1 /* Definitions of target machine for GCC for IA-32. 2 Copyright (C) 1988-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 Under Section 7 of GPL version 3, you are granted additional 17 permissions described in the GCC Runtime Library Exception, version 18 3.1, as published by the Free Software Foundation. 19 20 You should have received a copy of the GNU General Public License and 21 a copy of the GCC Runtime Library Exception along with this program; 22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 <http://www.gnu.org/licenses/>. */ 24 25 /* The purpose of this file is to define the characteristics of the i386, 26 independent of assembler syntax or operating system. 27 28 Three other files build on this one to describe a specific assembler syntax: 29 bsd386.h, att386.h, and sun386.h. 30 31 The actual tm.h file for a particular system should include 32 this file, and then the file for the appropriate assembler syntax. 33 34 Many macros that specify assembler syntax are omitted entirely from 35 this file because they really belong in the files for particular 36 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, 37 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many 38 that start with ASM_ or end in ASM_OP. */ 39 40 /* Redefines for option macros. */ 41 42 #define TARGET_64BIT TARGET_ISA_64BIT 43 #define TARGET_MMX TARGET_ISA_MMX 44 #define TARGET_3DNOW TARGET_ISA_3DNOW 45 #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A 46 #define TARGET_SSE TARGET_ISA_SSE 47 #define TARGET_SSE2 TARGET_ISA_SSE2 48 #define TARGET_SSE3 TARGET_ISA_SSE3 49 #define TARGET_SSSE3 TARGET_ISA_SSSE3 50 #define TARGET_SSE4_1 TARGET_ISA_SSE4_1 51 #define TARGET_SSE4_2 TARGET_ISA_SSE4_2 52 #define TARGET_AVX TARGET_ISA_AVX 53 #define TARGET_AVX2 TARGET_ISA_AVX2 54 #define TARGET_FMA TARGET_ISA_FMA 55 #define TARGET_SSE4A TARGET_ISA_SSE4A 56 #define TARGET_FMA4 TARGET_ISA_FMA4 57 #define TARGET_XOP TARGET_ISA_XOP 58 #define TARGET_LWP TARGET_ISA_LWP 59 #define TARGET_ROUND TARGET_ISA_ROUND 60 #define TARGET_ABM TARGET_ISA_ABM 61 #define TARGET_BMI TARGET_ISA_BMI 62 #define TARGET_BMI2 TARGET_ISA_BMI2 63 #define TARGET_LZCNT TARGET_ISA_LZCNT 64 #define TARGET_TBM TARGET_ISA_TBM 65 #define TARGET_POPCNT TARGET_ISA_POPCNT 66 #define TARGET_SAHF TARGET_ISA_SAHF 67 #define TARGET_MOVBE TARGET_ISA_MOVBE 68 #define TARGET_CRC32 TARGET_ISA_CRC32 69 #define TARGET_AES TARGET_ISA_AES 70 #define TARGET_PCLMUL TARGET_ISA_PCLMUL 71 #define TARGET_CMPXCHG16B TARGET_ISA_CX16 72 #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE 73 #define TARGET_RDRND TARGET_ISA_RDRND 74 #define TARGET_F16C TARGET_ISA_F16C 75 #define TARGET_RTM TARGET_ISA_RTM 76 #define TARGET_HLE TARGET_ISA_HLE 77 #define TARGET_RDSEED TARGET_ISA_RDSEED 78 #define TARGET_PRFCHW TARGET_ISA_PRFCHW 79 #define TARGET_ADX TARGET_ISA_ADX 80 #define TARGET_FXSR TARGET_ISA_FXSR 81 #define TARGET_XSAVE TARGET_ISA_XSAVE 82 #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT 83 84 #define TARGET_LP64 TARGET_ABI_64 85 #define TARGET_X32 TARGET_ABI_X32 86 87 /* SSE4.1 defines round instructions */ 88 #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1 89 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0) 90 91 #include "config/vxworks-dummy.h" 92 93 #include "config/i386/i386-opts.h" 94 95 #define MAX_STRINGOP_ALGS 4 96 97 /* Specify what algorithm to use for stringops on known size. 98 When size is unknown, the UNKNOWN_SIZE alg is used. When size is 99 known at compile time or estimated via feedback, the SIZE array 100 is walked in order until MAX is greater then the estimate (or -1 101 means infinity). Corresponding ALG is used then. 102 When NOALIGN is true the code guaranting the alignment of the memory 103 block is skipped. 104 105 For example initializer: 106 {{256, loop}, {-1, rep_prefix_4_byte}} 107 will use loop for blocks smaller or equal to 256 bytes, rep prefix will 108 be used otherwise. */ 109 struct stringop_algs 110 { 111 const enum stringop_alg unknown_size; 112 const struct stringop_strategy { 113 const int max; 114 const enum stringop_alg alg; 115 int noalign; 116 } size [MAX_STRINGOP_ALGS]; 117 }; 118 119 /* Define the specific costs for a given cpu */ 120 121 struct processor_costs { 122 const int add; /* cost of an add instruction */ 123 const int lea; /* cost of a lea instruction */ 124 const int shift_var; /* variable shift costs */ 125 const int shift_const; /* constant shift costs */ 126 const int mult_init[5]; /* cost of starting a multiply 127 in QImode, HImode, SImode, DImode, TImode*/ 128 const int mult_bit; /* cost of multiply per each bit set */ 129 const int divide[5]; /* cost of a divide/mod 130 in QImode, HImode, SImode, DImode, TImode*/ 131 int movsx; /* The cost of movsx operation. */ 132 int movzx; /* The cost of movzx operation. */ 133 const int large_insn; /* insns larger than this cost more */ 134 const int move_ratio; /* The threshold of number of scalar 135 memory-to-memory move insns. */ 136 const int movzbl_load; /* cost of loading using movzbl */ 137 const int int_load[3]; /* cost of loading integer registers 138 in QImode, HImode and SImode relative 139 to reg-reg move (2). */ 140 const int int_store[3]; /* cost of storing integer register 141 in QImode, HImode and SImode */ 142 const int fp_move; /* cost of reg,reg fld/fst */ 143 const int fp_load[3]; /* cost of loading FP register 144 in SFmode, DFmode and XFmode */ 145 const int fp_store[3]; /* cost of storing FP register 146 in SFmode, DFmode and XFmode */ 147 const int mmx_move; /* cost of moving MMX register. */ 148 const int mmx_load[2]; /* cost of loading MMX register 149 in SImode and DImode */ 150 const int mmx_store[2]; /* cost of storing MMX register 151 in SImode and DImode */ 152 const int sse_move; /* cost of moving SSE register. */ 153 const int sse_load[3]; /* cost of loading SSE register 154 in SImode, DImode and TImode*/ 155 const int sse_store[3]; /* cost of storing SSE register 156 in SImode, DImode and TImode*/ 157 const int mmxsse_to_integer; /* cost of moving mmxsse register to 158 integer and vice versa. */ 159 const int l1_cache_size; /* size of l1 cache, in kilobytes. */ 160 const int l2_cache_size; /* size of l2 cache, in kilobytes. */ 161 const int prefetch_block; /* bytes moved to cache for prefetch. */ 162 const int simultaneous_prefetches; /* number of parallel prefetch 163 operations. */ 164 const int branch_cost; /* Default value for BRANCH_COST. */ 165 const int fadd; /* cost of FADD and FSUB instructions. */ 166 const int fmul; /* cost of FMUL instruction. */ 167 const int fdiv; /* cost of FDIV instruction. */ 168 const int fabs; /* cost of FABS instruction. */ 169 const int fchs; /* cost of FCHS instruction. */ 170 const int fsqrt; /* cost of FSQRT instruction. */ 171 /* Specify what algorithm 172 to use for stringops on unknown size. */ 173 struct stringop_algs memcpy[2], memset[2]; 174 const int scalar_stmt_cost; /* Cost of any scalar operation, excluding 175 load and store. */ 176 const int scalar_load_cost; /* Cost of scalar load. */ 177 const int scalar_store_cost; /* Cost of scalar store. */ 178 const int vec_stmt_cost; /* Cost of any vector operation, excluding 179 load, store, vector-to-scalar and 180 scalar-to-vector operation. */ 181 const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */ 182 const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */ 183 const int vec_align_load_cost; /* Cost of aligned vector load. */ 184 const int vec_unalign_load_cost; /* Cost of unaligned vector load. */ 185 const int vec_store_cost; /* Cost of vector store. */ 186 const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer 187 cost model. */ 188 const int cond_not_taken_branch_cost;/* Cost of not taken branch for 189 vectorizer cost model. */ 190 }; 191 192 extern const struct processor_costs *ix86_cost; 193 extern const struct processor_costs ix86_size_cost; 194 195 #define ix86_cur_cost() \ 196 (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost) 197 198 /* Macros used in the machine description to test the flags. */ 199 200 /* configure can arrange to change it. */ 201 202 #ifndef TARGET_CPU_DEFAULT 203 #define TARGET_CPU_DEFAULT PROCESSOR_GENERIC32 204 #endif 205 206 #ifndef TARGET_FPMATH_DEFAULT 207 #define TARGET_FPMATH_DEFAULT \ 208 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387) 209 #endif 210 211 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS 212 213 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a 214 compile-time constant. */ 215 #ifdef IN_LIBGCC2 216 #undef TARGET_64BIT 217 #ifdef __x86_64__ 218 #define TARGET_64BIT 1 219 #else 220 #define TARGET_64BIT 0 221 #endif 222 #else 223 #ifndef TARGET_BI_ARCH 224 #undef TARGET_64BIT 225 #if TARGET_64BIT_DEFAULT 226 #define TARGET_64BIT 1 227 #else 228 #define TARGET_64BIT 0 229 #endif 230 #endif 231 #endif 232 233 #define HAS_LONG_COND_BRANCH 1 234 #define HAS_LONG_UNCOND_BRANCH 1 235 236 #define TARGET_386 (ix86_tune == PROCESSOR_I386) 237 #define TARGET_486 (ix86_tune == PROCESSOR_I486) 238 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM) 239 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO) 240 #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE) 241 #define TARGET_K6 (ix86_tune == PROCESSOR_K6) 242 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON) 243 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4) 244 #define TARGET_K8 (ix86_tune == PROCESSOR_K8) 245 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON) 246 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA) 247 #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2) 248 #define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7) 249 #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL) 250 #define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32) 251 #define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64) 252 #define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64) 253 #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10) 254 #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1) 255 #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2) 256 #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3) 257 #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1) 258 #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2) 259 #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM) 260 261 /* Feature tests against the various tunings. */ 262 enum ix86_tune_indices { 263 X86_TUNE_USE_LEAVE, 264 X86_TUNE_PUSH_MEMORY, 265 X86_TUNE_ZERO_EXTEND_WITH_AND, 266 X86_TUNE_UNROLL_STRLEN, 267 X86_TUNE_BRANCH_PREDICTION_HINTS, 268 X86_TUNE_DOUBLE_WITH_ADD, 269 X86_TUNE_USE_SAHF, 270 X86_TUNE_MOVX, 271 X86_TUNE_PARTIAL_REG_STALL, 272 X86_TUNE_PARTIAL_FLAG_REG_STALL, 273 X86_TUNE_LCP_STALL, 274 X86_TUNE_USE_HIMODE_FIOP, 275 X86_TUNE_USE_SIMODE_FIOP, 276 X86_TUNE_USE_MOV0, 277 X86_TUNE_USE_CLTD, 278 X86_TUNE_USE_XCHGB, 279 X86_TUNE_SPLIT_LONG_MOVES, 280 X86_TUNE_READ_MODIFY_WRITE, 281 X86_TUNE_READ_MODIFY, 282 X86_TUNE_PROMOTE_QIMODE, 283 X86_TUNE_FAST_PREFIX, 284 X86_TUNE_SINGLE_STRINGOP, 285 X86_TUNE_QIMODE_MATH, 286 X86_TUNE_HIMODE_MATH, 287 X86_TUNE_PROMOTE_QI_REGS, 288 X86_TUNE_PROMOTE_HI_REGS, 289 X86_TUNE_SINGLE_POP, 290 X86_TUNE_DOUBLE_POP, 291 X86_TUNE_SINGLE_PUSH, 292 X86_TUNE_DOUBLE_PUSH, 293 X86_TUNE_INTEGER_DFMODE_MOVES, 294 X86_TUNE_PARTIAL_REG_DEPENDENCY, 295 X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY, 296 X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL, 297 X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL, 298 X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL, 299 X86_TUNE_SSE_SPLIT_REGS, 300 X86_TUNE_SSE_TYPELESS_STORES, 301 X86_TUNE_SSE_LOAD0_BY_PXOR, 302 X86_TUNE_MEMORY_MISMATCH_STALL, 303 X86_TUNE_PROLOGUE_USING_MOVE, 304 X86_TUNE_EPILOGUE_USING_MOVE, 305 X86_TUNE_SHIFT1, 306 X86_TUNE_USE_FFREEP, 307 X86_TUNE_INTER_UNIT_MOVES, 308 X86_TUNE_INTER_UNIT_CONVERSIONS, 309 X86_TUNE_FOUR_JUMP_LIMIT, 310 X86_TUNE_SCHEDULE, 311 X86_TUNE_USE_BT, 312 X86_TUNE_USE_INCDEC, 313 X86_TUNE_PAD_RETURNS, 314 X86_TUNE_PAD_SHORT_FUNCTION, 315 X86_TUNE_EXT_80387_CONSTANTS, 316 X86_TUNE_AVOID_VECTOR_DECODE, 317 X86_TUNE_PROMOTE_HIMODE_IMUL, 318 X86_TUNE_SLOW_IMUL_IMM32_MEM, 319 X86_TUNE_SLOW_IMUL_IMM8, 320 X86_TUNE_MOVE_M1_VIA_OR, 321 X86_TUNE_NOT_UNPAIRABLE, 322 X86_TUNE_NOT_VECTORMODE, 323 X86_TUNE_USE_VECTOR_FP_CONVERTS, 324 X86_TUNE_USE_VECTOR_CONVERTS, 325 X86_TUNE_FUSE_CMP_AND_BRANCH, 326 X86_TUNE_OPT_AGU, 327 X86_TUNE_VECTORIZE_DOUBLE, 328 X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL, 329 X86_TUNE_AVX128_OPTIMAL, 330 X86_TUNE_REASSOC_INT_TO_PARALLEL, 331 X86_TUNE_REASSOC_FP_TO_PARALLEL, 332 X86_TUNE_GENERAL_REGS_SSE_SPILL, 333 X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE, 334 335 X86_TUNE_LAST 336 }; 337 338 extern unsigned char ix86_tune_features[X86_TUNE_LAST]; 339 340 #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE] 341 #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY] 342 #define TARGET_ZERO_EXTEND_WITH_AND \ 343 ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND] 344 #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN] 345 #define TARGET_BRANCH_PREDICTION_HINTS \ 346 ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS] 347 #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD] 348 #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF] 349 #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX] 350 #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL] 351 #define TARGET_PARTIAL_FLAG_REG_STALL \ 352 ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL] 353 #define TARGET_LCP_STALL \ 354 ix86_tune_features[X86_TUNE_LCP_STALL] 355 #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP] 356 #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP] 357 #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0] 358 #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD] 359 #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB] 360 #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES] 361 #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE] 362 #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY] 363 #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE] 364 #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX] 365 #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP] 366 #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH] 367 #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH] 368 #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS] 369 #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS] 370 #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP] 371 #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP] 372 #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH] 373 #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH] 374 #define TARGET_INTEGER_DFMODE_MOVES \ 375 ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES] 376 #define TARGET_PARTIAL_REG_DEPENDENCY \ 377 ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY] 378 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \ 379 ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY] 380 #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \ 381 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL] 382 #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \ 383 ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL] 384 #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \ 385 ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL] 386 #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS] 387 #define TARGET_SSE_TYPELESS_STORES \ 388 ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES] 389 #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR] 390 #define TARGET_MEMORY_MISMATCH_STALL \ 391 ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL] 392 #define TARGET_PROLOGUE_USING_MOVE \ 393 ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE] 394 #define TARGET_EPILOGUE_USING_MOVE \ 395 ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE] 396 #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1] 397 #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP] 398 #define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES] 399 #define TARGET_INTER_UNIT_CONVERSIONS\ 400 ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS] 401 #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT] 402 #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE] 403 #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT] 404 #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC] 405 #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS] 406 #define TARGET_PAD_SHORT_FUNCTION \ 407 ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION] 408 #define TARGET_EXT_80387_CONSTANTS \ 409 ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS] 410 #define TARGET_AVOID_VECTOR_DECODE \ 411 ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE] 412 #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \ 413 ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL] 414 #define TARGET_SLOW_IMUL_IMM32_MEM \ 415 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM] 416 #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8] 417 #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR] 418 #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE] 419 #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE] 420 #define TARGET_USE_VECTOR_FP_CONVERTS \ 421 ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS] 422 #define TARGET_USE_VECTOR_CONVERTS \ 423 ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS] 424 #define TARGET_FUSE_CMP_AND_BRANCH \ 425 ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH] 426 #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU] 427 #define TARGET_VECTORIZE_DOUBLE \ 428 ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE] 429 #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \ 430 ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL] 431 #define TARGET_AVX128_OPTIMAL \ 432 ix86_tune_features[X86_TUNE_AVX128_OPTIMAL] 433 #define TARGET_REASSOC_INT_TO_PARALLEL \ 434 ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL] 435 #define TARGET_REASSOC_FP_TO_PARALLEL \ 436 ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL] 437 #define TARGET_GENERAL_REGS_SSE_SPILL \ 438 ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL] 439 #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \ 440 ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE] 441 442 /* Feature tests against the various architecture variations. */ 443 enum ix86_arch_indices { 444 X86_ARCH_CMOV, 445 X86_ARCH_CMPXCHG, 446 X86_ARCH_CMPXCHG8B, 447 X86_ARCH_XADD, 448 X86_ARCH_BSWAP, 449 450 X86_ARCH_LAST 451 }; 452 453 extern unsigned char ix86_arch_features[X86_ARCH_LAST]; 454 455 #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV] 456 #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG] 457 #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B] 458 #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD] 459 #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP] 460 461 /* For sane SSE instruction set generation we need fcomi instruction. 462 It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic 463 expands to a sequence that includes conditional move. */ 464 #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND) 465 466 #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387) 467 468 extern unsigned char x86_prefetch_sse; 469 #define TARGET_PREFETCH_SSE x86_prefetch_sse 470 471 #define ASSEMBLER_DIALECT (ix86_asm_dialect) 472 473 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) 474 #define TARGET_MIX_SSE_I387 \ 475 ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387)) 476 477 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU) 478 #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2) 479 #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS) 480 #define TARGET_SUN_TLS 0 481 482 #ifndef TARGET_64BIT_DEFAULT 483 #define TARGET_64BIT_DEFAULT 0 484 #endif 485 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 486 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0 487 #endif 488 489 /* Fence to use after loop using storent. */ 490 491 extern tree x86_mfence; 492 #define FENCE_FOLLOWING_MOVNT x86_mfence 493 494 /* Once GDB has been enhanced to deal with functions without frame 495 pointers, we can change this to allow for elimination of 496 the frame pointer in leaf functions. */ 497 #define TARGET_DEFAULT 0 498 499 /* Extra bits to force. */ 500 #define TARGET_SUBTARGET_DEFAULT 0 501 #define TARGET_SUBTARGET_ISA_DEFAULT 0 502 503 /* Extra bits to force on w/ 32-bit mode. */ 504 #define TARGET_SUBTARGET32_DEFAULT 0 505 #define TARGET_SUBTARGET32_ISA_DEFAULT 0 506 507 /* Extra bits to force on w/ 64-bit mode. */ 508 #define TARGET_SUBTARGET64_DEFAULT 0 509 #define TARGET_SUBTARGET64_ISA_DEFAULT 0 510 511 /* Replace MACH-O, ifdefs by in-line tests, where possible. 512 (a) Macros defined in config/i386/darwin.h */ 513 #define TARGET_MACHO 0 514 #define TARGET_MACHO_BRANCH_ISLANDS 0 515 #define MACHOPIC_ATT_STUB 0 516 /* (b) Macros defined in config/darwin.h */ 517 #define MACHO_DYNAMIC_NO_PIC_P 0 518 #define MACHOPIC_INDIRECT 0 519 #define MACHOPIC_PURE 0 520 521 /* For the RDOS */ 522 #define TARGET_RDOS 0 523 524 /* For the Windows 64-bit ABI. */ 525 #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) 526 527 /* For the Windows 32-bit ABI. */ 528 #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI) 529 530 /* This is re-defined by cygming.h. */ 531 #define TARGET_SEH 0 532 533 /* The default abi used by target. */ 534 #define DEFAULT_ABI SYSV_ABI 535 536 /* Subtargets may reset this to 1 in order to enable 96-bit long double 537 with the rounding mode forced to 53 bits. */ 538 #define TARGET_96_ROUND_53_LONG_DOUBLE 0 539 540 /* -march=native handling only makes sense with compiler running on 541 an x86 or x86_64 chip. If changing this condition, also change 542 the condition in driver-i386.c. */ 543 #if defined(__i386__) || defined(__x86_64__) 544 /* In driver-i386.c. */ 545 extern const char *host_detect_local_cpu (int argc, const char **argv); 546 #define EXTRA_SPEC_FUNCTIONS \ 547 { "local_cpu_detect", host_detect_local_cpu }, 548 #define HAVE_LOCAL_CPU_DETECT 549 #endif 550 551 #if TARGET_64BIT_DEFAULT 552 #define OPT_ARCH64 "!m32" 553 #define OPT_ARCH32 "m32" 554 #else 555 #define OPT_ARCH64 "m64|mx32" 556 #define OPT_ARCH32 "m64|mx32:;" 557 #endif 558 559 /* Support for configure-time defaults of some command line options. 560 The order here is important so that -march doesn't squash the 561 tune or cpu values. */ 562 #define OPTION_DEFAULT_SPECS \ 563 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ 564 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 565 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 566 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ 567 {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 568 {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ 569 {"arch", "%{!march=*:-march=%(VALUE)}"}, \ 570 {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \ 571 {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"}, 572 573 /* Specs for the compiler proper */ 574 575 #ifndef CC1_CPU_SPEC 576 #define CC1_CPU_SPEC_1 "" 577 578 #ifndef HAVE_LOCAL_CPU_DETECT 579 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 580 #else 581 #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \ 582 "%{march=native:%>march=native %:local_cpu_detect(arch) \ 583 %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \ 584 %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}" 585 #endif 586 #endif 587 588 /* Target CPU builtins. */ 590 #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros () 591 592 /* Target Pragmas. */ 593 #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas () 594 595 #ifndef CC1_SPEC 596 #define CC1_SPEC "%(cc1_cpu) " 597 #endif 598 599 /* This macro defines names of additional specifications to put in the 600 specs that can be used in various specifications like CC1_SPEC. Its 601 definition is an initializer with a subgrouping for each command option. 602 603 Each subgrouping contains a string constant, that defines the 604 specification name, and a string constant that used by the GCC driver 605 program. 606 607 Do not define this macro if it does not need to do anything. */ 608 609 #ifndef SUBTARGET_EXTRA_SPECS 610 #define SUBTARGET_EXTRA_SPECS 611 #endif 612 613 #define EXTRA_SPECS \ 614 { "cc1_cpu", CC1_CPU_SPEC }, \ 615 SUBTARGET_EXTRA_SPECS 616 617 619 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the 620 FPU, assume that the fpcw is set to extended precision; when using 621 only SSE, rounding is correct; when using both SSE and the FPU, 622 the rounding precision is indeterminate, since either may be chosen 623 apparently at random. */ 624 #define TARGET_FLT_EVAL_METHOD \ 625 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2) 626 627 /* Whether to allow x87 floating-point arithmetic on MODE (one of 628 SFmode, DFmode and XFmode) in the current excess precision 629 configuration. */ 630 #define X87_ENABLE_ARITH(MODE) \ 631 (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode) 632 633 /* Likewise, whether to allow direct conversions from integer mode 634 IMODE (HImode, SImode or DImode) to MODE. */ 635 #define X87_ENABLE_FLOAT(MODE, IMODE) \ 636 (flag_excess_precision == EXCESS_PRECISION_FAST \ 637 || (MODE) == XFmode \ 638 || ((MODE) == DFmode && (IMODE) == SImode) \ 639 || (IMODE) == HImode) 640 641 /* target machine storage layout */ 642 643 #define SHORT_TYPE_SIZE 16 644 #define INT_TYPE_SIZE 32 645 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD) 646 #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD) 647 #define LONG_LONG_TYPE_SIZE 64 648 #define FLOAT_TYPE_SIZE 32 649 #define DOUBLE_TYPE_SIZE 64 650 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80) 651 652 /* Define this to set long double type size to use in libgcc2.c, which can 653 not depend on target_flags. */ 654 #ifdef __LONG_DOUBLE_64__ 655 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 656 #else 657 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80 658 #endif 659 660 #define WIDEST_HARDWARE_FP_SIZE 80 661 662 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT 663 #define MAX_BITS_PER_WORD 64 664 #else 665 #define MAX_BITS_PER_WORD 32 666 #endif 667 668 /* Define this if most significant byte of a word is the lowest numbered. */ 669 /* That is true on the 80386. */ 670 671 #define BITS_BIG_ENDIAN 0 672 673 /* Define this if most significant byte of a word is the lowest numbered. */ 674 /* That is not true on the 80386. */ 675 #define BYTES_BIG_ENDIAN 0 676 677 /* Define this if most significant word of a multiword number is the lowest 678 numbered. */ 679 /* Not true for 80386 */ 680 #define WORDS_BIG_ENDIAN 0 681 682 /* Width of a word, in units (bytes). */ 683 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) 684 685 #ifndef IN_LIBGCC2 686 #define MIN_UNITS_PER_WORD 4 687 #endif 688 689 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 690 #define PARM_BOUNDARY BITS_PER_WORD 691 692 /* Boundary (in *bits*) on which stack pointer should be aligned. */ 693 #define STACK_BOUNDARY \ 694 (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD) 695 696 /* Stack boundary of the main function guaranteed by OS. */ 697 #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32) 698 699 /* Minimum stack boundary. */ 700 #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32) 701 702 /* Boundary (in *bits*) on which the stack pointer prefers to be 703 aligned; the compiler cannot rely on having this alignment. */ 704 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary 705 706 /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for 707 both 32bit and 64bit, to support codes that need 128 bit stack 708 alignment for SSE instructions, but can't realign the stack. */ 709 #define PREFERRED_STACK_BOUNDARY_DEFAULT 128 710 711 /* 1 if -mstackrealign should be turned on by default. It will 712 generate an alternate prologue and epilogue that realigns the 713 runtime stack if nessary. This supports mixing codes that keep a 714 4-byte aligned stack, as specified by i386 psABI, with codes that 715 need a 16-byte aligned stack, as required by SSE instructions. */ 716 #define STACK_REALIGN_DEFAULT 0 717 718 /* Boundary (in *bits*) on which the incoming stack is aligned. */ 719 #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary 720 721 /* According to Windows x64 software convention, the maximum stack allocatable 722 in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of 723 instructions allowed to adjust the stack pointer in the epilog, forcing the 724 use of frame pointer for frames larger than 2 GB. This theorical limit 725 is reduced by 256, an over-estimated upper bound for the stack use by the 726 prologue. 727 We define only one threshold for both the prolog and the epilog. When the 728 frame size is larger than this threshold, we allocate the area to save SSE 729 regs, then save them, and then allocate the remaining. There is no SEH 730 unwind info for this later allocation. */ 731 #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256) 732 733 /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is 734 mandatory for the 64-bit ABI, and may or may not be true for other 735 operating systems. */ 736 #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT 737 738 /* Minimum allocation boundary for the code of a function. */ 739 #define FUNCTION_BOUNDARY 8 740 741 /* C++ stores the virtual bit in the lowest bit of function pointers. */ 742 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn 743 744 /* Minimum size in bits of the largest boundary to which any 745 and all fundamental data types supported by the hardware 746 might need to be aligned. No data type wants to be aligned 747 rounder than this. 748 749 Pentium+ prefers DFmode values to be aligned to 64 bit boundary 750 and Pentium Pro XFmode values at 128 bit boundaries. */ 751 752 #define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128) 753 754 /* Maximum stack alignment. */ 755 #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT 756 757 /* Alignment value for attribute ((aligned)). It is a constant since 758 it is the part of the ABI. We shouldn't change it with -mavx. */ 759 #define ATTRIBUTE_ALIGNED_VALUE 128 760 761 /* Decide whether a variable of mode MODE should be 128 bit aligned. */ 762 #define ALIGN_MODE_128(MODE) \ 763 ((MODE) == XFmode || SSE_REG_MODE_P (MODE)) 764 765 /* The published ABIs say that doubles should be aligned on word 766 boundaries, so lower the alignment for structure fields unless 767 -malign-double is set. */ 768 769 /* ??? Blah -- this macro is used directly by libobjc. Since it 770 supports no vector modes, cut out the complexity and fall back 771 on BIGGEST_FIELD_ALIGNMENT. */ 772 #ifdef IN_TARGET_LIBS 773 #ifdef __x86_64__ 774 #define BIGGEST_FIELD_ALIGNMENT 128 775 #else 776 #define BIGGEST_FIELD_ALIGNMENT 32 777 #endif 778 #else 779 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \ 780 x86_field_alignment (FIELD, COMPUTED) 781 #endif 782 783 /* If defined, a C expression to compute the alignment given to a 784 constant that is being placed in memory. EXP is the constant 785 and ALIGN is the alignment that the object would ordinarily have. 786 The value of this macro is used instead of that alignment to align 787 the object. 788 789 If this macro is not defined, then ALIGN is used. 790 791 The typical use of this macro is to increase alignment for string 792 constants to be word aligned so that `strcpy' calls that copy 793 constants can be done inline. */ 794 795 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN)) 796 797 /* If defined, a C expression to compute the alignment for a static 798 variable. TYPE is the data type, and ALIGN is the alignment that 799 the object would ordinarily have. The value of this macro is used 800 instead of that alignment to align the object. 801 802 If this macro is not defined, then ALIGN is used. 803 804 One use of this macro is to increase alignment of medium-size 805 data to make it all fit in fewer cache lines. Another is to 806 cause character arrays to be word-aligned so that `strcpy' calls 807 that copy constants to character arrays can be done inline. */ 808 809 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN)) 810 811 /* If defined, a C expression to compute the alignment for a local 812 variable. TYPE is the data type, and ALIGN is the alignment that 813 the object would ordinarily have. The value of this macro is used 814 instead of that alignment to align the object. 815 816 If this macro is not defined, then ALIGN is used. 817 818 One use of this macro is to increase alignment of medium-size 819 data to make it all fit in fewer cache lines. */ 820 821 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ 822 ix86_local_alignment ((TYPE), VOIDmode, (ALIGN)) 823 824 /* If defined, a C expression to compute the alignment for stack slot. 825 TYPE is the data type, MODE is the widest mode available, and ALIGN 826 is the alignment that the slot would ordinarily have. The value of 827 this macro is used instead of that alignment to align the slot. 828 829 If this macro is not defined, then ALIGN is used when TYPE is NULL, 830 Otherwise, LOCAL_ALIGNMENT will be used. 831 832 One use of this macro is to set alignment of stack slot to the 833 maximum alignment of all possible modes which the slot may have. */ 834 835 #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \ 836 ix86_local_alignment ((TYPE), (MODE), (ALIGN)) 837 838 /* If defined, a C expression to compute the alignment for a local 839 variable DECL. 840 841 If this macro is not defined, then 842 LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used. 843 844 One use of this macro is to increase alignment of medium-size 845 data to make it all fit in fewer cache lines. */ 846 847 #define LOCAL_DECL_ALIGNMENT(DECL) \ 848 ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL)) 849 850 /* If defined, a C expression to compute the minimum required alignment 851 for dynamic stack realignment purposes for EXP (a TYPE or DECL), 852 MODE, assuming normal alignment ALIGN. 853 854 If this macro is not defined, then (ALIGN) will be used. */ 855 856 #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \ 857 ix86_minimum_alignment (EXP, MODE, ALIGN) 858 859 860 /* Set this nonzero if move instructions will actually fail to work 861 when given unaligned data. */ 862 #define STRICT_ALIGNMENT 0 863 864 /* If bit field type is int, don't let it cross an int, 865 and give entire struct the alignment of an int. */ 866 /* Required on the 386 since it doesn't have bit-field insns. */ 867 #define PCC_BITFIELD_TYPE_MATTERS 1 868 869 /* Standard register usage. */ 871 872 /* This processor has special stack-like registers. See reg-stack.c 873 for details. */ 874 875 #define STACK_REGS 876 877 #define IS_STACK_MODE(MODE) \ 878 (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \ 879 || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \ 880 || (MODE) == XFmode) 881 882 /* Number of actual hardware registers. 883 The hardware registers are assigned numbers for the compiler 884 from 0 to just below FIRST_PSEUDO_REGISTER. 885 All registers that the compiler knows about must be given numbers, 886 even those that are not normally considered general registers. 887 888 In the 80386 we give the 8 general purpose registers the numbers 0-7. 889 We number the floating point registers 8-15. 890 Note that registers 0-7 can be accessed as a short or int, 891 while only 0-3 may be used with byte `mov' instructions. 892 893 Reg 16 does not correspond to any hardware register, but instead 894 appears in the RTL as an argument pointer prior to reload, and is 895 eliminated during reloading in favor of either the stack or frame 896 pointer. */ 897 898 #define FIRST_PSEUDO_REGISTER 53 899 900 /* Number of hardware registers that go into the DWARF-2 unwind info. 901 If not defined, equals FIRST_PSEUDO_REGISTER. */ 902 903 #define DWARF_FRAME_REGISTERS 17 904 905 /* 1 for registers that have pervasive standard uses 906 and are not available for the register allocator. 907 On the 80386, the stack pointer is such, as is the arg pointer. 908 909 REX registers are disabled for 32bit targets in 910 TARGET_CONDITIONAL_REGISTER_USAGE. */ 911 912 #define FIXED_REGISTERS \ 913 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ 914 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \ 915 /*arg,flags,fpsr,fpcr,frame*/ \ 916 1, 1, 1, 1, 1, \ 917 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ 918 0, 0, 0, 0, 0, 0, 0, 0, \ 919 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \ 920 0, 0, 0, 0, 0, 0, 0, 0, \ 921 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \ 922 0, 0, 0, 0, 0, 0, 0, 0, \ 923 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ 924 0, 0, 0, 0, 0, 0, 0, 0 } 925 926 /* 1 for registers not available across function calls. 927 These must include the FIXED_REGISTERS and also any 928 registers that can be used without being saved. 929 The latter must include the registers where values are returned 930 and the register where structure-value addresses are passed. 931 Aside from that, you can include as many other registers as you like. 932 933 Value is set to 1 if the register is call used unconditionally. 934 Bit one is set if the register is call used on TARGET_32BIT ABI. 935 Bit two is set if the register is call used on TARGET_64BIT ABI. 936 Bit three is set if the register is call used on TARGET_64BIT_MS_ABI. 937 938 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */ 939 940 #define CALL_USED_REGISTERS \ 941 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ 942 { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 943 /*arg,flags,fpsr,fpcr,frame*/ \ 944 1, 1, 1, 1, 1, \ 945 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ 946 1, 1, 1, 1, 1, 1, 6, 6, \ 947 /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \ 948 1, 1, 1, 1, 1, 1, 1, 1, \ 949 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \ 950 1, 1, 1, 1, 2, 2, 2, 2, \ 951 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ 952 6, 6, 6, 6, 6, 6, 6, 6 } 953 954 /* Order in which to allocate registers. Each register must be 955 listed once, even those in FIXED_REGISTERS. List frame pointer 956 late and fixed registers last. Note that, in general, we prefer 957 registers listed in CALL_USED_REGISTERS, keeping the others 958 available for storage of persistent values. 959 960 The ADJUST_REG_ALLOC_ORDER actually overwrite the order, 961 so this is just empty initializer for array. */ 962 963 #define REG_ALLOC_ORDER \ 964 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ 965 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ 966 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ 967 48, 49, 50, 51, 52 } 968 969 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order 970 to be rearranged based on a particular function. When using sse math, 971 we want to allocate SSE before x87 registers and vice versa. */ 972 973 #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc () 974 975 976 #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL) 977 978 /* Return number of consecutive hard regs needed starting at reg REGNO 979 to hold something of mode MODE. 980 This is ordinarily the length in words of a value of mode MODE 981 but can be less for certain modes in special long registers. 982 983 Actually there are no two word move instructions for consecutive 984 registers. And only registers 0-3 may have mov byte instructions 985 applied to them. */ 986 987 #define HARD_REGNO_NREGS(REGNO, MODE) \ 988 (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ 989 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ 990 : ((MODE) == XFmode \ 991 ? (TARGET_64BIT ? 2 : 3) \ 992 : (MODE) == XCmode \ 993 ? (TARGET_64BIT ? 4 : 6) \ 994 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) 995 996 #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \ 997 ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \ 998 ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ 999 ? 0 \ 1000 : ((MODE) == XFmode || (MODE) == XCmode)) \ 1001 : 0) 1002 1003 #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8) 1004 1005 #define VALID_AVX256_REG_MODE(MODE) \ 1006 ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \ 1007 || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \ 1008 || (MODE) == V4DFmode) 1009 1010 #define VALID_AVX256_REG_OR_OI_MODE(MODE) \ 1011 (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode) 1012 1013 #define VALID_SSE2_REG_MODE(MODE) \ 1014 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \ 1015 || (MODE) == V2DImode || (MODE) == DFmode) 1016 1017 #define VALID_SSE_REG_MODE(MODE) \ 1018 ((MODE) == V1TImode || (MODE) == TImode \ 1019 || (MODE) == V4SFmode || (MODE) == V4SImode \ 1020 || (MODE) == SFmode || (MODE) == TFmode) 1021 1022 #define VALID_MMX_REG_MODE_3DNOW(MODE) \ 1023 ((MODE) == V2SFmode || (MODE) == SFmode) 1024 1025 #define VALID_MMX_REG_MODE(MODE) \ 1026 ((MODE == V1DImode) || (MODE) == DImode \ 1027 || (MODE) == V2SImode || (MODE) == SImode \ 1028 || (MODE) == V4HImode || (MODE) == V8QImode) 1029 1030 #define VALID_DFP_MODE_P(MODE) \ 1031 ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) 1032 1033 #define VALID_FP_MODE_P(MODE) \ 1034 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \ 1035 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \ 1036 1037 #define VALID_INT_MODE_P(MODE) \ 1038 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ 1039 || (MODE) == DImode \ 1040 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ 1041 || (MODE) == CDImode \ 1042 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \ 1043 || (MODE) == TFmode || (MODE) == TCmode))) 1044 1045 /* Return true for modes passed in SSE registers. */ 1046 #define SSE_REG_MODE_P(MODE) \ 1047 ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \ 1048 || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \ 1049 || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \ 1050 || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \ 1051 || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \ 1052 || (MODE) == V2TImode) 1053 1054 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ 1055 1056 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 1057 ix86_hard_regno_mode_ok ((REGNO), (MODE)) 1058 1059 /* Value is 1 if it is a good idea to tie two pseudo registers 1060 when one has mode MODE1 and one has mode MODE2. 1061 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 1062 for any hard reg, then this must be 0 for correct output. */ 1063 1064 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2) 1065 1066 /* It is possible to write patterns to move flags; but until someone 1067 does it, */ 1068 #define AVOID_CCMODE_COPIES 1069 1070 /* Specify the modes required to caller save a given hard regno. 1071 We do this on i386 to prevent flags from being saved at all. 1072 1073 Kill any attempts to combine saving of modes. */ 1074 1075 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ 1076 (CC_REGNO_P (REGNO) ? VOIDmode \ 1077 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ 1078 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \ 1079 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \ 1080 : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \ 1081 : (MODE)) 1082 1083 /* The only ABI that saves SSE registers across calls is Win64 (thus no 1084 need to check the current ABI here), and with AVX enabled Win64 only 1085 guarantees that the low 16 bytes are saved. */ 1086 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \ 1087 (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16) 1088 1089 /* Specify the registers used for certain standard purposes. 1090 The values of these macros are register numbers. */ 1091 1092 /* on the 386 the pc register is %eip, and is not usable as a general 1093 register. The ordinary mov instructions won't work */ 1094 /* #define PC_REGNUM */ 1095 1096 /* Register to use for pushing function arguments. */ 1097 #define STACK_POINTER_REGNUM 7 1098 1099 /* Base register for access to local variables of the function. */ 1100 #define HARD_FRAME_POINTER_REGNUM 6 1101 1102 /* Base register for access to local variables of the function. */ 1103 #define FRAME_POINTER_REGNUM 20 1104 1105 /* First floating point reg */ 1106 #define FIRST_FLOAT_REG 8 1107 1108 /* First & last stack-like regs */ 1109 #define FIRST_STACK_REG FIRST_FLOAT_REG 1110 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7) 1111 1112 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) 1113 #define LAST_SSE_REG (FIRST_SSE_REG + 7) 1114 1115 #define FIRST_MMX_REG (LAST_SSE_REG + 1) 1116 #define LAST_MMX_REG (FIRST_MMX_REG + 7) 1117 1118 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) 1119 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) 1120 1121 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) 1122 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) 1123 1124 /* Override this in other tm.h files to cope with various OS lossage 1125 requiring a frame pointer. */ 1126 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED 1127 #define SUBTARGET_FRAME_POINTER_REQUIRED 0 1128 #endif 1129 1130 /* Make sure we can access arbitrary call frames. */ 1131 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () 1132 1133 /* Base register for access to arguments of the function. */ 1134 #define ARG_POINTER_REGNUM 16 1135 1136 /* Register to hold the addressing base for position independent 1137 code access to data items. We don't use PIC pointer for 64bit 1138 mode. Define the regnum to dummy value to prevent gcc from 1139 pessimizing code dealing with EBX. 1140 1141 To avoid clobbering a call-saved register unnecessarily, we renumber 1142 the pic register when possible. The change is visible after the 1143 prologue has been emitted. */ 1144 1145 #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG 1146 1147 #define PIC_OFFSET_TABLE_REGNUM \ 1148 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \ 1149 || !flag_pic ? INVALID_REGNUM \ 1150 : reload_completed ? REGNO (pic_offset_table_rtx) \ 1151 : REAL_PIC_OFFSET_TABLE_REGNUM) 1152 1153 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_" 1154 1155 /* This is overridden by <cygwin.h>. */ 1156 #define MS_AGGREGATE_RETURN 0 1157 1158 #define KEEP_AGGREGATE_RETURN_POINTER 0 1159 1160 /* Define the classes of registers for register constraints in the 1162 machine description. Also define ranges of constants. 1163 1164 One of the classes must always be named ALL_REGS and include all hard regs. 1165 If there is more than one class, another class must be named NO_REGS 1166 and contain no registers. 1167 1168 The name GENERAL_REGS must be the name of a class (or an alias for 1169 another name such as ALL_REGS). This is the class of registers 1170 that is allowed by "g" or "r" in a register constraint. 1171 Also, registers outside this class are allocated only when 1172 instructions express preferences for them. 1173 1174 The classes must be numbered in nondecreasing order; that is, 1175 a larger-numbered class must never be contained completely 1176 in a smaller-numbered class. 1177 1178 For any two classes, it is very desirable that there be another 1179 class that represents their union. 1180 1181 It might seem that class BREG is unnecessary, since no useful 386 1182 opcode needs reg %ebx. But some systems pass args to the OS in ebx, 1183 and the "b" register constraint is useful in asms for syscalls. 1184 1185 The flags, fpsr and fpcr registers are in no class. */ 1186 1187 enum reg_class 1188 { 1189 NO_REGS, 1190 AREG, DREG, CREG, BREG, SIREG, DIREG, 1191 AD_REGS, /* %eax/%edx for DImode */ 1192 Q_REGS, /* %eax %ebx %ecx %edx */ 1193 NON_Q_REGS, /* %esi %edi %ebp %esp */ 1194 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ 1195 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ 1196 CLOBBERED_REGS, /* call-clobbered integer registers */ 1197 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp 1198 %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */ 1199 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ 1200 FLOAT_REGS, 1201 SSE_FIRST_REG, 1202 SSE_REGS, 1203 MMX_REGS, 1204 FP_TOP_SSE_REGS, 1205 FP_SECOND_SSE_REGS, 1206 FLOAT_SSE_REGS, 1207 FLOAT_INT_REGS, 1208 INT_SSE_REGS, 1209 FLOAT_INT_SSE_REGS, 1210 ALL_REGS, LIM_REG_CLASSES 1211 }; 1212 1213 #define N_REG_CLASSES ((int) LIM_REG_CLASSES) 1214 1215 #define INTEGER_CLASS_P(CLASS) \ 1216 reg_class_subset_p ((CLASS), GENERAL_REGS) 1217 #define FLOAT_CLASS_P(CLASS) \ 1218 reg_class_subset_p ((CLASS), FLOAT_REGS) 1219 #define SSE_CLASS_P(CLASS) \ 1220 reg_class_subset_p ((CLASS), SSE_REGS) 1221 #define MMX_CLASS_P(CLASS) \ 1222 ((CLASS) == MMX_REGS) 1223 #define MAYBE_INTEGER_CLASS_P(CLASS) \ 1224 reg_classes_intersect_p ((CLASS), GENERAL_REGS) 1225 #define MAYBE_FLOAT_CLASS_P(CLASS) \ 1226 reg_classes_intersect_p ((CLASS), FLOAT_REGS) 1227 #define MAYBE_SSE_CLASS_P(CLASS) \ 1228 reg_classes_intersect_p (SSE_REGS, (CLASS)) 1229 #define MAYBE_MMX_CLASS_P(CLASS) \ 1230 reg_classes_intersect_p (MMX_REGS, (CLASS)) 1231 1232 #define Q_CLASS_P(CLASS) \ 1233 reg_class_subset_p ((CLASS), Q_REGS) 1234 1235 /* Give names of register classes as strings for dump file. */ 1236 1237 #define REG_CLASS_NAMES \ 1238 { "NO_REGS", \ 1239 "AREG", "DREG", "CREG", "BREG", \ 1240 "SIREG", "DIREG", \ 1241 "AD_REGS", \ 1242 "Q_REGS", "NON_Q_REGS", \ 1243 "INDEX_REGS", \ 1244 "LEGACY_REGS", \ 1245 "CLOBBERED_REGS", \ 1246 "GENERAL_REGS", \ 1247 "FP_TOP_REG", "FP_SECOND_REG", \ 1248 "FLOAT_REGS", \ 1249 "SSE_FIRST_REG", \ 1250 "SSE_REGS", \ 1251 "MMX_REGS", \ 1252 "FP_TOP_SSE_REGS", \ 1253 "FP_SECOND_SSE_REGS", \ 1254 "FLOAT_SSE_REGS", \ 1255 "FLOAT_INT_REGS", \ 1256 "INT_SSE_REGS", \ 1257 "FLOAT_INT_SSE_REGS", \ 1258 "ALL_REGS" } 1259 1260 /* Define which registers fit in which classes. This is an initializer 1261 for a vector of HARD_REG_SET of length N_REG_CLASSES. 1262 1263 Note that CLOBBERED_REGS are calculated by 1264 TARGET_CONDITIONAL_REGISTER_USAGE. */ 1265 1266 #define REG_CLASS_CONTENTS \ 1267 { { 0x00, 0x0 }, \ 1268 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \ 1269 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \ 1270 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \ 1271 { 0x03, 0x0 }, /* AD_REGS */ \ 1272 { 0x0f, 0x0 }, /* Q_REGS */ \ 1273 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \ 1274 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \ 1275 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \ 1276 { 0x00, 0x0 }, /* CLOBBERED_REGS */ \ 1277 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \ 1278 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\ 1279 { 0xff00, 0x0 }, /* FLOAT_REGS */ \ 1280 { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \ 1281 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \ 1282 { 0xe0000000, 0x1f }, /* MMX_REGS */ \ 1283 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \ 1284 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \ 1285 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \ 1286 { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \ 1287 { 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \ 1288 { 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \ 1289 { 0xffffffff,0x1fffff } \ 1290 } 1291 1292 /* The same information, inverted: 1293 Return the class number of the smallest class containing 1294 reg number REGNO. This could be a conditional expression 1295 or could index an array. */ 1296 1297 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) 1298 1299 /* When this hook returns true for MODE, the compiler allows 1300 registers explicitly used in the rtl to be used as spill registers 1301 but prevents the compiler from extending the lifetime of these 1302 registers. */ 1303 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true 1304 1305 #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X))) 1306 #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG) 1307 1308 #define GENERAL_REG_P(X) \ 1309 (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) 1310 #define GENERAL_REGNO_P(N) \ 1311 (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N)) 1312 1313 #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X))) 1314 #define ANY_QI_REGNO_P(N) \ 1315 (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N)) 1316 1317 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) 1318 #define REX_INT_REGNO_P(N) \ 1319 IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG) 1320 1321 #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X))) 1322 #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG) 1323 1324 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) 1325 #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N)) 1326 1327 #define X87_FLOAT_MODE_P(MODE) \ 1328 (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode)) 1329 1330 #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X))) 1331 #define SSE_REGNO_P(N) \ 1332 (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \ 1333 || REX_SSE_REGNO_P (N)) 1334 1335 #define REX_SSE_REGNO_P(N) \ 1336 IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG) 1337 1338 #define SSE_REGNO(N) \ 1339 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8) 1340 1341 #define SSE_FLOAT_MODE_P(MODE) \ 1342 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) 1343 1344 #define FMA4_VEC_FLOAT_MODE_P(MODE) \ 1345 (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \ 1346 || (MODE) == V8SFmode || (MODE) == V4DFmode)) 1347 1348 #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X))) 1349 #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG) 1350 1351 #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG) 1352 1353 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) 1354 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) 1355 1356 /* The class value for index registers, and the one for base regs. */ 1357 1358 #define INDEX_REG_CLASS INDEX_REGS 1359 #define BASE_REG_CLASS GENERAL_REGS 1360 1361 /* Place additional restrictions on the register class to use when it 1362 is necessary to be able to hold a value of mode MODE in a reload 1363 register for which class CLASS would ordinarily be used. 1364 1365 We avoid classes containing registers from multiple units due to 1366 the limitation in ix86_secondary_memory_needed. We limit these 1367 classes to their "natural mode" single unit register class, depending 1368 on the unit availability. 1369 1370 Please note that reg_class_subset_p is not commutative, so these 1371 conditions mean "... if (CLASS) includes ALL registers from the 1372 register set." */ 1373 1374 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \ 1375 (((MODE) == QImode && !TARGET_64BIT \ 1376 && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \ 1377 : (((MODE) == SImode || (MODE) == DImode) \ 1378 && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \ 1379 : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \ 1380 && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \ 1381 : (X87_FLOAT_MODE_P (MODE) \ 1382 && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \ 1383 : (CLASS)) 1384 1385 /* If we are copying between general and FP registers, we need a memory 1386 location. The same is true for SSE and MMX registers. */ 1387 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ 1388 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) 1389 1390 /* Get_secondary_mem widens integral modes to BITS_PER_WORD. 1391 There is no need to emit full 64 bit move on 64 bit targets 1392 for integral modes that can be moved using 32 bit move. */ 1393 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ 1394 (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \ 1395 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ 1396 : MODE) 1397 1398 /* Return a class of registers that cannot change FROM mode to TO mode. */ 1399 1400 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ 1401 ix86_cannot_change_mode_class (FROM, TO, CLASS) 1402 1403 /* Stack layout; function entry, exit and calling. */ 1405 1406 /* Define this if pushing a word on the stack 1407 makes the stack pointer a smaller address. */ 1408 #define STACK_GROWS_DOWNWARD 1409 1410 /* Define this to nonzero if the nominal address of the stack frame 1411 is at the high-address end of the local variables; 1412 that is, each additional local variable allocated 1413 goes at a more negative offset in the frame. */ 1414 #define FRAME_GROWS_DOWNWARD 1 1415 1416 /* Offset within stack frame to start allocating local variables at. 1417 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the 1418 first local allocated. Otherwise, it is the offset to the BEGINNING 1419 of the first local allocated. */ 1420 #define STARTING_FRAME_OFFSET 0 1421 1422 /* If we generate an insn to push BYTES bytes, this says how many the stack 1423 pointer really advances by. On 386, we have pushw instruction that 1424 decrements by exactly 2 no matter what the position was, there is no pushb. 1425 1426 But as CIE data alignment factor on this arch is -4 for 32bit targets 1427 and -8 for 64bit targets, we need to make sure all stack pointer adjustments 1428 are in multiple of 4 for 32bit targets and 8 for 64bit targets. */ 1429 1430 #define PUSH_ROUNDING(BYTES) \ 1431 (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD) 1432 1433 /* If defined, the maximum amount of space required for outgoing arguments 1434 will be computed and placed into the variable `crtl->outgoing_args_size'. 1435 No space will be pushed onto the stack for each call; instead, the 1436 function prologue should increase the stack frame size by this amount. 1437 1438 64-bit MS ABI seem to require 16 byte alignment everywhere except for 1439 function prologue and apilogue. This is not possible without 1440 ACCUMULATE_OUTGOING_ARGS. */ 1441 1442 #define ACCUMULATE_OUTGOING_ARGS \ 1443 (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI) 1444 1445 /* If defined, a C expression whose value is nonzero when we want to use PUSH 1446 instructions to pass outgoing arguments. */ 1447 1448 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) 1449 1450 /* We want the stack and args grow in opposite directions, even if 1451 PUSH_ARGS is 0. */ 1452 #define PUSH_ARGS_REVERSED 1 1453 1454 /* Offset of first parameter from the argument pointer register value. */ 1455 #define FIRST_PARM_OFFSET(FNDECL) 0 1456 1457 /* Define this macro if functions should assume that stack space has been 1458 allocated for arguments even when their values are passed in registers. 1459 1460 The value of this macro is the size, in bytes, of the area reserved for 1461 arguments passed in registers for the function represented by FNDECL. 1462 1463 This space can be allocated by the caller, or be a part of the 1464 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says 1465 which. */ 1466 #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL) 1467 1468 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \ 1469 (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI) 1470 1471 /* Define how to find the value returned by a library function 1472 assuming the value has mode MODE. */ 1473 1474 #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE) 1475 1476 /* Define the size of the result block used for communication between 1477 untyped_call and untyped_return. The block contains a DImode value 1478 followed by the block used by fnsave and frstor. */ 1479 1480 #define APPLY_RESULT_SIZE (8+108) 1481 1482 /* 1 if N is a possible register number for function argument passing. */ 1483 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) 1484 1485 /* Define a data type for recording info about an argument list 1486 during the scan of that argument list. This data type should 1487 hold all necessary information about the function itself 1488 and about the args processed so far, enough to enable macros 1489 such as FUNCTION_ARG to determine where the next arg should go. */ 1490 1491 typedef struct ix86_args { 1492 int words; /* # words passed so far */ 1493 int nregs; /* # registers available for passing */ 1494 int regno; /* next available register number */ 1495 int fastcall; /* fastcall or thiscall calling convention 1496 is used */ 1497 int sse_words; /* # sse words passed so far */ 1498 int sse_nregs; /* # sse registers available for passing */ 1499 int warn_avx; /* True when we want to warn about AVX ABI. */ 1500 int warn_sse; /* True when we want to warn about SSE ABI. */ 1501 int warn_mmx; /* True when we want to warn about MMX ABI. */ 1502 int sse_regno; /* next available sse register number */ 1503 int mmx_words; /* # mmx words passed so far */ 1504 int mmx_nregs; /* # mmx registers available for passing */ 1505 int mmx_regno; /* next available mmx register number */ 1506 int maybe_vaarg; /* true for calls to possibly vardic fncts. */ 1507 int caller; /* true if it is caller. */ 1508 int float_in_sse; /* Set to 1 or 2 for 32bit targets if 1509 SFmode/DFmode arguments should be passed 1510 in SSE registers. Otherwise 0. */ 1511 enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise 1512 MS_ABI for ms abi. */ 1513 } CUMULATIVE_ARGS; 1514 1515 /* Initialize a variable CUM of type CUMULATIVE_ARGS 1516 for a call to a function whose data type is FNTYPE. 1517 For a library call, FNTYPE is 0. */ 1518 1519 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ 1520 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \ 1521 (N_NAMED_ARGS) != -1) 1522 1523 /* Output assembler code to FILE to increment profiler label # LABELNO 1524 for profiling a function entry. */ 1525 1526 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO) 1527 1528 #define MCOUNT_NAME "_mcount" 1529 1530 #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__" 1531 1532 #define PROFILE_COUNT_REGISTER "edx" 1533 1534 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 1535 the stack pointer does not matter. The value is tested only in 1536 functions that have frame pointers. 1537 No definition is equivalent to always zero. */ 1538 /* Note on the 386 it might be more efficient not to define this since 1539 we have to restore it ourselves from the frame pointer, in order to 1540 use pop */ 1541 1542 #define EXIT_IGNORE_STACK 1 1543 1544 /* Output assembler code for a block containing the constant parts 1545 of a trampoline, leaving space for the variable parts. */ 1546 1547 /* On the 386, the trampoline contains two instructions: 1548 mov #STATIC,ecx 1549 jmp FUNCTION 1550 The trampoline is generated entirely at runtime. The operand of JMP 1551 is the address of FUNCTION relative to the instruction following the 1552 JMP (which is 5 bytes long). */ 1553 1554 /* Length in units of the trampoline for entering a nested function. */ 1555 1556 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10) 1557 1558 /* Definitions for register eliminations. 1560 1561 This is an array of structures. Each structure initializes one pair 1562 of eliminable registers. The "from" register number is given first, 1563 followed by "to". Eliminations of the same "from" register are listed 1564 in order of preference. 1565 1566 There are two registers that can always be eliminated on the i386. 1567 The frame pointer and the arg pointer can be replaced by either the 1568 hard frame pointer or to the stack pointer, depending upon the 1569 circumstances. The hard frame pointer is not used before reload and 1570 so it is not eligible for elimination. */ 1571 1572 #define ELIMINABLE_REGS \ 1573 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 1574 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ 1575 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 1576 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ 1577 1578 /* Define the offset between two registers, one to be eliminated, and the other 1579 its replacement, at the start of a routine. */ 1580 1581 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 1582 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) 1583 1584 /* Addressing modes, and classification of registers for them. */ 1586 1587 /* Macros to check register numbers against specific register classes. */ 1588 1589 /* These assume that REGNO is a hard or pseudo reg number. 1590 They give nonzero only if REGNO is a hard reg of the suitable class 1591 or a pseudo reg currently allocated to a suitable hard reg. 1592 Since they use reg_renumber, they are safe only once reg_renumber 1593 has been allocated, which happens in reginfo.c during register 1594 allocation. */ 1595 1596 #define REGNO_OK_FOR_INDEX_P(REGNO) \ 1597 ((REGNO) < STACK_POINTER_REGNUM \ 1598 || REX_INT_REGNO_P (REGNO) \ 1599 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \ 1600 || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)])) 1601 1602 #define REGNO_OK_FOR_BASE_P(REGNO) \ 1603 (GENERAL_REGNO_P (REGNO) \ 1604 || (REGNO) == ARG_POINTER_REGNUM \ 1605 || (REGNO) == FRAME_POINTER_REGNUM \ 1606 || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)])) 1607 1608 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1609 and check its validity for a certain class. 1610 We have two alternate definitions for each of them. 1611 The usual definition accepts all pseudo regs; the other rejects 1612 them unless they have been allocated suitable hard regs. 1613 The symbol REG_OK_STRICT causes the latter definition to be used. 1614 1615 Most source files want to accept pseudo regs in the hope that 1616 they will get allocated to the class that the insn wants them to be in. 1617 Source files for reload pass need to be strict. 1618 After reload, it makes no difference, since pseudo regs have 1619 been eliminated by then. */ 1620 1621 1622 /* Non strict versions, pseudos are ok. */ 1623 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ 1624 (REGNO (X) < STACK_POINTER_REGNUM \ 1625 || REX_INT_REGNO_P (REGNO (X)) \ 1626 || REGNO (X) >= FIRST_PSEUDO_REGISTER) 1627 1628 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \ 1629 (GENERAL_REGNO_P (REGNO (X)) \ 1630 || REGNO (X) == ARG_POINTER_REGNUM \ 1631 || REGNO (X) == FRAME_POINTER_REGNUM \ 1632 || REGNO (X) >= FIRST_PSEUDO_REGISTER) 1633 1634 /* Strict versions, hard registers only */ 1635 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) 1636 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 1637 1638 #ifndef REG_OK_STRICT 1639 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) 1640 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) 1641 1642 #else 1643 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) 1644 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) 1645 #endif 1646 1647 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression 1648 that is a valid memory address for an instruction. 1649 The MODE argument is the machine mode for the MEM expression 1650 that wants to use this address. 1651 1652 The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P, 1653 except for CONSTANT_ADDRESS_P which is usually machine-independent. 1654 1655 See legitimize_pic_address in i386.c for details as to what 1656 constitutes a legitimate address when -fpic is used. */ 1657 1658 #define MAX_REGS_PER_ADDRESS 2 1659 1660 #define CONSTANT_ADDRESS_P(X) constant_address_p (X) 1661 1662 /* Try a machine-dependent way of reloading an illegitimate address 1663 operand. If we find one, push the reload and jump to WIN. This 1664 macro is used in only one place: `find_reloads_address' in reload.c. */ 1665 1666 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \ 1667 do { \ 1668 if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \ 1669 (int)(TYPE), (INDL))) \ 1670 goto WIN; \ 1671 } while (0) 1672 1673 /* If defined, a C expression to determine the base term of address X. 1674 This macro is used in only one place: `find_base_term' in alias.c. 1675 1676 It is always safe for this macro to not be defined. It exists so 1677 that alias analysis can understand machine-dependent addresses. 1678 1679 The typical use of this macro is to handle addresses containing 1680 a label_ref or symbol_ref within an UNSPEC. */ 1681 1682 #define FIND_BASE_TERM(X) ix86_find_base_term (X) 1683 1684 /* Nonzero if the constant value X is a legitimate general operand 1685 when generating PIC code. It is given that flag_pic is on and 1686 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ 1687 1688 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) 1689 1690 #define SYMBOLIC_CONST(X) \ 1691 (GET_CODE (X) == SYMBOL_REF \ 1692 || GET_CODE (X) == LABEL_REF \ 1693 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) 1694 1695 /* Max number of args passed in registers. If this is more than 3, we will 1697 have problems with ebx (register #4), since it is a caller save register and 1698 is also used as the pic register in ELF. So for now, don't allow more than 1699 3 registers to be passed in registers. */ 1700 1701 /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */ 1702 #define X86_64_REGPARM_MAX 6 1703 #define X86_64_MS_REGPARM_MAX 4 1704 1705 #define X86_32_REGPARM_MAX 3 1706 1707 #define REGPARM_MAX \ 1708 (TARGET_64BIT \ 1709 ? (TARGET_64BIT_MS_ABI \ 1710 ? X86_64_MS_REGPARM_MAX \ 1711 : X86_64_REGPARM_MAX) \ 1712 : X86_32_REGPARM_MAX) 1713 1714 #define X86_64_SSE_REGPARM_MAX 8 1715 #define X86_64_MS_SSE_REGPARM_MAX 4 1716 1717 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0) 1718 1719 #define SSE_REGPARM_MAX \ 1720 (TARGET_64BIT \ 1721 ? (TARGET_64BIT_MS_ABI \ 1722 ? X86_64_MS_SSE_REGPARM_MAX \ 1723 : X86_64_SSE_REGPARM_MAX) \ 1724 : X86_32_SSE_REGPARM_MAX) 1725 1726 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0)) 1727 1728 /* Specify the machine mode that this machine uses 1730 for the index in the tablejump instruction. */ 1731 #define CASE_VECTOR_MODE \ 1732 (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode) 1733 1734 /* Define this as 1 if `char' should by default be signed; else as 0. */ 1735 #define DEFAULT_SIGNED_CHAR 1 1736 1737 /* Max number of bytes we can move from memory to memory 1738 in one reasonably fast instruction. */ 1739 #define MOVE_MAX 16 1740 1741 /* MOVE_MAX_PIECES is the number of bytes at a time which we can 1742 move efficiently, as opposed to MOVE_MAX which is the maximum 1743 number of bytes we can move with a single instruction. */ 1744 #define MOVE_MAX_PIECES UNITS_PER_WORD 1745 1746 /* If a memory-to-memory move would take MOVE_RATIO or more simple 1747 move-instruction pairs, we will do a movmem or libcall instead. 1748 Increasing the value will always make code faster, but eventually 1749 incurs high cost in increased code size. 1750 1751 If you don't define this, a reasonable default is used. */ 1752 1753 #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3) 1754 1755 /* If a clear memory operation would take CLEAR_RATIO or more simple 1756 move-instruction sequences, we will do a clrmem or libcall instead. */ 1757 1758 #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2) 1759 1760 /* Define if shifts truncate the shift count which implies one can 1761 omit a sign-extension or zero-extension of a shift count. 1762 1763 On i386, shifts do truncate the count. But bit test instructions 1764 take the modulo of the bit offset operand. */ 1765 1766 /* #define SHIFT_COUNT_TRUNCATED */ 1767 1768 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits 1769 is done just by pretending it is already truncated. */ 1770 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 1771 1772 /* A macro to update M and UNSIGNEDP when an object whose type is 1773 TYPE and which has the specified mode and signedness is to be 1774 stored in a register. This macro is only called when TYPE is a 1775 scalar type. 1776 1777 On i386 it is sometimes useful to promote HImode and QImode 1778 quantities to SImode. The choice depends on target type. */ 1779 1780 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ 1781 do { \ 1782 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ 1783 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ 1784 (MODE) = SImode; \ 1785 } while (0) 1786 1787 /* Specify the machine mode that pointers have. 1788 After generation of rtl, the compiler makes no further distinction 1789 between pointers and any other objects of this machine mode. */ 1790 #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode) 1791 1792 /* A C expression whose value is zero if pointers that need to be extended 1793 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and 1794 greater then zero if they are zero-extended and less then zero if the 1795 ptr_extend instruction should be used. */ 1796 1797 #define POINTERS_EXTEND_UNSIGNED 1 1798 1799 /* A function address in a call instruction 1800 is a byte address (for indexing purposes) 1801 so give the MEM rtx a byte's mode. */ 1802 #define FUNCTION_MODE QImode 1803 1804 1806 /* A C expression for the cost of a branch instruction. A value of 1 1807 is the default; other values are interpreted relative to that. */ 1808 1809 #define BRANCH_COST(speed_p, predictable_p) \ 1810 (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost) 1811 1812 /* An integer expression for the size in bits of the largest integer machine 1813 mode that should actually be used. We allow pairs of registers. */ 1814 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode) 1815 1816 /* Define this macro as a C expression which is nonzero if accessing 1817 less than a word of memory (i.e. a `char' or a `short') is no 1818 faster than accessing a word of memory, i.e., if such access 1819 require more than one instruction or if there is no difference in 1820 cost between byte and (aligned) word loads. 1821 1822 When this macro is not defined, the compiler will access a field by 1823 finding the smallest containing object; when it is defined, a 1824 fullword load will be used if alignment permits. Unless bytes 1825 accesses are faster than word accesses, using word accesses is 1826 preferable since it may eliminate subsequent memory access if 1827 subsequent accesses occur to other fields in the same word of the 1828 structure, but to different bytes. */ 1829 1830 #define SLOW_BYTE_ACCESS 0 1831 1832 /* Nonzero if access to memory by shorts is slow and undesirable. */ 1833 #define SLOW_SHORT_ACCESS 0 1834 1835 /* Define this macro to be the value 1 if unaligned accesses have a 1836 cost many times greater than aligned accesses, for example if they 1837 are emulated in a trap handler. 1838 1839 When this macro is nonzero, the compiler will act as if 1840 `STRICT_ALIGNMENT' were nonzero when generating code for block 1841 moves. This can cause significantly more instructions to be 1842 produced. Therefore, do not set this macro nonzero if unaligned 1843 accesses only add a cycle or two to the time for a memory access. 1844 1845 If the value of this macro is always zero, it need not be defined. */ 1846 1847 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ 1848 1849 /* Define this macro if it is as good or better to call a constant 1850 function address than to call an address kept in a register. 1851 1852 Desirable on the 386 because a CALL with a constant address is 1853 faster than one with a register address. */ 1854 1855 #define NO_FUNCTION_CSE 1856 1857 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, 1859 return the mode to be used for the comparison. 1860 1861 For floating-point equality comparisons, CCFPEQmode should be used. 1862 VOIDmode should be used in all other cases. 1863 1864 For integer comparisons against zero, reduce to CCNOmode or CCZmode if 1865 possible, to allow for more combinations. */ 1866 1867 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) 1868 1869 /* Return nonzero if MODE implies a floating point inequality can be 1870 reversed. */ 1871 1872 #define REVERSIBLE_CC_MODE(MODE) 1 1873 1874 /* A C expression whose value is reversed condition code of the CODE for 1875 comparison done in CC_MODE mode. */ 1876 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE)) 1877 1878 1879 /* Control the assembler format that we output, to the extent 1881 this does not vary between assemblers. */ 1882 1883 /* How to refer to registers in assembler output. 1884 This sequence is indexed by compiler's hard-register-number (see above). */ 1885 1886 /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e". 1887 For non floating point regs, the following are the HImode names. 1888 1889 For float regs, the stack top is sometimes referred to as "%st(0)" 1890 instead of just "%st". TARGET_PRINT_OPERAND handles this with the 1891 "y" code. */ 1892 1893 #define HI_REGISTER_NAMES \ 1894 {"ax","dx","cx","bx","si","di","bp","sp", \ 1895 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \ 1896 "argp", "flags", "fpsr", "fpcr", "frame", \ 1897 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ 1898 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \ 1899 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ 1900 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"} 1901 1902 #define REGISTER_NAMES HI_REGISTER_NAMES 1903 1904 /* Table of additional register names to use in user input. */ 1905 1906 #define ADDITIONAL_REGISTER_NAMES \ 1907 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ 1908 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ 1909 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ 1910 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ 1911 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ 1912 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } } 1913 1914 /* Note we are omitting these since currently I don't know how 1915 to get gcc to use these, since they want the same but different 1916 number as al, and ax. 1917 */ 1918 1919 #define QI_REGISTER_NAMES \ 1920 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} 1921 1922 /* These parallel the array above, and can be used to access bits 8:15 1923 of regs 0 through 3. */ 1924 1925 #define QI_HIGH_REGISTER_NAMES \ 1926 {"ah", "dh", "ch", "bh", } 1927 1928 /* How to renumber registers for dbx and gdb. */ 1929 1930 #define DBX_REGISTER_NUMBER(N) \ 1931 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) 1932 1933 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; 1934 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; 1935 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; 1936 1937 /* Before the prologue, RA is at 0(%esp). */ 1938 #define INCOMING_RETURN_ADDR_RTX \ 1939 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) 1940 1941 /* After the prologue, RA is at -4(AP) in the current frame. */ 1942 #define RETURN_ADDR_RTX(COUNT, FRAME) \ 1943 ((COUNT) == 0 \ 1944 ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \ 1945 -UNITS_PER_WORD)) \ 1946 : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD))) 1947 1948 /* PC is dbx register 8; let's use that column for RA. */ 1949 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) 1950 1951 /* Before the prologue, the top of the frame is at 4(%esp). */ 1952 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD 1953 1954 /* Describe how we implement __builtin_eh_return. */ 1955 #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM) 1956 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG) 1957 1958 1959 /* Select a format to encode pointers in exception handling data. CODE 1960 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is 1961 true if the symbol may be affected by dynamic relocations. 1962 1963 ??? All x86 object file formats are capable of representing this. 1964 After all, the relocation needed is the same as for the call insn. 1965 Whether or not a particular assembler allows us to enter such, I 1966 guess we'll have to see. */ 1967 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ 1968 asm_preferred_eh_data_format ((CODE), (GLOBAL)) 1969 1970 /* This is how to output an insn to push a register on the stack. 1971 It need not be very fast code. */ 1972 1973 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ 1974 do { \ 1975 if (TARGET_64BIT) \ 1976 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \ 1977 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ 1978 else \ 1979 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \ 1980 } while (0) 1981 1982 /* This is how to output an insn to pop a register from the stack. 1983 It need not be very fast code. */ 1984 1985 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \ 1986 do { \ 1987 if (TARGET_64BIT) \ 1988 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \ 1989 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ 1990 else \ 1991 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \ 1992 } while (0) 1993 1994 /* This is how to output an element of a case-vector that is absolute. */ 1995 1996 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 1997 ix86_output_addr_vec_elt ((FILE), (VALUE)) 1998 1999 /* This is how to output an element of a case-vector that is relative. */ 2000 2001 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 2002 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) 2003 2004 /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */ 2005 2006 #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \ 2007 { \ 2008 if ((PTR)[0] == '%' && (PTR)[1] == 'v') \ 2009 (PTR) += TARGET_AVX ? 1 : 2; \ 2010 } 2011 2012 /* A C statement or statements which output an assembler instruction 2013 opcode to the stdio stream STREAM. The macro-operand PTR is a 2014 variable of type `char *' which points to the opcode name in 2015 its "internal" form--the form that is written in the machine 2016 description. */ 2017 2018 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \ 2019 ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR)) 2020 2021 /* A C statement to output to the stdio stream FILE an assembler 2022 command to pad the location counter to a multiple of 1<<LOG 2023 bytes if it is within MAX_SKIP bytes. */ 2024 2025 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN 2026 #undef ASM_OUTPUT_MAX_SKIP_PAD 2027 #define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \ 2028 if ((LOG) != 0) \ 2029 { \ 2030 if ((MAX_SKIP) == 0) \ 2031 fprintf ((FILE), "\t.p2align %d\n", (LOG)); \ 2032 else \ 2033 fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \ 2034 } 2035 #endif 2036 2037 /* Write the extra assembler code needed to declare a function 2038 properly. */ 2039 2040 #undef ASM_OUTPUT_FUNCTION_LABEL 2041 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \ 2042 ix86_asm_output_function_label (FILE, NAME, DECL) 2043 2044 /* Under some conditions we need jump tables in the text section, 2045 because the assembler cannot handle label differences between 2046 sections. This is the case for x86_64 on Mach-O for example. */ 2047 2048 #define JUMP_TABLES_IN_TEXT_SECTION \ 2049 (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \ 2050 || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA))) 2051 2052 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC, 2053 and switch back. For x86 we do this only to save a few bytes that 2054 would otherwise be unused in the text section. */ 2055 #define CRT_MKSTR2(VAL) #VAL 2056 #define CRT_MKSTR(x) CRT_MKSTR2(x) 2057 2058 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ 2059 asm (SECTION_OP "\n\t" \ 2060 "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \ 2061 TEXT_SECTION_ASM_OP); 2062 2063 /* Default threshold for putting data in large sections 2064 with x86-64 medium memory model */ 2065 #define DEFAULT_LARGE_SECTION_THRESHOLD 65536 2066 2067 /* Which processor to tune code generation for. These must be in sync 2069 with processor_target_table in i386.c. */ 2070 2071 enum processor_type 2072 { 2073 PROCESSOR_GENERIC32 = 0, 2074 PROCESSOR_GENERIC64, 2075 PROCESSOR_I386, /* 80386 */ 2076 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */ 2077 PROCESSOR_PENTIUM, 2078 PROCESSOR_PENTIUMPRO, 2079 PROCESSOR_PENTIUM4, 2080 PROCESSOR_NOCONA, 2081 PROCESSOR_CORE2, 2082 PROCESSOR_COREI7, 2083 PROCESSOR_HASWELL, 2084 PROCESSOR_ATOM, 2085 PROCESSOR_GEODE, 2086 PROCESSOR_K6, 2087 PROCESSOR_ATHLON, 2088 PROCESSOR_K8, 2089 PROCESSOR_AMDFAM10, 2090 PROCESSOR_BDVER1, 2091 PROCESSOR_BDVER2, 2092 PROCESSOR_BDVER3, 2093 PROCESSOR_BTVER1, 2094 PROCESSOR_BTVER2, 2095 PROCESSOR_max 2096 }; 2097 2098 extern enum processor_type ix86_tune; 2099 extern enum processor_type ix86_arch; 2100 2101 /* Size of the RED_ZONE area. */ 2102 #define RED_ZONE_SIZE 128 2103 /* Reserved area of the red zone for temporaries. */ 2104 #define RED_ZONE_RESERVE 8 2105 2106 extern unsigned int ix86_preferred_stack_boundary; 2107 extern unsigned int ix86_incoming_stack_boundary; 2108 2109 /* Smallest class containing REGNO. */ 2110 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; 2111 2112 enum ix86_fpcmp_strategy { 2113 IX86_FPCMP_SAHF, 2114 IX86_FPCMP_COMI, 2115 IX86_FPCMP_ARITH 2116 }; 2117 2118 /* To properly truncate FP values into integers, we need to set i387 control 2120 word. We can't emit proper mode switching code before reload, as spills 2121 generated by reload may truncate values incorrectly, but we still can avoid 2122 redundant computation of new control word by the mode switching pass. 2123 The fldcw instructions are still emitted redundantly, but this is probably 2124 not going to be noticeable problem, as most CPUs do have fast path for 2125 the sequence. 2126 2127 The machinery is to emit simple truncation instructions and split them 2128 before reload to instructions having USEs of two memory locations that 2129 are filled by this code to old and new control word. 2130 2131 Post-reload pass may be later used to eliminate the redundant fildcw if 2132 needed. */ 2133 2134 enum ix86_entity 2135 { 2136 AVX_U128 = 0, 2137 I387_TRUNC, 2138 I387_FLOOR, 2139 I387_CEIL, 2140 I387_MASK_PM, 2141 MAX_386_ENTITIES 2142 }; 2143 2144 enum ix86_stack_slot 2145 { 2146 SLOT_TEMP = 0, 2147 SLOT_CW_STORED, 2148 SLOT_CW_TRUNC, 2149 SLOT_CW_FLOOR, 2150 SLOT_CW_CEIL, 2151 SLOT_CW_MASK_PM, 2152 MAX_386_STACK_LOCALS 2153 }; 2154 2155 enum avx_u128_state 2156 { 2157 AVX_U128_CLEAN, 2158 AVX_U128_DIRTY, 2159 AVX_U128_ANY 2160 }; 2161 2162 /* Define this macro if the port needs extra instructions inserted 2163 for mode switching in an optimizing compilation. */ 2164 2165 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \ 2166 ix86_optimize_mode_switching[(ENTITY)] 2167 2168 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as 2169 initializer for an array of integers. Each initializer element N 2170 refers to an entity that needs mode switching, and specifies the 2171 number of different modes that might need to be set for this 2172 entity. The position of the initializer in the initializer - 2173 starting counting at zero - determines the integer that is used to 2174 refer to the mode-switched entity in question. */ 2175 2176 #define NUM_MODES_FOR_MODE_SWITCHING \ 2177 { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY } 2178 2179 /* ENTITY is an integer specifying a mode-switched entity. If 2180 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to 2181 return an integer value not larger than the corresponding element 2182 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY 2183 must be switched into prior to the execution of INSN. */ 2184 2185 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I)) 2186 2187 /* If this macro is defined, it is evaluated for every INSN during 2188 mode switching. It determines the mode that an insn results in (if 2189 different from the incoming mode). */ 2190 2191 #define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I)) 2192 2193 /* If this macro is defined, it is evaluated for every ENTITY that 2194 needs mode switching. It should evaluate to an integer, which is 2195 a mode that ENTITY is assumed to be switched to at function entry. */ 2196 2197 #define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY) 2198 2199 /* If this macro is defined, it is evaluated for every ENTITY that 2200 needs mode switching. It should evaluate to an integer, which is 2201 a mode that ENTITY is assumed to be switched to at function exit. */ 2202 2203 #define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY) 2204 2205 /* This macro specifies the order in which modes for ENTITY are 2206 processed. 0 is the highest priority. */ 2207 2208 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N) 2209 2210 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE 2211 is the set of hard registers live at the point where the insn(s) 2212 are to be inserted. */ 2213 2214 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \ 2215 ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE)) 2216 2217 /* Avoid renaming of stack registers, as doing so in combination with 2219 scheduling just increases amount of live registers at time and in 2220 the turn amount of fxch instructions needed. 2221 2222 ??? Maybe Pentium chips benefits from renaming, someone can try.... */ 2223 2224 #define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC) 2225 2226 2227 #define FASTCALL_PREFIX '@' 2229 2230 /* Machine specific frame tracking during prologue/epilogue generation. */ 2232 2233 #ifndef USED_FOR_TARGET 2234 struct GTY(()) machine_frame_state 2235 { 2236 /* This pair tracks the currently active CFA as reg+offset. When reg 2237 is drap_reg, we don't bother trying to record here the real CFA when 2238 it might really be a DW_CFA_def_cfa_expression. */ 2239 rtx cfa_reg; 2240 HOST_WIDE_INT cfa_offset; 2241 2242 /* The current offset (canonically from the CFA) of ESP and EBP. 2243 When stack frame re-alignment is active, these may not be relative 2244 to the CFA. However, in all cases they are relative to the offsets 2245 of the saved registers stored in ix86_frame. */ 2246 HOST_WIDE_INT sp_offset; 2247 HOST_WIDE_INT fp_offset; 2248 2249 /* The size of the red-zone that may be assumed for the purposes of 2250 eliding register restore notes in the epilogue. This may be zero 2251 if no red-zone is in effect, or may be reduced from the real 2252 red-zone value by a maximum runtime stack re-alignment value. */ 2253 int red_zone_offset; 2254 2255 /* Indicate whether each of ESP, EBP or DRAP currently holds a valid 2256 value within the frame. If false then the offset above should be 2257 ignored. Note that DRAP, if valid, *always* points to the CFA and 2258 thus has an offset of zero. */ 2259 BOOL_BITFIELD sp_valid : 1; 2260 BOOL_BITFIELD fp_valid : 1; 2261 BOOL_BITFIELD drap_valid : 1; 2262 2263 /* Indicate whether the local stack frame has been re-aligned. When 2264 set, the SP/FP offsets above are relative to the aligned frame 2265 and not the CFA. */ 2266 BOOL_BITFIELD realigned : 1; 2267 }; 2268 2269 /* Private to winnt.c. */ 2270 struct seh_frame_state; 2271 2272 struct GTY(()) machine_function { 2273 struct stack_local_entry *stack_locals; 2274 const char *some_ld_name; 2275 int varargs_gpr_size; 2276 int varargs_fpr_size; 2277 int optimize_mode_switching[MAX_386_ENTITIES]; 2278 2279 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE 2280 has been computed for. */ 2281 int use_fast_prologue_epilogue_nregs; 2282 2283 /* For -fsplit-stack support: A stack local which holds a pointer to 2284 the stack arguments for a function with a variable number of 2285 arguments. This is set at the start of the function and is used 2286 to initialize the overflow_arg_area field of the va_list 2287 structure. */ 2288 rtx split_stack_varargs_pointer; 2289 2290 /* This value is used for amd64 targets and specifies the current abi 2291 to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */ 2292 ENUM_BITFIELD(calling_abi) call_abi : 8; 2293 2294 /* Nonzero if the function accesses a previous frame. */ 2295 BOOL_BITFIELD accesses_prev_frame : 1; 2296 2297 /* Nonzero if the function requires a CLD in the prologue. */ 2298 BOOL_BITFIELD needs_cld : 1; 2299 2300 /* Set by ix86_compute_frame_layout and used by prologue/epilogue 2301 expander to determine the style used. */ 2302 BOOL_BITFIELD use_fast_prologue_epilogue : 1; 2303 2304 /* If true, the current function needs the default PIC register, not 2305 an alternate register (on x86) and must not use the red zone (on 2306 x86_64), even if it's a leaf function. We don't want the 2307 function to be regarded as non-leaf because TLS calls need not 2308 affect register allocation. This flag is set when a TLS call 2309 instruction is expanded within a function, and never reset, even 2310 if all such instructions are optimized away. Use the 2311 ix86_current_function_calls_tls_descriptor macro for a better 2312 approximation. */ 2313 BOOL_BITFIELD tls_descriptor_call_expanded_p : 1; 2314 2315 /* If true, the current function has a STATIC_CHAIN is placed on the 2316 stack below the return address. */ 2317 BOOL_BITFIELD static_chain_on_stack : 1; 2318 2319 /* During prologue/epilogue generation, the current frame state. 2320 Otherwise, the frame state at the end of the prologue. */ 2321 struct machine_frame_state fs; 2322 2323 /* During SEH output, this is non-null. */ 2324 struct seh_frame_state * GTY((skip(""))) seh; 2325 }; 2326 #endif 2327 2328 #define ix86_stack_locals (cfun->machine->stack_locals) 2329 #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size) 2330 #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size) 2331 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching) 2332 #define ix86_current_function_needs_cld (cfun->machine->needs_cld) 2333 #define ix86_tls_descriptor_calls_expanded_in_cfun \ 2334 (cfun->machine->tls_descriptor_call_expanded_p) 2335 /* Since tls_descriptor_call_expanded is not cleared, even if all TLS 2336 calls are optimized away, we try to detect cases in which it was 2337 optimized away. Since such instructions (use (reg REG_SP)), we can 2338 verify whether there's any such instruction live by testing that 2339 REG_SP is live. */ 2340 #define ix86_current_function_calls_tls_descriptor \ 2341 (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG)) 2342 #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack) 2343 2344 /* Control behavior of x86_file_start. */ 2345 #define X86_FILE_START_VERSION_DIRECTIVE false 2346 #define X86_FILE_START_FLTUSED false 2347 2348 /* Flag to mark data that is in the large address area. */ 2349 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0) 2350 #define SYMBOL_REF_FAR_ADDR_P(X) \ 2351 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0) 2352 2353 /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to 2354 have defined always, to avoid ifdefing. */ 2355 #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1) 2356 #define SYMBOL_REF_DLLIMPORT_P(X) \ 2357 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0) 2358 2359 #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2) 2360 #define SYMBOL_REF_DLLEXPORT_P(X) \ 2361 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0) 2362 2363 extern void debug_ready_dispatch (void); 2364 extern void debug_dispatch_window (int); 2365 2366 /* The value at zero is only defined for the BMI instructions 2367 LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */ 2368 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 2369 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI) 2370 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ 2371 ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT) 2372 2373 2374 /* Flags returned by ix86_get_callcvt (). */ 2375 #define IX86_CALLCVT_CDECL 0x1 2376 #define IX86_CALLCVT_STDCALL 0x2 2377 #define IX86_CALLCVT_FASTCALL 0x4 2378 #define IX86_CALLCVT_THISCALL 0x8 2379 #define IX86_CALLCVT_REGPARM 0x10 2380 #define IX86_CALLCVT_SSEREGPARM 0x20 2381 2382 #define IX86_BASE_CALLCVT(FLAGS) \ 2383 ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \ 2384 | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) 2385 2386 #define RECIP_MASK_NONE 0x00 2387 #define RECIP_MASK_DIV 0x01 2388 #define RECIP_MASK_SQRT 0x02 2389 #define RECIP_MASK_VEC_DIV 0x04 2390 #define RECIP_MASK_VEC_SQRT 0x08 2391 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \ 2392 | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT) 2393 #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT) 2394 2395 #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0) 2396 #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0) 2397 #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0) 2398 #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0) 2399 2400 #define IX86_HLE_ACQUIRE (1 << 16) 2401 #define IX86_HLE_RELEASE (1 << 17) 2402 2403 /* 2404 Local variables: 2405 version-control: t 2406 End: 2407 */ 2408