Home | History | Annotate | Download | only in source
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 #include "webrtc/modules/video_coding/main/source/jitter_buffer.h"
     11 
     12 #include <assert.h>
     13 
     14 #include <algorithm>
     15 #include <utility>
     16 
     17 #include "webrtc/modules/video_coding/main/interface/video_coding.h"
     18 #include "webrtc/modules/video_coding/main/source/frame_buffer.h"
     19 #include "webrtc/modules/video_coding/main/source/inter_frame_delay.h"
     20 #include "webrtc/modules/video_coding/main/source/internal_defines.h"
     21 #include "webrtc/modules/video_coding/main/source/jitter_buffer_common.h"
     22 #include "webrtc/modules/video_coding/main/source/jitter_estimator.h"
     23 #include "webrtc/modules/video_coding/main/source/packet.h"
     24 #include "webrtc/system_wrappers/interface/clock.h"
     25 #include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
     26 #include "webrtc/system_wrappers/interface/event_wrapper.h"
     27 #include "webrtc/system_wrappers/interface/logging.h"
     28 #include "webrtc/system_wrappers/interface/trace_event.h"
     29 
     30 namespace webrtc {
     31 
     32 // Use this rtt if no value has been reported.
     33 static const uint32_t kDefaultRtt = 200;
     34 
     35 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
     36 
     37 bool IsKeyFrame(FrameListPair pair) {
     38   return pair.second->FrameType() == kVideoFrameKey;
     39 }
     40 
     41 bool HasNonEmptyState(FrameListPair pair) {
     42   return pair.second->GetState() != kStateEmpty;
     43 }
     44 
     45 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
     46   insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame));
     47 }
     48 
     49 VCMFrameBuffer* FrameList::FindFrame(uint32_t timestamp) const {
     50   FrameList::const_iterator it = find(timestamp);
     51   if (it == end())
     52     return NULL;
     53   return it->second;
     54 }
     55 
     56 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
     57   FrameList::iterator it = find(timestamp);
     58   if (it == end())
     59     return NULL;
     60   VCMFrameBuffer* frame = it->second;
     61   erase(it);
     62   return frame;
     63 }
     64 
     65 VCMFrameBuffer* FrameList::Front() const {
     66   return begin()->second;
     67 }
     68 
     69 VCMFrameBuffer* FrameList::Back() const {
     70   return rbegin()->second;
     71 }
     72 
     73 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
     74                                           UnorderedFrameList* free_frames) {
     75   int drop_count = 0;
     76   FrameList::iterator it = begin();
     77   while (!empty()) {
     78     // Throw at least one frame.
     79     it->second->Reset();
     80     free_frames->push_back(it->second);
     81     erase(it++);
     82     ++drop_count;
     83     if (it != end() && it->second->FrameType() == kVideoFrameKey) {
     84       *key_frame_it = it;
     85       return drop_count;
     86     }
     87   }
     88   *key_frame_it = end();
     89   return drop_count;
     90 }
     91 
     92 int FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
     93                                        UnorderedFrameList* free_frames) {
     94   int drop_count = 0;
     95   while (!empty()) {
     96     VCMFrameBuffer* oldest_frame = Front();
     97     bool remove_frame = false;
     98     if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
     99       // This frame is empty, try to update the last decoded state and drop it
    100       // if successful.
    101       remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
    102     } else {
    103       remove_frame = decoding_state->IsOldFrame(oldest_frame);
    104     }
    105     if (!remove_frame) {
    106       break;
    107     }
    108     free_frames->push_back(oldest_frame);
    109     ++drop_count;
    110     TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp",
    111                          oldest_frame->TimeStamp());
    112     erase(begin());
    113   }
    114   return drop_count;
    115 }
    116 
    117 void FrameList::Reset(UnorderedFrameList* free_frames) {
    118   while (!empty()) {
    119     begin()->second->Reset();
    120     free_frames->push_back(begin()->second);
    121     erase(begin());
    122   }
    123 }
    124 
    125 VCMJitterBuffer::VCMJitterBuffer(Clock* clock, EventFactory* event_factory)
    126     : clock_(clock),
    127       running_(false),
    128       crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
    129       frame_event_(event_factory->CreateEvent()),
    130       packet_event_(event_factory->CreateEvent()),
    131       max_number_of_frames_(kStartNumberOfFrames),
    132       frame_buffers_(),
    133       free_frames_(),
    134       decodable_frames_(),
    135       incomplete_frames_(),
    136       last_decoded_state_(),
    137       first_packet_since_reset_(true),
    138       incoming_frame_rate_(0),
    139       incoming_frame_count_(0),
    140       time_last_incoming_frame_count_(0),
    141       incoming_bit_count_(0),
    142       incoming_bit_rate_(0),
    143       drop_count_(0),
    144       num_consecutive_old_frames_(0),
    145       num_consecutive_old_packets_(0),
    146       num_discarded_packets_(0),
    147       jitter_estimate_(clock),
    148       inter_frame_delay_(clock_->TimeInMilliseconds()),
    149       rtt_ms_(kDefaultRtt),
    150       nack_mode_(kNoNack),
    151       low_rtt_nack_threshold_ms_(-1),
    152       high_rtt_nack_threshold_ms_(-1),
    153       missing_sequence_numbers_(SequenceNumberLessThan()),
    154       nack_seq_nums_(),
    155       max_nack_list_size_(0),
    156       max_packet_age_to_nack_(0),
    157       max_incomplete_time_ms_(0),
    158       decode_error_mode_(kNoErrors),
    159       average_packets_per_frame_(0.0f),
    160       frame_counter_(0) {
    161   memset(frame_buffers_, 0, sizeof(frame_buffers_));
    162 
    163   for (int i = 0; i < kStartNumberOfFrames; i++) {
    164     frame_buffers_[i] = new VCMFrameBuffer();
    165     free_frames_.push_back(frame_buffers_[i]);
    166   }
    167 }
    168 
    169 VCMJitterBuffer::~VCMJitterBuffer() {
    170   Stop();
    171   for (int i = 0; i < kMaxNumberOfFrames; i++) {
    172     if (frame_buffers_[i]) {
    173       delete frame_buffers_[i];
    174     }
    175   }
    176   delete crit_sect_;
    177 }
    178 
    179 void VCMJitterBuffer::CopyFrom(const VCMJitterBuffer& rhs) {
    180   if (this != &rhs) {
    181     crit_sect_->Enter();
    182     rhs.crit_sect_->Enter();
    183     running_ = rhs.running_;
    184     max_number_of_frames_ = rhs.max_number_of_frames_;
    185     incoming_frame_rate_ = rhs.incoming_frame_rate_;
    186     incoming_frame_count_ = rhs.incoming_frame_count_;
    187     time_last_incoming_frame_count_ = rhs.time_last_incoming_frame_count_;
    188     incoming_bit_count_ = rhs.incoming_bit_count_;
    189     incoming_bit_rate_ = rhs.incoming_bit_rate_;
    190     drop_count_ = rhs.drop_count_;
    191     num_consecutive_old_frames_ = rhs.num_consecutive_old_frames_;
    192     num_consecutive_old_packets_ = rhs.num_consecutive_old_packets_;
    193     num_discarded_packets_ = rhs.num_discarded_packets_;
    194     jitter_estimate_ = rhs.jitter_estimate_;
    195     inter_frame_delay_ = rhs.inter_frame_delay_;
    196     waiting_for_completion_ = rhs.waiting_for_completion_;
    197     rtt_ms_ = rhs.rtt_ms_;
    198     first_packet_since_reset_ = rhs.first_packet_since_reset_;
    199     last_decoded_state_ =  rhs.last_decoded_state_;
    200     decode_error_mode_ = rhs.decode_error_mode_;
    201     assert(max_nack_list_size_ == rhs.max_nack_list_size_);
    202     assert(max_packet_age_to_nack_ == rhs.max_packet_age_to_nack_);
    203     assert(max_incomplete_time_ms_ == rhs.max_incomplete_time_ms_);
    204     receive_statistics_ = rhs.receive_statistics_;
    205     nack_seq_nums_.resize(rhs.nack_seq_nums_.size());
    206     missing_sequence_numbers_ = rhs.missing_sequence_numbers_;
    207     latest_received_sequence_number_ = rhs.latest_received_sequence_number_;
    208     average_packets_per_frame_ = rhs.average_packets_per_frame_;
    209     for (int i = 0; i < kMaxNumberOfFrames; i++) {
    210       if (frame_buffers_[i] != NULL) {
    211         delete frame_buffers_[i];
    212         frame_buffers_[i] = NULL;
    213       }
    214     }
    215     free_frames_.clear();
    216     decodable_frames_.clear();
    217     incomplete_frames_.clear();
    218     int i = 0;
    219     for (UnorderedFrameList::const_iterator it = rhs.free_frames_.begin();
    220          it != rhs.free_frames_.end(); ++it, ++i) {
    221       frame_buffers_[i] = new VCMFrameBuffer;
    222       free_frames_.push_back(frame_buffers_[i]);
    223     }
    224     CopyFrames(&decodable_frames_, rhs.decodable_frames_, &i);
    225     CopyFrames(&incomplete_frames_, rhs.incomplete_frames_, &i);
    226     rhs.crit_sect_->Leave();
    227     crit_sect_->Leave();
    228   }
    229 }
    230 
    231 void VCMJitterBuffer::CopyFrames(FrameList* to_list,
    232     const FrameList& from_list, int* index) {
    233   to_list->clear();
    234   for (FrameList::const_iterator it = from_list.begin();
    235        it != from_list.end(); ++it, ++*index) {
    236     frame_buffers_[*index] = new VCMFrameBuffer(*it->second);
    237     to_list->InsertFrame(frame_buffers_[*index]);
    238   }
    239 }
    240 
    241 void VCMJitterBuffer::Start() {
    242   CriticalSectionScoped cs(crit_sect_);
    243   running_ = true;
    244   incoming_frame_count_ = 0;
    245   incoming_frame_rate_ = 0;
    246   incoming_bit_count_ = 0;
    247   incoming_bit_rate_ = 0;
    248   time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
    249   receive_statistics_.clear();
    250 
    251   num_consecutive_old_frames_ = 0;
    252   num_consecutive_old_packets_ = 0;
    253   num_discarded_packets_ = 0;
    254 
    255   // Start in a non-signaled state.
    256   frame_event_->Reset();
    257   packet_event_->Reset();
    258   waiting_for_completion_.frame_size = 0;
    259   waiting_for_completion_.timestamp = 0;
    260   waiting_for_completion_.latest_packet_time = -1;
    261   first_packet_since_reset_ = true;
    262   rtt_ms_ = kDefaultRtt;
    263   last_decoded_state_.Reset();
    264 }
    265 
    266 void VCMJitterBuffer::Stop() {
    267   crit_sect_->Enter();
    268   running_ = false;
    269   last_decoded_state_.Reset();
    270   free_frames_.clear();
    271   decodable_frames_.clear();
    272   incomplete_frames_.clear();
    273   // Make sure all frames are reset and free.
    274   for (int i = 0; i < kMaxNumberOfFrames; i++) {
    275     if (frame_buffers_[i] != NULL) {
    276       static_cast<VCMFrameBuffer*>(frame_buffers_[i])->Reset();
    277       free_frames_.push_back(frame_buffers_[i]);
    278     }
    279   }
    280   crit_sect_->Leave();
    281   // Make sure we wake up any threads waiting on these events.
    282   frame_event_->Set();
    283   packet_event_->Set();
    284 }
    285 
    286 bool VCMJitterBuffer::Running() const {
    287   CriticalSectionScoped cs(crit_sect_);
    288   return running_;
    289 }
    290 
    291 void VCMJitterBuffer::Flush() {
    292   CriticalSectionScoped cs(crit_sect_);
    293   decodable_frames_.Reset(&free_frames_);
    294   incomplete_frames_.Reset(&free_frames_);
    295   last_decoded_state_.Reset();  // TODO(mikhal): sync reset.
    296   frame_event_->Reset();
    297   packet_event_->Reset();
    298   num_consecutive_old_frames_ = 0;
    299   num_consecutive_old_packets_ = 0;
    300   // Also reset the jitter and delay estimates
    301   jitter_estimate_.Reset();
    302   inter_frame_delay_.Reset(clock_->TimeInMilliseconds());
    303   waiting_for_completion_.frame_size = 0;
    304   waiting_for_completion_.timestamp = 0;
    305   waiting_for_completion_.latest_packet_time = -1;
    306   first_packet_since_reset_ = true;
    307   missing_sequence_numbers_.clear();
    308 }
    309 
    310 // Get received key and delta frames
    311 std::map<FrameType, uint32_t> VCMJitterBuffer::FrameStatistics() const {
    312   CriticalSectionScoped cs(crit_sect_);
    313   return receive_statistics_;
    314 }
    315 
    316 int VCMJitterBuffer::num_discarded_packets() const {
    317   CriticalSectionScoped cs(crit_sect_);
    318   return num_discarded_packets_;
    319 }
    320 
    321 // Calculate framerate and bitrate.
    322 void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate,
    323                                              unsigned int* bitrate) {
    324   assert(framerate);
    325   assert(bitrate);
    326   CriticalSectionScoped cs(crit_sect_);
    327   const int64_t now = clock_->TimeInMilliseconds();
    328   int64_t diff = now - time_last_incoming_frame_count_;
    329   if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) {
    330     // Make sure we report something even though less than
    331     // 1 second has passed since last update.
    332     *framerate = incoming_frame_rate_;
    333     *bitrate = incoming_bit_rate_;
    334   } else if (incoming_frame_count_ != 0) {
    335     // We have received frame(s) since last call to this function
    336 
    337     // Prepare calculations
    338     if (diff <= 0) {
    339       diff = 1;
    340     }
    341     // we add 0.5f for rounding
    342     float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff);
    343     if (rate < 1.0f) {
    344       rate = 1.0f;
    345     }
    346 
    347     // Calculate frame rate
    348     // Let r be rate.
    349     // r(0) = 1000*framecount/delta_time.
    350     // (I.e. frames per second since last calculation.)
    351     // frame_rate = r(0)/2 + r(-1)/2
    352     // (I.e. fr/s average this and the previous calculation.)
    353     *framerate = (incoming_frame_rate_ + static_cast<unsigned int>(rate)) / 2;
    354     incoming_frame_rate_ = static_cast<unsigned int>(rate);
    355 
    356     // Calculate bit rate
    357     if (incoming_bit_count_ == 0) {
    358       *bitrate = 0;
    359     } else {
    360       *bitrate = 10 * ((100 * incoming_bit_count_) /
    361                        static_cast<unsigned int>(diff));
    362     }
    363     incoming_bit_rate_ = *bitrate;
    364 
    365     // Reset count
    366     incoming_frame_count_ = 0;
    367     incoming_bit_count_ = 0;
    368     time_last_incoming_frame_count_ = now;
    369 
    370   } else {
    371     // No frames since last call
    372     time_last_incoming_frame_count_ = clock_->TimeInMilliseconds();
    373     *framerate = 0;
    374     *bitrate = 0;
    375     incoming_frame_rate_ = 0;
    376     incoming_bit_rate_ = 0;
    377   }
    378 }
    379 
    380 // Answers the question:
    381 // Will the packet sequence be complete if the next frame is grabbed for
    382 // decoding right now? That is, have we lost a frame between the last decoded
    383 // frame and the next, or is the next
    384 // frame missing one or more packets?
    385 bool VCMJitterBuffer::CompleteSequenceWithNextFrame() {
    386   CriticalSectionScoped cs(crit_sect_);
    387   // Finding oldest frame ready for decoder, check sequence number and size
    388   CleanUpOldOrEmptyFrames();
    389   if (!decodable_frames_.empty()) {
    390     if (decodable_frames_.Front()->GetState() == kStateComplete) {
    391       return true;
    392     }
    393   } else if (incomplete_frames_.size() <= 1) {
    394     // Frame not ready to be decoded.
    395     return true;
    396   }
    397   return false;
    398 }
    399 
    400 // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a
    401 // complete frame, |max_wait_time_ms| decided by caller.
    402 bool VCMJitterBuffer::NextCompleteTimestamp(
    403     uint32_t max_wait_time_ms, uint32_t* timestamp) {
    404   crit_sect_->Enter();
    405   if (!running_) {
    406     crit_sect_->Leave();
    407     return false;
    408   }
    409   CleanUpOldOrEmptyFrames();
    410 
    411   if (decodable_frames_.empty() ||
    412       decodable_frames_.Front()->GetState() != kStateComplete) {
    413     const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() +
    414         max_wait_time_ms;
    415     int64_t wait_time_ms = max_wait_time_ms;
    416     while (wait_time_ms > 0) {
    417       crit_sect_->Leave();
    418       const EventTypeWrapper ret =
    419         frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
    420       crit_sect_->Enter();
    421       if (ret == kEventSignaled) {
    422         // Are we shutting down the jitter buffer?
    423         if (!running_) {
    424           crit_sect_->Leave();
    425           return false;
    426         }
    427         // Finding oldest frame ready for decoder.
    428         CleanUpOldOrEmptyFrames();
    429         if (decodable_frames_.empty() ||
    430             decodable_frames_.Front()->GetState() != kStateComplete) {
    431           wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
    432         } else {
    433           break;
    434         }
    435       } else {
    436         break;
    437       }
    438     }
    439     // Inside |crit_sect_|.
    440   } else {
    441     // We already have a frame, reset the event.
    442     frame_event_->Reset();
    443   }
    444   if (decodable_frames_.empty() ||
    445       decodable_frames_.Front()->GetState() != kStateComplete) {
    446     crit_sect_->Leave();
    447     return false;
    448   }
    449   *timestamp = decodable_frames_.Front()->TimeStamp();
    450   crit_sect_->Leave();
    451   return true;
    452 }
    453 
    454 bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) {
    455   CriticalSectionScoped cs(crit_sect_);
    456   if (!running_) {
    457     return false;
    458   }
    459   if (decode_error_mode_ == kNoErrors) {
    460     // No point to continue, as we are not decoding with errors.
    461     return false;
    462   }
    463 
    464   CleanUpOldOrEmptyFrames();
    465 
    466   if (decodable_frames_.empty()) {
    467     return false;
    468   }
    469   VCMFrameBuffer* oldest_frame = decodable_frames_.Front();
    470   // If we have exactly one frame in the buffer, release it only if it is
    471   // complete. We know decodable_frames_ is  not empty due to the previous
    472   // check.
    473   if (decodable_frames_.size() == 1 && incomplete_frames_.empty()
    474       && oldest_frame->GetState() != kStateComplete) {
    475     return false;
    476   }
    477 
    478   *timestamp = oldest_frame->TimeStamp();
    479   return true;
    480 }
    481 
    482 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
    483   CriticalSectionScoped cs(crit_sect_);
    484   if (!running_) {
    485     return NULL;
    486   }
    487   // Extract the frame with the desired timestamp.
    488   VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
    489   bool continuous = true;
    490   if (!frame) {
    491     frame = incomplete_frames_.PopFrame(timestamp);
    492     if (frame)
    493       continuous = last_decoded_state_.ContinuousFrame(frame);
    494     else
    495       return NULL;
    496   }
    497   TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract");
    498   // Frame pulled out from jitter buffer, update the jitter estimate.
    499   const bool retransmitted = (frame->GetNackCount() > 0);
    500   if (retransmitted) {
    501     jitter_estimate_.FrameNacked();
    502   } else if (frame->Length() > 0) {
    503     // Ignore retransmitted and empty frames.
    504     if (waiting_for_completion_.latest_packet_time >= 0) {
    505       UpdateJitterEstimate(waiting_for_completion_, true);
    506     }
    507     if (frame->GetState() == kStateComplete) {
    508       UpdateJitterEstimate(*frame, false);
    509     } else {
    510       // Wait for this one to get complete.
    511       waiting_for_completion_.frame_size = frame->Length();
    512       waiting_for_completion_.latest_packet_time =
    513           frame->LatestPacketTimeMs();
    514       waiting_for_completion_.timestamp = frame->TimeStamp();
    515     }
    516   }
    517 
    518   // The state must be changed to decoding before cleaning up zero sized
    519   // frames to avoid empty frames being cleaned up and then given to the
    520   // decoder. Propagates the missing_frame bit.
    521   frame->PrepareForDecode(continuous);
    522 
    523   // We have a frame - update the last decoded state and nack list.
    524   last_decoded_state_.SetState(frame);
    525   DropPacketsFromNackList(last_decoded_state_.sequence_num());
    526 
    527   if ((*frame).IsSessionComplete())
    528     UpdateAveragePacketsPerFrame(frame->NumPackets());
    529 
    530   return frame;
    531 }
    532 
    533 // Release frame when done with decoding. Should never be used to release
    534 // frames from within the jitter buffer.
    535 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
    536   CriticalSectionScoped cs(crit_sect_);
    537   VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
    538   if (frame_buffer) {
    539     free_frames_.push_back(frame_buffer);
    540   }
    541 }
    542 
    543 // Gets frame to use for this timestamp. If no match, get empty frame.
    544 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
    545                                              VCMFrameBuffer** frame) {
    546   // Does this packet belong to an old frame?
    547   if (last_decoded_state_.IsOldPacket(&packet)) {
    548     // Account only for media packets.
    549     if (packet.sizeBytes > 0) {
    550       num_discarded_packets_++;
    551       num_consecutive_old_packets_++;
    552     }
    553     // Update last decoded sequence number if the packet arrived late and
    554     // belongs to a frame with a timestamp equal to the last decoded
    555     // timestamp.
    556     last_decoded_state_.UpdateOldPacket(&packet);
    557     DropPacketsFromNackList(last_decoded_state_.sequence_num());
    558 
    559     if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
    560       LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
    561                          "packets received. Flushing the jitter buffer.";
    562       Flush();
    563       return kFlushIndicator;
    564     }
    565     return kOldPacket;
    566   }
    567   num_consecutive_old_packets_ = 0;
    568 
    569   *frame = incomplete_frames_.FindFrame(packet.timestamp);
    570   if (*frame)
    571     return kNoError;
    572   *frame = decodable_frames_.FindFrame(packet.timestamp);
    573   if (*frame)
    574     return kNoError;
    575 
    576   // No match, return empty frame.
    577   *frame = GetEmptyFrame();
    578   VCMFrameBufferEnum ret = kNoError;
    579   if (!*frame) {
    580     // No free frame! Try to reclaim some...
    581     LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
    582     bool found_key_frame = RecycleFramesUntilKeyFrame();
    583     *frame = GetEmptyFrame();
    584     assert(*frame);
    585     if (!found_key_frame) {
    586       ret = kFlushIndicator;
    587     }
    588   }
    589   (*frame)->Reset();
    590   return ret;
    591 }
    592 
    593 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
    594                                         bool* retransmitted) const {
    595   assert(retransmitted);
    596   CriticalSectionScoped cs(crit_sect_);
    597   const VCMFrameBuffer* frame_buffer =
    598       static_cast<const VCMFrameBuffer*>(frame);
    599   *retransmitted = (frame_buffer->GetNackCount() > 0);
    600   return frame_buffer->LatestPacketTimeMs();
    601 }
    602 
    603 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
    604                                                  bool* retransmitted) {
    605   CriticalSectionScoped cs(crit_sect_);
    606 
    607   VCMFrameBuffer* frame = NULL;
    608   const VCMFrameBufferEnum error = GetFrame(packet, &frame);
    609   if (error != kNoError && frame == NULL) {
    610     return error;
    611   }
    612   int64_t now_ms = clock_->TimeInMilliseconds();
    613   // We are keeping track of the first and latest seq numbers, and
    614   // the number of wraps to be able to calculate how many packets we expect.
    615   if (first_packet_since_reset_) {
    616     // Now it's time to start estimating jitter
    617     // reset the delay estimate.
    618     inter_frame_delay_.Reset(now_ms);
    619   }
    620   if (last_decoded_state_.IsOldPacket(&packet)) {
    621     // This packet belongs to an old, already decoded frame, we want to update
    622     // the last decoded sequence number.
    623     last_decoded_state_.UpdateOldPacket(&packet);
    624     drop_count_++;
    625     // Flush if this happens consistently.
    626     num_consecutive_old_frames_++;
    627     if (num_consecutive_old_frames_ > kMaxConsecutiveOldFrames) {
    628       LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old "
    629                          "frames received. Flushing the jitter buffer.";
    630       Flush();
    631       return kFlushIndicator;
    632     }
    633     return kNoError;
    634   }
    635 
    636   num_consecutive_old_frames_ = 0;
    637 
    638   // Empty packets may bias the jitter estimate (lacking size component),
    639   // therefore don't let empty packet trigger the following updates:
    640   if (packet.frameType != kFrameEmpty) {
    641     if (waiting_for_completion_.timestamp == packet.timestamp) {
    642       // This can get bad if we have a lot of duplicate packets,
    643       // we will then count some packet multiple times.
    644       waiting_for_completion_.frame_size += packet.sizeBytes;
    645       waiting_for_completion_.latest_packet_time = now_ms;
    646     } else if (waiting_for_completion_.latest_packet_time >= 0 &&
    647                waiting_for_completion_.latest_packet_time + 2000 <= now_ms) {
    648       // A packet should never be more than two seconds late
    649       UpdateJitterEstimate(waiting_for_completion_, true);
    650       waiting_for_completion_.latest_packet_time = -1;
    651       waiting_for_completion_.frame_size = 0;
    652       waiting_for_completion_.timestamp = 0;
    653     }
    654   }
    655 
    656   VCMFrameBufferStateEnum previous_state = frame->GetState();
    657   // Insert packet.
    658   // Check for first packet. High sequence number will be -1 if neither an empty
    659   // packet nor a media packet has been inserted.
    660   bool first = (frame->GetHighSeqNum() == -1);
    661   FrameData frame_data;
    662   frame_data.rtt_ms = rtt_ms_;
    663   frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
    664   VCMFrameBufferEnum buffer_return = frame->InsertPacket(packet,
    665                                                          now_ms,
    666                                                          decode_error_mode_,
    667                                                          frame_data);
    668   if (!frame->GetCountedFrame()) {
    669     TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(),
    670                              "timestamp", frame->TimeStamp());
    671   }
    672 
    673   if (buffer_return > 0) {
    674     incoming_bit_count_ += packet.sizeBytes << 3;
    675     if (first_packet_since_reset_) {
    676       latest_received_sequence_number_ = packet.seqNum;
    677       first_packet_since_reset_ = false;
    678     } else {
    679       if (IsPacketRetransmitted(packet)) {
    680         frame->IncrementNackCount();
    681       }
    682       if (!UpdateNackList(packet.seqNum) &&
    683           packet.frameType != kVideoFrameKey) {
    684         buffer_return = kFlushIndicator;
    685       }
    686       latest_received_sequence_number_ = LatestSequenceNumber(
    687           latest_received_sequence_number_, packet.seqNum);
    688     }
    689   }
    690 
    691   // Is the frame already in the decodable list?
    692   bool update_decodable_list = (previous_state != kStateDecodable &&
    693       previous_state != kStateComplete);
    694   bool continuous = IsContinuous(*frame);
    695   switch (buffer_return) {
    696     case kGeneralError:
    697     case kTimeStampError:
    698     case kSizeError: {
    699       // This frame will be cleaned up later from the frame list.
    700       frame->Reset();
    701       break;
    702     }
    703     case kCompleteSession: {
    704       if (update_decodable_list) {
    705         CountFrame(*frame);
    706         frame->SetCountedFrame(true);
    707         if (continuous) {
    708           // Signal that we have a complete session.
    709           frame_event_->Set();
    710         }
    711       }
    712     }
    713     // Note: There is no break here - continuing to kDecodableSession.
    714     case kDecodableSession: {
    715       *retransmitted = (frame->GetNackCount() > 0);
    716       // Signal that we have a received packet.
    717       packet_event_->Set();
    718       if (!update_decodable_list) {
    719         break;
    720       }
    721       if (continuous) {
    722         if (!first) {
    723           incomplete_frames_.PopFrame(packet.timestamp);
    724         }
    725         decodable_frames_.InsertFrame(frame);
    726         FindAndInsertContinuousFrames(*frame);
    727       } else if (first) {
    728         incomplete_frames_.InsertFrame(frame);
    729       }
    730       break;
    731     }
    732     case kIncomplete: {
    733       // No point in storing empty continuous frames.
    734       if (frame->GetState() == kStateEmpty &&
    735           last_decoded_state_.UpdateEmptyFrame(frame)) {
    736         free_frames_.push_back(frame);
    737         frame->Reset();
    738         frame = NULL;
    739         return kNoError;
    740       } else if (first) {
    741         incomplete_frames_.InsertFrame(frame);
    742       }
    743       // Signal that we have received a packet.
    744       packet_event_->Set();
    745       break;
    746     }
    747     case kNoError:
    748     case kOutOfBoundsPacket:
    749     case kDuplicatePacket: {
    750       break;
    751     }
    752     case kFlushIndicator:
    753       return kFlushIndicator;
    754     default: {
    755       assert(false && "JitterBuffer::InsertPacket: Undefined value");
    756     }
    757   }
    758   return buffer_return;
    759 }
    760 
    761 bool VCMJitterBuffer::IsContinuousInState(const VCMFrameBuffer& frame,
    762     const VCMDecodingState& decoding_state) const {
    763   if (decode_error_mode_ == kWithErrors)
    764     return true;
    765   // Is this frame (complete or decodable) and continuous?
    766   // kStateDecodable will never be set when decode_error_mode_ is false
    767   // as SessionInfo determines this state based on the error mode (and frame
    768   // completeness).
    769   if ((frame.GetState() == kStateComplete ||
    770        frame.GetState() == kStateDecodable) &&
    771        decoding_state.ContinuousFrame(&frame)) {
    772     return true;
    773   } else {
    774     return false;
    775   }
    776 }
    777 
    778 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
    779   if (IsContinuousInState(frame, last_decoded_state_)) {
    780     return true;
    781   }
    782   VCMDecodingState decoding_state;
    783   decoding_state.CopyFrom(last_decoded_state_);
    784   for (FrameList::const_iterator it = decodable_frames_.begin();
    785        it != decodable_frames_.end(); ++it)  {
    786     VCMFrameBuffer* decodable_frame = it->second;
    787     if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) {
    788       break;
    789     }
    790     decoding_state.SetState(decodable_frame);
    791     if (IsContinuousInState(frame, decoding_state)) {
    792       return true;
    793     }
    794   }
    795   return false;
    796 }
    797 
    798 void VCMJitterBuffer::FindAndInsertContinuousFrames(
    799     const VCMFrameBuffer& new_frame) {
    800   VCMDecodingState decoding_state;
    801   decoding_state.CopyFrom(last_decoded_state_);
    802   decoding_state.SetState(&new_frame);
    803   // When temporal layers are available, we search for a complete or decodable
    804   // frame until we hit one of the following:
    805   // 1. Continuous base or sync layer.
    806   // 2. The end of the list was reached.
    807   for (FrameList::iterator it = incomplete_frames_.begin();
    808        it != incomplete_frames_.end();)  {
    809     VCMFrameBuffer* frame = it->second;
    810     if (IsNewerTimestamp(new_frame.TimeStamp(), frame->TimeStamp())) {
    811       ++it;
    812       continue;
    813     }
    814     if (IsContinuousInState(*frame, decoding_state)) {
    815       decodable_frames_.InsertFrame(frame);
    816       incomplete_frames_.erase(it++);
    817       decoding_state.SetState(frame);
    818     } else if (frame->TemporalId() <= 0) {
    819       break;
    820     } else {
    821       ++it;
    822     }
    823   }
    824 }
    825 
    826 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
    827   CriticalSectionScoped cs(crit_sect_);
    828   // Compute RTT multiplier for estimation.
    829   // low_rtt_nackThresholdMs_ == -1 means no FEC.
    830   double rtt_mult = 1.0f;
    831   if (low_rtt_nack_threshold_ms_ >= 0 &&
    832       static_cast<int>(rtt_ms_) >= low_rtt_nack_threshold_ms_) {
    833     // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay
    834     // when waiting for retransmissions.
    835     rtt_mult = 0.0f;
    836   }
    837   return jitter_estimate_.GetJitterEstimate(rtt_mult);
    838 }
    839 
    840 void VCMJitterBuffer::UpdateRtt(uint32_t rtt_ms) {
    841   CriticalSectionScoped cs(crit_sect_);
    842   rtt_ms_ = rtt_ms;
    843   jitter_estimate_.UpdateRtt(rtt_ms);
    844 }
    845 
    846 void VCMJitterBuffer::SetNackMode(VCMNackMode mode,
    847                                   int low_rtt_nack_threshold_ms,
    848                                   int high_rtt_nack_threshold_ms) {
    849   CriticalSectionScoped cs(crit_sect_);
    850   nack_mode_ = mode;
    851   if (mode == kNoNack) {
    852     missing_sequence_numbers_.clear();
    853   }
    854   assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1);
    855   assert(high_rtt_nack_threshold_ms == -1 ||
    856          low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms);
    857   assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1);
    858   low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms;
    859   high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms;
    860   // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not
    861   // disable NACK in hybrid mode.
    862   if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) {
    863     rtt_ms_ = 0;
    864   }
    865   if (!WaitForRetransmissions()) {
    866     jitter_estimate_.ResetNackCount();
    867   }
    868 }
    869 
    870 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
    871                                       int max_packet_age_to_nack,
    872                                       int max_incomplete_time_ms) {
    873   CriticalSectionScoped cs(crit_sect_);
    874   assert(max_packet_age_to_nack >= 0);
    875   assert(max_incomplete_time_ms_ >= 0);
    876   max_nack_list_size_ = max_nack_list_size;
    877   max_packet_age_to_nack_ = max_packet_age_to_nack;
    878   max_incomplete_time_ms_ = max_incomplete_time_ms;
    879   nack_seq_nums_.resize(max_nack_list_size_);
    880 }
    881 
    882 VCMNackMode VCMJitterBuffer::nack_mode() const {
    883   CriticalSectionScoped cs(crit_sect_);
    884   return nack_mode_;
    885 }
    886 
    887 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
    888   if (incomplete_frames_.empty()) {
    889     return 0;
    890   }
    891   uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp();
    892   if (!decodable_frames_.empty()) {
    893     start_timestamp = decodable_frames_.Back()->TimeStamp();
    894   }
    895   return incomplete_frames_.Back()->TimeStamp() - start_timestamp;
    896 }
    897 
    898 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
    899     const VCMFrameBuffer& frame) const {
    900   assert(frame.GetLowSeqNum() >= 0);
    901   if (frame.HaveFirstPacket())
    902     return frame.GetLowSeqNum();
    903 
    904   // This estimate is not accurate if more than one packet with lower sequence
    905   // number is lost.
    906   return frame.GetLowSeqNum() - 1;
    907 }
    908 
    909 uint16_t* VCMJitterBuffer::GetNackList(uint16_t* nack_list_size,
    910                                        bool* request_key_frame) {
    911   CriticalSectionScoped cs(crit_sect_);
    912   *request_key_frame = false;
    913   if (nack_mode_ == kNoNack) {
    914     *nack_list_size = 0;
    915     return NULL;
    916   }
    917   if (last_decoded_state_.in_initial_state()) {
    918     VCMFrameBuffer* next_frame =  NextFrame();
    919     const bool first_frame_is_key = next_frame &&
    920         next_frame->FrameType() == kVideoFrameKey &&
    921         next_frame->HaveFirstPacket();
    922     if (!first_frame_is_key) {
    923       bool have_non_empty_frame = decodable_frames_.end() != find_if(
    924           decodable_frames_.begin(), decodable_frames_.end(),
    925           HasNonEmptyState);
    926       if (!have_non_empty_frame) {
    927         have_non_empty_frame = incomplete_frames_.end() != find_if(
    928             incomplete_frames_.begin(), incomplete_frames_.end(),
    929             HasNonEmptyState);
    930       }
    931       bool found_key_frame = RecycleFramesUntilKeyFrame();
    932       if (!found_key_frame) {
    933         *request_key_frame = have_non_empty_frame;
    934         *nack_list_size = 0;
    935         return NULL;
    936       }
    937     }
    938   }
    939   if (TooLargeNackList()) {
    940     *request_key_frame = !HandleTooLargeNackList();
    941   }
    942   if (max_incomplete_time_ms_ > 0) {
    943     int non_continuous_incomplete_duration =
    944         NonContinuousOrIncompleteDuration();
    945     if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
    946       LOG_F(LS_WARNING) << "Too long non-decodable duration: "
    947                         << non_continuous_incomplete_duration << " > "
    948                         << 90 * max_incomplete_time_ms_;
    949       FrameList::reverse_iterator rit = find_if(incomplete_frames_.rbegin(),
    950           incomplete_frames_.rend(), IsKeyFrame);
    951       if (rit == incomplete_frames_.rend()) {
    952         // Request a key frame if we don't have one already.
    953         *request_key_frame = true;
    954         *nack_list_size = 0;
    955         return NULL;
    956       } else {
    957         // Skip to the last key frame. If it's incomplete we will start
    958         // NACKing it.
    959         // Note that the estimated low sequence number is correct for VP8
    960         // streams because only the first packet of a key frame is marked.
    961         last_decoded_state_.Reset();
    962         DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
    963       }
    964     }
    965   }
    966   unsigned int i = 0;
    967   SequenceNumberSet::iterator it = missing_sequence_numbers_.begin();
    968   for (; it != missing_sequence_numbers_.end(); ++it, ++i) {
    969     nack_seq_nums_[i] = *it;
    970   }
    971   *nack_list_size = i;
    972   return &nack_seq_nums_[0];
    973 }
    974 
    975 void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) {
    976   CriticalSectionScoped cs(crit_sect_);
    977   decode_error_mode_ = error_mode;
    978 }
    979 
    980 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
    981   if (!decodable_frames_.empty())
    982     return decodable_frames_.Front();
    983   if (!incomplete_frames_.empty())
    984     return incomplete_frames_.Front();
    985   return NULL;
    986 }
    987 
    988 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
    989   if (nack_mode_ == kNoNack) {
    990     return true;
    991   }
    992   // Make sure we don't add packets which are already too old to be decoded.
    993   if (!last_decoded_state_.in_initial_state()) {
    994     latest_received_sequence_number_ = LatestSequenceNumber(
    995         latest_received_sequence_number_,
    996         last_decoded_state_.sequence_num());
    997   }
    998   if (IsNewerSequenceNumber(sequence_number,
    999                             latest_received_sequence_number_)) {
   1000     // Push any missing sequence numbers to the NACK list.
   1001     for (uint16_t i = latest_received_sequence_number_ + 1;
   1002          IsNewerSequenceNumber(sequence_number, i); ++i) {
   1003       missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
   1004       TRACE_EVENT_INSTANT1("webrtc", "AddNack", "seqnum", i);
   1005     }
   1006     if (TooLargeNackList() && !HandleTooLargeNackList()) {
   1007       LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
   1008       return false;
   1009     }
   1010     if (MissingTooOldPacket(sequence_number) &&
   1011         !HandleTooOldPackets(sequence_number)) {
   1012       LOG(LS_WARNING) << "Requesting key frame due to missing too old packets";
   1013       return false;
   1014     }
   1015   } else {
   1016     missing_sequence_numbers_.erase(sequence_number);
   1017     TRACE_EVENT_INSTANT1("webrtc", "RemoveNack", "seqnum", sequence_number);
   1018   }
   1019   return true;
   1020 }
   1021 
   1022 bool VCMJitterBuffer::TooLargeNackList() const {
   1023   return missing_sequence_numbers_.size() > max_nack_list_size_;
   1024 }
   1025 
   1026 bool VCMJitterBuffer::HandleTooLargeNackList() {
   1027   // Recycle frames until the NACK list is small enough. It is likely cheaper to
   1028   // request a key frame than to retransmit this many missing packets.
   1029   LOG_F(LS_WARNING) << "NACK list has grown too large: "
   1030                     << missing_sequence_numbers_.size() << " > "
   1031                     << max_nack_list_size_;
   1032   bool key_frame_found = false;
   1033   while (TooLargeNackList()) {
   1034     key_frame_found = RecycleFramesUntilKeyFrame();
   1035   }
   1036   return key_frame_found;
   1037 }
   1038 
   1039 bool VCMJitterBuffer::MissingTooOldPacket(
   1040     uint16_t latest_sequence_number) const {
   1041   if (missing_sequence_numbers_.empty()) {
   1042     return false;
   1043   }
   1044   const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
   1045       *missing_sequence_numbers_.begin();
   1046   // Recycle frames if the NACK list contains too old sequence numbers as
   1047   // the packets may have already been dropped by the sender.
   1048   return age_of_oldest_missing_packet > max_packet_age_to_nack_;
   1049 }
   1050 
   1051 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
   1052   bool key_frame_found = false;
   1053   const uint16_t age_of_oldest_missing_packet = latest_sequence_number -
   1054       *missing_sequence_numbers_.begin();
   1055   LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
   1056                     << age_of_oldest_missing_packet << " > "
   1057                     << max_packet_age_to_nack_;
   1058   while (MissingTooOldPacket(latest_sequence_number)) {
   1059     key_frame_found = RecycleFramesUntilKeyFrame();
   1060   }
   1061   return key_frame_found;
   1062 }
   1063 
   1064 void VCMJitterBuffer::DropPacketsFromNackList(
   1065     uint16_t last_decoded_sequence_number) {
   1066   // Erase all sequence numbers from the NACK list which we won't need any
   1067   // longer.
   1068   missing_sequence_numbers_.erase(missing_sequence_numbers_.begin(),
   1069                                   missing_sequence_numbers_.upper_bound(
   1070                                       last_decoded_sequence_number));
   1071 }
   1072 
   1073 int64_t VCMJitterBuffer::LastDecodedTimestamp() const {
   1074   CriticalSectionScoped cs(crit_sect_);
   1075   return last_decoded_state_.time_stamp();
   1076 }
   1077 
   1078 void VCMJitterBuffer::RenderBufferSize(uint32_t* timestamp_start,
   1079                                        uint32_t* timestamp_end) {
   1080   CriticalSectionScoped cs(crit_sect_);
   1081   CleanUpOldOrEmptyFrames();
   1082   *timestamp_start = 0;
   1083   *timestamp_end = 0;
   1084   if (decodable_frames_.empty()) {
   1085     return;
   1086   }
   1087   *timestamp_start = decodable_frames_.Front()->TimeStamp();
   1088   *timestamp_end = decodable_frames_.Back()->TimeStamp();
   1089 }
   1090 
   1091 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
   1092   if (free_frames_.empty()) {
   1093     if (!TryToIncreaseJitterBufferSize()) {
   1094       return NULL;
   1095     }
   1096   }
   1097   VCMFrameBuffer* frame = free_frames_.front();
   1098   free_frames_.pop_front();
   1099   return frame;
   1100 }
   1101 
   1102 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
   1103   if (max_number_of_frames_ >= kMaxNumberOfFrames)
   1104     return false;
   1105   VCMFrameBuffer* new_frame = new VCMFrameBuffer();
   1106   frame_buffers_[max_number_of_frames_] = new_frame;
   1107   free_frames_.push_back(new_frame);
   1108   ++max_number_of_frames_;
   1109   TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_);
   1110   return true;
   1111 }
   1112 
   1113 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
   1114 // full.
   1115 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
   1116   // First release incomplete frames, and only release decodable frames if there
   1117   // are no incomplete ones.
   1118   FrameList::iterator key_frame_it;
   1119   bool key_frame_found = false;
   1120   int dropped_frames = 0;
   1121   dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
   1122       &key_frame_it, &free_frames_);
   1123   key_frame_found = key_frame_it != incomplete_frames_.end();
   1124   if (dropped_frames == 0) {
   1125     dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
   1126         &key_frame_it, &free_frames_);
   1127     key_frame_found = key_frame_it != decodable_frames_.end();
   1128   }
   1129   drop_count_ += dropped_frames;
   1130   TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame");
   1131   if (key_frame_found) {
   1132     LOG(LS_INFO) << "Found key frame while dropping frames.";
   1133     // Reset last decoded state to make sure the next frame decoded is a key
   1134     // frame, and start NACKing from here.
   1135     last_decoded_state_.Reset();
   1136     DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
   1137   } else if (decodable_frames_.empty()) {
   1138     // All frames dropped. Reset the decoding state and clear missing sequence
   1139     // numbers as we're starting fresh.
   1140     last_decoded_state_.Reset();
   1141     missing_sequence_numbers_.clear();
   1142   }
   1143   return key_frame_found;
   1144 }
   1145 
   1146 // Must be called under the critical section |crit_sect_|.
   1147 void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) {
   1148   if (!frame.GetCountedFrame()) {
   1149     // Ignore ACK frames.
   1150     incoming_frame_count_++;
   1151   }
   1152 
   1153   if (frame.FrameType() == kVideoFrameKey) {
   1154     TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
   1155                             frame.TimeStamp(), "KeyComplete");
   1156   } else {
   1157     TRACE_EVENT_ASYNC_STEP0("webrtc", "Video",
   1158                             frame.TimeStamp(), "DeltaComplete");
   1159   }
   1160 
   1161   // Update receive statistics. We count all layers, thus when you use layers
   1162   // adding all key and delta frames might differ from frame count.
   1163   if (frame.IsSessionComplete()) {
   1164     ++receive_statistics_[frame.FrameType()];
   1165   }
   1166 }
   1167 
   1168 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
   1169   if (frame_counter_ > kFastConvergeThreshold) {
   1170     average_packets_per_frame_ = average_packets_per_frame_
   1171               * (1 - kNormalConvergeMultiplier)
   1172             + current_number_packets * kNormalConvergeMultiplier;
   1173   } else if (frame_counter_ > 0) {
   1174     average_packets_per_frame_ = average_packets_per_frame_
   1175               * (1 - kFastConvergeMultiplier)
   1176             + current_number_packets * kFastConvergeMultiplier;
   1177     frame_counter_++;
   1178   } else {
   1179     average_packets_per_frame_ = current_number_packets;
   1180     frame_counter_++;
   1181   }
   1182 }
   1183 
   1184 // Must be called under the critical section |crit_sect_|.
   1185 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
   1186   drop_count_ +=
   1187       decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
   1188           &free_frames_);
   1189   drop_count_ +=
   1190       incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
   1191           &free_frames_);
   1192   if (!last_decoded_state_.in_initial_state()) {
   1193     DropPacketsFromNackList(last_decoded_state_.sequence_num());
   1194   }
   1195 }
   1196 
   1197 // Must be called from within |crit_sect_|.
   1198 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
   1199   return missing_sequence_numbers_.find(packet.seqNum) !=
   1200       missing_sequence_numbers_.end();
   1201 }
   1202 
   1203 // Must be called under the critical section |crit_sect_|. Should never be
   1204 // called with retransmitted frames, they must be filtered out before this
   1205 // function is called.
   1206 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
   1207                                            bool incomplete_frame) {
   1208   if (sample.latest_packet_time == -1) {
   1209     return;
   1210   }
   1211   UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
   1212                        sample.frame_size, incomplete_frame);
   1213 }
   1214 
   1215 // Must be called under the critical section crit_sect_. Should never be
   1216 // called with retransmitted frames, they must be filtered out before this
   1217 // function is called.
   1218 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
   1219                                            bool incomplete_frame) {
   1220   if (frame.LatestPacketTimeMs() == -1) {
   1221     return;
   1222   }
   1223   // No retransmitted frames should be a part of the jitter
   1224   // estimate.
   1225   UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(),
   1226                        frame.Length(), incomplete_frame);
   1227 }
   1228 
   1229 // Must be called under the critical section |crit_sect_|. Should never be
   1230 // called with retransmitted frames, they must be filtered out before this
   1231 // function is called.
   1232 void VCMJitterBuffer::UpdateJitterEstimate(
   1233     int64_t latest_packet_time_ms,
   1234     uint32_t timestamp,
   1235     unsigned int frame_size,
   1236     bool incomplete_frame) {
   1237   if (latest_packet_time_ms == -1) {
   1238     return;
   1239   }
   1240   int64_t frame_delay;
   1241   bool not_reordered = inter_frame_delay_.CalculateDelay(timestamp,
   1242                                                       &frame_delay,
   1243                                                       latest_packet_time_ms);
   1244   // Filter out frames which have been reordered in time by the network
   1245   if (not_reordered) {
   1246     // Update the jitter estimate with the new samples
   1247     jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame);
   1248   }
   1249 }
   1250 
   1251 bool VCMJitterBuffer::WaitForRetransmissions() {
   1252   if (nack_mode_ == kNoNack) {
   1253     // NACK disabled -> don't wait for retransmissions.
   1254     return false;
   1255   }
   1256   // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in
   1257   // that case we don't wait for retransmissions.
   1258   if (high_rtt_nack_threshold_ms_ >= 0 &&
   1259       rtt_ms_ >= static_cast<unsigned int>(high_rtt_nack_threshold_ms_)) {
   1260     return false;
   1261   }
   1262   return true;
   1263 }
   1264 }  // namespace webrtc
   1265