1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/IR/Instructions.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/Analysis/ValueTracking.h" 13 #include "llvm/IR/BasicBlock.h" 14 #include "llvm/IR/Constants.h" 15 #include "llvm/IR/DataLayout.h" 16 #include "llvm/IR/DerivedTypes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/Operator.h" 23 #include "gtest/gtest.h" 24 #include <memory> 25 26 namespace llvm { 27 namespace { 28 29 TEST(InstructionsTest, ReturnInst) { 30 LLVMContext &C(getGlobalContext()); 31 32 // test for PR6589 33 const ReturnInst* r0 = ReturnInst::Create(C); 34 EXPECT_EQ(r0->getNumOperands(), 0U); 35 EXPECT_EQ(r0->op_begin(), r0->op_end()); 36 37 IntegerType* Int1 = IntegerType::get(C, 1); 38 Constant* One = ConstantInt::get(Int1, 1, true); 39 const ReturnInst* r1 = ReturnInst::Create(C, One); 40 EXPECT_EQ(1U, r1->getNumOperands()); 41 User::const_op_iterator b(r1->op_begin()); 42 EXPECT_NE(r1->op_end(), b); 43 EXPECT_EQ(One, *b); 44 EXPECT_EQ(One, r1->getOperand(0)); 45 ++b; 46 EXPECT_EQ(r1->op_end(), b); 47 48 // clean up 49 delete r0; 50 delete r1; 51 } 52 53 // Test fixture that provides a module and a single function within it. Useful 54 // for tests that need to refer to the function in some way. 55 class ModuleWithFunctionTest : public testing::Test { 56 protected: 57 ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) { 58 FArgTypes.push_back(Type::getInt8Ty(Ctx)); 59 FArgTypes.push_back(Type::getInt32Ty(Ctx)); 60 FArgTypes.push_back(Type::getInt64Ty(Ctx)); 61 FunctionType *FTy = 62 FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false); 63 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); 64 } 65 66 LLVMContext Ctx; 67 std::unique_ptr<Module> M; 68 SmallVector<Type *, 3> FArgTypes; 69 Function *F; 70 }; 71 72 TEST_F(ModuleWithFunctionTest, CallInst) { 73 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), 74 ConstantInt::get(Type::getInt32Ty(Ctx), 9999), 75 ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; 76 std::unique_ptr<CallInst> Call(CallInst::Create(F, Args)); 77 78 // Make sure iteration over a call's arguments works as expected. 79 unsigned Idx = 0; 80 for (Value *Arg : Call->arg_operands()) { 81 EXPECT_EQ(FArgTypes[Idx], Arg->getType()); 82 EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType()); 83 Idx++; 84 } 85 } 86 87 TEST_F(ModuleWithFunctionTest, InvokeInst) { 88 BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F); 89 BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F); 90 91 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), 92 ConstantInt::get(Type::getInt32Ty(Ctx), 9999), 93 ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; 94 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args)); 95 96 // Make sure iteration over invoke's arguments works as expected. 97 unsigned Idx = 0; 98 for (Value *Arg : Invoke->arg_operands()) { 99 EXPECT_EQ(FArgTypes[Idx], Arg->getType()); 100 EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType()); 101 Idx++; 102 } 103 } 104 105 TEST(InstructionsTest, BranchInst) { 106 LLVMContext &C(getGlobalContext()); 107 108 // Make a BasicBlocks 109 BasicBlock* bb0 = BasicBlock::Create(C); 110 BasicBlock* bb1 = BasicBlock::Create(C); 111 112 // Mandatory BranchInst 113 const BranchInst* b0 = BranchInst::Create(bb0); 114 115 EXPECT_TRUE(b0->isUnconditional()); 116 EXPECT_FALSE(b0->isConditional()); 117 EXPECT_EQ(1U, b0->getNumSuccessors()); 118 119 // check num operands 120 EXPECT_EQ(1U, b0->getNumOperands()); 121 122 EXPECT_NE(b0->op_begin(), b0->op_end()); 123 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); 124 125 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); 126 127 IntegerType* Int1 = IntegerType::get(C, 1); 128 Constant* One = ConstantInt::get(Int1, 1, true); 129 130 // Conditional BranchInst 131 BranchInst* b1 = BranchInst::Create(bb0, bb1, One); 132 133 EXPECT_FALSE(b1->isUnconditional()); 134 EXPECT_TRUE(b1->isConditional()); 135 EXPECT_EQ(2U, b1->getNumSuccessors()); 136 137 // check num operands 138 EXPECT_EQ(3U, b1->getNumOperands()); 139 140 User::const_op_iterator b(b1->op_begin()); 141 142 // check COND 143 EXPECT_NE(b, b1->op_end()); 144 EXPECT_EQ(One, *b); 145 EXPECT_EQ(One, b1->getOperand(0)); 146 EXPECT_EQ(One, b1->getCondition()); 147 ++b; 148 149 // check ELSE 150 EXPECT_EQ(bb1, *b); 151 EXPECT_EQ(bb1, b1->getOperand(1)); 152 EXPECT_EQ(bb1, b1->getSuccessor(1)); 153 ++b; 154 155 // check THEN 156 EXPECT_EQ(bb0, *b); 157 EXPECT_EQ(bb0, b1->getOperand(2)); 158 EXPECT_EQ(bb0, b1->getSuccessor(0)); 159 ++b; 160 161 EXPECT_EQ(b1->op_end(), b); 162 163 // clean up 164 delete b0; 165 delete b1; 166 167 delete bb0; 168 delete bb1; 169 } 170 171 TEST(InstructionsTest, CastInst) { 172 LLVMContext &C(getGlobalContext()); 173 174 Type *Int8Ty = Type::getInt8Ty(C); 175 Type *Int16Ty = Type::getInt16Ty(C); 176 Type *Int32Ty = Type::getInt32Ty(C); 177 Type *Int64Ty = Type::getInt64Ty(C); 178 Type *V8x8Ty = VectorType::get(Int8Ty, 8); 179 Type *V8x64Ty = VectorType::get(Int64Ty, 8); 180 Type *X86MMXTy = Type::getX86_MMXTy(C); 181 182 Type *HalfTy = Type::getHalfTy(C); 183 Type *FloatTy = Type::getFloatTy(C); 184 Type *DoubleTy = Type::getDoubleTy(C); 185 186 Type *V2Int32Ty = VectorType::get(Int32Ty, 2); 187 Type *V2Int64Ty = VectorType::get(Int64Ty, 2); 188 Type *V4Int16Ty = VectorType::get(Int16Ty, 4); 189 190 Type *Int32PtrTy = PointerType::get(Int32Ty, 0); 191 Type *Int64PtrTy = PointerType::get(Int64Ty, 0); 192 193 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1); 194 Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1); 195 196 Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2); 197 Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2); 198 Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4); 199 Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4); 200 201 Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2); 202 Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2); 203 Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4); 204 205 const Constant* c8 = Constant::getNullValue(V8x8Ty); 206 const Constant* c64 = Constant::getNullValue(V8x64Ty); 207 208 const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy); 209 210 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy)); 211 EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty)); 212 EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy)); 213 EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty)); 214 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty)); 215 EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true)); 216 EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true)); 217 218 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy)); 219 EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty)); 220 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy)); 221 EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty)); 222 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty)); 223 224 // Check address space casts are rejected since we don't know the sizes here 225 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty)); 226 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy)); 227 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty)); 228 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); 229 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty)); 230 EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); 231 EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true, 232 V2Int32PtrAS1Ty, 233 true)); 234 235 // Test mismatched number of elements for pointers 236 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty)); 237 EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty)); 238 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty)); 239 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy)); 240 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy)); 241 242 EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy)); 243 EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy)); 244 EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy)); 245 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); 246 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); 247 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty)); 248 EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy)); 249 EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy)); 250 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty)); 251 252 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty)); 253 EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty)); 254 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty)); 255 256 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty)); 257 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy)); 258 EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy)); 259 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy)); 260 EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty)); 261 EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty)); 262 263 264 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, 265 Constant::getNullValue(V4Int32PtrTy), 266 V2Int32PtrTy)); 267 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, 268 Constant::getNullValue(V2Int32PtrTy), 269 V4Int32PtrTy)); 270 271 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, 272 Constant::getNullValue(V4Int32PtrAS1Ty), 273 V2Int32PtrTy)); 274 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, 275 Constant::getNullValue(V2Int32PtrTy), 276 V4Int32PtrAS1Ty)); 277 278 279 // Check that assertion is not hit when creating a cast with a vector of 280 // pointers 281 // First form 282 BasicBlock *BB = BasicBlock::Create(C); 283 Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy); 284 CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB); 285 286 // Second form 287 CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty); 288 } 289 290 TEST(InstructionsTest, VectorGep) { 291 LLVMContext &C(getGlobalContext()); 292 293 // Type Definitions 294 PointerType *Ptri8Ty = PointerType::get(IntegerType::get(C, 8), 0); 295 PointerType *Ptri32Ty = PointerType::get(IntegerType::get(C, 32), 0); 296 297 VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2); 298 VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2); 299 300 // Test different aspects of the vector-of-pointers type 301 // and GEPs which use this type. 302 ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492)); 303 ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948)); 304 std::vector<Constant*> ConstVa(2, Ci32a); 305 std::vector<Constant*> ConstVb(2, Ci32b); 306 Constant *C2xi32a = ConstantVector::get(ConstVa); 307 Constant *C2xi32b = ConstantVector::get(ConstVb); 308 309 CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy); 310 CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy); 311 312 ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB); 313 ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB); 314 EXPECT_NE(ICmp0, ICmp1); // suppress warning. 315 316 BasicBlock* BB0 = BasicBlock::Create(C); 317 // Test InsertAtEnd ICmpInst constructor. 318 ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB); 319 EXPECT_NE(ICmp0, ICmp2); // suppress warning. 320 321 GetElementPtrInst *Gep0 = GetElementPtrInst::Create(PtrVecA, C2xi32a); 322 GetElementPtrInst *Gep1 = GetElementPtrInst::Create(PtrVecA, C2xi32b); 323 GetElementPtrInst *Gep2 = GetElementPtrInst::Create(PtrVecB, C2xi32a); 324 GetElementPtrInst *Gep3 = GetElementPtrInst::Create(PtrVecB, C2xi32b); 325 326 CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy); 327 CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy); 328 CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy); 329 CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy); 330 331 Value *S0 = BTC0->stripPointerCasts(); 332 Value *S1 = BTC1->stripPointerCasts(); 333 Value *S2 = BTC2->stripPointerCasts(); 334 Value *S3 = BTC3->stripPointerCasts(); 335 336 EXPECT_NE(S0, Gep0); 337 EXPECT_NE(S1, Gep1); 338 EXPECT_NE(S2, Gep2); 339 EXPECT_NE(S3, Gep3); 340 341 int64_t Offset; 342 DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3" 343 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80" 344 ":128:128-n8:16:32:64-S128"); 345 // Make sure we don't crash 346 GetPointerBaseWithConstantOffset(Gep0, Offset, &TD); 347 GetPointerBaseWithConstantOffset(Gep1, Offset, &TD); 348 GetPointerBaseWithConstantOffset(Gep2, Offset, &TD); 349 GetPointerBaseWithConstantOffset(Gep3, Offset, &TD); 350 351 // Gep of Geps 352 GetElementPtrInst *GepII0 = GetElementPtrInst::Create(Gep0, C2xi32b); 353 GetElementPtrInst *GepII1 = GetElementPtrInst::Create(Gep1, C2xi32a); 354 GetElementPtrInst *GepII2 = GetElementPtrInst::Create(Gep2, C2xi32b); 355 GetElementPtrInst *GepII3 = GetElementPtrInst::Create(Gep3, C2xi32a); 356 357 EXPECT_EQ(GepII0->getNumIndices(), 1u); 358 EXPECT_EQ(GepII1->getNumIndices(), 1u); 359 EXPECT_EQ(GepII2->getNumIndices(), 1u); 360 EXPECT_EQ(GepII3->getNumIndices(), 1u); 361 362 EXPECT_FALSE(GepII0->hasAllZeroIndices()); 363 EXPECT_FALSE(GepII1->hasAllZeroIndices()); 364 EXPECT_FALSE(GepII2->hasAllZeroIndices()); 365 EXPECT_FALSE(GepII3->hasAllZeroIndices()); 366 367 delete GepII0; 368 delete GepII1; 369 delete GepII2; 370 delete GepII3; 371 372 delete BTC0; 373 delete BTC1; 374 delete BTC2; 375 delete BTC3; 376 377 delete Gep0; 378 delete Gep1; 379 delete Gep2; 380 delete Gep3; 381 382 ICmp2->eraseFromParent(); 383 delete BB0; 384 385 delete ICmp0; 386 delete ICmp1; 387 delete PtrVecA; 388 delete PtrVecB; 389 } 390 391 TEST(InstructionsTest, FPMathOperator) { 392 LLVMContext &Context = getGlobalContext(); 393 IRBuilder<> Builder(Context); 394 MDBuilder MDHelper(Context); 395 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); 396 MDNode *MD1 = MDHelper.createFPMath(1.0); 397 Value *V1 = Builder.CreateFAdd(I, I, "", MD1); 398 EXPECT_TRUE(isa<FPMathOperator>(V1)); 399 FPMathOperator *O1 = cast<FPMathOperator>(V1); 400 EXPECT_EQ(O1->getFPAccuracy(), 1.0); 401 delete V1; 402 delete I; 403 } 404 405 406 TEST(InstructionsTest, isEliminableCastPair) { 407 LLVMContext &C(getGlobalContext()); 408 409 Type* Int16Ty = Type::getInt16Ty(C); 410 Type* Int32Ty = Type::getInt32Ty(C); 411 Type* Int64Ty = Type::getInt64Ty(C); 412 Type* Int64PtrTy = Type::getInt64PtrTy(C); 413 414 // Source and destination pointers have same size -> bitcast. 415 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 416 CastInst::IntToPtr, 417 Int64PtrTy, Int64Ty, Int64PtrTy, 418 Int32Ty, nullptr, Int32Ty), 419 CastInst::BitCast); 420 421 // Source and destination have unknown sizes, but the same address space and 422 // the intermediate int is the maximum pointer size -> bitcast 423 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 424 CastInst::IntToPtr, 425 Int64PtrTy, Int64Ty, Int64PtrTy, 426 nullptr, nullptr, nullptr), 427 CastInst::BitCast); 428 429 // Source and destination have unknown sizes, but the same address space and 430 // the intermediate int is not the maximum pointer size -> nothing 431 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, 432 CastInst::IntToPtr, 433 Int64PtrTy, Int32Ty, Int64PtrTy, 434 nullptr, nullptr, nullptr), 435 0U); 436 437 // Middle pointer big enough -> bitcast. 438 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 439 CastInst::PtrToInt, 440 Int64Ty, Int64PtrTy, Int64Ty, 441 nullptr, Int64Ty, nullptr), 442 CastInst::BitCast); 443 444 // Middle pointer too small -> fail. 445 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 446 CastInst::PtrToInt, 447 Int64Ty, Int64PtrTy, Int64Ty, 448 nullptr, Int32Ty, nullptr), 449 0U); 450 451 // Test that we don't eliminate bitcasts between different address spaces, 452 // or if we don't have available pointer size information. 453 DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16" 454 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64" 455 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128"); 456 457 Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1); 458 Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2); 459 460 IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1); 461 IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2); 462 463 // Cannot simplify inttoptr, addrspacecast 464 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 465 CastInst::AddrSpaceCast, 466 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2, 467 nullptr, Int16SizePtr, Int64SizePtr), 468 0U); 469 470 // Cannot simplify addrspacecast, ptrtoint 471 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast, 472 CastInst::PtrToInt, 473 Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty, 474 Int64SizePtr, Int16SizePtr, nullptr), 475 0U); 476 477 // Pass since the bitcast address spaces are the same 478 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, 479 CastInst::BitCast, 480 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1, 481 nullptr, nullptr, nullptr), 482 CastInst::IntToPtr); 483 484 } 485 486 TEST(InstructionsTest, CloneCall) { 487 LLVMContext &C(getGlobalContext()); 488 Type *Int32Ty = Type::getInt32Ty(C); 489 Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty}; 490 Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false); 491 Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); 492 Value *Args[] = { 493 ConstantInt::get(Int32Ty, 1), 494 ConstantInt::get(Int32Ty, 2), 495 ConstantInt::get(Int32Ty, 3) 496 }; 497 std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result")); 498 499 // Test cloning the tail call kind. 500 CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail, 501 CallInst::TCK_MustTail}; 502 for (CallInst::TailCallKind TCK : Kinds) { 503 Call->setTailCallKind(TCK); 504 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone())); 505 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); 506 } 507 Call->setTailCallKind(CallInst::TCK_None); 508 509 // Test cloning an attribute. 510 { 511 AttrBuilder AB; 512 AB.addAttribute(Attribute::ReadOnly); 513 Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB)); 514 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone())); 515 EXPECT_TRUE(Clone->onlyReadsMemory()); 516 } 517 } 518 519 } // end anonymous namespace 520 } // end namespace llvm 521 522 523