Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2013 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/incomplete_lq_factorization.h"
     32 
     33 #include "Eigen/Dense"
     34 #include "ceres/compressed_row_sparse_matrix.h"
     35 #include "ceres/internal/scoped_ptr.h"
     36 #include "glog/logging.h"
     37 #include "gtest/gtest.h"
     38 
     39 namespace ceres {
     40 namespace internal {
     41 
     42 void ExpectMatricesAreEqual(const CompressedRowSparseMatrix& expected,
     43                             const CompressedRowSparseMatrix& actual,
     44                             const double tolerance) {
     45   EXPECT_EQ(expected.num_rows(), actual.num_rows());
     46   EXPECT_EQ(expected.num_cols(), actual.num_cols());
     47   for (int i = 0; i < expected.num_rows(); ++i) {
     48     EXPECT_EQ(expected.rows()[i], actual.rows()[i]);
     49   }
     50 
     51   for (int i = 0; i < actual.num_nonzeros(); ++i) {
     52     EXPECT_EQ(expected.cols()[i], actual.cols()[i]);
     53     EXPECT_NEAR(expected.values()[i], actual.values()[i], tolerance);
     54   }
     55 }
     56 
     57 TEST(IncompleteQRFactorization, OneByOneMatrix) {
     58   CompressedRowSparseMatrix matrix(1, 1, 1);
     59   matrix.mutable_rows()[0] = 0;
     60   matrix.mutable_rows()[1] = 1;
     61   matrix.mutable_cols()[0] = 0;
     62   matrix.mutable_values()[0] = 2;
     63 
     64   scoped_ptr<CompressedRowSparseMatrix> l(
     65       IncompleteLQFactorization(matrix, 1, 0.0, 1, 0.0));
     66   ExpectMatricesAreEqual(matrix, *l, 1e-16);
     67 }
     68 
     69 TEST(IncompleteLQFactorization, CompleteFactorization) {
     70   double dense_matrix[] = {
     71     0.00000,  0.00000,  0.20522,  0.00000,  0.49077,  0.92835,  0.00000,  0.83825,  0.00000,  0.00000,  // NOLINT
     72     0.00000,  0.00000,  0.00000,  0.62491,  0.38144,  0.00000,  0.79394,  0.79178,  0.00000,  0.44382,  // NOLINT
     73     0.00000,  0.00000,  0.00000,  0.61517,  0.55941,  0.00000,  0.00000,  0.00000,  0.00000,  0.60664,  // NOLINT
     74     0.00000,  0.00000,  0.00000,  0.00000,  0.45031,  0.00000,  0.64132,  0.00000,  0.38832,  0.00000,  // NOLINT
     75     0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.57121,  0.00000,  0.01375,  0.70640,  0.00000,  // NOLINT
     76     0.00000,  0.00000,  0.07451,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  // NOLINT
     77     0.68095,  0.00000,  0.00000,  0.95473,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  // NOLINT
     78     0.00000,  0.00000,  0.00000,  0.00000,  0.59374,  0.00000,  0.00000,  0.00000,  0.49139,  0.00000,  // NOLINT
     79     0.91276,  0.96641,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.00000,  0.91797,  // NOLINT
     80     0.96828,  0.00000,  0.00000,  0.72583,  0.00000,  0.00000,  0.81459,  0.00000,  0.04560,  0.00000   // NOLINT
     81   };
     82 
     83   CompressedRowSparseMatrix matrix(10, 10, 100);
     84   int* rows = matrix.mutable_rows();
     85   int* cols = matrix.mutable_cols();
     86   double* values = matrix.mutable_values();
     87 
     88   int idx = 0;
     89   for (int i = 0; i < 10; ++i) {
     90     rows[i] = idx;
     91     for (int j = 0; j < 10; ++j) {
     92       const double v = dense_matrix[i * 10 + j];
     93       if (fabs(v) > 1e-6) {
     94         cols[idx] = j;
     95         values[idx] = v;
     96         ++idx;
     97       }
     98     }
     99   }
    100   rows[10] = idx;
    101 
    102   scoped_ptr<CompressedRowSparseMatrix> lmatrix(
    103       IncompleteLQFactorization(matrix, 10, 0.0, 10, 0.0));
    104 
    105   ConstMatrixRef mref(dense_matrix, 10, 10);
    106 
    107   // Use Cholesky factorization to compute the L matrix.
    108   Matrix expected_l_matrix  = (mref * mref.transpose()).llt().matrixL();
    109   Matrix actual_l_matrix;
    110   lmatrix->ToDenseMatrix(&actual_l_matrix);
    111 
    112   EXPECT_NEAR((expected_l_matrix * expected_l_matrix.transpose() -
    113                actual_l_matrix * actual_l_matrix.transpose()).norm(),
    114               0.0,
    115               1e-10)
    116       << "expected: \n" << expected_l_matrix
    117       << "\actual: \n" << actual_l_matrix;
    118 }
    119 
    120 TEST(IncompleteLQFactorization, DropEntriesAndAddRow) {
    121   // Allocate space and then make it a zero sized matrix.
    122   CompressedRowSparseMatrix matrix(10, 10, 100);
    123   matrix.set_num_rows(0);
    124 
    125   vector<pair<int, double> > scratch(10);
    126 
    127   Vector dense_vector(10);
    128   dense_vector(0) = 5;
    129   dense_vector(1) = 1;
    130   dense_vector(2) = 2;
    131   dense_vector(3) = 3;
    132   dense_vector(4) = 1;
    133   dense_vector(5) = 4;
    134 
    135   // Add a row with just one entry.
    136   DropEntriesAndAddRow(dense_vector, 1, 1, 0, &scratch, &matrix);
    137   EXPECT_EQ(matrix.num_rows(), 1);
    138   EXPECT_EQ(matrix.num_cols(), 10);
    139   EXPECT_EQ(matrix.num_nonzeros(), 1);
    140   EXPECT_EQ(matrix.values()[0], 5.0);
    141   EXPECT_EQ(matrix.cols()[0], 0);
    142 
    143   // Add a row with six entries
    144   DropEntriesAndAddRow(dense_vector, 6, 10, 0, &scratch, &matrix);
    145   EXPECT_EQ(matrix.num_rows(), 2);
    146   EXPECT_EQ(matrix.num_cols(), 10);
    147   EXPECT_EQ(matrix.num_nonzeros(), 7);
    148   for (int idx = matrix.rows()[1]; idx < matrix.rows()[2]; ++idx) {
    149     EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]);
    150     EXPECT_EQ(matrix.values()[idx], dense_vector(idx - matrix.rows()[1]));
    151   }
    152 
    153   // Add the top 3 entries.
    154   DropEntriesAndAddRow(dense_vector, 6, 3, 0, &scratch, &matrix);
    155   EXPECT_EQ(matrix.num_rows(), 3);
    156   EXPECT_EQ(matrix.num_cols(), 10);
    157   EXPECT_EQ(matrix.num_nonzeros(), 10);
    158 
    159   EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0);
    160   EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 1], 3);
    161   EXPECT_EQ(matrix.cols()[matrix.rows()[2] + 2], 5);
    162 
    163   EXPECT_EQ(matrix.values()[matrix.rows()[2]], 5);
    164   EXPECT_EQ(matrix.values()[matrix.rows()[2] + 1], 3);
    165   EXPECT_EQ(matrix.values()[matrix.rows()[2] + 2], 4);
    166 
    167   // Only keep entries greater than 1.0;
    168   DropEntriesAndAddRow(dense_vector, 6, 6, 0.2, &scratch, &matrix);
    169   EXPECT_EQ(matrix.num_rows(), 4);
    170   EXPECT_EQ(matrix.num_cols(), 10);
    171   EXPECT_EQ(matrix.num_nonzeros(), 14);
    172 
    173   EXPECT_EQ(matrix.cols()[matrix.rows()[3]], 0);
    174   EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 1], 2);
    175   EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 2], 3);
    176   EXPECT_EQ(matrix.cols()[matrix.rows()[3] + 3], 5);
    177 
    178   EXPECT_EQ(matrix.values()[matrix.rows()[3]], 5);
    179   EXPECT_EQ(matrix.values()[matrix.rows()[3] + 1], 2);
    180   EXPECT_EQ(matrix.values()[matrix.rows()[3] + 2], 3);
    181   EXPECT_EQ(matrix.values()[matrix.rows()[3] + 3], 4);
    182 
    183   // Only keep the top 2 entries greater than 1.0
    184   DropEntriesAndAddRow(dense_vector, 6, 2, 0.2, &scratch, &matrix);
    185   EXPECT_EQ(matrix.num_rows(), 5);
    186   EXPECT_EQ(matrix.num_cols(), 10);
    187   EXPECT_EQ(matrix.num_nonzeros(), 16);
    188 
    189   EXPECT_EQ(matrix.cols()[matrix.rows()[4]], 0);
    190   EXPECT_EQ(matrix.cols()[matrix.rows()[4] + 1], 5);
    191 
    192   EXPECT_EQ(matrix.values()[matrix.rows()[4]], 5);
    193   EXPECT_EQ(matrix.values()[matrix.rows()[4] + 1], 4);
    194 }
    195 
    196 
    197 }  // namespace internal
    198 }  // namespace ceres
    199