Home | History | Annotate | Download | only in webaudio
      1 /*
      2  * Copyright (C) 2012 Google Inc. All rights reserved.
      3  *
      4  * Redistribution and use in source and binary forms, with or without
      5  * modification, are permitted provided that the following conditions
      6  * are met:
      7  *
      8  * 1.  Redistributions of source code must retain the above copyright
      9  *     notice, this list of conditions and the following disclaimer.
     10  * 2.  Redistributions in binary form must reproduce the above copyright
     11  *     notice, this list of conditions and the following disclaimer in the
     12  *     documentation and/or other materials provided with the distribution.
     13  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
     14  *     its contributors may be used to endorse or promote products derived
     15  *     from this software without specific prior written permission.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
     18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     20  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
     21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
     24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include "config.h"
     30 
     31 #if ENABLE(WEB_AUDIO)
     32 
     33 #include "modules/webaudio/PeriodicWave.h"
     34 
     35 #include "platform/audio/FFTFrame.h"
     36 #include "platform/audio/VectorMath.h"
     37 #include "modules/webaudio/OscillatorNode.h"
     38 #include <algorithm>
     39 
     40 const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
     41 const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
     42 const float CentsPerRange = 1200 / 3; // 1/3 Octave.
     43 
     44 namespace blink {
     45 
     46 using namespace VectorMath;
     47 
     48 PeriodicWave* PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag)
     49 {
     50     bool isGood = real && imag && real->length() == imag->length();
     51     ASSERT(isGood);
     52     if (isGood) {
     53         PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
     54         size_t numberOfComponents = real->length();
     55         periodicWave->createBandLimitedTables(real->data(), imag->data(), numberOfComponents);
     56         return periodicWave;
     57     }
     58     return 0;
     59 }
     60 
     61 PeriodicWave* PeriodicWave::createSine(float sampleRate)
     62 {
     63     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
     64     periodicWave->generateBasicWaveform(OscillatorNode::SINE);
     65     return periodicWave;
     66 }
     67 
     68 PeriodicWave* PeriodicWave::createSquare(float sampleRate)
     69 {
     70     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
     71     periodicWave->generateBasicWaveform(OscillatorNode::SQUARE);
     72     return periodicWave;
     73 }
     74 
     75 PeriodicWave* PeriodicWave::createSawtooth(float sampleRate)
     76 {
     77     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
     78     periodicWave->generateBasicWaveform(OscillatorNode::SAWTOOTH);
     79     return periodicWave;
     80 }
     81 
     82 PeriodicWave* PeriodicWave::createTriangle(float sampleRate)
     83 {
     84     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
     85     periodicWave->generateBasicWaveform(OscillatorNode::TRIANGLE);
     86     return periodicWave;
     87 }
     88 
     89 PeriodicWave::PeriodicWave(float sampleRate)
     90     : m_sampleRate(sampleRate)
     91     , m_periodicWaveSize(PeriodicWaveSize)
     92     , m_numberOfRanges(NumberOfRanges)
     93     , m_centsPerRange(CentsPerRange)
     94 {
     95     float nyquist = 0.5 * m_sampleRate;
     96     m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
     97     m_rateScale = m_periodicWaveSize / m_sampleRate;
     98 }
     99 
    100 void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
    101 {
    102     // Negative frequencies are allowed, in which case we alias to the positive frequency.
    103     fundamentalFrequency = fabsf(fundamentalFrequency);
    104 
    105     // Calculate the pitch range.
    106     float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
    107     float centsAboveLowestFrequency = log2f(ratio) * 1200;
    108 
    109     // Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
    110     float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
    111 
    112     pitchRange = std::max(pitchRange, 0.0f);
    113     pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
    114 
    115     // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
    116     // It's a little confusing since the range index gets larger the more partials we cull out.
    117     // So the lower table data will have a larger range index.
    118     unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
    119     unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
    120 
    121     lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
    122     higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
    123 
    124     // Ranges from 0 -> 1 to interpolate between lower -> higher.
    125     tableInterpolationFactor = pitchRange - rangeIndex1;
    126 }
    127 
    128 unsigned PeriodicWave::maxNumberOfPartials() const
    129 {
    130     return m_periodicWaveSize / 2;
    131 }
    132 
    133 unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
    134 {
    135     // Number of cents below nyquist where we cull partials.
    136     float centsToCull = rangeIndex * m_centsPerRange;
    137 
    138     // A value from 0 -> 1 representing what fraction of the partials to keep.
    139     float cullingScale = pow(2, -centsToCull / 1200);
    140 
    141     // The very top range will have all the partials culled.
    142     unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
    143 
    144     return numberOfPartials;
    145 }
    146 
    147 // Convert into time-domain wave buffers.
    148 // One table is created for each range for non-aliasing playback at different playback rates.
    149 // Thus, higher ranges have more high-frequency partials culled out.
    150 void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
    151 {
    152     float normalizationScale = 1;
    153 
    154     unsigned fftSize = m_periodicWaveSize;
    155     unsigned halfSize = fftSize / 2;
    156     unsigned i;
    157 
    158     numberOfComponents = std::min(numberOfComponents, halfSize);
    159 
    160     m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
    161 
    162     for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
    163         // This FFTFrame is used to cull partials (represented by frequency bins).
    164         FFTFrame frame(fftSize);
    165         float* realP = frame.realData();
    166         float* imagP = frame.imagData();
    167 
    168         // Copy from loaded frequency data and scale.
    169         float scale = fftSize;
    170         vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
    171         vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);
    172 
    173         // If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
    174         for (i = numberOfComponents; i < halfSize; ++i) {
    175             realP[i] = 0;
    176             imagP[i] = 0;
    177         }
    178 
    179         // Generate complex conjugate because of the way the inverse FFT is defined.
    180         float minusOne = -1;
    181         vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);
    182 
    183         // Find the starting bin where we should start culling.
    184         // We need to clear out the highest frequencies to band-limit the waveform.
    185         unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
    186 
    187         // Cull the aliasing partials for this pitch range.
    188         for (i = numberOfPartials + 1; i < halfSize; ++i) {
    189             realP[i] = 0;
    190             imagP[i] = 0;
    191         }
    192         // Clear packed-nyquist if necessary.
    193         if (numberOfPartials < halfSize)
    194             imagP[0] = 0;
    195 
    196         // Clear any DC-offset.
    197         realP[0] = 0;
    198 
    199         // Create the band-limited table.
    200         OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_periodicWaveSize));
    201         m_bandLimitedTables.append(table.release());
    202 
    203         // Apply an inverse FFT to generate the time-domain table data.
    204         float* data = m_bandLimitedTables[rangeIndex]->data();
    205         frame.doInverseFFT(data);
    206 
    207         // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
    208         if (!rangeIndex) {
    209             float maxValue;
    210             vmaxmgv(data, 1, &maxValue, m_periodicWaveSize);
    211 
    212             if (maxValue)
    213                 normalizationScale = 1.0f / maxValue;
    214         }
    215 
    216         // Apply normalization scale.
    217         vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize);
    218     }
    219 }
    220 
    221 void PeriodicWave::generateBasicWaveform(int shape)
    222 {
    223     unsigned fftSize = periodicWaveSize();
    224     unsigned halfSize = fftSize / 2;
    225 
    226     AudioFloatArray real(halfSize);
    227     AudioFloatArray imag(halfSize);
    228     float* realP = real.data();
    229     float* imagP = imag.data();
    230 
    231     // Clear DC and Nyquist.
    232     realP[0] = 0;
    233     imagP[0] = 0;
    234 
    235     for (unsigned n = 1; n < halfSize; ++n) {
    236         float piFactor = 2 / (n * piFloat);
    237 
    238         // All waveforms are odd functions with a positive slope at time 0. Hence the coefficients
    239         // for cos() are always 0.
    240 
    241         // Fourier coefficients according to standard definition:
    242         // b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
    243         //   = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
    244         // since f(x) is an odd function.
    245 
    246         float b; // Coefficient for sin().
    247 
    248         // Calculate Fourier coefficients depending on the shape. Note that the overall scaling
    249         // (magnitude) of the waveforms is normalized in createBandLimitedTables().
    250         switch (shape) {
    251         case OscillatorNode::SINE:
    252             // Standard sine wave function.
    253             b = (n == 1) ? 1 : 0;
    254             break;
    255         case OscillatorNode::SQUARE:
    256             // Square-shaped waveform with the first half its maximum value and the second half its
    257             // minimum value.
    258             //
    259             // See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
    260             //
    261             // b[n] = 2/n/pi*(1-(-1)^n)
    262             //      = 4/n/pi for n odd and 0 otherwise.
    263             //      = 2*(2/(n*pi)) for n odd
    264             b = (n & 1) ? 2 * piFactor : 0;
    265             break;
    266         case OscillatorNode::SAWTOOTH:
    267             // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the
    268             // second half from minimum to zero.
    269             //
    270             // b[n] = -2*(-1)^n/pi/n
    271             //      = (2/(n*pi))*(-1)^(n+1)
    272             b = piFactor * ((n & 1) ? 1 : -1);
    273             break;
    274         case OscillatorNode::TRIANGLE:
    275             // Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and back to 0 at
    276             // time pi.
    277             //
    278             // See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
    279             //
    280             // b[n] = 8*sin(pi*k/2)/(pi*k)^2
    281             //      = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
    282             //      = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
    283             if (n & 1) {
    284                 b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
    285             } else {
    286                 b = 0;
    287             }
    288             break;
    289         default:
    290             ASSERT_NOT_REACHED();
    291             b = 0;
    292             break;
    293         }
    294 
    295         realP[n] = 0;
    296         imagP[n] = b;
    297     }
    298 
    299     createBandLimitedTables(realP, imagP, halfSize);
    300 }
    301 
    302 } // namespace blink
    303 
    304 #endif // ENABLE(WEB_AUDIO)
    305