1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Unified implementation of memcpy, memmove and the __copy_user backend. 7 * 8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf (at) gnu.org) 9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc. 10 * Copyright (C) 2002 Broadcom, Inc. 11 * memcpy/copy_user author: Mark Vandevoorde 12 * Copyright (C) 2007 Maciej W. Rozycki 13 * 14 * Mnemonic names for arguments to memcpy/__copy_user 15 */ 16 17 /* 18 * Hack to resolve longstanding prefetch issue 19 * 20 * Prefetching may be fatal on some systems if we're prefetching beyond the 21 * end of memory on some systems. It's also a seriously bad idea on non 22 * dma-coherent systems. 23 */ 24 #ifdef CONFIG_DMA_NONCOHERENT 25 #undef CONFIG_CPU_HAS_PREFETCH 26 #endif 27 #ifdef CONFIG_MIPS_MALTA 28 #undef CONFIG_CPU_HAS_PREFETCH 29 #endif 30 31 #include <asm/asm.h> 32 #include <asm/asm-offsets.h> 33 #include <asm/regdef.h> 34 35 #define dst a0 36 #define src a1 37 #define len a2 38 39 /* 40 * Spec 41 * 42 * memcpy copies len bytes from src to dst and sets v0 to dst. 43 * It assumes that 44 * - src and dst don't overlap 45 * - src is readable 46 * - dst is writable 47 * memcpy uses the standard calling convention 48 * 49 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to 50 * the number of uncopied bytes due to an exception caused by a read or write. 51 * __copy_user assumes that src and dst don't overlap, and that the call is 52 * implementing one of the following: 53 * copy_to_user 54 * - src is readable (no exceptions when reading src) 55 * copy_from_user 56 * - dst is writable (no exceptions when writing dst) 57 * __copy_user uses a non-standard calling convention; see 58 * include/asm-mips/uaccess.h 59 * 60 * When an exception happens on a load, the handler must 61 # ensure that all of the destination buffer is overwritten to prevent 62 * leaking information to user mode programs. 63 */ 64 65 /* 66 * Implementation 67 */ 68 69 /* 70 * The exception handler for loads requires that: 71 * 1- AT contain the address of the byte just past the end of the source 72 * of the copy, 73 * 2- src_entry <= src < AT, and 74 * 3- (dst - src) == (dst_entry - src_entry), 75 * The _entry suffix denotes values when __copy_user was called. 76 * 77 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user 78 * (2) is met by incrementing src by the number of bytes copied 79 * (3) is met by not doing loads between a pair of increments of dst and src 80 * 81 * The exception handlers for stores adjust len (if necessary) and return. 82 * These handlers do not need to overwrite any data. 83 * 84 * For __rmemcpy and memmove an exception is always a kernel bug, therefore 85 * they're not protected. 86 */ 87 88 #define EXC(inst_reg,addr,handler) \ 89 9: inst_reg, addr; \ 90 .section __ex_table,"a"; \ 91 PTR 9b, handler; \ 92 .previous 93 94 /* 95 * Only on the 64-bit kernel we can made use of 64-bit registers. 96 */ 97 #ifdef CONFIG_64BIT 98 #define USE_DOUBLE 99 #endif 100 101 #ifdef USE_DOUBLE 102 103 #define LOAD ld 104 #define LOADL ldl 105 #define LOADR ldr 106 #define STOREL sdl 107 #define STORER sdr 108 #define STORE sd 109 #define ADD daddu 110 #define SUB dsubu 111 #define SRL dsrl 112 #define SRA dsra 113 #define SLL dsll 114 #define SLLV dsllv 115 #define SRLV dsrlv 116 #define NBYTES 8 117 #define LOG_NBYTES 3 118 119 /* 120 * As we are sharing code base with the mips32 tree (which use the o32 ABI 121 * register definitions). We need to redefine the register definitions from 122 * the n64 ABI register naming to the o32 ABI register naming. 123 */ 124 #undef t0 125 #undef t1 126 #undef t2 127 #undef t3 128 #define t0 $8 129 #define t1 $9 130 #define t2 $10 131 #define t3 $11 132 #define t4 $12 133 #define t5 $13 134 #define t6 $14 135 #define t7 $15 136 137 #else 138 139 #define LOAD lw 140 #define LOADL lwl 141 #define LOADR lwr 142 #define STOREL swl 143 #define STORER swr 144 #define STORE sw 145 #define ADD addu 146 #define SUB subu 147 #define SRL srl 148 #define SLL sll 149 #define SRA sra 150 #define SLLV sllv 151 #define SRLV srlv 152 #define NBYTES 4 153 #define LOG_NBYTES 2 154 155 #endif /* USE_DOUBLE */ 156 157 #ifdef CONFIG_CPU_LITTLE_ENDIAN 158 #define LDFIRST LOADR 159 #define LDREST LOADL 160 #define STFIRST STORER 161 #define STREST STOREL 162 #define SHIFT_DISCARD SLLV 163 #else 164 #define LDFIRST LOADL 165 #define LDREST LOADR 166 #define STFIRST STOREL 167 #define STREST STORER 168 #define SHIFT_DISCARD SRLV 169 #endif 170 171 #define FIRST(unit) ((unit)*NBYTES) 172 #define REST(unit) (FIRST(unit)+NBYTES-1) 173 #define UNIT(unit) FIRST(unit) 174 175 #define ADDRMASK (NBYTES-1) 176 177 .text 178 .set noreorder 179 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS 180 .set noat 181 #else 182 .set at=v1 183 #endif 184 185 /* 186 * t6 is used as a flag to note inatomic mode. 187 */ 188 LEAF(__copy_user_inatomic) 189 b __copy_user_common 190 li t6, 1 191 END(__copy_user_inatomic) 192 193 /* 194 * A combined memcpy/__copy_user 195 * __copy_user sets len to 0 for success; else to an upper bound of 196 * the number of uncopied bytes. 197 * memcpy sets v0 to dst. 198 */ 199 .align 5 200 LEAF(memcpy) /* a0=dst a1=src a2=len */ 201 move v0, dst /* return value */ 202 .L__memcpy: 203 FEXPORT(__copy_user) 204 li t6, 0 /* not inatomic */ 205 __copy_user_common: 206 /* 207 * Note: dst & src may be unaligned, len may be 0 208 * Temps 209 */ 210 #define rem t8 211 212 R10KCBARRIER(0(ra)) 213 /* 214 * The "issue break"s below are very approximate. 215 * Issue delays for dcache fills will perturb the schedule, as will 216 * load queue full replay traps, etc. 217 * 218 * If len < NBYTES use byte operations. 219 */ 220 PREF( 0, 0(src) ) 221 PREF( 1, 0(dst) ) 222 sltu t2, len, NBYTES 223 and t1, dst, ADDRMASK 224 PREF( 0, 1*32(src) ) 225 PREF( 1, 1*32(dst) ) 226 bnez t2, .Lcopy_bytes_checklen 227 and t0, src, ADDRMASK 228 PREF( 0, 2*32(src) ) 229 PREF( 1, 2*32(dst) ) 230 bnez t1, .Ldst_unaligned 231 nop 232 bnez t0, .Lsrc_unaligned_dst_aligned 233 /* 234 * use delay slot for fall-through 235 * src and dst are aligned; need to compute rem 236 */ 237 .Lboth_aligned: 238 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter 239 beqz t0, .Lcleanup_both_aligned # len < 8*NBYTES 240 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES) 241 PREF( 0, 3*32(src) ) 242 PREF( 1, 3*32(dst) ) 243 .align 4 244 1: 245 R10KCBARRIER(0(ra)) 246 EXC( LOAD t0, UNIT(0)(src), .Ll_exc) 247 EXC( LOAD t1, UNIT(1)(src), .Ll_exc_copy) 248 EXC( LOAD t2, UNIT(2)(src), .Ll_exc_copy) 249 EXC( LOAD t3, UNIT(3)(src), .Ll_exc_copy) 250 SUB len, len, 8*NBYTES 251 EXC( LOAD t4, UNIT(4)(src), .Ll_exc_copy) 252 EXC( LOAD t7, UNIT(5)(src), .Ll_exc_copy) 253 EXC( STORE t0, UNIT(0)(dst), .Ls_exc_p8u) 254 EXC( STORE t1, UNIT(1)(dst), .Ls_exc_p7u) 255 EXC( LOAD t0, UNIT(6)(src), .Ll_exc_copy) 256 EXC( LOAD t1, UNIT(7)(src), .Ll_exc_copy) 257 ADD src, src, 8*NBYTES 258 ADD dst, dst, 8*NBYTES 259 EXC( STORE t2, UNIT(-6)(dst), .Ls_exc_p6u) 260 EXC( STORE t3, UNIT(-5)(dst), .Ls_exc_p5u) 261 EXC( STORE t4, UNIT(-4)(dst), .Ls_exc_p4u) 262 EXC( STORE t7, UNIT(-3)(dst), .Ls_exc_p3u) 263 EXC( STORE t0, UNIT(-2)(dst), .Ls_exc_p2u) 264 EXC( STORE t1, UNIT(-1)(dst), .Ls_exc_p1u) 265 PREF( 0, 8*32(src) ) 266 PREF( 1, 8*32(dst) ) 267 bne len, rem, 1b 268 nop 269 270 /* 271 * len == rem == the number of bytes left to copy < 8*NBYTES 272 */ 273 .Lcleanup_both_aligned: 274 beqz len, .Ldone 275 sltu t0, len, 4*NBYTES 276 bnez t0, .Lless_than_4units 277 and rem, len, (NBYTES-1) # rem = len % NBYTES 278 /* 279 * len >= 4*NBYTES 280 */ 281 EXC( LOAD t0, UNIT(0)(src), .Ll_exc) 282 EXC( LOAD t1, UNIT(1)(src), .Ll_exc_copy) 283 EXC( LOAD t2, UNIT(2)(src), .Ll_exc_copy) 284 EXC( LOAD t3, UNIT(3)(src), .Ll_exc_copy) 285 SUB len, len, 4*NBYTES 286 ADD src, src, 4*NBYTES 287 R10KCBARRIER(0(ra)) 288 EXC( STORE t0, UNIT(0)(dst), .Ls_exc_p4u) 289 EXC( STORE t1, UNIT(1)(dst), .Ls_exc_p3u) 290 EXC( STORE t2, UNIT(2)(dst), .Ls_exc_p2u) 291 EXC( STORE t3, UNIT(3)(dst), .Ls_exc_p1u) 292 .set reorder /* DADDI_WAR */ 293 ADD dst, dst, 4*NBYTES 294 beqz len, .Ldone 295 .set noreorder 296 .Lless_than_4units: 297 /* 298 * rem = len % NBYTES 299 */ 300 beq rem, len, .Lcopy_bytes 301 nop 302 1: 303 R10KCBARRIER(0(ra)) 304 EXC( LOAD t0, 0(src), .Ll_exc) 305 ADD src, src, NBYTES 306 SUB len, len, NBYTES 307 EXC( STORE t0, 0(dst), .Ls_exc_p1u) 308 .set reorder /* DADDI_WAR */ 309 ADD dst, dst, NBYTES 310 bne rem, len, 1b 311 .set noreorder 312 313 /* 314 * src and dst are aligned, need to copy rem bytes (rem < NBYTES) 315 * A loop would do only a byte at a time with possible branch 316 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE 317 * because can't assume read-access to dst. Instead, use 318 * STREST dst, which doesn't require read access to dst. 319 * 320 * This code should perform better than a simple loop on modern, 321 * wide-issue mips processors because the code has fewer branches and 322 * more instruction-level parallelism. 323 */ 324 #define bits t2 325 beqz len, .Ldone 326 ADD t1, dst, len # t1 is just past last byte of dst 327 li bits, 8*NBYTES 328 SLL rem, len, 3 # rem = number of bits to keep 329 EXC( LOAD t0, 0(src), .Ll_exc) 330 SUB bits, bits, rem # bits = number of bits to discard 331 SHIFT_DISCARD t0, t0, bits 332 EXC( STREST t0, -1(t1), .Ls_exc) 333 jr ra 334 move len, zero 335 .Ldst_unaligned: 336 /* 337 * dst is unaligned 338 * t0 = src & ADDRMASK 339 * t1 = dst & ADDRMASK; T1 > 0 340 * len >= NBYTES 341 * 342 * Copy enough bytes to align dst 343 * Set match = (src and dst have same alignment) 344 */ 345 #define match rem 346 EXC( LDFIRST t3, FIRST(0)(src), .Ll_exc) 347 ADD t2, zero, NBYTES 348 EXC( LDREST t3, REST(0)(src), .Ll_exc_copy) 349 SUB t2, t2, t1 # t2 = number of bytes copied 350 xor match, t0, t1 351 R10KCBARRIER(0(ra)) 352 EXC( STFIRST t3, FIRST(0)(dst), .Ls_exc) 353 beq len, t2, .Ldone 354 SUB len, len, t2 355 ADD dst, dst, t2 356 beqz match, .Lboth_aligned 357 ADD src, src, t2 358 359 .Lsrc_unaligned_dst_aligned: 360 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter 361 PREF( 0, 3*32(src) ) 362 beqz t0, .Lcleanup_src_unaligned 363 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES 364 PREF( 1, 3*32(dst) ) 365 1: 366 /* 367 * Avoid consecutive LD*'s to the same register since some mips 368 * implementations can't issue them in the same cycle. 369 * It's OK to load FIRST(N+1) before REST(N) because the two addresses 370 * are to the same unit (unless src is aligned, but it's not). 371 */ 372 R10KCBARRIER(0(ra)) 373 EXC( LDFIRST t0, FIRST(0)(src), .Ll_exc) 374 EXC( LDFIRST t1, FIRST(1)(src), .Ll_exc_copy) 375 SUB len, len, 4*NBYTES 376 EXC( LDREST t0, REST(0)(src), .Ll_exc_copy) 377 EXC( LDREST t1, REST(1)(src), .Ll_exc_copy) 378 EXC( LDFIRST t2, FIRST(2)(src), .Ll_exc_copy) 379 EXC( LDFIRST t3, FIRST(3)(src), .Ll_exc_copy) 380 EXC( LDREST t2, REST(2)(src), .Ll_exc_copy) 381 EXC( LDREST t3, REST(3)(src), .Ll_exc_copy) 382 PREF( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed) 383 ADD src, src, 4*NBYTES 384 #ifdef CONFIG_CPU_SB1 385 nop # improves slotting 386 #endif 387 EXC( STORE t0, UNIT(0)(dst), .Ls_exc_p4u) 388 EXC( STORE t1, UNIT(1)(dst), .Ls_exc_p3u) 389 EXC( STORE t2, UNIT(2)(dst), .Ls_exc_p2u) 390 EXC( STORE t3, UNIT(3)(dst), .Ls_exc_p1u) 391 PREF( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed) 392 .set reorder /* DADDI_WAR */ 393 ADD dst, dst, 4*NBYTES 394 bne len, rem, 1b 395 .set noreorder 396 397 .Lcleanup_src_unaligned: 398 beqz len, .Ldone 399 and rem, len, NBYTES-1 # rem = len % NBYTES 400 beq rem, len, .Lcopy_bytes 401 nop 402 1: 403 R10KCBARRIER(0(ra)) 404 EXC( LDFIRST t0, FIRST(0)(src), .Ll_exc) 405 EXC( LDREST t0, REST(0)(src), .Ll_exc_copy) 406 ADD src, src, NBYTES 407 SUB len, len, NBYTES 408 EXC( STORE t0, 0(dst), .Ls_exc_p1u) 409 .set reorder /* DADDI_WAR */ 410 ADD dst, dst, NBYTES 411 bne len, rem, 1b 412 .set noreorder 413 414 .Lcopy_bytes_checklen: 415 beqz len, .Ldone 416 nop 417 .Lcopy_bytes: 418 /* 0 < len < NBYTES */ 419 R10KCBARRIER(0(ra)) 420 #define COPY_BYTE(N) \ 421 EXC( lb t0, N(src), .Ll_exc); \ 422 SUB len, len, 1; \ 423 beqz len, .Ldone; \ 424 EXC( sb t0, N(dst), .Ls_exc_p1) 425 426 COPY_BYTE(0) 427 COPY_BYTE(1) 428 #ifdef USE_DOUBLE 429 COPY_BYTE(2) 430 COPY_BYTE(3) 431 COPY_BYTE(4) 432 COPY_BYTE(5) 433 #endif 434 EXC( lb t0, NBYTES-2(src), .Ll_exc) 435 SUB len, len, 1 436 jr ra 437 EXC( sb t0, NBYTES-2(dst), .Ls_exc_p1) 438 .Ldone: 439 jr ra 440 nop 441 END(memcpy) 442 443 .Ll_exc_copy: 444 /* 445 * Copy bytes from src until faulting load address (or until a 446 * lb faults) 447 * 448 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) 449 * may be more than a byte beyond the last address. 450 * Hence, the lb below may get an exception. 451 * 452 * Assumes src < THREAD_BUADDR($28) 453 */ 454 LOAD t0, TI_TASK($28) 455 nop 456 LOAD t0, THREAD_BUADDR(t0) 457 1: 458 EXC( lb t1, 0(src), .Ll_exc) 459 ADD src, src, 1 460 sb t1, 0(dst) # can't fault -- we're copy_from_user 461 .set reorder /* DADDI_WAR */ 462 ADD dst, dst, 1 463 bne src, t0, 1b 464 .set noreorder 465 .Ll_exc: 466 LOAD t0, TI_TASK($28) 467 nop 468 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address 469 nop 470 SUB len, AT, t0 # len number of uncopied bytes 471 bnez t6, .Ldone /* Skip the zeroing part if inatomic */ 472 /* 473 * Here's where we rely on src and dst being incremented in tandem, 474 * See (3) above. 475 * dst += (fault addr - src) to put dst at first byte to clear 476 */ 477 ADD dst, t0 # compute start address in a1 478 SUB dst, src 479 /* 480 * Clear len bytes starting at dst. Can't call __bzero because it 481 * might modify len. An inefficient loop for these rare times... 482 */ 483 .set reorder /* DADDI_WAR */ 484 SUB src, len, 1 485 beqz len, .Ldone 486 .set noreorder 487 1: sb zero, 0(dst) 488 ADD dst, dst, 1 489 #ifndef CONFIG_CPU_DADDI_WORKAROUNDS 490 bnez src, 1b 491 SUB src, src, 1 492 #else 493 .set push 494 .set noat 495 li v1, 1 496 bnez src, 1b 497 SUB src, src, v1 498 .set pop 499 #endif 500 jr ra 501 nop 502 503 504 #define SEXC(n) \ 505 .set reorder; /* DADDI_WAR */ \ 506 .Ls_exc_p ## n ## u: \ 507 ADD len, len, n*NBYTES; \ 508 jr ra; \ 509 .set noreorder 510 511 SEXC(8) 512 SEXC(7) 513 SEXC(6) 514 SEXC(5) 515 SEXC(4) 516 SEXC(3) 517 SEXC(2) 518 SEXC(1) 519 520 .Ls_exc_p1: 521 .set reorder /* DADDI_WAR */ 522 ADD len, len, 1 523 jr ra 524 .set noreorder 525 .Ls_exc: 526 jr ra 527 nop 528 529 .align 5 530 LEAF(memmove) 531 ADD t0, a0, a2 532 ADD t1, a1, a2 533 sltu t0, a1, t0 # dst + len <= src -> memcpy 534 sltu t1, a0, t1 # dst >= src + len -> memcpy 535 and t0, t1 536 beqz t0, .L__memcpy 537 move v0, a0 /* return value */ 538 beqz a2, .Lr_out 539 END(memmove) 540 541 /* fall through to __rmemcpy */ 542 LEAF(__rmemcpy) /* a0=dst a1=src a2=len */ 543 sltu t0, a1, a0 544 beqz t0, .Lr_end_bytes_up # src >= dst 545 nop 546 ADD a0, a2 # dst = dst + len 547 ADD a1, a2 # src = src + len 548 549 .Lr_end_bytes: 550 R10KCBARRIER(0(ra)) 551 lb t0, -1(a1) 552 SUB a2, a2, 0x1 553 sb t0, -1(a0) 554 SUB a1, a1, 0x1 555 .set reorder /* DADDI_WAR */ 556 SUB a0, a0, 0x1 557 bnez a2, .Lr_end_bytes 558 .set noreorder 559 560 .Lr_out: 561 jr ra 562 move a2, zero 563 564 .Lr_end_bytes_up: 565 R10KCBARRIER(0(ra)) 566 lb t0, (a1) 567 SUB a2, a2, 0x1 568 sb t0, (a0) 569 ADD a1, a1, 0x1 570 .set reorder /* DADDI_WAR */ 571 ADD a0, a0, 0x1 572 bnez a2, .Lr_end_bytes_up 573 .set noreorder 574 575 jr ra 576 move a2, zero 577 END(__rmemcpy) 578