   3773   static void PrintTemplateArgumentList(raw_ostream &OS,
   3774                                         const TemplateArgumentListInfo &,
   3775                                         const PrintingPolicy &Policy);
   3776 
   3777   /// True if this template specialization type matches a current
   3778   /// instantiation in the context in which it is found.
   3779   bool isCurrentInstantiation() const {
   3780     return isa<InjectedClassNameType>(getCanonicalTypeInternal());
   3781   }
   3782 
   3783   /// \brief Determine if this template specialization type is for a type alias
   3784   /// template that has been substituted.
   3785   ///
   3786   /// Nearly every template specialization type whose template is an alias
   3787   /// template will be substituted. However, this is not the case when
   3788   /// the specialization contains a pack expansion but the template alias
   3789   /// does not have a corresponding parameter pack, e.g.,
   3790   ///
   3791   /// \code
   3792   /// template<typename T, typename U, typename V> struct S;
   3793   /// template<typename T, typename U> using A = S<T, int, U>;
   3794   /// template<typename... Ts> struct X {
   3795   ///   typedef A<Ts...> type; // not a type alias
   3796   /// };
   3797   /// \endcode
   3798   bool isTypeAlias() const { return TypeAlias; }
   3799 
   3800   /// Get the aliased type, if this is a specialization of a type alias
   3801   /// template.
   3802   QualType getAliasedType() const {
   3803     assert(isTypeAlias() && "not a type alias template specialization");
   3804     return *reinterpret_cast<const QualType*>(end());
   3805   }
   3806 
   3807   typedef const TemplateArgument * iterator;
   3808 
   3809   iterator begin() const { return getArgs(); }
   3810   iterator end() const; // defined inline in TemplateBase.h
   3811 
   3812   /// \brief Retrieve the name of the template that we are specializing.
   3813   TemplateName getTemplateName() const { return Template; }
   3814 
   3815   /// \brief Retrieve the template arguments.
   3816   const TemplateArgument *getArgs() const {
   3817     return reinterpret_cast<const TemplateArgument *>(this + 1);
   3818   }
   3819 
   3820   /// \brief Retrieve the number of template arguments.
   3821   unsigned getNumArgs() const { return NumArgs; }
   3822 
   3823   /// \brief Retrieve a specific template argument as a type.
   3824   /// \pre @c isArgType(Arg)
   3825   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   3826 
   3827   bool isSugared() const {
   3828     return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
   3829   }
   3830   QualType desugar() const { return getCanonicalTypeInternal(); }
   3831 
   3832   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
   3833     Profile(ID, Template, getArgs(), NumArgs, Ctx);
   3834     if (isTypeAlias())
   3835       getAliasedType().Profile(ID);
   3836   }
   3837 
   3838   static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
   3839                       const TemplateArgument *Args,
   3840                       unsigned NumArgs,
   3841                       const ASTContext &Context);
   3842 
   3843   static bool classof(const Type *T) {
   3844     return T->getTypeClass() == TemplateSpecialization;
   3845   }
   3846 };
   3847 
   3848 /// \brief The injected class name of a C++ class template or class
   3849 /// template partial specialization.  Used to record that a type was
   3850 /// spelled with a bare identifier rather than as a template-id; the
   3851 /// equivalent for non-templated classes is just RecordType.
   3852 ///
   3853 /// Injected class name types are always dependent.  Template
   3854 /// instantiation turns these into RecordTypes.
   3855 ///
   3856 /// Injected class name types are always canonical.  This works
   3857 /// because it is impossible to compare an injected class name type
   3858 /// with the corresponding non-injected template type, for the same
   3859 /// reason that it is impossible to directly compare template
   3860 /// parameters from different dependent contexts: injected class name
   3861 /// types can only occur within the scope of a particular templated
   3862 /// declaration, and within that scope every template specialization
   3863 /// will canonicalize to the injected class name (when appropriate
   3864 /// according to the rules of the language).
   3865 class InjectedClassNameType : public Type {
   3866   CXXRecordDecl *Decl;
   3867 
   3868   /// The template specialization which this type represents.
   3869   /// For example, in
   3870   ///   template <class T> class A { ... };
   3871   /// this is A<T>, whereas in
   3872   ///   template <class X, class Y> class A<B<X,Y> > { ... };
   3873   /// this is A<B<X,Y> >.
   3874   ///
   3875   /// It is always unqualified, always a template specialization type,
   3876   /// and always dependent.
   3877   QualType InjectedType;
   3878 
   3879   friend class ASTContext; // ASTContext creates these.
   3880   friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
   3881                           // currently suitable for AST reading, too much
   3882                           // interdependencies.
   3883   InjectedClassNameType(CXXRecordDecl *D, QualType TST)
   3884     : Type(InjectedClassName, QualType(), /*Dependent=*/true,
   3885            /*InstantiationDependent=*/true,
   3886            /*VariablyModified=*/false,
   3887            /*ContainsUnexpandedParameterPack=*/false),
   3888       Decl(D), InjectedType(TST) {
   3889     assert(isa<TemplateSpecializationType>(TST));
   3890     assert(!TST.hasQualifiers());
   3891     assert(TST->isDependentType());
   3892   }
   3893 
   3894 public:
   3895   QualType getInjectedSpecializationType() const { return InjectedType; }
   3896   const TemplateSpecializationType *getInjectedTST() const {
   3897     return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
   3898   }
   3899 
   3900   CXXRecordDecl *getDecl() const;
   3901 
   3902   bool isSugared() const { return false; }
   3903   QualType desugar() const { return QualType(this, 0); }
   3904 
   3905   static bool classof(const Type *T) {
   3906     return T->getTypeClass() == InjectedClassName;
   3907   }
   3908 };
   3909 
   3910 /// \brief The kind of a tag type.
   3911 enum TagTypeKind {
   3912   /// \brief The "struct" keyword.
   3913   TTK_Struct,
   3914   /// \brief The "__interface" keyword.
   3915   TTK_Interface,
   3916   /// \brief The "union" keyword.
   3917   TTK_Union,
   3918   /// \brief The "class" keyword.
   3919   TTK_Class,
   3920   /// \brief The "enum" keyword.
   3921   TTK_Enum
   3922 };
   3923 
   3924 /// \brief The elaboration keyword that precedes a qualified type name or
   3925 /// introduces an elaborated-type-specifier.
   3926 enum ElaboratedTypeKeyword {
   3927   /// \brief The "struct" keyword introduces the elaborated-type-specifier.
   3928   ETK_Struct,
   3929   /// \brief The "__interface" keyword introduces the elaborated-type-specifier.
   3930   ETK_Interface,
   3931   /// \brief The "union" keyword introduces the elaborated-type-specifier.
   3932   ETK_Union,
   3933   /// \brief The "class" keyword introduces the elaborated-type-specifier.
   3934   ETK_Class,
   3935   /// \brief The "enum" keyword introduces the elaborated-type-specifier.
   3936   ETK_Enum,
   3937   /// \brief The "typename" keyword precedes the qualified type name, e.g.,
   3938   /// \c typename T::type.
   3939   ETK_Typename,
   3940   /// \brief No keyword precedes the qualified type name.
   3941   ETK_None
   3942 };
   3943 
   3944 /// A helper class for Type nodes having an ElaboratedTypeKeyword.
   3945 /// The keyword in stored in the free bits of the base class.
   3946 /// Also provides a few static helpers for converting and printing
   3947 /// elaborated type keyword and tag type kind enumerations.
   3948 class TypeWithKeyword : public Type {
   3949 protected:
   3950   TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
   3951                   QualType Canonical, bool Dependent,
   3952                   bool InstantiationDependent, bool VariablyModified,
   3953                   bool ContainsUnexpandedParameterPack)
   3954   : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
   3955          ContainsUnexpandedParameterPack) {
   3956     TypeWithKeywordBits.Keyword = Keyword;
   3957   }
   3958 
   3959 public:
   3960   ElaboratedTypeKeyword getKeyword() const {
   3961     return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
   3962   }
   3963 
   3964   /// getKeywordForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3965   /// into an elaborated type keyword.
   3966   static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
   3967 
   3968   /// getTagTypeKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
   3969   /// into a tag type kind.  It is an error to provide a type specifier
   3970   /// which *isn't* a tag kind here.
   3971   static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
   3972 
   3973   /// getKeywordForTagDeclKind - Converts a TagTypeKind into an
   3974   /// elaborated type keyword.
   3975   static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
   3976 
   3977   /// getTagTypeKindForKeyword - Converts an elaborated type keyword into
   3978   // a TagTypeKind. It is an error to provide an elaborated type keyword
   3979   /// which *isn't* a tag kind here.
   3980   static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
   3981 
   3982   static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
   3983 
   3984   static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
   3985 
   3986   static StringRef getTagTypeKindName(TagTypeKind Kind) {
   3987     return getKeywordName(getKeywordForTagTypeKind(Kind));
   3988   }
   3989 
   3990   class CannotCastToThisType {};
   3991   static CannotCastToThisType classof(const Type *);
   3992 };
   3993 
   3994 /// \brief Represents a type that was referred to using an elaborated type
   3995 /// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
   3996 /// or both.
   3997 ///
   3998 /// This type is used to keep track of a type name as written in the
   3999 /// source code, including tag keywords and any nested-name-specifiers.
   4000 /// The type itself is always "sugar", used to express what was written
   4001 /// in the source code but containing no additional semantic information.
   4002 class ElaboratedType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4003 
   4004   /// \brief The nested name specifier containing the qualifier.
   4005   NestedNameSpecifier *NNS;
   4006 
   4007   /// \brief The type that this qualified name refers to.
   4008   QualType NamedType;
   4009 
   4010   ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4011                  QualType NamedType, QualType CanonType)
   4012     : TypeWithKeyword(Keyword, Elaborated, CanonType,
   4013                       NamedType->isDependentType(),
   4014                       NamedType->isInstantiationDependentType(),
   4015                       NamedType->isVariablyModifiedType(),
   4016                       NamedType->containsUnexpandedParameterPack()),
   4017       NNS(NNS), NamedType(NamedType) {
   4018     assert(!(Keyword == ETK_None && NNS == nullptr) &&
   4019            "ElaboratedType cannot have elaborated type keyword "
   4020            "and name qualifier both null.");
   4021   }
   4022 
   4023   friend class ASTContext;  // ASTContext creates these
   4024 
   4025 public:
   4026   ~ElaboratedType();
   4027 
   4028   /// \brief Retrieve the qualification on this type.
   4029   NestedNameSpecifier *getQualifier() const { return NNS; }
   4030 
   4031   /// \brief Retrieve the type named by the qualified-id.
   4032   QualType getNamedType() const { return NamedType; }
   4033 
   4034   /// \brief Remove a single level of sugar.
   4035   QualType desugar() const { return getNamedType(); }
   4036 
   4037   /// \brief Returns whether this type directly provides sugar.
   4038   bool isSugared() const { return true; }
   4039 
   4040   void Profile(llvm::FoldingSetNodeID &ID) {
   4041     Profile(ID, getKeyword(), NNS, NamedType);
   4042   }
   4043 
   4044   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4045                       NestedNameSpecifier *NNS, QualType NamedType) {
   4046     ID.AddInteger(Keyword);
   4047     ID.AddPointer(NNS);
   4048     NamedType.Profile(ID);
   4049   }
   4050 
   4051   static bool classof(const Type *T) {
   4052     return T->getTypeClass() == Elaborated;
   4053   }
   4054 };
   4055 
   4056 /// \brief Represents a qualified type name for which the type name is
   4057 /// dependent.
   4058 ///
   4059 /// DependentNameType represents a class of dependent types that involve a
   4060 /// possibly dependent nested-name-specifier (e.g., "T::") followed by a
   4061 /// name of a type. The DependentNameType may start with a "typename" (for a
   4062 /// typename-specifier), "class", "struct", "union", or "enum" (for a
   4063 /// dependent elaborated-type-specifier), or nothing (in contexts where we
   4064 /// know that we must be referring to a type, e.g., in a base class specifier).
   4065 /// Typically the nested-name-specifier is dependent, but in MSVC compatibility
   4066 /// mode, this type is used with non-dependent names to delay name lookup until
   4067 /// instantiation.
   4068 class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
   4069 
   4070   /// \brief The nested name specifier containing the qualifier.
   4071   NestedNameSpecifier *NNS;
   4072 
   4073   /// \brief The type that this typename specifier refers to.
   4074   const IdentifierInfo *Name;
   4075 
   4076   DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   4077                     const IdentifierInfo *Name, QualType CanonType)
   4078     : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
   4079                       /*InstantiationDependent=*/true,
   4080                       /*VariablyModified=*/false,
   4081                       NNS->containsUnexpandedParameterPack()),
   4082       NNS(NNS), Name(Name) {}
   4083 
   4084   friend class ASTContext;  // ASTContext creates these
   4085 
   4086 public:
   4087   /// \brief Retrieve the qualification on this type.
   4088   NestedNameSpecifier *getQualifier() const { return NNS; }
   4089 
   4090   /// \brief Retrieve the type named by the typename specifier as an
   4091   /// identifier.
   4092   ///
   4093   /// This routine will return a non-NULL identifier pointer when the
   4094   /// form of the original typename was terminated by an identifier,
   4095   /// e.g., "typename T::type".
   4096   const IdentifierInfo *getIdentifier() const {
   4097     return Name;
   4098   }
   4099 
   4100   bool isSugared() const { return false; }
   4101   QualType desugar() const { return QualType(this, 0); }
   4102 
   4103   void Profile(llvm::FoldingSetNodeID &ID) {
   4104     Profile(ID, getKeyword(), NNS, Name);
   4105   }
   4106 
   4107   static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
   4108                       NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
   4109     ID.AddInteger(Keyword);
   4110     ID.AddPointer(NNS);
   4111     ID.AddPointer(Name);
   4112   }
   4113 
   4114   static bool classof(const Type *T) {
   4115     return T->getTypeClass() == DependentName;
   4116   }
   4117 };
   4118 
   4119 /// DependentTemplateSpecializationType - Represents a template
   4120 /// specialization type whose template cannot be resolved, e.g.
   4121 ///   A<T>::template B<T>
   4122 class DependentTemplateSpecializationType :
   4123   public TypeWithKeyword, public llvm::FoldingSetNode {
   4124 
   4125   /// \brief The nested name specifier containing the qualifier.
   4126   NestedNameSpecifier *NNS;
   4127 
   4128   /// \brief The identifier of the template.
   4129   const IdentifierInfo *Name;
   4130 
   4131   /// \brief - The number of template arguments named in this class
   4132   /// template specialization.
   4133   unsigned NumArgs;
   4134 
   4135   const TemplateArgument *getArgBuffer() const {
   4136     return reinterpret_cast<const TemplateArgument*>(this+1);
   4137   }
   4138   TemplateArgument *getArgBuffer() {
   4139     return reinterpret_cast<TemplateArgument*>(this+1);
   4140   }
   4141 
   4142   DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   4143                                       NestedNameSpecifier *NNS,
   4144                                       const IdentifierInfo *Name,
   4145                                       unsigned NumArgs,
   4146                                       const TemplateArgument *Args,
   4147                                       QualType Canon);
   4148 
   4149   friend class ASTContext;  // ASTContext creates these
   4150 
   4151 public:
   4152   NestedNameSpecifier *getQualifier() const { return NNS; }
   4153   const IdentifierInfo *getIdentifier() const { return Name; }
   4154 
   4155   /// \brief Retrieve the template arguments.
   4156   const TemplateArgument *getArgs() const {
   4157     return getArgBuffer();
   4158   }
   4159 
   4160   /// \brief Retrieve the number of template arguments.
   4161   unsigned getNumArgs() const { return NumArgs; }
   4162 
   4163   const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
   4164 
   4165   typedef const TemplateArgument * iterator;
   4166   iterator begin() const { return getArgs(); }
   4167   iterator end() const; // inline in TemplateBase.h
   4168 
   4169   bool isSugared() const { return false; }
   4170   QualType desugar() const { return QualType(this, 0); }
   4171 
   4172   void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
   4173     Profile(ID, Context, getKeyword(), NNS, Name, NumArgs, getArgs());
   4174   }
   4175 
   4176   static void Profile(llvm::FoldingSetNodeID &ID,
   4177                       const ASTContext &Context,
   4178                       ElaboratedTypeKeyword Keyword,
   4179                       NestedNameSpecifier *Qualifier,
   4180                       const IdentifierInfo *Name,
   4181                       unsigned NumArgs,
   4182                       const TemplateArgument *Args);
   4183 
   4184   static bool classof(const Type *T) {
   4185     return T->getTypeClass() == DependentTemplateSpecialization;
   4186   }
   4187 };
   4188 
   4189 /// \brief Represents a pack expansion of types.
   4190 ///
   4191 /// Pack expansions are part of C++0x variadic templates. A pack
   4192 /// expansion contains a pattern, which itself contains one or more
   4193 /// "unexpanded" parameter packs. When instantiated, a pack expansion
   4194 /// produces a series of types, each instantiated from the pattern of
   4195 /// the expansion, where the Ith instantiation of the pattern uses the
   4196 /// Ith arguments bound to each of the unexpanded parameter packs. The
   4197 /// pack expansion is considered to "expand" these unexpanded
   4198 /// parameter packs.
   4199 ///
   4200 /// \code
   4201 /// template<typename ...Types> struct tuple;
   4202 ///
   4203 /// template<typename ...Types>
   4204 /// struct tuple_of_references {
   4205 ///   typedef tuple<Types&...> type;
   4206 /// };
   4207 /// \endcode
   4208 ///
   4209 /// Here, the pack expansion \c Types&... is represented via a
   4210 /// PackExpansionType whose pattern is Types&.
   4211 class PackExpansionType : public Type, public llvm::FoldingSetNode {
   4212   /// \brief The pattern of the pack expansion.
   4213   QualType Pattern;
   4214 
   4215   /// \brief The number of expansions that this pack expansion will
   4216   /// generate when substituted (+1), or indicates that
   4217   ///
   4218   /// This field will only have a non-zero value when some of the parameter
   4219   /// packs that occur within the pattern have been substituted but others have
   4220   /// not.
   4221   unsigned NumExpansions;
   4222 
   4223   PackExpansionType(QualType Pattern, QualType Canon,
   4224                     Optional<unsigned> NumExpansions)
   4225     : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
   4226            /*InstantiationDependent=*/true,
   4227            /*VariablyModified=*/Pattern->isVariablyModifiedType(),
   4228            /*ContainsUnexpandedParameterPack=*/false),
   4229       Pattern(Pattern),
   4230       NumExpansions(NumExpansions? *NumExpansions + 1: 0) { }
   4231 
   4232   friend class ASTContext;  // ASTContext creates these
   4233 
   4234 public:
   4235   /// \brief Retrieve the pattern of this pack expansion, which is the
   4236   /// type that will be repeatedly instantiated when instantiating the
   4237   /// pack expansion itself.
   4238   QualType getPattern() const { return Pattern; }
   4239 
   4240   /// \brief Retrieve the number of expansions that this pack expansion will
   4241   /// generate, if known.
   4242   Optional<unsigned> getNumExpansions() const {
   4243     if (NumExpansions)
   4244       return NumExpansions - 1;
   4245 
   4246     return None;
   4247   }
   4248 
   4249   bool isSugared() const { return !Pattern->isDependentType(); }
   4250   QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
   4251 
   4252   void Profile(llvm::FoldingSetNodeID &ID) {
   4253     Profile(ID, getPattern(), getNumExpansions());
   4254   }
   4255 
   4256   static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
   4257                       Optional<unsigned> NumExpansions) {
   4258     ID.AddPointer(Pattern.getAsOpaquePtr());
   4259     ID.AddBoolean(NumExpansions.hasValue());
   4260     if (NumExpansions)
   4261       ID.AddInteger(*NumExpansions);
   4262   }
   4263 
   4264   static bool classof(const Type *T) {
   4265     return T->getTypeClass() == PackExpansion;
   4266   }
   4267 };
   4268 
   4269 /// ObjCObjectType - Represents a class type in Objective C.
   4270 /// Every Objective C type is a combination of a base type and a
   4271 /// list of protocols.
   4272 ///
   4273 /// Given the following declarations:
   4274 /// \code
   4275 ///   \@class C;
   4276 ///   \@protocol P;
   4277 /// \endcode
   4278 ///
   4279 /// 'C' is an ObjCInterfaceType C.  It is sugar for an ObjCObjectType
   4280 /// with base C and no protocols.
   4281 ///
   4282 /// 'C<P>' is an ObjCObjectType with base C and protocol list [P].
   4283 ///
   4284 /// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
   4285 /// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
   4286 /// and no protocols.
   4287 ///
   4288 /// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
   4289 /// with base BuiltinType::ObjCIdType and protocol list [P].  Eventually
   4290 /// this should get its own sugar class to better represent the source.
   4291 class ObjCObjectType : public Type {
   4292   // ObjCObjectType.NumProtocols - the number of protocols stored
   4293   // after the ObjCObjectPointerType node.
   4294   //
   4295   // These protocols are those written directly on the type.  If
   4296   // protocol qualifiers ever become additive, the iterators will need
   4297   // to get kindof complicated.
   4298   //
   4299   // In the canonical object type, these are sorted alphabetically
   4300   // and uniqued.
   4301 
   4302   /// Either a BuiltinType or an InterfaceType or sugar for either.
   4303   QualType BaseType;
   4304 
   4305   ObjCProtocolDecl * const *getProtocolStorage() const {
   4306     return const_cast<ObjCObjectType*>(this)->getProtocolStorage();
   4307   }
   4308 
   4309   ObjCProtocolDecl **getProtocolStorage();
   4310 
   4311 protected:
   4312   ObjCObjectType(QualType Canonical, QualType Base,
   4313                  ObjCProtocolDecl * const *Protocols, unsigned NumProtocols);
   4314 
   4315   enum Nonce_ObjCInterface { Nonce_ObjCInterface };
   4316   ObjCObjectType(enum Nonce_ObjCInterface)
   4317         : Type(ObjCInterface, QualType(), false, false, false, false),
   4318       BaseType(QualType(this_(), 0)) {
   4319     ObjCObjectTypeBits.NumProtocols = 0;
   4320   }
   4321 
   4322 public:
   4323   /// getBaseType - Gets the base type of this object type.  This is
   4324   /// always (possibly sugar for) one of:
   4325   ///  - the 'id' builtin type (as opposed to the 'id' type visible to the
   4326   ///    user, which is a typedef for an ObjCObjectPointerType)
   4327   ///  - the 'Class' builtin type (same caveat)
   4328   ///  - an ObjCObjectType (currently always an ObjCInterfaceType)
   4329   QualType getBaseType() const { return BaseType; }
   4330 
   4331   bool isObjCId() const {
   4332     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
   4333   }
   4334   bool isObjCClass() const {
   4335     return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
   4336   }
   4337   bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
   4338   bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
   4339   bool isObjCUnqualifiedIdOrClass() const {
   4340     if (!qual_empty()) return false;
   4341     if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
   4342       return T->getKind() == BuiltinType::ObjCId ||
   4343              T->getKind() == BuiltinType::ObjCClass;
   4344     return false;
   4345   }
   4346   bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
   4347   bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
   4348 
   4349   /// Gets the interface declaration for this object type, if the base type
   4350   /// really is an interface.
   4351   ObjCInterfaceDecl *getInterface() const;
   4352 
   4353   typedef ObjCProtocolDecl * const *qual_iterator;
   4354   typedef llvm::iterator_range<qual_iterator> qual_range;
   4355 
   4356   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   4357   qual_iterator qual_begin() const { return getProtocolStorage(); }
   4358   qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
   4359 
   4360   bool qual_empty() const { return getNumProtocols() == 0; }
   4361 
   4362   /// getNumProtocols - Return the number of qualifying protocols in this
   4363   /// interface type, or 0 if there are none.
   4364   unsigned getNumProtocols() const { return ObjCObjectTypeBits.NumProtocols; }
   4365 
   4366   /// \brief Fetch a protocol by index.
   4367   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4368     assert(I < getNumProtocols() && "Out-of-range protocol access");
   4369     return qual_begin()[I];
   4370   }
   4371 
   4372   bool isSugared() const { return false; }
   4373   QualType desugar() const { return QualType(this, 0); }
   4374 
   4375   static bool classof(const Type *T) {
   4376     return T->getTypeClass() == ObjCObject ||
   4377            T->getTypeClass() == ObjCInterface;
   4378   }
   4379 };
   4380 
   4381 /// ObjCObjectTypeImpl - A class providing a concrete implementation
   4382 /// of ObjCObjectType, so as to not increase the footprint of
   4383 /// ObjCInterfaceType.  Code outside of ASTContext and the core type
   4384 /// system should not reference this type.
   4385 class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
   4386   friend class ASTContext;
   4387 
   4388   // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
   4389   // will need to be modified.
   4390 
   4391   ObjCObjectTypeImpl(QualType Canonical, QualType Base,
   4392                      ObjCProtocolDecl * const *Protocols,
   4393                      unsigned NumProtocols)
   4394     : ObjCObjectType(Canonical, Base, Protocols, NumProtocols) {}
   4395 
   4396 public:
   4397   void Profile(llvm::FoldingSetNodeID &ID);
   4398   static void Profile(llvm::FoldingSetNodeID &ID,
   4399                       QualType Base,
   4400                       ObjCProtocolDecl *const *protocols,
   4401                       unsigned NumProtocols);
   4402 };
   4403 
   4404 inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorage() {
   4405   return reinterpret_cast<ObjCProtocolDecl**>(
   4406             static_cast<ObjCObjectTypeImpl*>(this) + 1);
   4407 }
   4408 
   4409 /// ObjCInterfaceType - Interfaces are the core concept in Objective-C for
   4410 /// object oriented design.  They basically correspond to C++ classes.  There
   4411 /// are two kinds of interface types, normal interfaces like "NSString" and
   4412 /// qualified interfaces, which are qualified with a protocol list like
   4413 /// "NSString<NSCopyable, NSAmazing>".
   4414 ///
   4415 /// ObjCInterfaceType guarantees the following properties when considered
   4416 /// as a subtype of its superclass, ObjCObjectType:
   4417 ///   - There are no protocol qualifiers.  To reinforce this, code which
   4418 ///     tries to invoke the protocol methods via an ObjCInterfaceType will
   4419 ///     fail to compile.
   4420 ///   - It is its own base type.  That is, if T is an ObjCInterfaceType*,
   4421 ///     T->getBaseType() == QualType(T, 0).
   4422 class ObjCInterfaceType : public ObjCObjectType {
   4423   mutable ObjCInterfaceDecl *Decl;
   4424 
   4425   ObjCInterfaceType(const ObjCInterfaceDecl *D)
   4426     : ObjCObjectType(Nonce_ObjCInterface),
   4427       Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
   4428   friend class ASTContext;  // ASTContext creates these.
   4429   friend class ASTReader;
   4430   friend class ObjCInterfaceDecl;
   4431 
   4432 public:
   4433   /// getDecl - Get the declaration of this interface.
   4434   ObjCInterfaceDecl *getDecl() const { return Decl; }
   4435 
   4436   bool isSugared() const { return false; }
   4437   QualType desugar() const { return QualType(this, 0); }
   4438 
   4439   static bool classof(const Type *T) {
   4440     return T->getTypeClass() == ObjCInterface;
   4441   }
   4442 
   4443   // Nonsense to "hide" certain members of ObjCObjectType within this
   4444   // class.  People asking for protocols on an ObjCInterfaceType are
   4445   // not going to get what they want: ObjCInterfaceTypes are
   4446   // guaranteed to have no protocols.
   4447   enum {
   4448     qual_iterator,
   4449     qual_begin,
   4450     qual_end,
   4451     getNumProtocols,
   4452     getProtocol
   4453   };
   4454 };
   4455 
   4456 inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
   4457   if (const ObjCInterfaceType *T =
   4458         getBaseType()->getAs<ObjCInterfaceType>())
   4459     return T->getDecl();
   4460   return nullptr;
   4461 }
   4462 
   4463 /// ObjCObjectPointerType - Used to represent a pointer to an
   4464 /// Objective C object.  These are constructed from pointer
   4465 /// declarators when the pointee type is an ObjCObjectType (or sugar
   4466 /// for one).  In addition, the 'id' and 'Class' types are typedefs
   4467 /// for these, and the protocol-qualified types 'id<P>' and 'Class<P>'
   4468 /// are translated into these.
   4469 ///
   4470 /// Pointers to pointers to Objective C objects are still PointerTypes;
   4471 /// only the first level of pointer gets it own type implementation.
   4472 class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
   4473   QualType PointeeType;
   4474 
   4475   ObjCObjectPointerType(QualType Canonical, QualType Pointee)
   4476     : Type(ObjCObjectPointer, Canonical, false, false, false, false),
   4477       PointeeType(Pointee) {}
   4478   friend class ASTContext;  // ASTContext creates these.
   4479 
   4480 public:
   4481   /// getPointeeType - Gets the type pointed to by this ObjC pointer.
   4482   /// The result will always be an ObjCObjectType or sugar thereof.
   4483   QualType getPointeeType() const { return PointeeType; }
   4484 
   4485   /// getObjCObjectType - Gets the type pointed to by this ObjC
   4486   /// pointer.  This method always returns non-null.
   4487   ///
   4488   /// This method is equivalent to getPointeeType() except that
   4489   /// it discards any typedefs (or other sugar) between this
   4490   /// type and the "outermost" object type.  So for:
   4491   /// \code
   4492   ///   \@class A; \@protocol P; \@protocol Q;
   4493   ///   typedef A<P> AP;
   4494   ///   typedef A A1;
   4495   ///   typedef A1<P> A1P;
   4496   ///   typedef A1P<Q> A1PQ;
   4497   /// \endcode
   4498   /// For 'A*', getObjectType() will return 'A'.
   4499   /// For 'A<P>*', getObjectType() will return 'A<P>'.
   4500   /// For 'AP*', getObjectType() will return 'A<P>'.
   4501   /// For 'A1*', getObjectType() will return 'A'.
   4502   /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
   4503   /// For 'A1P*', getObjectType() will return 'A1<P>'.
   4504   /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
   4505   ///   adding protocols to a protocol-qualified base discards the
   4506   ///   old qualifiers (for now).  But if it didn't, getObjectType()
   4507   ///   would return 'A1P<Q>' (and we'd have to make iterating over
   4508   ///   qualifiers more complicated).
   4509   const ObjCObjectType *getObjectType() const {
   4510     return PointeeType->castAs<ObjCObjectType>();
   4511   }
   4512 
   4513   /// getInterfaceType - If this pointer points to an Objective C
   4514   /// \@interface type, gets the type for that interface.  Any protocol
   4515   /// qualifiers on the interface are ignored.
   4516   ///
   4517   /// \return null if the base type for this pointer is 'id' or 'Class'
   4518   const ObjCInterfaceType *getInterfaceType() const {
   4519     return getObjectType()->getBaseType()->getAs<ObjCInterfaceType>();
   4520   }
   4521 
   4522   /// getInterfaceDecl - If this pointer points to an Objective \@interface
   4523   /// type, gets the declaration for that interface.
   4524   ///
   4525   /// \return null if the base type for this pointer is 'id' or 'Class'
   4526   ObjCInterfaceDecl *getInterfaceDecl() const {
   4527     return getObjectType()->getInterface();
   4528   }
   4529 
   4530   /// isObjCIdType - True if this is equivalent to the 'id' type, i.e. if
   4531   /// its object type is the primitive 'id' type with no protocols.
   4532   bool isObjCIdType() const {
   4533     return getObjectType()->isObjCUnqualifiedId();
   4534   }
   4535 
   4536   /// isObjCClassType - True if this is equivalent to the 'Class' type,
   4537   /// i.e. if its object tive is the primitive 'Class' type with no protocols.
   4538   bool isObjCClassType() const {
   4539     return getObjectType()->isObjCUnqualifiedClass();
   4540   }
   4541 
   4542   /// isObjCQualifiedIdType - True if this is equivalent to 'id<P>' for some
   4543   /// non-empty set of protocols.
   4544   bool isObjCQualifiedIdType() const {
   4545     return getObjectType()->isObjCQualifiedId();
   4546   }
   4547 
   4548   /// isObjCQualifiedClassType - True if this is equivalent to 'Class<P>' for
   4549   /// some non-empty set of protocols.
   4550   bool isObjCQualifiedClassType() const {
   4551     return getObjectType()->isObjCQualifiedClass();
   4552   }
   4553 
   4554   /// An iterator over the qualifiers on the object type.  Provided
   4555   /// for convenience.  This will always iterate over the full set of
   4556   /// protocols on a type, not just those provided directly.
   4557   typedef ObjCObjectType::qual_iterator qual_iterator;
   4558   typedef llvm::iterator_range<qual_iterator> qual_range;
   4559 
   4560   qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
   4561   qual_iterator qual_begin() const {
   4562     return getObjectType()->qual_begin();
   4563   }
   4564   qual_iterator qual_end() const {
   4565     return getObjectType()->qual_end();
   4566   }
   4567   bool qual_empty() const { return getObjectType()->qual_empty(); }
   4568 
   4569   /// getNumProtocols - Return the number of qualifying protocols on
   4570   /// the object type.
   4571   unsigned getNumProtocols() const {
   4572     return getObjectType()->getNumProtocols();
   4573   }
   4574 
   4575   /// \brief Retrieve a qualifying protocol by index on the object
   4576   /// type.
   4577   ObjCProtocolDecl *getProtocol(unsigned I) const {
   4578     return getObjectType()->getProtocol(I);
   4579   }
   4580 
   4581   bool isSugared() const { return false; }
   4582   QualType desugar() const { return QualType(this, 0); }
   4583 
   4584   void Profile(llvm::FoldingSetNodeID &ID) {
   4585     Profile(ID, getPointeeType());
   4586   }
   4587   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4588     ID.AddPointer(T.getAsOpaquePtr());
   4589   }
   4590   static bool classof(const Type *T) {
   4591     return T->getTypeClass() == ObjCObjectPointer;
   4592   }
   4593 };
   4594 
   4595 class AtomicType : public Type, public llvm::FoldingSetNode {
   4596   QualType ValueType;
   4597 
   4598   AtomicType(QualType ValTy, QualType Canonical)
   4599     : Type(Atomic, Canonical, ValTy->isDependentType(),
   4600            ValTy->isInstantiationDependentType(),
   4601            ValTy->isVariablyModifiedType(),
   4602            ValTy->containsUnexpandedParameterPack()),
   4603       ValueType(ValTy) {}
   4604   friend class ASTContext;  // ASTContext creates these.
   4605 
   4606   public:
   4607   /// getValueType - Gets the type contained by this atomic type, i.e.
   4608   /// the type returned by performing an atomic load of this atomic type.
   4609   QualType getValueType() const { return ValueType; }
   4610 
   4611   bool isSugared() const { return false; }
   4612   QualType desugar() const { return QualType(this, 0); }
   4613 
   4614   void Profile(llvm::FoldingSetNodeID &ID) {
   4615     Profile(ID, getValueType());
   4616   }
   4617   static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
   4618     ID.AddPointer(T.getAsOpaquePtr());
   4619   }
   4620   static bool classof(const Type *T) {
   4621     return T->getTypeClass() == Atomic;
   4622   }
   4623 };
   4624 
   4625 /// A qualifier set is used to build a set of qualifiers.
   4626 class QualifierCollector : public Qualifiers {
   4627 public:
   4628   QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
   4629 
   4630   /// Collect any qualifiers on the given type and return an
   4631   /// unqualified type.  The qualifiers are assumed to be consistent
   4632   /// with those already in the type.
   4633   const Type *strip(QualType type) {
   4634     addFastQualifiers(type.getLocalFastQualifiers());
   4635     if (!type.hasLocalNonFastQualifiers())
   4636       return type.getTypePtrUnsafe();
   4637 
   4638     const ExtQuals *extQuals = type.getExtQualsUnsafe();
   4639     addConsistentQualifiers(extQuals->getQualifiers());
   4640     return extQuals->getBaseType();
   4641   }
   4642 
   4643   /// Apply the collected qualifiers to the given type.
   4644   QualType apply(const ASTContext &Context, QualType QT) const;
   4645 
   4646   /// Apply the collected qualifiers to the given type.
   4647   QualType apply(const ASTContext &Context, const Type* T) const;
   4648 };
   4649 
   4650 
   4651 // Inline function definitions.
   4652 
   4653 inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
   4654   SplitQualType desugar =
   4655     Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
   4656   desugar.Quals.addConsistentQualifiers(Quals);
   4657   return desugar;
   4658 }
   4659 
   4660 inline const Type *QualType::getTypePtr() const {
   4661   return getCommonPtr()->BaseType;
   4662 }
   4663 
   4664 inline const Type *QualType::getTypePtrOrNull() const {
   4665   return (isNull() ? nullptr : getCommonPtr()->BaseType);
   4666 }
   4667 
   4668 inline SplitQualType QualType::split() const {
   4669   if (!hasLocalNonFastQualifiers())
   4670     return SplitQualType(getTypePtrUnsafe(),
   4671                          Qualifiers::fromFastMask(getLocalFastQualifiers()));
   4672 
   4673   const ExtQuals *eq = getExtQualsUnsafe();
   4674   Qualifiers qs = eq->getQualifiers();
   4675   qs.addFastQualifiers(getLocalFastQualifiers());
   4676   return SplitQualType(eq->getBaseType(), qs);
   4677 }
   4678 
   4679 inline Qualifiers QualType::getLocalQualifiers() const {
   4680   Qualifiers Quals;
   4681   if (hasLocalNonFastQualifiers())
   4682     Quals = getExtQualsUnsafe()->getQualifiers();
   4683   Quals.addFastQualifiers(getLocalFastQualifiers());
   4684   return Quals;
   4685 }
   4686 
   4687 inline Qualifiers QualType::getQualifiers() const {
   4688   Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
   4689   quals.addFastQualifiers(getLocalFastQualifiers());
   4690   return quals;
   4691 }
   4692 
   4693 inline unsigned QualType::getCVRQualifiers() const {
   4694   unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
   4695   cvr |= getLocalCVRQualifiers();
   4696   return cvr;
   4697 }
   4698 
   4699 inline QualType QualType::getCanonicalType() const {
   4700   QualType canon = getCommonPtr()->CanonicalType;
   4701   return canon.withFastQualifiers(getLocalFastQualifiers());
   4702 }
   4703 
   4704 inline bool QualType::isCanonical() const {
   4705   return getTypePtr()->isCanonicalUnqualified();
   4706 }
   4707 
   4708 inline bool QualType::isCanonicalAsParam() const {
   4709   if (!isCanonical()) return false;
   4710   if (hasLocalQualifiers()) return false;
   4711 
   4712   const Type *T = getTypePtr();
   4713   if (T->isVariablyModifiedType() && T->hasSizedVLAType())
   4714     return false;
   4715 
   4716   return !isa<FunctionType>(T) && !isa<ArrayType>(T);
   4717 }
   4718 
   4719 inline bool QualType::isConstQualified() const {
   4720   return isLocalConstQualified() ||
   4721          getCommonPtr()->CanonicalType.isLocalConstQualified();
   4722 }
   4723 
   4724 inline bool QualType::isRestrictQualified() const {
   4725   return isLocalRestrictQualified() ||
   4726          getCommonPtr()->CanonicalType.isLocalRestrictQualified();
   4727 }
   4728 
   4729 
   4730 inline bool QualType::isVolatileQualified() const {
   4731   return isLocalVolatileQualified() ||
   4732          getCommonPtr()->CanonicalType.isLocalVolatileQualified();
   4733 }
   4734 
   4735 inline bool QualType::hasQualifiers() const {
   4736   return hasLocalQualifiers() ||
   4737          getCommonPtr()->CanonicalType.hasLocalQualifiers();
   4738 }
   4739 
   4740 inline QualType QualType::getUnqualifiedType() const {
   4741   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4742     return QualType(getTypePtr(), 0);
   4743 
   4744   return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
   4745 }
   4746 
   4747 inline SplitQualType QualType::getSplitUnqualifiedType() const {
   4748   if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
   4749     return split();
   4750 
   4751   return getSplitUnqualifiedTypeImpl(*this);
   4752 }
   4753 
   4754 inline void QualType::removeLocalConst() {
   4755   removeLocalFastQualifiers(Qualifiers::Const);
   4756 }
   4757 
   4758 inline void QualType::removeLocalRestrict() {
   4759   removeLocalFastQualifiers(Qualifiers::Restrict);
   4760 }
   4761 
   4762 inline void QualType::removeLocalVolatile() {
   4763   removeLocalFastQualifiers(Qualifiers::Volatile);
   4764 }
   4765 
   4766 inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
   4767   assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits");
   4768   assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask);
   4769 
   4770   // Fast path: we don't need to touch the slow qualifiers.
   4771   removeLocalFastQualifiers(Mask);
   4772 }
   4773 
   4774 /// getAddressSpace - Return the address space of this type.
   4775 inline unsigned QualType::getAddressSpace() const {
   4776   return getQualifiers().getAddressSpace();
   4777 }
   4778 
   4779 /// getObjCGCAttr - Return the gc attribute of this type.
   4780 inline Qualifiers::GC QualType::getObjCGCAttr() const {
   4781   return getQualifiers().getObjCGCAttr();
   4782 }
   4783 
   4784 inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
   4785   if (const PointerType *PT = t.getAs<PointerType>()) {
   4786     if (const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>())
   4787       return FT->getExtInfo();
   4788   } else if (const FunctionType *FT = t.getAs<FunctionType>())
   4789     return FT->getExtInfo();
   4790 
   4791   return FunctionType::ExtInfo();
   4792 }
   4793 
   4794 inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
   4795   return getFunctionExtInfo(*t);
   4796 }
   4797 
   4798 /// isMoreQualifiedThan - Determine whether this type is more
   4799 /// qualified than the Other type. For example, "const volatile int"
   4800 /// is more qualified than "const int", "volatile int", and
   4801 /// "int". However, it is not more qualified than "const volatile
   4802 /// int".
   4803 inline bool QualType::isMoreQualifiedThan(QualType other) const {
   4804   Qualifiers myQuals = getQualifiers();
   4805   Qualifiers otherQuals = other.getQualifiers();
   4806   return (myQuals != otherQuals && myQuals.compatiblyIncludes(otherQuals));
   4807 }
   4808 
   4809 /// isAtLeastAsQualifiedAs - Determine whether this type is at last
   4810 /// as qualified as the Other type. For example, "const volatile
   4811 /// int" is at least as qualified as "const int", "volatile int",
   4812 /// "int", and "const volatile int".
   4813 inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
   4814   return getQualifiers().compatiblyIncludes(other.getQualifiers());
   4815 }
   4816 
   4817 /// getNonReferenceType - If Type is a reference type (e.g., const
   4818 /// int&), returns the type that the reference refers to ("const
   4819 /// int"). Otherwise, returns the type itself. This routine is used
   4820 /// throughout Sema to implement C++ 5p6:
   4821 ///
   4822 ///   If an expression initially has the type "reference to T" (8.3.2,
   4823 ///   8.5.3), the type is adjusted to "T" prior to any further
   4824 ///   analysis, the expression designates the object or function
   4825 ///   denoted by the reference, and the expression is an lvalue.
   4826 inline QualType QualType::getNonReferenceType() const {
   4827   if (const ReferenceType *RefType = (*this)->getAs<ReferenceType>())
   4828     return RefType->getPointeeType();
   4829   else
   4830     return *this;
   4831 }
   4832 
   4833 inline bool QualType::isCForbiddenLValueType() const {
   4834   return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
   4835           getTypePtr()->isFunctionType());
   4836 }
   4837 
   4838 /// \brief Tests whether the type is categorized as a fundamental type.
   4839 ///
   4840 /// \returns True for types specified in C++0x [basic.fundamental].
   4841 inline bool Type::isFundamentalType() const {
   4842   return isVoidType() ||
   4843          // FIXME: It's really annoying that we don't have an
   4844          // 'isArithmeticType()' which agrees with the standard definition.
   4845          (isArithmeticType() && !isEnumeralType());
   4846 }
   4847 
   4848 /// \brief Tests whether the type is categorized as a compound type.
   4849 ///
   4850 /// \returns True for types specified in C++0x [basic.compound].
   4851 inline bool Type::isCompoundType() const {
   4852   // C++0x [basic.compound]p1:
   4853   //   Compound types can be constructed in the following ways:
   4854   //    -- arrays of objects of a given type [...];
   4855   return isArrayType() ||
   4856   //    -- functions, which have parameters of given types [...];
   4857          isFunctionType() ||
   4858   //    -- pointers to void or objects or functions [...];
   4859          isPointerType() ||
   4860   //    -- references to objects or functions of a given type. [...]
   4861          isReferenceType() ||
   4862   //    -- classes containing a sequence of objects of various types, [...];
   4863          isRecordType() ||
   4864   //    -- unions, which are classes capable of containing objects of different
   4865   //               types at different times;
   4866          isUnionType() ||
   4867   //    -- enumerations, which comprise a set of named constant values. [...];
   4868          isEnumeralType() ||
   4869   //    -- pointers to non-static class members, [...].
   4870          isMemberPointerType();
   4871 }
   4872 
   4873 inline bool Type::isFunctionType() const {
   4874   return isa<FunctionType>(CanonicalType);
   4875 }
   4876 inline bool Type::isPointerType() const {
   4877   return isa<PointerType>(CanonicalType);
   4878 }
   4879 inline bool Type::isAnyPointerType() const {
   4880   return isPointerType() || isObjCObjectPointerType();
   4881 }
   4882 inline bool Type::isBlockPointerType() const {
   4883   return isa<BlockPointerType>(CanonicalType);
   4884 }
   4885 inline bool Type::isReferenceType() const {
   4886   return isa<ReferenceType>(CanonicalType);
   4887 }
   4888 inline bool Type::isLValueReferenceType() const {
   4889   return isa<LValueReferenceType>(CanonicalType);
   4890 }
   4891 inline bool Type::isRValueReferenceType() const {
   4892   return isa<RValueReferenceType>(CanonicalType);
   4893 }
   4894 inline bool Type::isFunctionPointerType() const {
   4895   if (const PointerType *T = getAs<PointerType>())
   4896     return T->getPointeeType()->isFunctionType();
   4897   else
   4898     return false;
   4899 }
   4900 inline bool Type::isMemberPointerType() const {
   4901   return isa<MemberPointerType>(CanonicalType);
   4902 }
   4903 inline bool Type::isMemberFunctionPointerType() const {
   4904   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4905     return T->isMemberFunctionPointer();
   4906   else
   4907     return false;
   4908 }
   4909 inline bool Type::isMemberDataPointerType() const {
   4910   if (const MemberPointerType* T = getAs<MemberPointerType>())
   4911     return T->isMemberDataPointer();
   4912   else
   4913     return false;
   4914 }
   4915 inline bool Type::isArrayType() const {
   4916   return isa<ArrayType>(CanonicalType);
   4917 }
   4918 inline bool Type::isConstantArrayType() const {
   4919   return isa<ConstantArrayType>(CanonicalType);
   4920 }
   4921 inline bool Type::isIncompleteArrayType() const {
   4922   return isa<IncompleteArrayType>(CanonicalType);
   4923 }
   4924 inline bool Type::isVariableArrayType() const {
   4925   return isa<VariableArrayType>(CanonicalType);
   4926 }
   4927 inline bool Type::isDependentSizedArrayType() const {
   4928   return isa<DependentSizedArrayType>(CanonicalType);
   4929 }
   4930 inline bool Type::isBuiltinType() const {
   4931   return isa<BuiltinType>(CanonicalType);
   4932 }
   4933 inline bool Type::isRecordType() const {
   4934   return isa<RecordType>(CanonicalType);
   4935 }
   4936 inline bool Type::isEnumeralType() const {
   4937   return isa<EnumType>(CanonicalType);
   4938 }
   4939 inline bool Type::isAnyComplexType() const {
   4940   return isa<ComplexType>(CanonicalType);
   4941 }
   4942 inline bool Type::isVectorType() const {
   4943   return isa<VectorType>(CanonicalType);
   4944 }
   4945 inline bool Type::isExtVectorType() const {
   4946   return isa<ExtVectorType>(CanonicalType);
   4947 }
   4948 inline bool Type::isObjCObjectPointerType() const {
   4949   return isa<ObjCObjectPointerType>(CanonicalType);
   4950 }
   4951 inline bool Type::isObjCObjectType() const {
   4952   return isa<ObjCObjectType>(CanonicalType);
   4953 }
   4954 inline bool Type::isObjCObjectOrInterfaceType() const {
   4955   return isa<ObjCInterfaceType>(CanonicalType) ||
   4956     isa<ObjCObjectType>(CanonicalType);
   4957 }
   4958 inline bool Type::isAtomicType() const {
   4959   return isa<AtomicType>(CanonicalType);
   4960 }
   4961 
   4962 inline bool Type::isObjCQualifiedIdType() const {
   4963   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4964     return OPT->isObjCQualifiedIdType();
   4965   return false;
   4966 }
   4967 inline bool Type::isObjCQualifiedClassType() const {
   4968   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4969     return OPT->isObjCQualifiedClassType();
   4970   return false;
   4971 }
   4972 inline bool Type::isObjCIdType() const {
   4973   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4974     return OPT->isObjCIdType();
   4975   return false;
   4976 }
   4977 inline bool Type::isObjCClassType() const {
   4978   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
   4979     return OPT->isObjCClassType();
   4980   return false;
   4981 }
   4982 inline bool Type::isObjCSelType() const {
   4983   if (const PointerType *OPT = getAs<PointerType>())
   4984     return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
   4985   return false;
   4986 }
   4987 inline bool Type::isObjCBuiltinType() const {
   4988   return isObjCIdType() || isObjCClassType() || isObjCSelType();
   4989 }
   4990 
   4991 inline bool Type::isImage1dT() const {
   4992   return isSpecificBuiltinType(BuiltinType::OCLImage1d);
   4993 }
   4994 
   4995 inline bool Type::isImage1dArrayT() const {
   4996   return isSpecificBuiltinType(BuiltinType::OCLImage1dArray);
   4997 }
   4998 
   4999 inline bool Type::isImage1dBufferT() const {
   5000   return isSpecificBuiltinType(BuiltinType::OCLImage1dBuffer);
   5001 }
   5002 
   5003 inline bool Type::isImage2dT() const {
   5004   return isSpecificBuiltinType(BuiltinType::OCLImage2d);
   5005 }
   5006 
   5007 inline bool Type::isImage2dArrayT() const {
   5008   return isSpecificBuiltinType(BuiltinType::OCLImage2dArray);
   5009 }
   5010 
   5011 inline bool Type::isImage3dT() const {
   5012   return isSpecificBuiltinType(BuiltinType::OCLImage3d);
   5013 }
   5014 
   5015 inline bool Type::isSamplerT() const {
   5016   return isSpecificBuiltinType(BuiltinType::OCLSampler);
   5017 }
   5018 
   5019 inline bool Type::isEventT() const {
   5020   return isSpecificBuiltinType(BuiltinType::OCLEvent);
   5021 }
   5022 
   5023 inline bool Type::isImageType() const {
   5024   return isImage3dT() ||
   5025          isImage2dT() || isImage2dArrayT() ||
   5026          isImage1dT() || isImage1dArrayT() || isImage1dBufferT();
   5027 }
   5028 
   5029 inline bool Type::isOpenCLSpecificType() const {
   5030   return isSamplerT() || isEventT() || isImageType();
   5031 }
   5032 
   5033 inline bool Type::isTemplateTypeParmType() const {
   5034   return isa<TemplateTypeParmType>(CanonicalType);
   5035 }
   5036 
   5037 inline bool Type::isSpecificBuiltinType(unsigned K) const {
   5038   if (const BuiltinType *BT = getAs<BuiltinType>())
   5039     if (BT->getKind() == (BuiltinType::Kind) K)
   5040       return true;
   5041   return false;
   5042 }
   5043 
   5044 inline bool Type::isPlaceholderType() const {
   5045   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5046     return BT->isPlaceholderType();
   5047   return false;
   5048 }
   5049 
   5050 inline const BuiltinType *Type::getAsPlaceholderType() const {
   5051   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5052     if (BT->isPlaceholderType())
   5053       return BT;
   5054   return nullptr;
   5055 }
   5056 
   5057 inline bool Type::isSpecificPlaceholderType(unsigned K) const {
   5058   assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K));
   5059   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5060     return (BT->getKind() == (BuiltinType::Kind) K);
   5061   return false;
   5062 }
   5063 
   5064 inline bool Type::isNonOverloadPlaceholderType() const {
   5065   if (const BuiltinType *BT = dyn_cast<BuiltinType>(this))
   5066     return BT->isNonOverloadPlaceholderType();
   5067   return false;
   5068 }
   5069 
   5070 inline bool Type::isVoidType() const {
   5071   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5072     return BT->getKind() == BuiltinType::Void;
   5073   return false;
   5074 }
   5075 
   5076 inline bool Type::isHalfType() const {
   5077   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5078     return BT->getKind() == BuiltinType::Half;
   5079   // FIXME: Should we allow complex __fp16? Probably not.
   5080   return false;
   5081 }
   5082 
   5083 inline bool Type::isNullPtrType() const {
   5084   if (const BuiltinType *BT = getAs<BuiltinType>())
   5085     return BT->getKind() == BuiltinType::NullPtr;
   5086   return false;
   5087 }
   5088 
   5089 extern bool IsEnumDeclComplete(EnumDecl *);
   5090 extern bool IsEnumDeclScoped(EnumDecl *);
   5091 
   5092 inline bool Type::isIntegerType() const {
   5093   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5094     return BT->getKind() >= BuiltinType::Bool &&
   5095            BT->getKind() <= BuiltinType::Int128;
   5096   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   5097     // Incomplete enum types are not treated as integer types.
   5098     // FIXME: In C++, enum types are never integer types.
   5099     return IsEnumDeclComplete(ET->getDecl()) &&
   5100       !IsEnumDeclScoped(ET->getDecl());
   5101   }
   5102   return false;
   5103 }
   5104 
   5105 inline bool Type::isScalarType() const {
   5106   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5107     return BT->getKind() > BuiltinType::Void &&
   5108            BT->getKind() <= BuiltinType::NullPtr;
   5109   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5110     // Enums are scalar types, but only if they are defined.  Incomplete enums
   5111     // are not treated as scalar types.
   5112     return IsEnumDeclComplete(ET->getDecl());
   5113   return isa<PointerType>(CanonicalType) ||
   5114          isa<BlockPointerType>(CanonicalType) ||
   5115          isa<MemberPointerType>(CanonicalType) ||
   5116          isa<ComplexType>(CanonicalType) ||
   5117          isa<ObjCObjectPointerType>(CanonicalType);
   5118 }
   5119 
   5120 inline bool Type::isIntegralOrEnumerationType() const {
   5121   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5122     return BT->getKind() >= BuiltinType::Bool &&
   5123            BT->getKind() <= BuiltinType::Int128;
   5124 
   5125   // Check for a complete enum type; incomplete enum types are not properly an
   5126   // enumeration type in the sense required here.
   5127   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   5128     return IsEnumDeclComplete(ET->getDecl());
   5129 
   5130   return false;
   5131 }
   5132 
   5133 inline bool Type::isBooleanType() const {
   5134   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   5135     return BT->getKind() == BuiltinType::Bool;
   5136   return false;
   5137 }
   5138 
   5139 inline bool Type::isUndeducedType() const {
   5140   const AutoType *AT = getContainedAutoType();
   5141   return AT && !AT->isDeduced();
   5142 }
   5143 
   5144 /// \brief Determines whether this is a type for which one can define
   5145 /// an overloaded operator.
   5146 inline bool Type::isOverloadableType() const {
   5147   return isDependentType() || isRecordType() || isEnumeralType();
   5148 }
   5149 
   5150 /// \brief Determines whether this type can decay to a pointer type.
   5151 inline bool Type::canDecayToPointerType() const {
   5152   return isFunctionType() || isArrayType();
   5153 }
   5154 
   5155 inline bool Type::hasPointerRepresentation() const {
   5156   return (isPointerType() || isReferenceType() || isBlockPointerType() ||
   5157           isObjCObjectPointerType() || isNullPtrType());
   5158 }
   5159 
   5160 inline bool Type::hasObjCPointerRepresentation() const {
   5161   return isObjCObjectPointerType();
   5162 }
   5163 
   5164 inline const Type *Type::getBaseElementTypeUnsafe() const {
   5165   const Type *type = this;
   5166   while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
   5167     type = arrayType->getElementType().getTypePtr();
   5168   return type;
   5169 }
   5170 
   5171 /// Insertion operator for diagnostics.  This allows sending QualType's into a
   5172 /// diagnostic with <<.
   5173 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   5174                                            QualType T) {
   5175   DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   5176                   DiagnosticsEngine::ak_qualtype);
   5177   return DB;
   5178 }
   5179 
   5180 /// Insertion operator for partial diagnostics.  This allows sending QualType's
   5181 /// into a diagnostic with <<.
   5182 inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
   5183                                            QualType T) {
   5184   PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
   5185                   DiagnosticsEngine::ak_qualtype);
   5186   return PD;
   5187 }
   5188 
   5189 // Helper class template that is used by Type::getAs to ensure that one does
   5190 // not try to look through a qualified type to get to an array type.
   5191 template <typename T, bool isArrayType = (std::is_same<T, ArrayType>::value ||
   5192                                           std::is_base_of<ArrayType, T>::value)>
   5193 struct ArrayType_cannot_be_used_with_getAs {};
   5194 
   5195 template<typename T>
   5196 struct ArrayType_cannot_be_used_with_getAs<T, true>;
   5197 
   5198 // Member-template getAs<specific type>'.
   5199 template <typename T> const T *Type::getAs() const {
   5200   ArrayType_cannot_be_used_with_getAs<T> at;
   5201   (void)at;
   5202 
   5203   // If this is directly a T type, return it.
   5204   if (const T *Ty = dyn_cast<T>(this))
   5205     return Ty;
   5206 
   5207   // If the canonical form of this type isn't the right kind, reject it.
   5208   if (!isa<T>(CanonicalType))
   5209     return nullptr;
   5210 
   5211   // If this is a typedef for the type, strip the typedef off without
   5212   // losing all typedef information.
   5213   return cast<T>(getUnqualifiedDesugaredType());
   5214 }
   5215 
   5216 inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
   5217   // If this is directly an array type, return it.
   5218   if (const ArrayType *arr = dyn_cast<ArrayType>(this))
   5219     return arr;
   5220 
   5221   // If the canonical form of this type isn't the right kind, reject it.
   5222   if (!isa<ArrayType>(CanonicalType))
   5223     return nullptr;
   5224 
   5225   // If this is a typedef for the type, strip the typedef off without
   5226   // losing all typedef information.
   5227   return cast<ArrayType>(getUnqualifiedDesugaredType());
   5228 }
   5229 
   5230 template <typename T> const T *Type::castAs() const {
   5231   ArrayType_cannot_be_used_with_getAs<T> at;
   5232   (void) at;
   5233 
   5234   assert(isa<T>(CanonicalType));
   5235   if (const T *ty = dyn_cast<T>(this)) return ty;
   5236   return cast<T>(getUnqualifiedDesugaredType());
   5237 }
   5238 
   5239 inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
   5240   assert(isa<ArrayType>(CanonicalType));
   5241   if (const ArrayType *arr = dyn_cast<ArrayType>(this)) return arr;
   5242   return cast<ArrayType>(getUnqualifiedDesugaredType());
   5243 }
   5244 
   5245 }  // end namespace clang
   5246 
   5247 #endif
   5248