1 /* 2 * Copyright (C) 2012 Google Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 14 * its contributors may be used to endorse or promote products derived 15 * from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY 18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 19 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 20 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY 21 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 22 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 23 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include "config.h" 30 31 #if ENABLE(WEB_AUDIO) 32 33 #include "modules/webaudio/PeriodicWave.h" 34 35 #include "platform/audio/FFTFrame.h" 36 #include "platform/audio/VectorMath.h" 37 #include "modules/webaudio/OscillatorNode.h" 38 #include <algorithm> 39 40 const unsigned PeriodicWaveSize = 4096; // This must be a power of two. 41 const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges. 42 const float CentsPerRange = 1200 / 3; // 1/3 Octave. 43 44 namespace blink { 45 46 using namespace VectorMath; 47 48 PeriodicWave* PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag) 49 { 50 bool isGood = real && imag && real->length() == imag->length(); 51 ASSERT(isGood); 52 if (isGood) { 53 PeriodicWave* periodicWave = new PeriodicWave(sampleRate); 54 size_t numberOfComponents = real->length(); 55 periodicWave->createBandLimitedTables(real->data(), imag->data(), numberOfComponents); 56 return periodicWave; 57 } 58 return 0; 59 } 60 61 PeriodicWave* PeriodicWave::createSine(float sampleRate) 62 { 63 PeriodicWave* periodicWave = new PeriodicWave(sampleRate); 64 periodicWave->generateBasicWaveform(OscillatorNode::SINE); 65 return periodicWave; 66 } 67 68 PeriodicWave* PeriodicWave::createSquare(float sampleRate) 69 { 70 PeriodicWave* periodicWave = new PeriodicWave(sampleRate); 71 periodicWave->generateBasicWaveform(OscillatorNode::SQUARE); 72 return periodicWave; 73 } 74 75 PeriodicWave* PeriodicWave::createSawtooth(float sampleRate) 76 { 77 PeriodicWave* periodicWave = new PeriodicWave(sampleRate); 78 periodicWave->generateBasicWaveform(OscillatorNode::SAWTOOTH); 79 return periodicWave; 80 } 81 82 PeriodicWave* PeriodicWave::createTriangle(float sampleRate) 83 { 84 PeriodicWave* periodicWave = new PeriodicWave(sampleRate); 85 periodicWave->generateBasicWaveform(OscillatorNode::TRIANGLE); 86 return periodicWave; 87 } 88 89 PeriodicWave::PeriodicWave(float sampleRate) 90 : m_sampleRate(sampleRate) 91 , m_periodicWaveSize(PeriodicWaveSize) 92 , m_numberOfRanges(NumberOfRanges) 93 , m_centsPerRange(CentsPerRange) 94 { 95 float nyquist = 0.5 * m_sampleRate; 96 m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials(); 97 m_rateScale = m_periodicWaveSize / m_sampleRate; 98 } 99 100 void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor) 101 { 102 // Negative frequencies are allowed, in which case we alias to the positive frequency. 103 fundamentalFrequency = fabsf(fundamentalFrequency); 104 105 // Calculate the pitch range. 106 float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5; 107 float centsAboveLowestFrequency = log2f(ratio) * 1200; 108 109 // Add one to round-up to the next range just in time to truncate partials before aliasing occurs. 110 float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange; 111 112 pitchRange = std::max(pitchRange, 0.0f); 113 pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1)); 114 115 // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials. 116 // It's a little confusing since the range index gets larger the more partials we cull out. 117 // So the lower table data will have a larger range index. 118 unsigned rangeIndex1 = static_cast<unsigned>(pitchRange); 119 unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1; 120 121 lowerWaveData = m_bandLimitedTables[rangeIndex2]->data(); 122 higherWaveData = m_bandLimitedTables[rangeIndex1]->data(); 123 124 // Ranges from 0 -> 1 to interpolate between lower -> higher. 125 tableInterpolationFactor = pitchRange - rangeIndex1; 126 } 127 128 unsigned PeriodicWave::maxNumberOfPartials() const 129 { 130 return m_periodicWaveSize / 2; 131 } 132 133 unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const 134 { 135 // Number of cents below nyquist where we cull partials. 136 float centsToCull = rangeIndex * m_centsPerRange; 137 138 // A value from 0 -> 1 representing what fraction of the partials to keep. 139 float cullingScale = pow(2, -centsToCull / 1200); 140 141 // The very top range will have all the partials culled. 142 unsigned numberOfPartials = cullingScale * maxNumberOfPartials(); 143 144 return numberOfPartials; 145 } 146 147 // Convert into time-domain wave buffers. 148 // One table is created for each range for non-aliasing playback at different playback rates. 149 // Thus, higher ranges have more high-frequency partials culled out. 150 void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents) 151 { 152 float normalizationScale = 1; 153 154 unsigned fftSize = m_periodicWaveSize; 155 unsigned halfSize = fftSize / 2; 156 unsigned i; 157 158 numberOfComponents = std::min(numberOfComponents, halfSize); 159 160 m_bandLimitedTables.reserveCapacity(m_numberOfRanges); 161 162 for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) { 163 // This FFTFrame is used to cull partials (represented by frequency bins). 164 FFTFrame frame(fftSize); 165 float* realP = frame.realData(); 166 float* imagP = frame.imagData(); 167 168 // Copy from loaded frequency data and scale. 169 float scale = fftSize; 170 vsmul(realData, 1, &scale, realP, 1, numberOfComponents); 171 vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents); 172 173 // If fewer components were provided than 1/2 FFT size, then clear the remaining bins. 174 for (i = numberOfComponents; i < halfSize; ++i) { 175 realP[i] = 0; 176 imagP[i] = 0; 177 } 178 179 // Generate complex conjugate because of the way the inverse FFT is defined. 180 float minusOne = -1; 181 vsmul(imagP, 1, &minusOne, imagP, 1, halfSize); 182 183 // Find the starting bin where we should start culling. 184 // We need to clear out the highest frequencies to band-limit the waveform. 185 unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex); 186 187 // Cull the aliasing partials for this pitch range. 188 for (i = numberOfPartials + 1; i < halfSize; ++i) { 189 realP[i] = 0; 190 imagP[i] = 0; 191 } 192 // Clear packed-nyquist if necessary. 193 if (numberOfPartials < halfSize) 194 imagP[0] = 0; 195 196 // Clear any DC-offset. 197 realP[0] = 0; 198 199 // Create the band-limited table. 200 OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_periodicWaveSize)); 201 m_bandLimitedTables.append(table.release()); 202 203 // Apply an inverse FFT to generate the time-domain table data. 204 float* data = m_bandLimitedTables[rangeIndex]->data(); 205 frame.doInverseFFT(data); 206 207 // For the first range (which has the highest power), calculate its peak value then compute normalization scale. 208 if (!rangeIndex) { 209 float maxValue; 210 vmaxmgv(data, 1, &maxValue, m_periodicWaveSize); 211 212 if (maxValue) 213 normalizationScale = 1.0f / maxValue; 214 } 215 216 // Apply normalization scale. 217 vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize); 218 } 219 } 220 221 void PeriodicWave::generateBasicWaveform(int shape) 222 { 223 unsigned fftSize = periodicWaveSize(); 224 unsigned halfSize = fftSize / 2; 225 226 AudioFloatArray real(halfSize); 227 AudioFloatArray imag(halfSize); 228 float* realP = real.data(); 229 float* imagP = imag.data(); 230 231 // Clear DC and Nyquist. 232 realP[0] = 0; 233 imagP[0] = 0; 234 235 for (unsigned n = 1; n < halfSize; ++n) { 236 float piFactor = 2 / (n * piFloat); 237 238 // All waveforms are odd functions with a positive slope at time 0. Hence the coefficients 239 // for cos() are always 0. 240 241 // Fourier coefficients according to standard definition: 242 // b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi) 243 // = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi) 244 // since f(x) is an odd function. 245 246 float b; // Coefficient for sin(). 247 248 // Calculate Fourier coefficients depending on the shape. Note that the overall scaling 249 // (magnitude) of the waveforms is normalized in createBandLimitedTables(). 250 switch (shape) { 251 case OscillatorNode::SINE: 252 // Standard sine wave function. 253 b = (n == 1) ? 1 : 0; 254 break; 255 case OscillatorNode::SQUARE: 256 // Square-shaped waveform with the first half its maximum value and the second half its 257 // minimum value. 258 // 259 // See http://mathworld.wolfram.com/FourierSeriesSquareWave.html 260 // 261 // b[n] = 2/n/pi*(1-(-1)^n) 262 // = 4/n/pi for n odd and 0 otherwise. 263 // = 2*(2/(n*pi)) for n odd 264 b = (n & 1) ? 2 * piFactor : 0; 265 break; 266 case OscillatorNode::SAWTOOTH: 267 // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the 268 // second half from minimum to zero. 269 // 270 // b[n] = -2*(-1)^n/pi/n 271 // = (2/(n*pi))*(-1)^(n+1) 272 b = piFactor * ((n & 1) ? 1 : -1); 273 break; 274 case OscillatorNode::TRIANGLE: 275 // Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and back to 0 at 276 // time pi. 277 // 278 // See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html 279 // 280 // b[n] = 8*sin(pi*k/2)/(pi*k)^2 281 // = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise 282 // = 2*(2/(n*pi))^2 * (-1)^((n-1)/2) 283 if (n & 1) { 284 b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1); 285 } else { 286 b = 0; 287 } 288 break; 289 default: 290 ASSERT_NOT_REACHED(); 291 b = 0; 292 break; 293 } 294 295 realP[n] = 0; 296 imagP[n] = b; 297 } 298 299 createBandLimitedTables(realP, imagP, halfSize); 300 } 301 302 } // namespace blink 303 304 #endif // ENABLE(WEB_AUDIO) 305