1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains logic for simplifying instructions based on information 11 // about how they are used. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstCombine.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PatternMatch.h" 19 20 using namespace llvm; 21 using namespace llvm::PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 /// ShrinkDemandedConstant - Check to see if the specified operand of the 26 /// specified instruction is a constant integer. If so, check to see if there 27 /// are any bits set in the constant that are not demanded. If so, shrink the 28 /// constant and return true. 29 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 30 APInt Demanded) { 31 assert(I && "No instruction?"); 32 assert(OpNo < I->getNumOperands() && "Operand index too large"); 33 34 // If the operand is not a constant integer, nothing to do. 35 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); 36 if (!OpC) return false; 37 38 // If there are no bits set that aren't demanded, nothing to do. 39 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); 40 if ((~Demanded & OpC->getValue()) == 0) 41 return false; 42 43 // This instruction is producing bits that are not demanded. Shrink the RHS. 44 Demanded &= OpC->getValue(); 45 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); 46 return true; 47 } 48 49 50 51 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that 52 /// SimplifyDemandedBits knows about. See if the instruction has any 53 /// properties that allow us to simplify its operands. 54 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { 55 unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); 56 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 57 APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); 58 59 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 60 KnownZero, KnownOne, 0); 61 if (!V) return false; 62 if (V == &Inst) return true; 63 ReplaceInstUsesWith(Inst, V); 64 return true; 65 } 66 67 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the 68 /// specified instruction operand if possible, updating it in place. It returns 69 /// true if it made any change and false otherwise. 70 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 71 APInt &KnownZero, APInt &KnownOne, 72 unsigned Depth) { 73 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, 74 KnownZero, KnownOne, Depth); 75 if (!NewVal) return false; 76 U = NewVal; 77 return true; 78 } 79 80 81 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler 82 /// value based on the demanded bits. When this function is called, it is known 83 /// that only the bits set in DemandedMask of the result of V are ever used 84 /// downstream. Consequently, depending on the mask and V, it may be possible 85 /// to replace V with a constant or one of its operands. In such cases, this 86 /// function does the replacement and returns true. In all other cases, it 87 /// returns false after analyzing the expression and setting KnownOne and known 88 /// to be one in the expression. KnownZero contains all the bits that are known 89 /// to be zero in the expression. These are provided to potentially allow the 90 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify 91 /// the expression. KnownOne and KnownZero always follow the invariant that 92 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that 93 /// the bits in KnownOne and KnownZero may only be accurate for those bits set 94 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero 95 /// and KnownOne must all be the same. 96 /// 97 /// This returns null if it did not change anything and it permits no 98 /// simplification. This returns V itself if it did some simplification of V's 99 /// operands based on the information about what bits are demanded. This returns 100 /// some other non-null value if it found out that V is equal to another value 101 /// in the context where the specified bits are demanded, but not for all users. 102 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 103 APInt &KnownZero, APInt &KnownOne, 104 unsigned Depth) { 105 assert(V != nullptr && "Null pointer of Value???"); 106 assert(Depth <= 6 && "Limit Search Depth"); 107 uint32_t BitWidth = DemandedMask.getBitWidth(); 108 Type *VTy = V->getType(); 109 assert((DL || !VTy->isPointerTy()) && 110 "SimplifyDemandedBits needs to know bit widths!"); 111 assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && 112 (!VTy->isIntOrIntVectorTy() || 113 VTy->getScalarSizeInBits() == BitWidth) && 114 KnownZero.getBitWidth() == BitWidth && 115 KnownOne.getBitWidth() == BitWidth && 116 "Value *V, DemandedMask, KnownZero and KnownOne " 117 "must have same BitWidth"); 118 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 119 // We know all of the bits for a constant! 120 KnownOne = CI->getValue() & DemandedMask; 121 KnownZero = ~KnownOne & DemandedMask; 122 return nullptr; 123 } 124 if (isa<ConstantPointerNull>(V)) { 125 // We know all of the bits for a constant! 126 KnownOne.clearAllBits(); 127 KnownZero = DemandedMask; 128 return nullptr; 129 } 130 131 KnownZero.clearAllBits(); 132 KnownOne.clearAllBits(); 133 if (DemandedMask == 0) { // Not demanding any bits from V. 134 if (isa<UndefValue>(V)) 135 return nullptr; 136 return UndefValue::get(VTy); 137 } 138 139 if (Depth == 6) // Limit search depth. 140 return nullptr; 141 142 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 143 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 144 145 Instruction *I = dyn_cast<Instruction>(V); 146 if (!I) { 147 computeKnownBits(V, KnownZero, KnownOne, Depth); 148 return nullptr; // Only analyze instructions. 149 } 150 151 // If there are multiple uses of this value and we aren't at the root, then 152 // we can't do any simplifications of the operands, because DemandedMask 153 // only reflects the bits demanded by *one* of the users. 154 if (Depth != 0 && !I->hasOneUse()) { 155 // Despite the fact that we can't simplify this instruction in all User's 156 // context, we can at least compute the knownzero/knownone bits, and we can 157 // do simplifications that apply to *just* the one user if we know that 158 // this instruction has a simpler value in that context. 159 if (I->getOpcode() == Instruction::And) { 160 // If either the LHS or the RHS are Zero, the result is zero. 161 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 162 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 163 164 // If all of the demanded bits are known 1 on one side, return the other. 165 // These bits cannot contribute to the result of the 'and' in this 166 // context. 167 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 168 (DemandedMask & ~LHSKnownZero)) 169 return I->getOperand(0); 170 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 171 (DemandedMask & ~RHSKnownZero)) 172 return I->getOperand(1); 173 174 // If all of the demanded bits in the inputs are known zeros, return zero. 175 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 176 return Constant::getNullValue(VTy); 177 178 } else if (I->getOpcode() == Instruction::Or) { 179 // We can simplify (X|Y) -> X or Y in the user's context if we know that 180 // only bits from X or Y are demanded. 181 182 // If either the LHS or the RHS are One, the result is One. 183 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 184 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 185 186 // If all of the demanded bits are known zero on one side, return the 187 // other. These bits cannot contribute to the result of the 'or' in this 188 // context. 189 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 190 (DemandedMask & ~LHSKnownOne)) 191 return I->getOperand(0); 192 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 193 (DemandedMask & ~RHSKnownOne)) 194 return I->getOperand(1); 195 196 // If all of the potentially set bits on one side are known to be set on 197 // the other side, just use the 'other' side. 198 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 199 (DemandedMask & (~RHSKnownZero))) 200 return I->getOperand(0); 201 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 202 (DemandedMask & (~LHSKnownZero))) 203 return I->getOperand(1); 204 } else if (I->getOpcode() == Instruction::Xor) { 205 // We can simplify (X^Y) -> X or Y in the user's context if we know that 206 // only bits from X or Y are demanded. 207 208 computeKnownBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1); 209 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 210 211 // If all of the demanded bits are known zero on one side, return the 212 // other. 213 if ((DemandedMask & RHSKnownZero) == DemandedMask) 214 return I->getOperand(0); 215 if ((DemandedMask & LHSKnownZero) == DemandedMask) 216 return I->getOperand(1); 217 } 218 219 // Compute the KnownZero/KnownOne bits to simplify things downstream. 220 computeKnownBits(I, KnownZero, KnownOne, Depth); 221 return nullptr; 222 } 223 224 // If this is the root being simplified, allow it to have multiple uses, 225 // just set the DemandedMask to all bits so that we can try to simplify the 226 // operands. This allows visitTruncInst (for example) to simplify the 227 // operand of a trunc without duplicating all the logic below. 228 if (Depth == 0 && !V->hasOneUse()) 229 DemandedMask = APInt::getAllOnesValue(BitWidth); 230 231 switch (I->getOpcode()) { 232 default: 233 computeKnownBits(I, KnownZero, KnownOne, Depth); 234 break; 235 case Instruction::And: 236 // If either the LHS or the RHS are Zero, the result is zero. 237 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 238 RHSKnownZero, RHSKnownOne, Depth+1) || 239 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, 240 LHSKnownZero, LHSKnownOne, Depth+1)) 241 return I; 242 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 243 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 244 245 // If all of the demanded bits are known 1 on one side, return the other. 246 // These bits cannot contribute to the result of the 'and'. 247 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 248 (DemandedMask & ~LHSKnownZero)) 249 return I->getOperand(0); 250 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 251 (DemandedMask & ~RHSKnownZero)) 252 return I->getOperand(1); 253 254 // If all of the demanded bits in the inputs are known zeros, return zero. 255 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) 256 return Constant::getNullValue(VTy); 257 258 // If the RHS is a constant, see if we can simplify it. 259 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) 260 return I; 261 262 // Output known-1 bits are only known if set in both the LHS & RHS. 263 KnownOne = RHSKnownOne & LHSKnownOne; 264 // Output known-0 are known to be clear if zero in either the LHS | RHS. 265 KnownZero = RHSKnownZero | LHSKnownZero; 266 break; 267 case Instruction::Or: 268 // If either the LHS or the RHS are One, the result is One. 269 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 270 RHSKnownZero, RHSKnownOne, Depth+1) || 271 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 272 LHSKnownZero, LHSKnownOne, Depth+1)) 273 return I; 274 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 275 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 276 277 // If all of the demanded bits are known zero on one side, return the other. 278 // These bits cannot contribute to the result of the 'or'. 279 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 280 (DemandedMask & ~LHSKnownOne)) 281 return I->getOperand(0); 282 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 283 (DemandedMask & ~RHSKnownOne)) 284 return I->getOperand(1); 285 286 // If all of the potentially set bits on one side are known to be set on 287 // the other side, just use the 'other' side. 288 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 289 (DemandedMask & (~RHSKnownZero))) 290 return I->getOperand(0); 291 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 292 (DemandedMask & (~LHSKnownZero))) 293 return I->getOperand(1); 294 295 // If the RHS is a constant, see if we can simplify it. 296 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 297 return I; 298 299 // Output known-0 bits are only known if clear in both the LHS & RHS. 300 KnownZero = RHSKnownZero & LHSKnownZero; 301 // Output known-1 are known to be set if set in either the LHS | RHS. 302 KnownOne = RHSKnownOne | LHSKnownOne; 303 break; 304 case Instruction::Xor: { 305 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 306 RHSKnownZero, RHSKnownOne, Depth+1) || 307 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 308 LHSKnownZero, LHSKnownOne, Depth+1)) 309 return I; 310 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 311 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 312 313 // If all of the demanded bits are known zero on one side, return the other. 314 // These bits cannot contribute to the result of the 'xor'. 315 if ((DemandedMask & RHSKnownZero) == DemandedMask) 316 return I->getOperand(0); 317 if ((DemandedMask & LHSKnownZero) == DemandedMask) 318 return I->getOperand(1); 319 320 // If all of the demanded bits are known to be zero on one side or the 321 // other, turn this into an *inclusive* or. 322 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 323 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { 324 Instruction *Or = 325 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 326 I->getName()); 327 return InsertNewInstWith(Or, *I); 328 } 329 330 // If all of the demanded bits on one side are known, and all of the set 331 // bits on that side are also known to be set on the other side, turn this 332 // into an AND, as we know the bits will be cleared. 333 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 334 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 335 // all known 336 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { 337 Constant *AndC = Constant::getIntegerValue(VTy, 338 ~RHSKnownOne & DemandedMask); 339 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 340 return InsertNewInstWith(And, *I); 341 } 342 } 343 344 // If the RHS is a constant, see if we can simplify it. 345 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. 346 if (ShrinkDemandedConstant(I, 1, DemandedMask)) 347 return I; 348 349 // If our LHS is an 'and' and if it has one use, and if any of the bits we 350 // are flipping are known to be set, then the xor is just resetting those 351 // bits to zero. We can just knock out bits from the 'and' and the 'xor', 352 // simplifying both of them. 353 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) 354 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && 355 isa<ConstantInt>(I->getOperand(1)) && 356 isa<ConstantInt>(LHSInst->getOperand(1)) && 357 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { 358 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); 359 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); 360 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); 361 362 Constant *AndC = 363 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); 364 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); 365 InsertNewInstWith(NewAnd, *I); 366 367 Constant *XorC = 368 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); 369 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); 370 return InsertNewInstWith(NewXor, *I); 371 } 372 373 // Output known-0 bits are known if clear or set in both the LHS & RHS. 374 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); 375 // Output known-1 are known to be set if set in only one of the LHS, RHS. 376 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); 377 break; 378 } 379 case Instruction::Select: 380 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, 381 RHSKnownZero, RHSKnownOne, Depth+1) || 382 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 383 LHSKnownZero, LHSKnownOne, Depth+1)) 384 return I; 385 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 386 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 387 388 // If the operands are constants, see if we can simplify them. 389 if (ShrinkDemandedConstant(I, 1, DemandedMask) || 390 ShrinkDemandedConstant(I, 2, DemandedMask)) 391 return I; 392 393 // Only known if known in both the LHS and RHS. 394 KnownOne = RHSKnownOne & LHSKnownOne; 395 KnownZero = RHSKnownZero & LHSKnownZero; 396 break; 397 case Instruction::Trunc: { 398 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); 399 DemandedMask = DemandedMask.zext(truncBf); 400 KnownZero = KnownZero.zext(truncBf); 401 KnownOne = KnownOne.zext(truncBf); 402 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 403 KnownZero, KnownOne, Depth+1)) 404 return I; 405 DemandedMask = DemandedMask.trunc(BitWidth); 406 KnownZero = KnownZero.trunc(BitWidth); 407 KnownOne = KnownOne.trunc(BitWidth); 408 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 409 break; 410 } 411 case Instruction::BitCast: 412 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) 413 return nullptr; // vector->int or fp->int? 414 415 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { 416 if (VectorType *SrcVTy = 417 dyn_cast<VectorType>(I->getOperand(0)->getType())) { 418 if (DstVTy->getNumElements() != SrcVTy->getNumElements()) 419 // Don't touch a bitcast between vectors of different element counts. 420 return nullptr; 421 } else 422 // Don't touch a scalar-to-vector bitcast. 423 return nullptr; 424 } else if (I->getOperand(0)->getType()->isVectorTy()) 425 // Don't touch a vector-to-scalar bitcast. 426 return nullptr; 427 428 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 429 KnownZero, KnownOne, Depth+1)) 430 return I; 431 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 432 break; 433 case Instruction::ZExt: { 434 // Compute the bits in the result that are not present in the input. 435 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 436 437 DemandedMask = DemandedMask.trunc(SrcBitWidth); 438 KnownZero = KnownZero.trunc(SrcBitWidth); 439 KnownOne = KnownOne.trunc(SrcBitWidth); 440 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 441 KnownZero, KnownOne, Depth+1)) 442 return I; 443 DemandedMask = DemandedMask.zext(BitWidth); 444 KnownZero = KnownZero.zext(BitWidth); 445 KnownOne = KnownOne.zext(BitWidth); 446 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 447 // The top bits are known to be zero. 448 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 449 break; 450 } 451 case Instruction::SExt: { 452 // Compute the bits in the result that are not present in the input. 453 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); 454 455 APInt InputDemandedBits = DemandedMask & 456 APInt::getLowBitsSet(BitWidth, SrcBitWidth); 457 458 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); 459 // If any of the sign extended bits are demanded, we know that the sign 460 // bit is demanded. 461 if ((NewBits & DemandedMask) != 0) 462 InputDemandedBits.setBit(SrcBitWidth-1); 463 464 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); 465 KnownZero = KnownZero.trunc(SrcBitWidth); 466 KnownOne = KnownOne.trunc(SrcBitWidth); 467 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, 468 KnownZero, KnownOne, Depth+1)) 469 return I; 470 InputDemandedBits = InputDemandedBits.zext(BitWidth); 471 KnownZero = KnownZero.zext(BitWidth); 472 KnownOne = KnownOne.zext(BitWidth); 473 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 474 475 // If the sign bit of the input is known set or clear, then we know the 476 // top bits of the result. 477 478 // If the input sign bit is known zero, or if the NewBits are not demanded 479 // convert this into a zero extension. 480 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { 481 // Convert to ZExt cast 482 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); 483 return InsertNewInstWith(NewCast, *I); 484 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set 485 KnownOne |= NewBits; 486 } 487 break; 488 } 489 case Instruction::Add: { 490 // Figure out what the input bits are. If the top bits of the and result 491 // are not demanded, then the add doesn't demand them from its input 492 // either. 493 unsigned NLZ = DemandedMask.countLeadingZeros(); 494 495 // If there is a constant on the RHS, there are a variety of xformations 496 // we can do. 497 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 498 // If null, this should be simplified elsewhere. Some of the xforms here 499 // won't work if the RHS is zero. 500 if (RHS->isZero()) 501 break; 502 503 // If the top bit of the output is demanded, demand everything from the 504 // input. Otherwise, we demand all the input bits except NLZ top bits. 505 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); 506 507 // Find information about known zero/one bits in the input. 508 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 509 LHSKnownZero, LHSKnownOne, Depth+1)) 510 return I; 511 512 // If the RHS of the add has bits set that can't affect the input, reduce 513 // the constant. 514 if (ShrinkDemandedConstant(I, 1, InDemandedBits)) 515 return I; 516 517 // Avoid excess work. 518 if (LHSKnownZero == 0 && LHSKnownOne == 0) 519 break; 520 521 // Turn it into OR if input bits are zero. 522 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { 523 Instruction *Or = 524 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), 525 I->getName()); 526 return InsertNewInstWith(Or, *I); 527 } 528 529 // We can say something about the output known-zero and known-one bits, 530 // depending on potential carries from the input constant and the 531 // unknowns. For example if the LHS is known to have at most the 0x0F0F0 532 // bits set and the RHS constant is 0x01001, then we know we have a known 533 // one mask of 0x00001 and a known zero mask of 0xE0F0E. 534 535 // To compute this, we first compute the potential carry bits. These are 536 // the bits which may be modified. I'm not aware of a better way to do 537 // this scan. 538 const APInt &RHSVal = RHS->getValue(); 539 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); 540 541 // Now that we know which bits have carries, compute the known-1/0 sets. 542 543 // Bits are known one if they are known zero in one operand and one in the 544 // other, and there is no input carry. 545 KnownOne = ((LHSKnownZero & RHSVal) | 546 (LHSKnownOne & ~RHSVal)) & ~CarryBits; 547 548 // Bits are known zero if they are known zero in both operands and there 549 // is no input carry. 550 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; 551 } else { 552 // If the high-bits of this ADD are not demanded, then it does not demand 553 // the high bits of its LHS or RHS. 554 if (DemandedMask[BitWidth-1] == 0) { 555 // Right fill the mask of bits for this ADD to demand the most 556 // significant bit and all those below it. 557 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 558 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 559 LHSKnownZero, LHSKnownOne, Depth+1) || 560 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 561 LHSKnownZero, LHSKnownOne, Depth+1)) 562 return I; 563 } 564 } 565 break; 566 } 567 case Instruction::Sub: 568 // If the high-bits of this SUB are not demanded, then it does not demand 569 // the high bits of its LHS or RHS. 570 if (DemandedMask[BitWidth-1] == 0) { 571 // Right fill the mask of bits for this SUB to demand the most 572 // significant bit and all those below it. 573 uint32_t NLZ = DemandedMask.countLeadingZeros(); 574 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); 575 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, 576 LHSKnownZero, LHSKnownOne, Depth+1) || 577 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, 578 LHSKnownZero, LHSKnownOne, Depth+1)) 579 return I; 580 } 581 582 // Otherwise just hand the sub off to computeKnownBits to fill in 583 // the known zeros and ones. 584 computeKnownBits(V, KnownZero, KnownOne, Depth); 585 586 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known 587 // zero. 588 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) { 589 APInt I0 = C0->getValue(); 590 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) { 591 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0); 592 return InsertNewInstWith(Xor, *I); 593 } 594 } 595 break; 596 case Instruction::Shl: 597 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 598 { 599 Value *VarX; ConstantInt *C1; 600 if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) { 601 Instruction *Shr = cast<Instruction>(I->getOperand(0)); 602 Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask, 603 KnownZero, KnownOne); 604 if (R) 605 return R; 606 } 607 } 608 609 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 610 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); 611 612 // If the shift is NUW/NSW, then it does demand the high bits. 613 ShlOperator *IOp = cast<ShlOperator>(I); 614 if (IOp->hasNoSignedWrap()) 615 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 616 else if (IOp->hasNoUnsignedWrap()) 617 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 618 619 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 620 KnownZero, KnownOne, Depth+1)) 621 return I; 622 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 623 KnownZero <<= ShiftAmt; 624 KnownOne <<= ShiftAmt; 625 // low bits known zero. 626 if (ShiftAmt) 627 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 628 } 629 break; 630 case Instruction::LShr: 631 // For a logical shift right 632 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 633 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 634 635 // Unsigned shift right. 636 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 637 638 // If the shift is exact, then it does demand the low bits (and knows that 639 // they are zero). 640 if (cast<LShrOperator>(I)->isExact()) 641 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 642 643 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 644 KnownZero, KnownOne, Depth+1)) 645 return I; 646 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 647 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 648 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 649 if (ShiftAmt) { 650 // Compute the new bits that are at the top now. 651 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 652 KnownZero |= HighBits; // high bits known zero. 653 } 654 } 655 break; 656 case Instruction::AShr: 657 // If this is an arithmetic shift right and only the low-bit is set, we can 658 // always convert this into a logical shr, even if the shift amount is 659 // variable. The low bit of the shift cannot be an input sign bit unless 660 // the shift amount is >= the size of the datatype, which is undefined. 661 if (DemandedMask == 1) { 662 // Perform the logical shift right. 663 Instruction *NewVal = BinaryOperator::CreateLShr( 664 I->getOperand(0), I->getOperand(1), I->getName()); 665 return InsertNewInstWith(NewVal, *I); 666 } 667 668 // If the sign bit is the only bit demanded by this ashr, then there is no 669 // need to do it, the shift doesn't change the high bit. 670 if (DemandedMask.isSignBit()) 671 return I->getOperand(0); 672 673 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 674 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 675 676 // Signed shift right. 677 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); 678 // If any of the "high bits" are demanded, we should set the sign bit as 679 // demanded. 680 if (DemandedMask.countLeadingZeros() <= ShiftAmt) 681 DemandedMaskIn.setBit(BitWidth-1); 682 683 // If the shift is exact, then it does demand the low bits (and knows that 684 // they are zero). 685 if (cast<AShrOperator>(I)->isExact()) 686 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 687 688 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 689 KnownZero, KnownOne, Depth+1)) 690 return I; 691 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 692 // Compute the new bits that are at the top now. 693 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 694 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 695 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 696 697 // Handle the sign bits. 698 APInt SignBit(APInt::getSignBit(BitWidth)); 699 // Adjust to where it is now in the mask. 700 SignBit = APIntOps::lshr(SignBit, ShiftAmt); 701 702 // If the input sign bit is known to be zero, or if none of the top bits 703 // are demanded, turn this into an unsigned shift right. 704 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || 705 (HighBits & ~DemandedMask) == HighBits) { 706 // Perform the logical shift right. 707 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0), 708 SA, I->getName()); 709 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact()); 710 return InsertNewInstWith(NewVal, *I); 711 } else if ((KnownOne & SignBit) != 0) { // New bits are known one. 712 KnownOne |= HighBits; 713 } 714 } 715 break; 716 case Instruction::SRem: 717 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 718 // X % -1 demands all the bits because we don't want to introduce 719 // INT_MIN % -1 (== undef) by accident. 720 if (Rem->isAllOnesValue()) 721 break; 722 APInt RA = Rem->getValue().abs(); 723 if (RA.isPowerOf2()) { 724 if (DemandedMask.ult(RA)) // srem won't affect demanded bits 725 return I->getOperand(0); 726 727 APInt LowBits = RA - 1; 728 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 729 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, 730 LHSKnownZero, LHSKnownOne, Depth+1)) 731 return I; 732 733 // The low bits of LHS are unchanged by the srem. 734 KnownZero = LHSKnownZero & LowBits; 735 KnownOne = LHSKnownOne & LowBits; 736 737 // If LHS is non-negative or has all low bits zero, then the upper bits 738 // are all zero. 739 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) 740 KnownZero |= ~LowBits; 741 742 // If LHS is negative and not all low bits are zero, then the upper bits 743 // are all one. 744 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) 745 KnownOne |= ~LowBits; 746 747 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 748 } 749 } 750 751 // The sign bit is the LHS's sign bit, except when the result of the 752 // remainder is zero. 753 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { 754 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 755 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1); 756 // If it's known zero, our sign bit is also zero. 757 if (LHSKnownZero.isNegative()) 758 KnownZero.setBit(KnownZero.getBitWidth() - 1); 759 } 760 break; 761 case Instruction::URem: { 762 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 763 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 764 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, 765 KnownZero2, KnownOne2, Depth+1) || 766 SimplifyDemandedBits(I->getOperandUse(1), AllOnes, 767 KnownZero2, KnownOne2, Depth+1)) 768 return I; 769 770 unsigned Leaders = KnownZero2.countLeadingOnes(); 771 Leaders = std::max(Leaders, 772 KnownZero2.countLeadingOnes()); 773 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; 774 break; 775 } 776 case Instruction::Call: 777 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 778 switch (II->getIntrinsicID()) { 779 default: break; 780 case Intrinsic::bswap: { 781 // If the only bits demanded come from one byte of the bswap result, 782 // just shift the input byte into position to eliminate the bswap. 783 unsigned NLZ = DemandedMask.countLeadingZeros(); 784 unsigned NTZ = DemandedMask.countTrailingZeros(); 785 786 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 787 // we need all the bits down to bit 8. Likewise, round NLZ. If we 788 // have 14 leading zeros, round to 8. 789 NLZ &= ~7; 790 NTZ &= ~7; 791 // If we need exactly one byte, we can do this transformation. 792 if (BitWidth-NLZ-NTZ == 8) { 793 unsigned ResultBit = NTZ; 794 unsigned InputBit = BitWidth-NTZ-8; 795 796 // Replace this with either a left or right shift to get the byte into 797 // the right place. 798 Instruction *NewVal; 799 if (InputBit > ResultBit) 800 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), 801 ConstantInt::get(I->getType(), InputBit-ResultBit)); 802 else 803 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), 804 ConstantInt::get(I->getType(), ResultBit-InputBit)); 805 NewVal->takeName(I); 806 return InsertNewInstWith(NewVal, *I); 807 } 808 809 // TODO: Could compute known zero/one bits based on the input. 810 break; 811 } 812 case Intrinsic::x86_sse42_crc32_64_64: 813 KnownZero = APInt::getHighBitsSet(64, 32); 814 return nullptr; 815 } 816 } 817 computeKnownBits(V, KnownZero, KnownOne, Depth); 818 break; 819 } 820 821 // If the client is only demanding bits that we know, return the known 822 // constant. 823 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) 824 return Constant::getIntegerValue(VTy, KnownOne); 825 return nullptr; 826 } 827 828 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify 829 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into 830 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign 831 /// of "C2-C1". 832 /// 833 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, 834 /// ..., bn}, without considering the specific value X is holding. 835 /// This transformation is legal iff one of following conditions is hold: 836 /// 1) All the bit in S are 0, in this case E1 == E2. 837 /// 2) We don't care those bits in S, per the input DemandedMask. 838 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the 839 /// rest bits. 840 /// 841 /// Currently we only test condition 2). 842 /// 843 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was 844 /// not successful. 845 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr, 846 Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) { 847 848 const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue(); 849 const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue(); 850 if (!ShlOp1 || !ShrOp1) 851 return nullptr; // Noop. 852 853 Value *VarX = Shr->getOperand(0); 854 Type *Ty = VarX->getType(); 855 unsigned BitWidth = Ty->getIntegerBitWidth(); 856 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) 857 return nullptr; // Undef. 858 859 unsigned ShlAmt = ShlOp1.getZExtValue(); 860 unsigned ShrAmt = ShrOp1.getZExtValue(); 861 862 KnownOne.clearAllBits(); 863 KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1); 864 KnownZero &= DemandedMask; 865 866 APInt BitMask1(APInt::getAllOnesValue(BitWidth)); 867 APInt BitMask2(APInt::getAllOnesValue(BitWidth)); 868 869 bool isLshr = (Shr->getOpcode() == Instruction::LShr); 870 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : 871 (BitMask1.ashr(ShrAmt) << ShlAmt); 872 873 if (ShrAmt <= ShlAmt) { 874 BitMask2 <<= (ShlAmt - ShrAmt); 875 } else { 876 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): 877 BitMask2.ashr(ShrAmt - ShlAmt); 878 } 879 880 // Check if condition-2 (see the comment to this function) is satified. 881 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { 882 if (ShrAmt == ShlAmt) 883 return VarX; 884 885 if (!Shr->hasOneUse()) 886 return nullptr; 887 888 BinaryOperator *New; 889 if (ShrAmt < ShlAmt) { 890 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); 891 New = BinaryOperator::CreateShl(VarX, Amt); 892 BinaryOperator *Orig = cast<BinaryOperator>(Shl); 893 New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); 894 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); 895 } else { 896 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); 897 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : 898 BinaryOperator::CreateAShr(VarX, Amt); 899 if (cast<BinaryOperator>(Shr)->isExact()) 900 New->setIsExact(true); 901 } 902 903 return InsertNewInstWith(New, *Shl); 904 } 905 906 return nullptr; 907 } 908 909 /// SimplifyDemandedVectorElts - The specified value produces a vector with 910 /// any number of elements. DemandedElts contains the set of elements that are 911 /// actually used by the caller. This method analyzes which elements of the 912 /// operand are undef and returns that information in UndefElts. 913 /// 914 /// If the information about demanded elements can be used to simplify the 915 /// operation, the operation is simplified, then the resultant value is 916 /// returned. This returns null if no change was made. 917 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, 918 APInt &UndefElts, 919 unsigned Depth) { 920 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); 921 APInt EltMask(APInt::getAllOnesValue(VWidth)); 922 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); 923 924 if (isa<UndefValue>(V)) { 925 // If the entire vector is undefined, just return this info. 926 UndefElts = EltMask; 927 return nullptr; 928 } 929 930 if (DemandedElts == 0) { // If nothing is demanded, provide undef. 931 UndefElts = EltMask; 932 return UndefValue::get(V->getType()); 933 } 934 935 UndefElts = 0; 936 937 // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential. 938 if (Constant *C = dyn_cast<Constant>(V)) { 939 // Check if this is identity. If so, return 0 since we are not simplifying 940 // anything. 941 if (DemandedElts.isAllOnesValue()) 942 return nullptr; 943 944 Type *EltTy = cast<VectorType>(V->getType())->getElementType(); 945 Constant *Undef = UndefValue::get(EltTy); 946 947 SmallVector<Constant*, 16> Elts; 948 for (unsigned i = 0; i != VWidth; ++i) { 949 if (!DemandedElts[i]) { // If not demanded, set to undef. 950 Elts.push_back(Undef); 951 UndefElts.setBit(i); 952 continue; 953 } 954 955 Constant *Elt = C->getAggregateElement(i); 956 if (!Elt) return nullptr; 957 958 if (isa<UndefValue>(Elt)) { // Already undef. 959 Elts.push_back(Undef); 960 UndefElts.setBit(i); 961 } else { // Otherwise, defined. 962 Elts.push_back(Elt); 963 } 964 } 965 966 // If we changed the constant, return it. 967 Constant *NewCV = ConstantVector::get(Elts); 968 return NewCV != C ? NewCV : nullptr; 969 } 970 971 // Limit search depth. 972 if (Depth == 10) 973 return nullptr; 974 975 // If multiple users are using the root value, proceed with 976 // simplification conservatively assuming that all elements 977 // are needed. 978 if (!V->hasOneUse()) { 979 // Quit if we find multiple users of a non-root value though. 980 // They'll be handled when it's their turn to be visited by 981 // the main instcombine process. 982 if (Depth != 0) 983 // TODO: Just compute the UndefElts information recursively. 984 return nullptr; 985 986 // Conservatively assume that all elements are needed. 987 DemandedElts = EltMask; 988 } 989 990 Instruction *I = dyn_cast<Instruction>(V); 991 if (!I) return nullptr; // Only analyze instructions. 992 993 bool MadeChange = false; 994 APInt UndefElts2(VWidth, 0); 995 Value *TmpV; 996 switch (I->getOpcode()) { 997 default: break; 998 999 case Instruction::InsertElement: { 1000 // If this is a variable index, we don't know which element it overwrites. 1001 // demand exactly the same input as we produce. 1002 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); 1003 if (!Idx) { 1004 // Note that we can't propagate undef elt info, because we don't know 1005 // which elt is getting updated. 1006 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1007 UndefElts2, Depth+1); 1008 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1009 break; 1010 } 1011 1012 // If this is inserting an element that isn't demanded, remove this 1013 // insertelement. 1014 unsigned IdxNo = Idx->getZExtValue(); 1015 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { 1016 Worklist.Add(I); 1017 return I->getOperand(0); 1018 } 1019 1020 // Otherwise, the element inserted overwrites whatever was there, so the 1021 // input demanded set is simpler than the output set. 1022 APInt DemandedElts2 = DemandedElts; 1023 DemandedElts2.clearBit(IdxNo); 1024 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, 1025 UndefElts, Depth+1); 1026 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1027 1028 // The inserted element is defined. 1029 UndefElts.clearBit(IdxNo); 1030 break; 1031 } 1032 case Instruction::ShuffleVector: { 1033 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); 1034 uint64_t LHSVWidth = 1035 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); 1036 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); 1037 for (unsigned i = 0; i < VWidth; i++) { 1038 if (DemandedElts[i]) { 1039 unsigned MaskVal = Shuffle->getMaskValue(i); 1040 if (MaskVal != -1u) { 1041 assert(MaskVal < LHSVWidth * 2 && 1042 "shufflevector mask index out of range!"); 1043 if (MaskVal < LHSVWidth) 1044 LeftDemanded.setBit(MaskVal); 1045 else 1046 RightDemanded.setBit(MaskVal - LHSVWidth); 1047 } 1048 } 1049 } 1050 1051 APInt UndefElts4(LHSVWidth, 0); 1052 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, 1053 UndefElts4, Depth+1); 1054 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1055 1056 APInt UndefElts3(LHSVWidth, 0); 1057 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, 1058 UndefElts3, Depth+1); 1059 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1060 1061 bool NewUndefElts = false; 1062 for (unsigned i = 0; i < VWidth; i++) { 1063 unsigned MaskVal = Shuffle->getMaskValue(i); 1064 if (MaskVal == -1u) { 1065 UndefElts.setBit(i); 1066 } else if (!DemandedElts[i]) { 1067 NewUndefElts = true; 1068 UndefElts.setBit(i); 1069 } else if (MaskVal < LHSVWidth) { 1070 if (UndefElts4[MaskVal]) { 1071 NewUndefElts = true; 1072 UndefElts.setBit(i); 1073 } 1074 } else { 1075 if (UndefElts3[MaskVal - LHSVWidth]) { 1076 NewUndefElts = true; 1077 UndefElts.setBit(i); 1078 } 1079 } 1080 } 1081 1082 if (NewUndefElts) { 1083 // Add additional discovered undefs. 1084 SmallVector<Constant*, 16> Elts; 1085 for (unsigned i = 0; i < VWidth; ++i) { 1086 if (UndefElts[i]) 1087 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); 1088 else 1089 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), 1090 Shuffle->getMaskValue(i))); 1091 } 1092 I->setOperand(2, ConstantVector::get(Elts)); 1093 MadeChange = true; 1094 } 1095 break; 1096 } 1097 case Instruction::Select: { 1098 APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts); 1099 if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) { 1100 for (unsigned i = 0; i < VWidth; i++) { 1101 if (CV->getAggregateElement(i)->isNullValue()) 1102 LeftDemanded.clearBit(i); 1103 else 1104 RightDemanded.clearBit(i); 1105 } 1106 } 1107 1108 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded, 1109 UndefElts, Depth+1); 1110 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1111 1112 TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded, 1113 UndefElts2, Depth+1); 1114 if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; } 1115 1116 // Output elements are undefined if both are undefined. 1117 UndefElts &= UndefElts2; 1118 break; 1119 } 1120 case Instruction::BitCast: { 1121 // Vector->vector casts only. 1122 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); 1123 if (!VTy) break; 1124 unsigned InVWidth = VTy->getNumElements(); 1125 APInt InputDemandedElts(InVWidth, 0); 1126 unsigned Ratio; 1127 1128 if (VWidth == InVWidth) { 1129 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same 1130 // elements as are demanded of us. 1131 Ratio = 1; 1132 InputDemandedElts = DemandedElts; 1133 } else if (VWidth > InVWidth) { 1134 // Untested so far. 1135 break; 1136 1137 // If there are more elements in the result than there are in the source, 1138 // then an input element is live if any of the corresponding output 1139 // elements are live. 1140 Ratio = VWidth/InVWidth; 1141 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { 1142 if (DemandedElts[OutIdx]) 1143 InputDemandedElts.setBit(OutIdx/Ratio); 1144 } 1145 } else { 1146 // Untested so far. 1147 break; 1148 1149 // If there are more elements in the source than there are in the result, 1150 // then an input element is live if the corresponding output element is 1151 // live. 1152 Ratio = InVWidth/VWidth; 1153 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1154 if (DemandedElts[InIdx/Ratio]) 1155 InputDemandedElts.setBit(InIdx); 1156 } 1157 1158 // div/rem demand all inputs, because they don't want divide by zero. 1159 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, 1160 UndefElts2, Depth+1); 1161 if (TmpV) { 1162 I->setOperand(0, TmpV); 1163 MadeChange = true; 1164 } 1165 1166 UndefElts = UndefElts2; 1167 if (VWidth > InVWidth) { 1168 llvm_unreachable("Unimp"); 1169 // If there are more elements in the result than there are in the source, 1170 // then an output element is undef if the corresponding input element is 1171 // undef. 1172 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) 1173 if (UndefElts2[OutIdx/Ratio]) 1174 UndefElts.setBit(OutIdx); 1175 } else if (VWidth < InVWidth) { 1176 llvm_unreachable("Unimp"); 1177 // If there are more elements in the source than there are in the result, 1178 // then a result element is undef if all of the corresponding input 1179 // elements are undef. 1180 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. 1181 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) 1182 if (!UndefElts2[InIdx]) // Not undef? 1183 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. 1184 } 1185 break; 1186 } 1187 case Instruction::And: 1188 case Instruction::Or: 1189 case Instruction::Xor: 1190 case Instruction::Add: 1191 case Instruction::Sub: 1192 case Instruction::Mul: 1193 // div/rem demand all inputs, because they don't want divide by zero. 1194 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1195 UndefElts, Depth+1); 1196 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1197 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, 1198 UndefElts2, Depth+1); 1199 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } 1200 1201 // Output elements are undefined if both are undefined. Consider things 1202 // like undef&0. The result is known zero, not undef. 1203 UndefElts &= UndefElts2; 1204 break; 1205 case Instruction::FPTrunc: 1206 case Instruction::FPExt: 1207 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, 1208 UndefElts, Depth+1); 1209 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } 1210 break; 1211 1212 case Instruction::Call: { 1213 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); 1214 if (!II) break; 1215 switch (II->getIntrinsicID()) { 1216 default: break; 1217 1218 // Binary vector operations that work column-wise. A dest element is a 1219 // function of the corresponding input elements from the two inputs. 1220 case Intrinsic::x86_sse_sub_ss: 1221 case Intrinsic::x86_sse_mul_ss: 1222 case Intrinsic::x86_sse_min_ss: 1223 case Intrinsic::x86_sse_max_ss: 1224 case Intrinsic::x86_sse2_sub_sd: 1225 case Intrinsic::x86_sse2_mul_sd: 1226 case Intrinsic::x86_sse2_min_sd: 1227 case Intrinsic::x86_sse2_max_sd: 1228 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, 1229 UndefElts, Depth+1); 1230 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } 1231 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, 1232 UndefElts2, Depth+1); 1233 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } 1234 1235 // If only the low elt is demanded and this is a scalarizable intrinsic, 1236 // scalarize it now. 1237 if (DemandedElts == 1) { 1238 switch (II->getIntrinsicID()) { 1239 default: break; 1240 case Intrinsic::x86_sse_sub_ss: 1241 case Intrinsic::x86_sse_mul_ss: 1242 case Intrinsic::x86_sse2_sub_sd: 1243 case Intrinsic::x86_sse2_mul_sd: 1244 // TODO: Lower MIN/MAX/ABS/etc 1245 Value *LHS = II->getArgOperand(0); 1246 Value *RHS = II->getArgOperand(1); 1247 // Extract the element as scalars. 1248 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS, 1249 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1250 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS, 1251 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); 1252 1253 switch (II->getIntrinsicID()) { 1254 default: llvm_unreachable("Case stmts out of sync!"); 1255 case Intrinsic::x86_sse_sub_ss: 1256 case Intrinsic::x86_sse2_sub_sd: 1257 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS, 1258 II->getName()), *II); 1259 break; 1260 case Intrinsic::x86_sse_mul_ss: 1261 case Intrinsic::x86_sse2_mul_sd: 1262 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS, 1263 II->getName()), *II); 1264 break; 1265 } 1266 1267 Instruction *New = 1268 InsertElementInst::Create( 1269 UndefValue::get(II->getType()), TmpV, 1270 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), 1271 II->getName()); 1272 InsertNewInstWith(New, *II); 1273 return New; 1274 } 1275 } 1276 1277 // Output elements are undefined if both are undefined. Consider things 1278 // like undef&0. The result is known zero, not undef. 1279 UndefElts &= UndefElts2; 1280 break; 1281 } 1282 break; 1283 } 1284 } 1285 return MadeChange ? I : nullptr; 1286 } 1287