Home | History | Annotate | Download | only in src
      1 /*
      2 ** 2001 September 15
      3 **
      4 ** The author disclaims copyright to this source code.  In place of
      5 ** a legal notice, here is a blessing:
      6 **
      7 **    May you do good and not evil.
      8 **    May you find forgiveness for yourself and forgive others.
      9 **    May you share freely, never taking more than you give.
     10 **
     11 *************************************************************************
     12 ** This file contains C code routines that are called by the parser
     13 ** to handle SELECT statements in SQLite.
     14 */
     15 #include "sqliteInt.h"
     16 
     17 
     18 /*
     19 ** Delete all the content of a Select structure but do not deallocate
     20 ** the select structure itself.
     21 */
     22 static void clearSelect(sqlite3 *db, Select *p){
     23   sqlite3ExprListDelete(db, p->pEList);
     24   sqlite3SrcListDelete(db, p->pSrc);
     25   sqlite3ExprDelete(db, p->pWhere);
     26   sqlite3ExprListDelete(db, p->pGroupBy);
     27   sqlite3ExprDelete(db, p->pHaving);
     28   sqlite3ExprListDelete(db, p->pOrderBy);
     29   sqlite3SelectDelete(db, p->pPrior);
     30   sqlite3ExprDelete(db, p->pLimit);
     31   sqlite3ExprDelete(db, p->pOffset);
     32 }
     33 
     34 /*
     35 ** Initialize a SelectDest structure.
     36 */
     37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
     38   pDest->eDest = (u8)eDest;
     39   pDest->iParm = iParm;
     40   pDest->affinity = 0;
     41   pDest->iMem = 0;
     42   pDest->nMem = 0;
     43 }
     44 
     45 
     46 /*
     47 ** Allocate a new Select structure and return a pointer to that
     48 ** structure.
     49 */
     50 Select *sqlite3SelectNew(
     51   Parse *pParse,        /* Parsing context */
     52   ExprList *pEList,     /* which columns to include in the result */
     53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
     54   Expr *pWhere,         /* the WHERE clause */
     55   ExprList *pGroupBy,   /* the GROUP BY clause */
     56   Expr *pHaving,        /* the HAVING clause */
     57   ExprList *pOrderBy,   /* the ORDER BY clause */
     58   int isDistinct,       /* true if the DISTINCT keyword is present */
     59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
     60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
     61 ){
     62   Select *pNew;
     63   Select standin;
     64   sqlite3 *db = pParse->db;
     65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
     66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
     67   if( pNew==0 ){
     68     pNew = &standin;
     69     memset(pNew, 0, sizeof(*pNew));
     70   }
     71   if( pEList==0 ){
     72     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
     73   }
     74   pNew->pEList = pEList;
     75   pNew->pSrc = pSrc;
     76   pNew->pWhere = pWhere;
     77   pNew->pGroupBy = pGroupBy;
     78   pNew->pHaving = pHaving;
     79   pNew->pOrderBy = pOrderBy;
     80   pNew->selFlags = isDistinct ? SF_Distinct : 0;
     81   pNew->op = TK_SELECT;
     82   pNew->pLimit = pLimit;
     83   pNew->pOffset = pOffset;
     84   assert( pOffset==0 || pLimit!=0 );
     85   pNew->addrOpenEphm[0] = -1;
     86   pNew->addrOpenEphm[1] = -1;
     87   pNew->addrOpenEphm[2] = -1;
     88   if( db->mallocFailed ) {
     89     clearSelect(db, pNew);
     90     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
     91     pNew = 0;
     92   }
     93   return pNew;
     94 }
     95 
     96 /*
     97 ** Delete the given Select structure and all of its substructures.
     98 */
     99 void sqlite3SelectDelete(sqlite3 *db, Select *p){
    100   if( p ){
    101     clearSelect(db, p);
    102     sqlite3DbFree(db, p);
    103   }
    104 }
    105 
    106 /*
    107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
    108 ** type of join.  Return an integer constant that expresses that type
    109 ** in terms of the following bit values:
    110 **
    111 **     JT_INNER
    112 **     JT_CROSS
    113 **     JT_OUTER
    114 **     JT_NATURAL
    115 **     JT_LEFT
    116 **     JT_RIGHT
    117 **
    118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
    119 **
    120 ** If an illegal or unsupported join type is seen, then still return
    121 ** a join type, but put an error in the pParse structure.
    122 */
    123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
    124   int jointype = 0;
    125   Token *apAll[3];
    126   Token *p;
    127                              /*   0123456789 123456789 123456789 123 */
    128   static const char zKeyText[] = "naturaleftouterightfullinnercross";
    129   static const struct {
    130     u8 i;        /* Beginning of keyword text in zKeyText[] */
    131     u8 nChar;    /* Length of the keyword in characters */
    132     u8 code;     /* Join type mask */
    133   } aKeyword[] = {
    134     /* natural */ { 0,  7, JT_NATURAL                },
    135     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
    136     /* outer   */ { 10, 5, JT_OUTER                  },
    137     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
    138     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
    139     /* inner   */ { 23, 5, JT_INNER                  },
    140     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
    141   };
    142   int i, j;
    143   apAll[0] = pA;
    144   apAll[1] = pB;
    145   apAll[2] = pC;
    146   for(i=0; i<3 && apAll[i]; i++){
    147     p = apAll[i];
    148     for(j=0; j<ArraySize(aKeyword); j++){
    149       if( p->n==aKeyword[j].nChar
    150           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
    151         jointype |= aKeyword[j].code;
    152         break;
    153       }
    154     }
    155     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
    156     if( j>=ArraySize(aKeyword) ){
    157       jointype |= JT_ERROR;
    158       break;
    159     }
    160   }
    161   if(
    162      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
    163      (jointype & JT_ERROR)!=0
    164   ){
    165     const char *zSp = " ";
    166     assert( pB!=0 );
    167     if( pC==0 ){ zSp++; }
    168     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
    169        "%T %T%s%T", pA, pB, zSp, pC);
    170     jointype = JT_INNER;
    171   }else if( (jointype & JT_OUTER)!=0
    172          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
    173     sqlite3ErrorMsg(pParse,
    174       "RIGHT and FULL OUTER JOINs are not currently supported");
    175     jointype = JT_INNER;
    176   }
    177   return jointype;
    178 }
    179 
    180 /*
    181 ** Return the index of a column in a table.  Return -1 if the column
    182 ** is not contained in the table.
    183 */
    184 static int columnIndex(Table *pTab, const char *zCol){
    185   int i;
    186   for(i=0; i<pTab->nCol; i++){
    187     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
    188   }
    189   return -1;
    190 }
    191 
    192 /*
    193 ** Search the first N tables in pSrc, from left to right, looking for a
    194 ** table that has a column named zCol.
    195 **
    196 ** When found, set *piTab and *piCol to the table index and column index
    197 ** of the matching column and return TRUE.
    198 **
    199 ** If not found, return FALSE.
    200 */
    201 static int tableAndColumnIndex(
    202   SrcList *pSrc,       /* Array of tables to search */
    203   int N,               /* Number of tables in pSrc->a[] to search */
    204   const char *zCol,    /* Name of the column we are looking for */
    205   int *piTab,          /* Write index of pSrc->a[] here */
    206   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
    207 ){
    208   int i;               /* For looping over tables in pSrc */
    209   int iCol;            /* Index of column matching zCol */
    210 
    211   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
    212   for(i=0; i<N; i++){
    213     iCol = columnIndex(pSrc->a[i].pTab, zCol);
    214     if( iCol>=0 ){
    215       if( piTab ){
    216         *piTab = i;
    217         *piCol = iCol;
    218       }
    219       return 1;
    220     }
    221   }
    222   return 0;
    223 }
    224 
    225 /*
    226 ** This function is used to add terms implied by JOIN syntax to the
    227 ** WHERE clause expression of a SELECT statement. The new term, which
    228 ** is ANDed with the existing WHERE clause, is of the form:
    229 **
    230 **    (tab1.col1 = tab2.col2)
    231 **
    232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
    233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
    234 ** column iColRight of tab2.
    235 */
    236 static void addWhereTerm(
    237   Parse *pParse,                  /* Parsing context */
    238   SrcList *pSrc,                  /* List of tables in FROM clause */
    239   int iLeft,                      /* Index of first table to join in pSrc */
    240   int iColLeft,                   /* Index of column in first table */
    241   int iRight,                     /* Index of second table in pSrc */
    242   int iColRight,                  /* Index of column in second table */
    243   int isOuterJoin,                /* True if this is an OUTER join */
    244   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
    245 ){
    246   sqlite3 *db = pParse->db;
    247   Expr *pE1;
    248   Expr *pE2;
    249   Expr *pEq;
    250 
    251   assert( iLeft<iRight );
    252   assert( pSrc->nSrc>iRight );
    253   assert( pSrc->a[iLeft].pTab );
    254   assert( pSrc->a[iRight].pTab );
    255 
    256   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
    257   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
    258 
    259   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
    260   if( pEq && isOuterJoin ){
    261     ExprSetProperty(pEq, EP_FromJoin);
    262     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
    263     ExprSetIrreducible(pEq);
    264     pEq->iRightJoinTable = (i16)pE2->iTable;
    265   }
    266   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
    267 }
    268 
    269 /*
    270 ** Set the EP_FromJoin property on all terms of the given expression.
    271 ** And set the Expr.iRightJoinTable to iTable for every term in the
    272 ** expression.
    273 **
    274 ** The EP_FromJoin property is used on terms of an expression to tell
    275 ** the LEFT OUTER JOIN processing logic that this term is part of the
    276 ** join restriction specified in the ON or USING clause and not a part
    277 ** of the more general WHERE clause.  These terms are moved over to the
    278 ** WHERE clause during join processing but we need to remember that they
    279 ** originated in the ON or USING clause.
    280 **
    281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
    282 ** expression depends on table iRightJoinTable even if that table is not
    283 ** explicitly mentioned in the expression.  That information is needed
    284 ** for cases like this:
    285 **
    286 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
    287 **
    288 ** The where clause needs to defer the handling of the t1.x=5
    289 ** term until after the t2 loop of the join.  In that way, a
    290 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
    291 ** defer the handling of t1.x=5, it will be processed immediately
    292 ** after the t1 loop and rows with t1.x!=5 will never appear in
    293 ** the output, which is incorrect.
    294 */
    295 static void setJoinExpr(Expr *p, int iTable){
    296   while( p ){
    297     ExprSetProperty(p, EP_FromJoin);
    298     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
    299     ExprSetIrreducible(p);
    300     p->iRightJoinTable = (i16)iTable;
    301     setJoinExpr(p->pLeft, iTable);
    302     p = p->pRight;
    303   }
    304 }
    305 
    306 /*
    307 ** This routine processes the join information for a SELECT statement.
    308 ** ON and USING clauses are converted into extra terms of the WHERE clause.
    309 ** NATURAL joins also create extra WHERE clause terms.
    310 **
    311 ** The terms of a FROM clause are contained in the Select.pSrc structure.
    312 ** The left most table is the first entry in Select.pSrc.  The right-most
    313 ** table is the last entry.  The join operator is held in the entry to
    314 ** the left.  Thus entry 0 contains the join operator for the join between
    315 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
    316 ** also attached to the left entry.
    317 **
    318 ** This routine returns the number of errors encountered.
    319 */
    320 static int sqliteProcessJoin(Parse *pParse, Select *p){
    321   SrcList *pSrc;                  /* All tables in the FROM clause */
    322   int i, j;                       /* Loop counters */
    323   struct SrcList_item *pLeft;     /* Left table being joined */
    324   struct SrcList_item *pRight;    /* Right table being joined */
    325 
    326   pSrc = p->pSrc;
    327   pLeft = &pSrc->a[0];
    328   pRight = &pLeft[1];
    329   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
    330     Table *pLeftTab = pLeft->pTab;
    331     Table *pRightTab = pRight->pTab;
    332     int isOuter;
    333 
    334     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
    335     isOuter = (pRight->jointype & JT_OUTER)!=0;
    336 
    337     /* When the NATURAL keyword is present, add WHERE clause terms for
    338     ** every column that the two tables have in common.
    339     */
    340     if( pRight->jointype & JT_NATURAL ){
    341       if( pRight->pOn || pRight->pUsing ){
    342         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
    343            "an ON or USING clause", 0);
    344         return 1;
    345       }
    346       for(j=0; j<pRightTab->nCol; j++){
    347         char *zName;   /* Name of column in the right table */
    348         int iLeft;     /* Matching left table */
    349         int iLeftCol;  /* Matching column in the left table */
    350 
    351         zName = pRightTab->aCol[j].zName;
    352         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
    353           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
    354                        isOuter, &p->pWhere);
    355         }
    356       }
    357     }
    358 
    359     /* Disallow both ON and USING clauses in the same join
    360     */
    361     if( pRight->pOn && pRight->pUsing ){
    362       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
    363         "clauses in the same join");
    364       return 1;
    365     }
    366 
    367     /* Add the ON clause to the end of the WHERE clause, connected by
    368     ** an AND operator.
    369     */
    370     if( pRight->pOn ){
    371       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
    372       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
    373       pRight->pOn = 0;
    374     }
    375 
    376     /* Create extra terms on the WHERE clause for each column named
    377     ** in the USING clause.  Example: If the two tables to be joined are
    378     ** A and B and the USING clause names X, Y, and Z, then add this
    379     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
    380     ** Report an error if any column mentioned in the USING clause is
    381     ** not contained in both tables to be joined.
    382     */
    383     if( pRight->pUsing ){
    384       IdList *pList = pRight->pUsing;
    385       for(j=0; j<pList->nId; j++){
    386         char *zName;     /* Name of the term in the USING clause */
    387         int iLeft;       /* Table on the left with matching column name */
    388         int iLeftCol;    /* Column number of matching column on the left */
    389         int iRightCol;   /* Column number of matching column on the right */
    390 
    391         zName = pList->a[j].zName;
    392         iRightCol = columnIndex(pRightTab, zName);
    393         if( iRightCol<0
    394          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
    395         ){
    396           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
    397             "not present in both tables", zName);
    398           return 1;
    399         }
    400         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
    401                      isOuter, &p->pWhere);
    402       }
    403     }
    404   }
    405   return 0;
    406 }
    407 
    408 /*
    409 ** Insert code into "v" that will push the record on the top of the
    410 ** stack into the sorter.
    411 */
    412 static void pushOntoSorter(
    413   Parse *pParse,         /* Parser context */
    414   ExprList *pOrderBy,    /* The ORDER BY clause */
    415   Select *pSelect,       /* The whole SELECT statement */
    416   int regData            /* Register holding data to be sorted */
    417 ){
    418   Vdbe *v = pParse->pVdbe;
    419   int nExpr = pOrderBy->nExpr;
    420   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
    421   int regRecord = sqlite3GetTempReg(pParse);
    422   sqlite3ExprCacheClear(pParse);
    423   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
    424   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
    425   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
    426   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
    427   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
    428   sqlite3ReleaseTempReg(pParse, regRecord);
    429   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
    430   if( pSelect->iLimit ){
    431     int addr1, addr2;
    432     int iLimit;
    433     if( pSelect->iOffset ){
    434       iLimit = pSelect->iOffset+1;
    435     }else{
    436       iLimit = pSelect->iLimit;
    437     }
    438     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
    439     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
    440     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
    441     sqlite3VdbeJumpHere(v, addr1);
    442     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
    443     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
    444     sqlite3VdbeJumpHere(v, addr2);
    445   }
    446 }
    447 
    448 /*
    449 ** Add code to implement the OFFSET
    450 */
    451 static void codeOffset(
    452   Vdbe *v,          /* Generate code into this VM */
    453   Select *p,        /* The SELECT statement being coded */
    454   int iContinue     /* Jump here to skip the current record */
    455 ){
    456   if( p->iOffset && iContinue!=0 ){
    457     int addr;
    458     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
    459     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
    460     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    461     VdbeComment((v, "skip OFFSET records"));
    462     sqlite3VdbeJumpHere(v, addr);
    463   }
    464 }
    465 
    466 /*
    467 ** Add code that will check to make sure the N registers starting at iMem
    468 ** form a distinct entry.  iTab is a sorting index that holds previously
    469 ** seen combinations of the N values.  A new entry is made in iTab
    470 ** if the current N values are new.
    471 **
    472 ** A jump to addrRepeat is made and the N+1 values are popped from the
    473 ** stack if the top N elements are not distinct.
    474 */
    475 static void codeDistinct(
    476   Parse *pParse,     /* Parsing and code generating context */
    477   int iTab,          /* A sorting index used to test for distinctness */
    478   int addrRepeat,    /* Jump to here if not distinct */
    479   int N,             /* Number of elements */
    480   int iMem           /* First element */
    481 ){
    482   Vdbe *v;
    483   int r1;
    484 
    485   v = pParse->pVdbe;
    486   r1 = sqlite3GetTempReg(pParse);
    487   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
    488   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
    489   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
    490   sqlite3ReleaseTempReg(pParse, r1);
    491 }
    492 
    493 #ifndef SQLITE_OMIT_SUBQUERY
    494 /*
    495 ** Generate an error message when a SELECT is used within a subexpression
    496 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
    497 ** column.  We do this in a subroutine because the error used to occur
    498 ** in multiple places.  (The error only occurs in one place now, but we
    499 ** retain the subroutine to minimize code disruption.)
    500 */
    501 static int checkForMultiColumnSelectError(
    502   Parse *pParse,       /* Parse context. */
    503   SelectDest *pDest,   /* Destination of SELECT results */
    504   int nExpr            /* Number of result columns returned by SELECT */
    505 ){
    506   int eDest = pDest->eDest;
    507   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
    508     sqlite3ErrorMsg(pParse, "only a single result allowed for "
    509        "a SELECT that is part of an expression");
    510     return 1;
    511   }else{
    512     return 0;
    513   }
    514 }
    515 #endif
    516 
    517 /*
    518 ** This routine generates the code for the inside of the inner loop
    519 ** of a SELECT.
    520 **
    521 ** If srcTab and nColumn are both zero, then the pEList expressions
    522 ** are evaluated in order to get the data for this row.  If nColumn>0
    523 ** then data is pulled from srcTab and pEList is used only to get the
    524 ** datatypes for each column.
    525 */
    526 static void selectInnerLoop(
    527   Parse *pParse,          /* The parser context */
    528   Select *p,              /* The complete select statement being coded */
    529   ExprList *pEList,       /* List of values being extracted */
    530   int srcTab,             /* Pull data from this table */
    531   int nColumn,            /* Number of columns in the source table */
    532   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
    533   int distinct,           /* If >=0, make sure results are distinct */
    534   SelectDest *pDest,      /* How to dispose of the results */
    535   int iContinue,          /* Jump here to continue with next row */
    536   int iBreak              /* Jump here to break out of the inner loop */
    537 ){
    538   Vdbe *v = pParse->pVdbe;
    539   int i;
    540   int hasDistinct;        /* True if the DISTINCT keyword is present */
    541   int regResult;              /* Start of memory holding result set */
    542   int eDest = pDest->eDest;   /* How to dispose of results */
    543   int iParm = pDest->iParm;   /* First argument to disposal method */
    544   int nResultCol;             /* Number of result columns */
    545 
    546   assert( v );
    547   if( NEVER(v==0) ) return;
    548   assert( pEList!=0 );
    549   hasDistinct = distinct>=0;
    550   if( pOrderBy==0 && !hasDistinct ){
    551     codeOffset(v, p, iContinue);
    552   }
    553 
    554   /* Pull the requested columns.
    555   */
    556   if( nColumn>0 ){
    557     nResultCol = nColumn;
    558   }else{
    559     nResultCol = pEList->nExpr;
    560   }
    561   if( pDest->iMem==0 ){
    562     pDest->iMem = pParse->nMem+1;
    563     pDest->nMem = nResultCol;
    564     pParse->nMem += nResultCol;
    565   }else{
    566     assert( pDest->nMem==nResultCol );
    567   }
    568   regResult = pDest->iMem;
    569   if( nColumn>0 ){
    570     for(i=0; i<nColumn; i++){
    571       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
    572     }
    573   }else if( eDest!=SRT_Exists ){
    574     /* If the destination is an EXISTS(...) expression, the actual
    575     ** values returned by the SELECT are not required.
    576     */
    577     sqlite3ExprCacheClear(pParse);
    578     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
    579   }
    580   nColumn = nResultCol;
    581 
    582   /* If the DISTINCT keyword was present on the SELECT statement
    583   ** and this row has been seen before, then do not make this row
    584   ** part of the result.
    585   */
    586   if( hasDistinct ){
    587     assert( pEList!=0 );
    588     assert( pEList->nExpr==nColumn );
    589     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
    590     if( pOrderBy==0 ){
    591       codeOffset(v, p, iContinue);
    592     }
    593   }
    594 
    595   switch( eDest ){
    596     /* In this mode, write each query result to the key of the temporary
    597     ** table iParm.
    598     */
    599 #ifndef SQLITE_OMIT_COMPOUND_SELECT
    600     case SRT_Union: {
    601       int r1;
    602       r1 = sqlite3GetTempReg(pParse);
    603       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
    604       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
    605       sqlite3ReleaseTempReg(pParse, r1);
    606       break;
    607     }
    608 
    609     /* Construct a record from the query result, but instead of
    610     ** saving that record, use it as a key to delete elements from
    611     ** the temporary table iParm.
    612     */
    613     case SRT_Except: {
    614       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
    615       break;
    616     }
    617 #endif
    618 
    619     /* Store the result as data using a unique key.
    620     */
    621     case SRT_Table:
    622     case SRT_EphemTab: {
    623       int r1 = sqlite3GetTempReg(pParse);
    624       testcase( eDest==SRT_Table );
    625       testcase( eDest==SRT_EphemTab );
    626       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
    627       if( pOrderBy ){
    628         pushOntoSorter(pParse, pOrderBy, p, r1);
    629       }else{
    630         int r2 = sqlite3GetTempReg(pParse);
    631         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
    632         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
    633         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    634         sqlite3ReleaseTempReg(pParse, r2);
    635       }
    636       sqlite3ReleaseTempReg(pParse, r1);
    637       break;
    638     }
    639 
    640 #ifndef SQLITE_OMIT_SUBQUERY
    641     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    642     ** then there should be a single item on the stack.  Write this
    643     ** item into the set table with bogus data.
    644     */
    645     case SRT_Set: {
    646       assert( nColumn==1 );
    647       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
    648       if( pOrderBy ){
    649         /* At first glance you would think we could optimize out the
    650         ** ORDER BY in this case since the order of entries in the set
    651         ** does not matter.  But there might be a LIMIT clause, in which
    652         ** case the order does matter */
    653         pushOntoSorter(pParse, pOrderBy, p, regResult);
    654       }else{
    655         int r1 = sqlite3GetTempReg(pParse);
    656         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
    657         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
    658         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
    659         sqlite3ReleaseTempReg(pParse, r1);
    660       }
    661       break;
    662     }
    663 
    664     /* If any row exist in the result set, record that fact and abort.
    665     */
    666     case SRT_Exists: {
    667       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
    668       /* The LIMIT clause will terminate the loop for us */
    669       break;
    670     }
    671 
    672     /* If this is a scalar select that is part of an expression, then
    673     ** store the results in the appropriate memory cell and break out
    674     ** of the scan loop.
    675     */
    676     case SRT_Mem: {
    677       assert( nColumn==1 );
    678       if( pOrderBy ){
    679         pushOntoSorter(pParse, pOrderBy, p, regResult);
    680       }else{
    681         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
    682         /* The LIMIT clause will jump out of the loop for us */
    683       }
    684       break;
    685     }
    686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
    687 
    688     /* Send the data to the callback function or to a subroutine.  In the
    689     ** case of a subroutine, the subroutine itself is responsible for
    690     ** popping the data from the stack.
    691     */
    692     case SRT_Coroutine:
    693     case SRT_Output: {
    694       testcase( eDest==SRT_Coroutine );
    695       testcase( eDest==SRT_Output );
    696       if( pOrderBy ){
    697         int r1 = sqlite3GetTempReg(pParse);
    698         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
    699         pushOntoSorter(pParse, pOrderBy, p, r1);
    700         sqlite3ReleaseTempReg(pParse, r1);
    701       }else if( eDest==SRT_Coroutine ){
    702         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
    703       }else{
    704         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
    705         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
    706       }
    707       break;
    708     }
    709 
    710 #if !defined(SQLITE_OMIT_TRIGGER)
    711     /* Discard the results.  This is used for SELECT statements inside
    712     ** the body of a TRIGGER.  The purpose of such selects is to call
    713     ** user-defined functions that have side effects.  We do not care
    714     ** about the actual results of the select.
    715     */
    716     default: {
    717       assert( eDest==SRT_Discard );
    718       break;
    719     }
    720 #endif
    721   }
    722 
    723   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
    724   ** there is a sorter, in which case the sorter has already limited
    725   ** the output for us.
    726   */
    727   if( pOrderBy==0 && p->iLimit ){
    728     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
    729   }
    730 }
    731 
    732 /*
    733 ** Given an expression list, generate a KeyInfo structure that records
    734 ** the collating sequence for each expression in that expression list.
    735 **
    736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
    737 ** KeyInfo structure is appropriate for initializing a virtual index to
    738 ** implement that clause.  If the ExprList is the result set of a SELECT
    739 ** then the KeyInfo structure is appropriate for initializing a virtual
    740 ** index to implement a DISTINCT test.
    741 **
    742 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
    743 ** function is responsible for seeing that this structure is eventually
    744 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
    745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
    746 */
    747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
    748   sqlite3 *db = pParse->db;
    749   int nExpr;
    750   KeyInfo *pInfo;
    751   struct ExprList_item *pItem;
    752   int i;
    753 
    754   nExpr = pList->nExpr;
    755   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
    756   if( pInfo ){
    757     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
    758     pInfo->nField = (u16)nExpr;
    759     pInfo->enc = ENC(db);
    760     pInfo->db = db;
    761     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
    762       CollSeq *pColl;
    763       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
    764       if( !pColl ){
    765         pColl = db->pDfltColl;
    766       }
    767       pInfo->aColl[i] = pColl;
    768       pInfo->aSortOrder[i] = pItem->sortOrder;
    769     }
    770   }
    771   return pInfo;
    772 }
    773 
    774 #ifndef SQLITE_OMIT_COMPOUND_SELECT
    775 /*
    776 ** Name of the connection operator, used for error messages.
    777 */
    778 static const char *selectOpName(int id){
    779   char *z;
    780   switch( id ){
    781     case TK_ALL:       z = "UNION ALL";   break;
    782     case TK_INTERSECT: z = "INTERSECT";   break;
    783     case TK_EXCEPT:    z = "EXCEPT";      break;
    784     default:           z = "UNION";       break;
    785   }
    786   return z;
    787 }
    788 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
    789 
    790 #ifndef SQLITE_OMIT_EXPLAIN
    791 /*
    792 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
    793 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
    794 ** where the caption is of the form:
    795 **
    796 **   "USE TEMP B-TREE FOR xxx"
    797 **
    798 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
    799 ** is determined by the zUsage argument.
    800 */
    801 static void explainTempTable(Parse *pParse, const char *zUsage){
    802   if( pParse->explain==2 ){
    803     Vdbe *v = pParse->pVdbe;
    804     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
    805     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
    806   }
    807 }
    808 
    809 /*
    810 ** Assign expression b to lvalue a. A second, no-op, version of this macro
    811 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
    812 ** in sqlite3Select() to assign values to structure member variables that
    813 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
    814 ** code with #ifndef directives.
    815 */
    816 # define explainSetInteger(a, b) a = b
    817 
    818 #else
    819 /* No-op versions of the explainXXX() functions and macros. */
    820 # define explainTempTable(y,z)
    821 # define explainSetInteger(y,z)
    822 #endif
    823 
    824 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
    825 /*
    826 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
    827 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
    828 ** where the caption is of one of the two forms:
    829 **
    830 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
    831 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
    832 **
    833 ** where iSub1 and iSub2 are the integers passed as the corresponding
    834 ** function parameters, and op is the text representation of the parameter
    835 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
    836 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
    837 ** false, or the second form if it is true.
    838 */
    839 static void explainComposite(
    840   Parse *pParse,                  /* Parse context */
    841   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
    842   int iSub1,                      /* Subquery id 1 */
    843   int iSub2,                      /* Subquery id 2 */
    844   int bUseTmp                     /* True if a temp table was used */
    845 ){
    846   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
    847   if( pParse->explain==2 ){
    848     Vdbe *v = pParse->pVdbe;
    849     char *zMsg = sqlite3MPrintf(
    850         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
    851         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
    852     );
    853     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
    854   }
    855 }
    856 #else
    857 /* No-op versions of the explainXXX() functions and macros. */
    858 # define explainComposite(v,w,x,y,z)
    859 #endif
    860 
    861 /*
    862 ** If the inner loop was generated using a non-null pOrderBy argument,
    863 ** then the results were placed in a sorter.  After the loop is terminated
    864 ** we need to run the sorter and output the results.  The following
    865 ** routine generates the code needed to do that.
    866 */
    867 static void generateSortTail(
    868   Parse *pParse,    /* Parsing context */
    869   Select *p,        /* The SELECT statement */
    870   Vdbe *v,          /* Generate code into this VDBE */
    871   int nColumn,      /* Number of columns of data */
    872   SelectDest *pDest /* Write the sorted results here */
    873 ){
    874   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
    875   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
    876   int addr;
    877   int iTab;
    878   int pseudoTab = 0;
    879   ExprList *pOrderBy = p->pOrderBy;
    880 
    881   int eDest = pDest->eDest;
    882   int iParm = pDest->iParm;
    883 
    884   int regRow;
    885   int regRowid;
    886 
    887   iTab = pOrderBy->iECursor;
    888   regRow = sqlite3GetTempReg(pParse);
    889   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    890     pseudoTab = pParse->nTab++;
    891     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
    892     regRowid = 0;
    893   }else{
    894     regRowid = sqlite3GetTempReg(pParse);
    895   }
    896   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
    897   codeOffset(v, p, addrContinue);
    898   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
    899   switch( eDest ){
    900     case SRT_Table:
    901     case SRT_EphemTab: {
    902       testcase( eDest==SRT_Table );
    903       testcase( eDest==SRT_EphemTab );
    904       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
    905       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
    906       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    907       break;
    908     }
    909 #ifndef SQLITE_OMIT_SUBQUERY
    910     case SRT_Set: {
    911       assert( nColumn==1 );
    912       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
    913       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
    914       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
    915       break;
    916     }
    917     case SRT_Mem: {
    918       assert( nColumn==1 );
    919       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
    920       /* The LIMIT clause will terminate the loop for us */
    921       break;
    922     }
    923 #endif
    924     default: {
    925       int i;
    926       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
    927       testcase( eDest==SRT_Output );
    928       testcase( eDest==SRT_Coroutine );
    929       for(i=0; i<nColumn; i++){
    930         assert( regRow!=pDest->iMem+i );
    931         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
    932         if( i==0 ){
    933           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
    934         }
    935       }
    936       if( eDest==SRT_Output ){
    937         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
    938         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
    939       }else{
    940         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
    941       }
    942       break;
    943     }
    944   }
    945   sqlite3ReleaseTempReg(pParse, regRow);
    946   sqlite3ReleaseTempReg(pParse, regRowid);
    947 
    948   /* The bottom of the loop
    949   */
    950   sqlite3VdbeResolveLabel(v, addrContinue);
    951   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
    952   sqlite3VdbeResolveLabel(v, addrBreak);
    953   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    954     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
    955   }
    956 }
    957 
    958 /*
    959 ** Return a pointer to a string containing the 'declaration type' of the
    960 ** expression pExpr. The string may be treated as static by the caller.
    961 **
    962 ** The declaration type is the exact datatype definition extracted from the
    963 ** original CREATE TABLE statement if the expression is a column. The
    964 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
    965 ** is considered a column can be complex in the presence of subqueries. The
    966 ** result-set expression in all of the following SELECT statements is
    967 ** considered a column by this function.
    968 **
    969 **   SELECT col FROM tbl;
    970 **   SELECT (SELECT col FROM tbl;
    971 **   SELECT (SELECT col FROM tbl);
    972 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
    973 **
    974 ** The declaration type for any expression other than a column is NULL.
    975 */
    976 static const char *columnType(
    977   NameContext *pNC,
    978   Expr *pExpr,
    979   const char **pzOriginDb,
    980   const char **pzOriginTab,
    981   const char **pzOriginCol
    982 ){
    983   char const *zType = 0;
    984   char const *zOriginDb = 0;
    985   char const *zOriginTab = 0;
    986   char const *zOriginCol = 0;
    987   int j;
    988   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
    989 
    990   switch( pExpr->op ){
    991     case TK_AGG_COLUMN:
    992     case TK_COLUMN: {
    993       /* The expression is a column. Locate the table the column is being
    994       ** extracted from in NameContext.pSrcList. This table may be real
    995       ** database table or a subquery.
    996       */
    997       Table *pTab = 0;            /* Table structure column is extracted from */
    998       Select *pS = 0;             /* Select the column is extracted from */
    999       int iCol = pExpr->iColumn;  /* Index of column in pTab */
   1000       testcase( pExpr->op==TK_AGG_COLUMN );
   1001       testcase( pExpr->op==TK_COLUMN );
   1002       while( pNC && !pTab ){
   1003         SrcList *pTabList = pNC->pSrcList;
   1004         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
   1005         if( j<pTabList->nSrc ){
   1006           pTab = pTabList->a[j].pTab;
   1007           pS = pTabList->a[j].pSelect;
   1008         }else{
   1009           pNC = pNC->pNext;
   1010         }
   1011       }
   1012 
   1013       if( pTab==0 ){
   1014         /* At one time, code such as "SELECT new.x" within a trigger would
   1015         ** cause this condition to run.  Since then, we have restructured how
   1016         ** trigger code is generated and so this condition is no longer
   1017         ** possible. However, it can still be true for statements like
   1018         ** the following:
   1019         **
   1020         **   CREATE TABLE t1(col INTEGER);
   1021         **   SELECT (SELECT t1.col) FROM FROM t1;
   1022         **
   1023         ** when columnType() is called on the expression "t1.col" in the
   1024         ** sub-select. In this case, set the column type to NULL, even
   1025         ** though it should really be "INTEGER".
   1026         **
   1027         ** This is not a problem, as the column type of "t1.col" is never
   1028         ** used. When columnType() is called on the expression
   1029         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
   1030         ** branch below.  */
   1031         break;
   1032       }
   1033 
   1034       assert( pTab && pExpr->pTab==pTab );
   1035       if( pS ){
   1036         /* The "table" is actually a sub-select or a view in the FROM clause
   1037         ** of the SELECT statement. Return the declaration type and origin
   1038         ** data for the result-set column of the sub-select.
   1039         */
   1040         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
   1041           /* If iCol is less than zero, then the expression requests the
   1042           ** rowid of the sub-select or view. This expression is legal (see
   1043           ** test case misc2.2.2) - it always evaluates to NULL.
   1044           */
   1045           NameContext sNC;
   1046           Expr *p = pS->pEList->a[iCol].pExpr;
   1047           sNC.pSrcList = pS->pSrc;
   1048           sNC.pNext = pNC;
   1049           sNC.pParse = pNC->pParse;
   1050           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
   1051         }
   1052       }else if( ALWAYS(pTab->pSchema) ){
   1053         /* A real table */
   1054         assert( !pS );
   1055         if( iCol<0 ) iCol = pTab->iPKey;
   1056         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
   1057         if( iCol<0 ){
   1058           zType = "INTEGER";
   1059           zOriginCol = "rowid";
   1060         }else{
   1061           zType = pTab->aCol[iCol].zType;
   1062           zOriginCol = pTab->aCol[iCol].zName;
   1063         }
   1064         zOriginTab = pTab->zName;
   1065         if( pNC->pParse ){
   1066           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
   1067           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
   1068         }
   1069       }
   1070       break;
   1071     }
   1072 #ifndef SQLITE_OMIT_SUBQUERY
   1073     case TK_SELECT: {
   1074       /* The expression is a sub-select. Return the declaration type and
   1075       ** origin info for the single column in the result set of the SELECT
   1076       ** statement.
   1077       */
   1078       NameContext sNC;
   1079       Select *pS = pExpr->x.pSelect;
   1080       Expr *p = pS->pEList->a[0].pExpr;
   1081       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
   1082       sNC.pSrcList = pS->pSrc;
   1083       sNC.pNext = pNC;
   1084       sNC.pParse = pNC->pParse;
   1085       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
   1086       break;
   1087     }
   1088 #endif
   1089   }
   1090 
   1091   if( pzOriginDb ){
   1092     assert( pzOriginTab && pzOriginCol );
   1093     *pzOriginDb = zOriginDb;
   1094     *pzOriginTab = zOriginTab;
   1095     *pzOriginCol = zOriginCol;
   1096   }
   1097   return zType;
   1098 }
   1099 
   1100 /*
   1101 ** Generate code that will tell the VDBE the declaration types of columns
   1102 ** in the result set.
   1103 */
   1104 static void generateColumnTypes(
   1105   Parse *pParse,      /* Parser context */
   1106   SrcList *pTabList,  /* List of tables */
   1107   ExprList *pEList    /* Expressions defining the result set */
   1108 ){
   1109 #ifndef SQLITE_OMIT_DECLTYPE
   1110   Vdbe *v = pParse->pVdbe;
   1111   int i;
   1112   NameContext sNC;
   1113   sNC.pSrcList = pTabList;
   1114   sNC.pParse = pParse;
   1115   for(i=0; i<pEList->nExpr; i++){
   1116     Expr *p = pEList->a[i].pExpr;
   1117     const char *zType;
   1118 #ifdef SQLITE_ENABLE_COLUMN_METADATA
   1119     const char *zOrigDb = 0;
   1120     const char *zOrigTab = 0;
   1121     const char *zOrigCol = 0;
   1122     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
   1123 
   1124     /* The vdbe must make its own copy of the column-type and other
   1125     ** column specific strings, in case the schema is reset before this
   1126     ** virtual machine is deleted.
   1127     */
   1128     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
   1129     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
   1130     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
   1131 #else
   1132     zType = columnType(&sNC, p, 0, 0, 0);
   1133 #endif
   1134     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
   1135   }
   1136 #endif /* SQLITE_OMIT_DECLTYPE */
   1137 }
   1138 
   1139 /*
   1140 ** Generate code that will tell the VDBE the names of columns
   1141 ** in the result set.  This information is used to provide the
   1142 ** azCol[] values in the callback.
   1143 */
   1144 static void generateColumnNames(
   1145   Parse *pParse,      /* Parser context */
   1146   SrcList *pTabList,  /* List of tables */
   1147   ExprList *pEList    /* Expressions defining the result set */
   1148 ){
   1149   Vdbe *v = pParse->pVdbe;
   1150   int i, j;
   1151   sqlite3 *db = pParse->db;
   1152   int fullNames, shortNames;
   1153 
   1154 #ifndef SQLITE_OMIT_EXPLAIN
   1155   /* If this is an EXPLAIN, skip this step */
   1156   if( pParse->explain ){
   1157     return;
   1158   }
   1159 #endif
   1160 
   1161   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
   1162   pParse->colNamesSet = 1;
   1163   fullNames = (db->flags & SQLITE_FullColNames)!=0;
   1164   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
   1165   sqlite3VdbeSetNumCols(v, pEList->nExpr);
   1166   for(i=0; i<pEList->nExpr; i++){
   1167     Expr *p;
   1168     p = pEList->a[i].pExpr;
   1169     if( NEVER(p==0) ) continue;
   1170     if( pEList->a[i].zName ){
   1171       char *zName = pEList->a[i].zName;
   1172       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
   1173     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
   1174       Table *pTab;
   1175       char *zCol;
   1176       int iCol = p->iColumn;
   1177       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
   1178         if( pTabList->a[j].iCursor==p->iTable ) break;
   1179       }
   1180       assert( j<pTabList->nSrc );
   1181       pTab = pTabList->a[j].pTab;
   1182       if( iCol<0 ) iCol = pTab->iPKey;
   1183       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
   1184       if( iCol<0 ){
   1185         zCol = "rowid";
   1186       }else{
   1187         zCol = pTab->aCol[iCol].zName;
   1188       }
   1189       if( !shortNames && !fullNames ){
   1190         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
   1191             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
   1192       }else if( fullNames ){
   1193         char *zName = 0;
   1194         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
   1195         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
   1196       }else{
   1197         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
   1198       }
   1199     }else{
   1200       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
   1201           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
   1202     }
   1203   }
   1204   generateColumnTypes(pParse, pTabList, pEList);
   1205 }
   1206 
   1207 /*
   1208 ** Given a an expression list (which is really the list of expressions
   1209 ** that form the result set of a SELECT statement) compute appropriate
   1210 ** column names for a table that would hold the expression list.
   1211 **
   1212 ** All column names will be unique.
   1213 **
   1214 ** Only the column names are computed.  Column.zType, Column.zColl,
   1215 ** and other fields of Column are zeroed.
   1216 **
   1217 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
   1218 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
   1219 */
   1220 static int selectColumnsFromExprList(
   1221   Parse *pParse,          /* Parsing context */
   1222   ExprList *pEList,       /* Expr list from which to derive column names */
   1223   int *pnCol,             /* Write the number of columns here */
   1224   Column **paCol          /* Write the new column list here */
   1225 ){
   1226   sqlite3 *db = pParse->db;   /* Database connection */
   1227   int i, j;                   /* Loop counters */
   1228   int cnt;                    /* Index added to make the name unique */
   1229   Column *aCol, *pCol;        /* For looping over result columns */
   1230   int nCol;                   /* Number of columns in the result set */
   1231   Expr *p;                    /* Expression for a single result column */
   1232   char *zName;                /* Column name */
   1233   int nName;                  /* Size of name in zName[] */
   1234 
   1235   *pnCol = nCol = pEList->nExpr;
   1236   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
   1237   if( aCol==0 ) return SQLITE_NOMEM;
   1238   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
   1239     /* Get an appropriate name for the column
   1240     */
   1241     p = pEList->a[i].pExpr;
   1242     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
   1243                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
   1244     if( (zName = pEList->a[i].zName)!=0 ){
   1245       /* If the column contains an "AS <name>" phrase, use <name> as the name */
   1246       zName = sqlite3DbStrDup(db, zName);
   1247     }else{
   1248       Expr *pColExpr = p;  /* The expression that is the result column name */
   1249       Table *pTab;         /* Table associated with this expression */
   1250       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
   1251       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
   1252         /* For columns use the column name name */
   1253         int iCol = pColExpr->iColumn;
   1254         pTab = pColExpr->pTab;
   1255         if( iCol<0 ) iCol = pTab->iPKey;
   1256         zName = sqlite3MPrintf(db, "%s",
   1257                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
   1258       }else if( pColExpr->op==TK_ID ){
   1259         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
   1260         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
   1261       }else{
   1262         /* Use the original text of the column expression as its name */
   1263         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
   1264       }
   1265     }
   1266     if( db->mallocFailed ){
   1267       sqlite3DbFree(db, zName);
   1268       break;
   1269     }
   1270 
   1271     /* Make sure the column name is unique.  If the name is not unique,
   1272     ** append a integer to the name so that it becomes unique.
   1273     */
   1274     nName = sqlite3Strlen30(zName);
   1275     for(j=cnt=0; j<i; j++){
   1276       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
   1277         char *zNewName;
   1278         zName[nName] = 0;
   1279         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
   1280         sqlite3DbFree(db, zName);
   1281         zName = zNewName;
   1282         j = -1;
   1283         if( zName==0 ) break;
   1284       }
   1285     }
   1286     pCol->zName = zName;
   1287   }
   1288   if( db->mallocFailed ){
   1289     for(j=0; j<i; j++){
   1290       sqlite3DbFree(db, aCol[j].zName);
   1291     }
   1292     sqlite3DbFree(db, aCol);
   1293     *paCol = 0;
   1294     *pnCol = 0;
   1295     return SQLITE_NOMEM;
   1296   }
   1297   return SQLITE_OK;
   1298 }
   1299 
   1300 /*
   1301 ** Add type and collation information to a column list based on
   1302 ** a SELECT statement.
   1303 **
   1304 ** The column list presumably came from selectColumnNamesFromExprList().
   1305 ** The column list has only names, not types or collations.  This
   1306 ** routine goes through and adds the types and collations.
   1307 **
   1308 ** This routine requires that all identifiers in the SELECT
   1309 ** statement be resolved.
   1310 */
   1311 static void selectAddColumnTypeAndCollation(
   1312   Parse *pParse,        /* Parsing contexts */
   1313   int nCol,             /* Number of columns */
   1314   Column *aCol,         /* List of columns */
   1315   Select *pSelect       /* SELECT used to determine types and collations */
   1316 ){
   1317   sqlite3 *db = pParse->db;
   1318   NameContext sNC;
   1319   Column *pCol;
   1320   CollSeq *pColl;
   1321   int i;
   1322   Expr *p;
   1323   struct ExprList_item *a;
   1324 
   1325   assert( pSelect!=0 );
   1326   assert( (pSelect->selFlags & SF_Resolved)!=0 );
   1327   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
   1328   if( db->mallocFailed ) return;
   1329   memset(&sNC, 0, sizeof(sNC));
   1330   sNC.pSrcList = pSelect->pSrc;
   1331   a = pSelect->pEList->a;
   1332   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
   1333     p = a[i].pExpr;
   1334     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
   1335     pCol->affinity = sqlite3ExprAffinity(p);
   1336     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
   1337     pColl = sqlite3ExprCollSeq(pParse, p);
   1338     if( pColl ){
   1339       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
   1340     }
   1341   }
   1342 }
   1343 
   1344 /*
   1345 ** Given a SELECT statement, generate a Table structure that describes
   1346 ** the result set of that SELECT.
   1347 */
   1348 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
   1349   Table *pTab;
   1350   sqlite3 *db = pParse->db;
   1351   int savedFlags;
   1352 
   1353   savedFlags = db->flags;
   1354   db->flags &= ~SQLITE_FullColNames;
   1355   db->flags |= SQLITE_ShortColNames;
   1356   sqlite3SelectPrep(pParse, pSelect, 0);
   1357   if( pParse->nErr ) return 0;
   1358   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
   1359   db->flags = savedFlags;
   1360   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
   1361   if( pTab==0 ){
   1362     return 0;
   1363   }
   1364   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
   1365   ** is disabled */
   1366   assert( db->lookaside.bEnabled==0 );
   1367   pTab->nRef = 1;
   1368   pTab->zName = 0;
   1369   pTab->nRowEst = 1000000;
   1370   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
   1371   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
   1372   pTab->iPKey = -1;
   1373   if( db->mallocFailed ){
   1374     sqlite3DeleteTable(db, pTab);
   1375     return 0;
   1376   }
   1377   return pTab;
   1378 }
   1379 
   1380 /*
   1381 ** Get a VDBE for the given parser context.  Create a new one if necessary.
   1382 ** If an error occurs, return NULL and leave a message in pParse.
   1383 */
   1384 Vdbe *sqlite3GetVdbe(Parse *pParse){
   1385   Vdbe *v = pParse->pVdbe;
   1386   if( v==0 ){
   1387     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
   1388 #ifndef SQLITE_OMIT_TRACE
   1389     if( v ){
   1390       sqlite3VdbeAddOp0(v, OP_Trace);
   1391     }
   1392 #endif
   1393   }
   1394   return v;
   1395 }
   1396 
   1397 
   1398 /*
   1399 ** Compute the iLimit and iOffset fields of the SELECT based on the
   1400 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
   1401 ** that appear in the original SQL statement after the LIMIT and OFFSET
   1402 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
   1403 ** are the integer memory register numbers for counters used to compute
   1404 ** the limit and offset.  If there is no limit and/or offset, then
   1405 ** iLimit and iOffset are negative.
   1406 **
   1407 ** This routine changes the values of iLimit and iOffset only if
   1408 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
   1409 ** iOffset should have been preset to appropriate default values
   1410 ** (usually but not always -1) prior to calling this routine.
   1411 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
   1412 ** redefined.  The UNION ALL operator uses this property to force
   1413 ** the reuse of the same limit and offset registers across multiple
   1414 ** SELECT statements.
   1415 */
   1416 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
   1417   Vdbe *v = 0;
   1418   int iLimit = 0;
   1419   int iOffset;
   1420   int addr1, n;
   1421   if( p->iLimit ) return;
   1422 
   1423   /*
   1424   ** "LIMIT -1" always shows all rows.  There is some
   1425   ** contraversy about what the correct behavior should be.
   1426   ** The current implementation interprets "LIMIT 0" to mean
   1427   ** no rows.
   1428   */
   1429   sqlite3ExprCacheClear(pParse);
   1430   assert( p->pOffset==0 || p->pLimit!=0 );
   1431   if( p->pLimit ){
   1432     p->iLimit = iLimit = ++pParse->nMem;
   1433     v = sqlite3GetVdbe(pParse);
   1434     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
   1435     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
   1436       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
   1437       VdbeComment((v, "LIMIT counter"));
   1438       if( n==0 ){
   1439         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
   1440       }else{
   1441         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
   1442       }
   1443     }else{
   1444       sqlite3ExprCode(pParse, p->pLimit, iLimit);
   1445       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
   1446       VdbeComment((v, "LIMIT counter"));
   1447       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
   1448     }
   1449     if( p->pOffset ){
   1450       p->iOffset = iOffset = ++pParse->nMem;
   1451       pParse->nMem++;   /* Allocate an extra register for limit+offset */
   1452       sqlite3ExprCode(pParse, p->pOffset, iOffset);
   1453       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
   1454       VdbeComment((v, "OFFSET counter"));
   1455       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
   1456       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
   1457       sqlite3VdbeJumpHere(v, addr1);
   1458       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
   1459       VdbeComment((v, "LIMIT+OFFSET"));
   1460       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
   1461       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
   1462       sqlite3VdbeJumpHere(v, addr1);
   1463     }
   1464   }
   1465 }
   1466 
   1467 #ifndef SQLITE_OMIT_COMPOUND_SELECT
   1468 /*
   1469 ** Return the appropriate collating sequence for the iCol-th column of
   1470 ** the result set for the compound-select statement "p".  Return NULL if
   1471 ** the column has no default collating sequence.
   1472 **
   1473 ** The collating sequence for the compound select is taken from the
   1474 ** left-most term of the select that has a collating sequence.
   1475 */
   1476 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
   1477   CollSeq *pRet;
   1478   if( p->pPrior ){
   1479     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
   1480   }else{
   1481     pRet = 0;
   1482   }
   1483   assert( iCol>=0 );
   1484   if( pRet==0 && iCol<p->pEList->nExpr ){
   1485     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
   1486   }
   1487   return pRet;
   1488 }
   1489 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
   1490 
   1491 /* Forward reference */
   1492 static int multiSelectOrderBy(
   1493   Parse *pParse,        /* Parsing context */
   1494   Select *p,            /* The right-most of SELECTs to be coded */
   1495   SelectDest *pDest     /* What to do with query results */
   1496 );
   1497 
   1498 
   1499 #ifndef SQLITE_OMIT_COMPOUND_SELECT
   1500 /*
   1501 ** This routine is called to process a compound query form from
   1502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
   1503 ** INTERSECT
   1504 **
   1505 ** "p" points to the right-most of the two queries.  the query on the
   1506 ** left is p->pPrior.  The left query could also be a compound query
   1507 ** in which case this routine will be called recursively.
   1508 **
   1509 ** The results of the total query are to be written into a destination
   1510 ** of type eDest with parameter iParm.
   1511 **
   1512 ** Example 1:  Consider a three-way compound SQL statement.
   1513 **
   1514 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
   1515 **
   1516 ** This statement is parsed up as follows:
   1517 **
   1518 **     SELECT c FROM t3
   1519 **      |
   1520 **      `----->  SELECT b FROM t2
   1521 **                |
   1522 **                `------>  SELECT a FROM t1
   1523 **
   1524 ** The arrows in the diagram above represent the Select.pPrior pointer.
   1525 ** So if this routine is called with p equal to the t3 query, then
   1526 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
   1527 **
   1528 ** Notice that because of the way SQLite parses compound SELECTs, the
   1529 ** individual selects always group from left to right.
   1530 */
   1531 static int multiSelect(
   1532   Parse *pParse,        /* Parsing context */
   1533   Select *p,            /* The right-most of SELECTs to be coded */
   1534   SelectDest *pDest     /* What to do with query results */
   1535 ){
   1536   int rc = SQLITE_OK;   /* Success code from a subroutine */
   1537   Select *pPrior;       /* Another SELECT immediately to our left */
   1538   Vdbe *v;              /* Generate code to this VDBE */
   1539   SelectDest dest;      /* Alternative data destination */
   1540   Select *pDelete = 0;  /* Chain of simple selects to delete */
   1541   sqlite3 *db;          /* Database connection */
   1542 #ifndef SQLITE_OMIT_EXPLAIN
   1543   int iSub1;            /* EQP id of left-hand query */
   1544   int iSub2;            /* EQP id of right-hand query */
   1545 #endif
   1546 
   1547   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
   1548   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
   1549   */
   1550   assert( p && p->pPrior );  /* Calling function guarantees this much */
   1551   db = pParse->db;
   1552   pPrior = p->pPrior;
   1553   assert( pPrior->pRightmost!=pPrior );
   1554   assert( pPrior->pRightmost==p->pRightmost );
   1555   dest = *pDest;
   1556   if( pPrior->pOrderBy ){
   1557     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
   1558       selectOpName(p->op));
   1559     rc = 1;
   1560     goto multi_select_end;
   1561   }
   1562   if( pPrior->pLimit ){
   1563     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
   1564       selectOpName(p->op));
   1565     rc = 1;
   1566     goto multi_select_end;
   1567   }
   1568 
   1569   v = sqlite3GetVdbe(pParse);
   1570   assert( v!=0 );  /* The VDBE already created by calling function */
   1571 
   1572   /* Create the destination temporary table if necessary
   1573   */
   1574   if( dest.eDest==SRT_EphemTab ){
   1575     assert( p->pEList );
   1576     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
   1577     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
   1578     dest.eDest = SRT_Table;
   1579   }
   1580 
   1581   /* Make sure all SELECTs in the statement have the same number of elements
   1582   ** in their result sets.
   1583   */
   1584   assert( p->pEList && pPrior->pEList );
   1585   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
   1586     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
   1587       " do not have the same number of result columns", selectOpName(p->op));
   1588     rc = 1;
   1589     goto multi_select_end;
   1590   }
   1591 
   1592   /* Compound SELECTs that have an ORDER BY clause are handled separately.
   1593   */
   1594   if( p->pOrderBy ){
   1595     return multiSelectOrderBy(pParse, p, pDest);
   1596   }
   1597 
   1598   /* Generate code for the left and right SELECT statements.
   1599   */
   1600   switch( p->op ){
   1601     case TK_ALL: {
   1602       int addr = 0;
   1603       int nLimit;
   1604       assert( !pPrior->pLimit );
   1605       pPrior->pLimit = p->pLimit;
   1606       pPrior->pOffset = p->pOffset;
   1607       explainSetInteger(iSub1, pParse->iNextSelectId);
   1608       rc = sqlite3Select(pParse, pPrior, &dest);
   1609       p->pLimit = 0;
   1610       p->pOffset = 0;
   1611       if( rc ){
   1612         goto multi_select_end;
   1613       }
   1614       p->pPrior = 0;
   1615       p->iLimit = pPrior->iLimit;
   1616       p->iOffset = pPrior->iOffset;
   1617       if( p->iLimit ){
   1618         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
   1619         VdbeComment((v, "Jump ahead if LIMIT reached"));
   1620       }
   1621       explainSetInteger(iSub2, pParse->iNextSelectId);
   1622       rc = sqlite3Select(pParse, p, &dest);
   1623       testcase( rc!=SQLITE_OK );
   1624       pDelete = p->pPrior;
   1625       p->pPrior = pPrior;
   1626       p->nSelectRow += pPrior->nSelectRow;
   1627       if( pPrior->pLimit
   1628        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
   1629        && p->nSelectRow > (double)nLimit
   1630       ){
   1631         p->nSelectRow = (double)nLimit;
   1632       }
   1633       if( addr ){
   1634         sqlite3VdbeJumpHere(v, addr);
   1635       }
   1636       break;
   1637     }
   1638     case TK_EXCEPT:
   1639     case TK_UNION: {
   1640       int unionTab;    /* Cursor number of the temporary table holding result */
   1641       u8 op = 0;       /* One of the SRT_ operations to apply to self */
   1642       int priorOp;     /* The SRT_ operation to apply to prior selects */
   1643       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
   1644       int addr;
   1645       SelectDest uniondest;
   1646 
   1647       testcase( p->op==TK_EXCEPT );
   1648       testcase( p->op==TK_UNION );
   1649       priorOp = SRT_Union;
   1650       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
   1651         /* We can reuse a temporary table generated by a SELECT to our
   1652         ** right.
   1653         */
   1654         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
   1655                                      ** of a 3-way or more compound */
   1656         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
   1657         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
   1658         unionTab = dest.iParm;
   1659       }else{
   1660         /* We will need to create our own temporary table to hold the
   1661         ** intermediate results.
   1662         */
   1663         unionTab = pParse->nTab++;
   1664         assert( p->pOrderBy==0 );
   1665         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
   1666         assert( p->addrOpenEphm[0] == -1 );
   1667         p->addrOpenEphm[0] = addr;
   1668         p->pRightmost->selFlags |= SF_UsesEphemeral;
   1669         assert( p->pEList );
   1670       }
   1671 
   1672       /* Code the SELECT statements to our left
   1673       */
   1674       assert( !pPrior->pOrderBy );
   1675       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
   1676       explainSetInteger(iSub1, pParse->iNextSelectId);
   1677       rc = sqlite3Select(pParse, pPrior, &uniondest);
   1678       if( rc ){
   1679         goto multi_select_end;
   1680       }
   1681 
   1682       /* Code the current SELECT statement
   1683       */
   1684       if( p->op==TK_EXCEPT ){
   1685         op = SRT_Except;
   1686       }else{
   1687         assert( p->op==TK_UNION );
   1688         op = SRT_Union;
   1689       }
   1690       p->pPrior = 0;
   1691       pLimit = p->pLimit;
   1692       p->pLimit = 0;
   1693       pOffset = p->pOffset;
   1694       p->pOffset = 0;
   1695       uniondest.eDest = op;
   1696       explainSetInteger(iSub2, pParse->iNextSelectId);
   1697       rc = sqlite3Select(pParse, p, &uniondest);
   1698       testcase( rc!=SQLITE_OK );
   1699       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
   1700       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
   1701       sqlite3ExprListDelete(db, p->pOrderBy);
   1702       pDelete = p->pPrior;
   1703       p->pPrior = pPrior;
   1704       p->pOrderBy = 0;
   1705       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
   1706       sqlite3ExprDelete(db, p->pLimit);
   1707       p->pLimit = pLimit;
   1708       p->pOffset = pOffset;
   1709       p->iLimit = 0;
   1710       p->iOffset = 0;
   1711 
   1712       /* Convert the data in the temporary table into whatever form
   1713       ** it is that we currently need.
   1714       */
   1715       assert( unionTab==dest.iParm || dest.eDest!=priorOp );
   1716       if( dest.eDest!=priorOp ){
   1717         int iCont, iBreak, iStart;
   1718         assert( p->pEList );
   1719         if( dest.eDest==SRT_Output ){
   1720           Select *pFirst = p;
   1721           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
   1722           generateColumnNames(pParse, 0, pFirst->pEList);
   1723         }
   1724         iBreak = sqlite3VdbeMakeLabel(v);
   1725         iCont = sqlite3VdbeMakeLabel(v);
   1726         computeLimitRegisters(pParse, p, iBreak);
   1727         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
   1728         iStart = sqlite3VdbeCurrentAddr(v);
   1729         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
   1730                         0, -1, &dest, iCont, iBreak);
   1731         sqlite3VdbeResolveLabel(v, iCont);
   1732         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
   1733         sqlite3VdbeResolveLabel(v, iBreak);
   1734         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
   1735       }
   1736       break;
   1737     }
   1738     default: assert( p->op==TK_INTERSECT ); {
   1739       int tab1, tab2;
   1740       int iCont, iBreak, iStart;
   1741       Expr *pLimit, *pOffset;
   1742       int addr;
   1743       SelectDest intersectdest;
   1744       int r1;
   1745 
   1746       /* INTERSECT is different from the others since it requires
   1747       ** two temporary tables.  Hence it has its own case.  Begin
   1748       ** by allocating the tables we will need.
   1749       */
   1750       tab1 = pParse->nTab++;
   1751       tab2 = pParse->nTab++;
   1752       assert( p->pOrderBy==0 );
   1753 
   1754       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
   1755       assert( p->addrOpenEphm[0] == -1 );
   1756       p->addrOpenEphm[0] = addr;
   1757       p->pRightmost->selFlags |= SF_UsesEphemeral;
   1758       assert( p->pEList );
   1759 
   1760       /* Code the SELECTs to our left into temporary table "tab1".
   1761       */
   1762       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
   1763       explainSetInteger(iSub1, pParse->iNextSelectId);
   1764       rc = sqlite3Select(pParse, pPrior, &intersectdest);
   1765       if( rc ){
   1766         goto multi_select_end;
   1767       }
   1768 
   1769       /* Code the current SELECT into temporary table "tab2"
   1770       */
   1771       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
   1772       assert( p->addrOpenEphm[1] == -1 );
   1773       p->addrOpenEphm[1] = addr;
   1774       p->pPrior = 0;
   1775       pLimit = p->pLimit;
   1776       p->pLimit = 0;
   1777       pOffset = p->pOffset;
   1778       p->pOffset = 0;
   1779       intersectdest.iParm = tab2;
   1780       explainSetInteger(iSub2, pParse->iNextSelectId);
   1781       rc = sqlite3Select(pParse, p, &intersectdest);
   1782       testcase( rc!=SQLITE_OK );
   1783       pDelete = p->pPrior;
   1784       p->pPrior = pPrior;
   1785       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
   1786       sqlite3ExprDelete(db, p->pLimit);
   1787       p->pLimit = pLimit;
   1788       p->pOffset = pOffset;
   1789 
   1790       /* Generate code to take the intersection of the two temporary
   1791       ** tables.
   1792       */
   1793       assert( p->pEList );
   1794       if( dest.eDest==SRT_Output ){
   1795         Select *pFirst = p;
   1796         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
   1797         generateColumnNames(pParse, 0, pFirst->pEList);
   1798       }
   1799       iBreak = sqlite3VdbeMakeLabel(v);
   1800       iCont = sqlite3VdbeMakeLabel(v);
   1801       computeLimitRegisters(pParse, p, iBreak);
   1802       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
   1803       r1 = sqlite3GetTempReg(pParse);
   1804       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
   1805       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
   1806       sqlite3ReleaseTempReg(pParse, r1);
   1807       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
   1808                       0, -1, &dest, iCont, iBreak);
   1809       sqlite3VdbeResolveLabel(v, iCont);
   1810       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
   1811       sqlite3VdbeResolveLabel(v, iBreak);
   1812       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
   1813       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
   1814       break;
   1815     }
   1816   }
   1817 
   1818   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
   1819 
   1820   /* Compute collating sequences used by
   1821   ** temporary tables needed to implement the compound select.
   1822   ** Attach the KeyInfo structure to all temporary tables.
   1823   **
   1824   ** This section is run by the right-most SELECT statement only.
   1825   ** SELECT statements to the left always skip this part.  The right-most
   1826   ** SELECT might also skip this part if it has no ORDER BY clause and
   1827   ** no temp tables are required.
   1828   */
   1829   if( p->selFlags & SF_UsesEphemeral ){
   1830     int i;                        /* Loop counter */
   1831     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
   1832     Select *pLoop;                /* For looping through SELECT statements */
   1833     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
   1834     int nCol;                     /* Number of columns in result set */
   1835 
   1836     assert( p->pRightmost==p );
   1837     nCol = p->pEList->nExpr;
   1838     pKeyInfo = sqlite3DbMallocZero(db,
   1839                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
   1840     if( !pKeyInfo ){
   1841       rc = SQLITE_NOMEM;
   1842       goto multi_select_end;
   1843     }
   1844 
   1845     pKeyInfo->enc = ENC(db);
   1846     pKeyInfo->nField = (u16)nCol;
   1847 
   1848     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
   1849       *apColl = multiSelectCollSeq(pParse, p, i);
   1850       if( 0==*apColl ){
   1851         *apColl = db->pDfltColl;
   1852       }
   1853     }
   1854 
   1855     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
   1856       for(i=0; i<2; i++){
   1857         int addr = pLoop->addrOpenEphm[i];
   1858         if( addr<0 ){
   1859           /* If [0] is unused then [1] is also unused.  So we can
   1860           ** always safely abort as soon as the first unused slot is found */
   1861           assert( pLoop->addrOpenEphm[1]<0 );
   1862           break;
   1863         }
   1864         sqlite3VdbeChangeP2(v, addr, nCol);
   1865         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
   1866         pLoop->addrOpenEphm[i] = -1;
   1867       }
   1868     }
   1869     sqlite3DbFree(db, pKeyInfo);
   1870   }
   1871 
   1872 multi_select_end:
   1873   pDest->iMem = dest.iMem;
   1874   pDest->nMem = dest.nMem;
   1875   sqlite3SelectDelete(db, pDelete);
   1876   return rc;
   1877 }
   1878 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
   1879 
   1880 /*
   1881 ** Code an output subroutine for a coroutine implementation of a
   1882 ** SELECT statment.
   1883 **
   1884 ** The data to be output is contained in pIn->iMem.  There are
   1885 ** pIn->nMem columns to be output.  pDest is where the output should
   1886 ** be sent.
   1887 **
   1888 ** regReturn is the number of the register holding the subroutine
   1889 ** return address.
   1890 **
   1891 ** If regPrev>0 then it is the first register in a vector that
   1892 ** records the previous output.  mem[regPrev] is a flag that is false
   1893 ** if there has been no previous output.  If regPrev>0 then code is
   1894 ** generated to suppress duplicates.  pKeyInfo is used for comparing
   1895 ** keys.
   1896 **
   1897 ** If the LIMIT found in p->iLimit is reached, jump immediately to
   1898 ** iBreak.
   1899 */
   1900 static int generateOutputSubroutine(
   1901   Parse *pParse,          /* Parsing context */
   1902   Select *p,              /* The SELECT statement */
   1903   SelectDest *pIn,        /* Coroutine supplying data */
   1904   SelectDest *pDest,      /* Where to send the data */
   1905   int regReturn,          /* The return address register */
   1906   int regPrev,            /* Previous result register.  No uniqueness if 0 */
   1907   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
   1908   int p4type,             /* The p4 type for pKeyInfo */
   1909   int iBreak              /* Jump here if we hit the LIMIT */
   1910 ){
   1911   Vdbe *v = pParse->pVdbe;
   1912   int iContinue;
   1913   int addr;
   1914 
   1915   addr = sqlite3VdbeCurrentAddr(v);
   1916   iContinue = sqlite3VdbeMakeLabel(v);
   1917 
   1918   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
   1919   */
   1920   if( regPrev ){
   1921     int j1, j2;
   1922     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
   1923     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
   1924                               (char*)pKeyInfo, p4type);
   1925     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
   1926     sqlite3VdbeJumpHere(v, j1);
   1927     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
   1928     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
   1929   }
   1930   if( pParse->db->mallocFailed ) return 0;
   1931 
   1932   /* Suppress the the first OFFSET entries if there is an OFFSET clause
   1933   */
   1934   codeOffset(v, p, iContinue);
   1935 
   1936   switch( pDest->eDest ){
   1937     /* Store the result as data using a unique key.
   1938     */
   1939     case SRT_Table:
   1940     case SRT_EphemTab: {
   1941       int r1 = sqlite3GetTempReg(pParse);
   1942       int r2 = sqlite3GetTempReg(pParse);
   1943       testcase( pDest->eDest==SRT_Table );
   1944       testcase( pDest->eDest==SRT_EphemTab );
   1945       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
   1946       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
   1947       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
   1948       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
   1949       sqlite3ReleaseTempReg(pParse, r2);
   1950       sqlite3ReleaseTempReg(pParse, r1);
   1951       break;
   1952     }
   1953 
   1954 #ifndef SQLITE_OMIT_SUBQUERY
   1955     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
   1956     ** then there should be a single item on the stack.  Write this
   1957     ** item into the set table with bogus data.
   1958     */
   1959     case SRT_Set: {
   1960       int r1;
   1961       assert( pIn->nMem==1 );
   1962       p->affinity =
   1963          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
   1964       r1 = sqlite3GetTempReg(pParse);
   1965       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
   1966       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
   1967       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
   1968       sqlite3ReleaseTempReg(pParse, r1);
   1969       break;
   1970     }
   1971 
   1972 #if 0  /* Never occurs on an ORDER BY query */
   1973     /* If any row exist in the result set, record that fact and abort.
   1974     */
   1975     case SRT_Exists: {
   1976       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
   1977       /* The LIMIT clause will terminate the loop for us */
   1978       break;
   1979     }
   1980 #endif
   1981 
   1982     /* If this is a scalar select that is part of an expression, then
   1983     ** store the results in the appropriate memory cell and break out
   1984     ** of the scan loop.
   1985     */
   1986     case SRT_Mem: {
   1987       assert( pIn->nMem==1 );
   1988       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
   1989       /* The LIMIT clause will jump out of the loop for us */
   1990       break;
   1991     }
   1992 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
   1993 
   1994     /* The results are stored in a sequence of registers
   1995     ** starting at pDest->iMem.  Then the co-routine yields.
   1996     */
   1997     case SRT_Coroutine: {
   1998       if( pDest->iMem==0 ){
   1999         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
   2000         pDest->nMem = pIn->nMem;
   2001       }
   2002       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
   2003       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
   2004       break;
   2005     }
   2006 
   2007     /* If none of the above, then the result destination must be
   2008     ** SRT_Output.  This routine is never called with any other
   2009     ** destination other than the ones handled above or SRT_Output.
   2010     **
   2011     ** For SRT_Output, results are stored in a sequence of registers.
   2012     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
   2013     ** return the next row of result.
   2014     */
   2015     default: {
   2016       assert( pDest->eDest==SRT_Output );
   2017       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
   2018       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
   2019       break;
   2020     }
   2021   }
   2022 
   2023   /* Jump to the end of the loop if the LIMIT is reached.
   2024   */
   2025   if( p->iLimit ){
   2026     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
   2027   }
   2028 
   2029   /* Generate the subroutine return
   2030   */
   2031   sqlite3VdbeResolveLabel(v, iContinue);
   2032   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
   2033 
   2034   return addr;
   2035 }
   2036 
   2037 /*
   2038 ** Alternative compound select code generator for cases when there
   2039 ** is an ORDER BY clause.
   2040 **
   2041 ** We assume a query of the following form:
   2042 **
   2043 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
   2044 **
   2045 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
   2046 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
   2047 ** co-routines.  Then run the co-routines in parallel and merge the results
   2048 ** into the output.  In addition to the two coroutines (called selectA and
   2049 ** selectB) there are 7 subroutines:
   2050 **
   2051 **    outA:    Move the output of the selectA coroutine into the output
   2052 **             of the compound query.
   2053 **
   2054 **    outB:    Move the output of the selectB coroutine into the output
   2055 **             of the compound query.  (Only generated for UNION and
   2056 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
   2057 **             appears only in B.)
   2058 **
   2059 **    AltB:    Called when there is data from both coroutines and A<B.
   2060 **
   2061 **    AeqB:    Called when there is data from both coroutines and A==B.
   2062 **
   2063 **    AgtB:    Called when there is data from both coroutines and A>B.
   2064 **
   2065 **    EofA:    Called when data is exhausted from selectA.
   2066 **
   2067 **    EofB:    Called when data is exhausted from selectB.
   2068 **
   2069 ** The implementation of the latter five subroutines depend on which
   2070 ** <operator> is used:
   2071 **
   2072 **
   2073 **             UNION ALL         UNION            EXCEPT          INTERSECT
   2074 **          -------------  -----------------  --------------  -----------------
   2075 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
   2076 **
   2077 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
   2078 **
   2079 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
   2080 **
   2081 **   EofA:   outB, nextB      outB, nextB          halt             halt
   2082 **
   2083 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
   2084 **
   2085 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
   2086 ** causes an immediate jump to EofA and an EOF on B following nextB causes
   2087 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
   2088 ** following nextX causes a jump to the end of the select processing.
   2089 **
   2090 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
   2091 ** within the output subroutine.  The regPrev register set holds the previously
   2092 ** output value.  A comparison is made against this value and the output
   2093 ** is skipped if the next results would be the same as the previous.
   2094 **
   2095 ** The implementation plan is to implement the two coroutines and seven
   2096 ** subroutines first, then put the control logic at the bottom.  Like this:
   2097 **
   2098 **          goto Init
   2099 **     coA: coroutine for left query (A)
   2100 **     coB: coroutine for right query (B)
   2101 **    outA: output one row of A
   2102 **    outB: output one row of B (UNION and UNION ALL only)
   2103 **    EofA: ...
   2104 **    EofB: ...
   2105 **    AltB: ...
   2106 **    AeqB: ...
   2107 **    AgtB: ...
   2108 **    Init: initialize coroutine registers
   2109 **          yield coA
   2110 **          if eof(A) goto EofA
   2111 **          yield coB
   2112 **          if eof(B) goto EofB
   2113 **    Cmpr: Compare A, B
   2114 **          Jump AltB, AeqB, AgtB
   2115 **     End: ...
   2116 **
   2117 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
   2118 ** actually called using Gosub and they do not Return.  EofA and EofB loop
   2119 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
   2120 ** and AgtB jump to either L2 or to one of EofA or EofB.
   2121 */
   2122 #ifndef SQLITE_OMIT_COMPOUND_SELECT
   2123 static int multiSelectOrderBy(
   2124   Parse *pParse,        /* Parsing context */
   2125   Select *p,            /* The right-most of SELECTs to be coded */
   2126   SelectDest *pDest     /* What to do with query results */
   2127 ){
   2128   int i, j;             /* Loop counters */
   2129   Select *pPrior;       /* Another SELECT immediately to our left */
   2130   Vdbe *v;              /* Generate code to this VDBE */
   2131   SelectDest destA;     /* Destination for coroutine A */
   2132   SelectDest destB;     /* Destination for coroutine B */
   2133   int regAddrA;         /* Address register for select-A coroutine */
   2134   int regEofA;          /* Flag to indicate when select-A is complete */
   2135   int regAddrB;         /* Address register for select-B coroutine */
   2136   int regEofB;          /* Flag to indicate when select-B is complete */
   2137   int addrSelectA;      /* Address of the select-A coroutine */
   2138   int addrSelectB;      /* Address of the select-B coroutine */
   2139   int regOutA;          /* Address register for the output-A subroutine */
   2140   int regOutB;          /* Address register for the output-B subroutine */
   2141   int addrOutA;         /* Address of the output-A subroutine */
   2142   int addrOutB = 0;     /* Address of the output-B subroutine */
   2143   int addrEofA;         /* Address of the select-A-exhausted subroutine */
   2144   int addrEofB;         /* Address of the select-B-exhausted subroutine */
   2145   int addrAltB;         /* Address of the A<B subroutine */
   2146   int addrAeqB;         /* Address of the A==B subroutine */
   2147   int addrAgtB;         /* Address of the A>B subroutine */
   2148   int regLimitA;        /* Limit register for select-A */
   2149   int regLimitB;        /* Limit register for select-A */
   2150   int regPrev;          /* A range of registers to hold previous output */
   2151   int savedLimit;       /* Saved value of p->iLimit */
   2152   int savedOffset;      /* Saved value of p->iOffset */
   2153   int labelCmpr;        /* Label for the start of the merge algorithm */
   2154   int labelEnd;         /* Label for the end of the overall SELECT stmt */
   2155   int j1;               /* Jump instructions that get retargetted */
   2156   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
   2157   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
   2158   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
   2159   sqlite3 *db;          /* Database connection */
   2160   ExprList *pOrderBy;   /* The ORDER BY clause */
   2161   int nOrderBy;         /* Number of terms in the ORDER BY clause */
   2162   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
   2163 #ifndef SQLITE_OMIT_EXPLAIN
   2164   int iSub1;            /* EQP id of left-hand query */
   2165   int iSub2;            /* EQP id of right-hand query */
   2166 #endif
   2167 
   2168   assert( p->pOrderBy!=0 );
   2169   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
   2170   db = pParse->db;
   2171   v = pParse->pVdbe;
   2172   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
   2173   labelEnd = sqlite3VdbeMakeLabel(v);
   2174   labelCmpr = sqlite3VdbeMakeLabel(v);
   2175 
   2176 
   2177   /* Patch up the ORDER BY clause
   2178   */
   2179   op = p->op;
   2180   pPrior = p->pPrior;
   2181   assert( pPrior->pOrderBy==0 );
   2182   pOrderBy = p->pOrderBy;
   2183   assert( pOrderBy );
   2184   nOrderBy = pOrderBy->nExpr;
   2185 
   2186   /* For operators other than UNION ALL we have to make sure that
   2187   ** the ORDER BY clause covers every term of the result set.  Add
   2188   ** terms to the ORDER BY clause as necessary.
   2189   */
   2190   if( op!=TK_ALL ){
   2191     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
   2192       struct ExprList_item *pItem;
   2193       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
   2194         assert( pItem->iCol>0 );
   2195         if( pItem->iCol==i ) break;
   2196       }
   2197       if( j==nOrderBy ){
   2198         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
   2199         if( pNew==0 ) return SQLITE_NOMEM;
   2200         pNew->flags |= EP_IntValue;
   2201         pNew->u.iValue = i;
   2202         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
   2203         pOrderBy->a[nOrderBy++].iCol = (u16)i;
   2204       }
   2205     }
   2206   }
   2207 
   2208   /* Compute the comparison permutation and keyinfo that is used with
   2209   ** the permutation used to determine if the next
   2210   ** row of results comes from selectA or selectB.  Also add explicit
   2211   ** collations to the ORDER BY clause terms so that when the subqueries
   2212   ** to the right and the left are evaluated, they use the correct
   2213   ** collation.
   2214   */
   2215   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
   2216   if( aPermute ){
   2217     struct ExprList_item *pItem;
   2218     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
   2219       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
   2220       aPermute[i] = pItem->iCol - 1;
   2221     }
   2222     pKeyMerge =
   2223       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
   2224     if( pKeyMerge ){
   2225       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
   2226       pKeyMerge->nField = (u16)nOrderBy;
   2227       pKeyMerge->enc = ENC(db);
   2228       for(i=0; i<nOrderBy; i++){
   2229         CollSeq *pColl;
   2230         Expr *pTerm = pOrderBy->a[i].pExpr;
   2231         if( pTerm->flags & EP_ExpCollate ){
   2232           pColl = pTerm->pColl;
   2233         }else{
   2234           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
   2235           pTerm->flags |= EP_ExpCollate;
   2236           pTerm->pColl = pColl;
   2237         }
   2238         pKeyMerge->aColl[i] = pColl;
   2239         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
   2240       }
   2241     }
   2242   }else{
   2243     pKeyMerge = 0;
   2244   }
   2245 
   2246   /* Reattach the ORDER BY clause to the query.
   2247   */
   2248   p->pOrderBy = pOrderBy;
   2249   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
   2250 
   2251   /* Allocate a range of temporary registers and the KeyInfo needed
   2252   ** for the logic that removes duplicate result rows when the
   2253   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
   2254   */
   2255   if( op==TK_ALL ){
   2256     regPrev = 0;
   2257   }else{
   2258     int nExpr = p->pEList->nExpr;
   2259     assert( nOrderBy>=nExpr || db->mallocFailed );
   2260     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
   2261     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
   2262     pKeyDup = sqlite3DbMallocZero(db,
   2263                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
   2264     if( pKeyDup ){
   2265       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
   2266       pKeyDup->nField = (u16)nExpr;
   2267       pKeyDup->enc = ENC(db);
   2268       for(i=0; i<nExpr; i++){
   2269         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
   2270         pKeyDup->aSortOrder[i] = 0;
   2271       }
   2272     }
   2273   }
   2274 
   2275   /* Separate the left and the right query from one another
   2276   */
   2277   p->pPrior = 0;
   2278   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
   2279   if( pPrior->pPrior==0 ){
   2280     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
   2281   }
   2282 
   2283   /* Compute the limit registers */
   2284   computeLimitRegisters(pParse, p, labelEnd);
   2285   if( p->iLimit && op==TK_ALL ){
   2286     regLimitA = ++pParse->nMem;
   2287     regLimitB = ++pParse->nMem;
   2288     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
   2289                                   regLimitA);
   2290     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
   2291   }else{
   2292     regLimitA = regLimitB = 0;
   2293   }
   2294   sqlite3ExprDelete(db, p->pLimit);
   2295   p->pLimit = 0;
   2296   sqlite3ExprDelete(db, p->pOffset);
   2297   p->pOffset = 0;
   2298 
   2299   regAddrA = ++pParse->nMem;
   2300   regEofA = ++pParse->nMem;
   2301   regAddrB = ++pParse->nMem;
   2302   regEofB = ++pParse->nMem;
   2303   regOutA = ++pParse->nMem;
   2304   regOutB = ++pParse->nMem;
   2305   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
   2306   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
   2307 
   2308   /* Jump past the various subroutines and coroutines to the main
   2309   ** merge loop
   2310   */
   2311   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
   2312   addrSelectA = sqlite3VdbeCurrentAddr(v);
   2313 
   2314 
   2315   /* Generate a coroutine to evaluate the SELECT statement to the
   2316   ** left of the compound operator - the "A" select.
   2317   */
   2318   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
   2319   pPrior->iLimit = regLimitA;
   2320   explainSetInteger(iSub1, pParse->iNextSelectId);
   2321   sqlite3Select(pParse, pPrior, &destA);
   2322   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
   2323   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
   2324   VdbeNoopComment((v, "End coroutine for left SELECT"));
   2325 
   2326   /* Generate a coroutine to evaluate the SELECT statement on
   2327   ** the right - the "B" select
   2328   */
   2329   addrSelectB = sqlite3VdbeCurrentAddr(v);
   2330   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
   2331   savedLimit = p->iLimit;
   2332   savedOffset = p->iOffset;
   2333   p->iLimit = regLimitB;
   2334   p->iOffset = 0;
   2335   explainSetInteger(iSub2, pParse->iNextSelectId);
   2336   sqlite3Select(pParse, p, &destB);
   2337   p->iLimit = savedLimit;
   2338   p->iOffset = savedOffset;
   2339   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
   2340   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
   2341   VdbeNoopComment((v, "End coroutine for right SELECT"));
   2342 
   2343   /* Generate a subroutine that outputs the current row of the A
   2344   ** select as the next output row of the compound select.
   2345   */
   2346   VdbeNoopComment((v, "Output routine for A"));
   2347   addrOutA = generateOutputSubroutine(pParse,
   2348                  p, &destA, pDest, regOutA,
   2349                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
   2350 
   2351   /* Generate a subroutine that outputs the current row of the B
   2352   ** select as the next output row of the compound select.
   2353   */
   2354   if( op==TK_ALL || op==TK_UNION ){
   2355     VdbeNoopComment((v, "Output routine for B"));
   2356     addrOutB = generateOutputSubroutine(pParse,
   2357                  p, &destB, pDest, regOutB,
   2358                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
   2359   }
   2360 
   2361   /* Generate a subroutine to run when the results from select A
   2362   ** are exhausted and only data in select B remains.
   2363   */
   2364   VdbeNoopComment((v, "eof-A subroutine"));
   2365   if( op==TK_EXCEPT || op==TK_INTERSECT ){
   2366     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
   2367   }else{
   2368     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
   2369     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
   2370     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
   2371     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
   2372     p->nSelectRow += pPrior->nSelectRow;
   2373   }
   2374 
   2375   /* Generate a subroutine to run when the results from select B
   2376   ** are exhausted and only data in select A remains.
   2377   */
   2378   if( op==TK_INTERSECT ){
   2379     addrEofB = addrEofA;
   2380     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
   2381   }else{
   2382     VdbeNoopComment((v, "eof-B subroutine"));
   2383     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
   2384     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
   2385     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
   2386     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
   2387   }
   2388 
   2389   /* Generate code to handle the case of A<B
   2390   */
   2391   VdbeNoopComment((v, "A-lt-B subroutine"));
   2392   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
   2393   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
   2394   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
   2395   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
   2396 
   2397   /* Generate code to handle the case of A==B
   2398   */
   2399   if( op==TK_ALL ){
   2400     addrAeqB = addrAltB;
   2401   }else if( op==TK_INTERSECT ){
   2402     addrAeqB = addrAltB;
   2403     addrAltB++;
   2404   }else{
   2405     VdbeNoopComment((v, "A-eq-B subroutine"));
   2406     addrAeqB =
   2407     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
   2408     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
   2409     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
   2410   }
   2411 
   2412   /* Generate code to handle the case of A>B
   2413   */
   2414   VdbeNoopComment((v, "A-gt-B subroutine"));
   2415   addrAgtB = sqlite3VdbeCurrentAddr(v);
   2416   if( op==TK_ALL || op==TK_UNION ){
   2417     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
   2418   }
   2419   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
   2420   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
   2421   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
   2422 
   2423   /* This code runs once to initialize everything.
   2424   */
   2425   sqlite3VdbeJumpHere(v, j1);
   2426   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
   2427   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
   2428   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
   2429   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
   2430   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
   2431   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
   2432 
   2433   /* Implement the main merge loop
   2434   */
   2435   sqlite3VdbeResolveLabel(v, labelCmpr);
   2436   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
   2437   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
   2438                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
   2439   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
   2440 
   2441   /* Release temporary registers
   2442   */
   2443   if( regPrev ){
   2444     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
   2445   }
   2446 
   2447   /* Jump to the this point in order to terminate the query.
   2448   */
   2449   sqlite3VdbeResolveLabel(v, labelEnd);
   2450 
   2451   /* Set the number of output columns
   2452   */
   2453   if( pDest->eDest==SRT_Output ){
   2454     Select *pFirst = pPrior;
   2455     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
   2456     generateColumnNames(pParse, 0, pFirst->pEList);
   2457   }
   2458 
   2459   /* Reassembly the compound query so that it will be freed correctly
   2460   ** by the calling function */
   2461   if( p->pPrior ){
   2462     sqlite3SelectDelete(db, p->pPrior);
   2463   }
   2464   p->pPrior = pPrior;
   2465 
   2466   /*** TBD:  Insert subroutine calls to close cursors on incomplete
   2467   **** subqueries ****/
   2468   explainComposite(pParse, p->op, iSub1, iSub2, 0);
   2469   return SQLITE_OK;
   2470 }
   2471 #endif
   2472 
   2473 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
   2474 /* Forward Declarations */
   2475 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
   2476 static void substSelect(sqlite3*, Select *, int, ExprList *);
   2477 
   2478 /*
   2479 ** Scan through the expression pExpr.  Replace every reference to
   2480 ** a column in table number iTable with a copy of the iColumn-th
   2481 ** entry in pEList.  (But leave references to the ROWID column
   2482 ** unchanged.)
   2483 **
   2484 ** This routine is part of the flattening procedure.  A subquery
   2485 ** whose result set is defined by pEList appears as entry in the
   2486 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
   2487 ** FORM clause entry is iTable.  This routine make the necessary
   2488 ** changes to pExpr so that it refers directly to the source table
   2489 ** of the subquery rather the result set of the subquery.
   2490 */
   2491 static Expr *substExpr(
   2492   sqlite3 *db,        /* Report malloc errors to this connection */
   2493   Expr *pExpr,        /* Expr in which substitution occurs */
   2494   int iTable,         /* Table to be substituted */
   2495   ExprList *pEList    /* Substitute expressions */
   2496 ){
   2497   if( pExpr==0 ) return 0;
   2498   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
   2499     if( pExpr->iColumn<0 ){
   2500       pExpr->op = TK_NULL;
   2501     }else{
   2502       Expr *pNew;
   2503       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
   2504       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
   2505       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
   2506       if( pNew && pExpr->pColl ){
   2507         pNew->pColl = pExpr->pColl;
   2508       }
   2509       sqlite3ExprDelete(db, pExpr);
   2510       pExpr = pNew;
   2511     }
   2512   }else{
   2513     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
   2514     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
   2515     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
   2516       substSelect(db, pExpr->x.pSelect, iTable, pEList);
   2517     }else{
   2518       substExprList(db, pExpr->x.pList, iTable, pEList);
   2519     }
   2520   }
   2521   return pExpr;
   2522 }
   2523 static void substExprList(
   2524   sqlite3 *db,         /* Report malloc errors here */
   2525   ExprList *pList,     /* List to scan and in which to make substitutes */
   2526   int iTable,          /* Table to be substituted */
   2527   ExprList *pEList     /* Substitute values */
   2528 ){
   2529   int i;
   2530   if( pList==0 ) return;
   2531   for(i=0; i<pList->nExpr; i++){
   2532     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
   2533   }
   2534 }
   2535 static void substSelect(
   2536   sqlite3 *db,         /* Report malloc errors here */
   2537   Select *p,           /* SELECT statement in which to make substitutions */
   2538   int iTable,          /* Table to be replaced */
   2539   ExprList *pEList     /* Substitute values */
   2540 ){
   2541   SrcList *pSrc;
   2542   struct SrcList_item *pItem;
   2543   int i;
   2544   if( !p ) return;
   2545   substExprList(db, p->pEList, iTable, pEList);
   2546   substExprList(db, p->pGroupBy, iTable, pEList);
   2547   substExprList(db, p->pOrderBy, iTable, pEList);
   2548   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
   2549   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
   2550   substSelect(db, p->pPrior, iTable, pEList);
   2551   pSrc = p->pSrc;
   2552   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
   2553   if( ALWAYS(pSrc) ){
   2554     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
   2555       substSelect(db, pItem->pSelect, iTable, pEList);
   2556     }
   2557   }
   2558 }
   2559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
   2560 
   2561 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
   2562 /*
   2563 ** This routine attempts to flatten subqueries in order to speed
   2564 ** execution.  It returns 1 if it makes changes and 0 if no flattening
   2565 ** occurs.
   2566 **
   2567 ** To understand the concept of flattening, consider the following
   2568 ** query:
   2569 **
   2570 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
   2571 **
   2572 ** The default way of implementing this query is to execute the
   2573 ** subquery first and store the results in a temporary table, then
   2574 ** run the outer query on that temporary table.  This requires two
   2575 ** passes over the data.  Furthermore, because the temporary table
   2576 ** has no indices, the WHERE clause on the outer query cannot be
   2577 ** optimized.
   2578 **
   2579 ** This routine attempts to rewrite queries such as the above into
   2580 ** a single flat select, like this:
   2581 **
   2582 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
   2583 **
   2584 ** The code generated for this simpification gives the same result
   2585 ** but only has to scan the data once.  And because indices might
   2586 ** exist on the table t1, a complete scan of the data might be
   2587 ** avoided.
   2588 **
   2589 ** Flattening is only attempted if all of the following are true:
   2590 **
   2591 **   (1)  The subquery and the outer query do not both use aggregates.
   2592 **
   2593 **   (2)  The subquery is not an aggregate or the outer query is not a join.
   2594 **
   2595 **   (3)  The subquery is not the right operand of a left outer join
   2596 **        (Originally ticket #306.  Strengthened by ticket #3300)
   2597 **
   2598 **   (4)  The subquery is not DISTINCT.
   2599 **
   2600 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
   2601 **        sub-queries that were excluded from this optimization. Restriction
   2602 **        (4) has since been expanded to exclude all DISTINCT subqueries.
   2603 **
   2604 **   (6)  The subquery does not use aggregates or the outer query is not
   2605 **        DISTINCT.
   2606 **
   2607 **   (7)  The subquery has a FROM clause.
   2608 **
   2609 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
   2610 **
   2611 **   (9)  The subquery does not use LIMIT or the outer query does not use
   2612 **        aggregates.
   2613 **
   2614 **  (10)  The subquery does not use aggregates or the outer query does not
   2615 **        use LIMIT.
   2616 **
   2617 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
   2618 **
   2619 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
   2620 **        a separate restriction deriving from ticket #350.
   2621 **
   2622 **  (13)  The subquery and outer query do not both use LIMIT.
   2623 **
   2624 **  (14)  The subquery does not use OFFSET.
   2625 **
   2626 **  (15)  The outer query is not part of a compound select or the
   2627 **        subquery does not have a LIMIT clause.
   2628 **        (See ticket #2339 and ticket [02a8e81d44]).
   2629 **
   2630 **  (16)  The outer query is not an aggregate or the subquery does
   2631 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
   2632 **        until we introduced the group_concat() function.
   2633 **
   2634 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
   2635 **        compound clause made up entirely of non-aggregate queries, and
   2636 **        the parent query:
   2637 **
   2638 **          * is not itself part of a compound select,
   2639 **          * is not an aggregate or DISTINCT query, and
   2640 **          * has no other tables or sub-selects in the FROM clause.
   2641 **
   2642 **        The parent and sub-query may contain WHERE clauses. Subject to
   2643 **        rules (11), (13) and (14), they may also contain ORDER BY,
   2644 **        LIMIT and OFFSET clauses.
   2645 **
   2646 **  (18)  If the sub-query is a compound select, then all terms of the
   2647 **        ORDER by clause of the parent must be simple references to
   2648 **        columns of the sub-query.
   2649 **
   2650 **  (19)  The subquery does not use LIMIT or the outer query does not
   2651 **        have a WHERE clause.
   2652 **
   2653 **  (20)  If the sub-query is a compound select, then it must not use
   2654 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
   2655 **        somewhat by saying that the terms of the ORDER BY clause must
   2656 **        appear as unmodified result columns in the outer query.  But
   2657 **        have other optimizations in mind to deal with that case.
   2658 **
   2659 **  (21)  The subquery does not use LIMIT or the outer query is not
   2660 **        DISTINCT.  (See ticket [752e1646fc]).
   2661 **
   2662 ** In this routine, the "p" parameter is a pointer to the outer query.
   2663 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
   2664 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
   2665 **
   2666 ** If flattening is not attempted, this routine is a no-op and returns 0.
   2667 ** If flattening is attempted this routine returns 1.
   2668 **
   2669 ** All of the expression analysis must occur on both the outer query and
   2670 ** the subquery before this routine runs.
   2671 */
   2672 static int flattenSubquery(
   2673   Parse *pParse,       /* Parsing context */
   2674   Select *p,           /* The parent or outer SELECT statement */
   2675   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
   2676   int isAgg,           /* True if outer SELECT uses aggregate functions */
   2677   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
   2678 ){
   2679   const char *zSavedAuthContext = pParse->zAuthContext;
   2680   Select *pParent;
   2681   Select *pSub;       /* The inner query or "subquery" */
   2682   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
   2683   SrcList *pSrc;      /* The FROM clause of the outer query */
   2684   SrcList *pSubSrc;   /* The FROM clause of the subquery */
   2685   ExprList *pList;    /* The result set of the outer query */
   2686   int iParent;        /* VDBE cursor number of the pSub result set temp table */
   2687   int i;              /* Loop counter */
   2688   Expr *pWhere;                    /* The WHERE clause */
   2689   struct SrcList_item *pSubitem;   /* The subquery */
   2690   sqlite3 *db = pParse->db;
   2691 
   2692   /* Check to see if flattening is permitted.  Return 0 if not.
   2693   */
   2694   assert( p!=0 );
   2695   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
   2696   if( db->flags & SQLITE_QueryFlattener ) return 0;
   2697   pSrc = p->pSrc;
   2698   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
   2699   pSubitem = &pSrc->a[iFrom];
   2700   iParent = pSubitem->iCursor;
   2701   pSub = pSubitem->pSelect;
   2702   assert( pSub!=0 );
   2703   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
   2704   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
   2705   pSubSrc = pSub->pSrc;
   2706   assert( pSubSrc );
   2707   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
   2708   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
   2709   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
   2710   ** became arbitrary expressions, we were forced to add restrictions (13)
   2711   ** and (14). */
   2712   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
   2713   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
   2714   if( p->pRightmost && pSub->pLimit ){
   2715     return 0;                                            /* Restriction (15) */
   2716   }
   2717   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
   2718   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
   2719   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
   2720      return 0;         /* Restrictions (8)(9) */
   2721   }
   2722   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
   2723      return 0;         /* Restriction (6)  */
   2724   }
   2725   if( p->pOrderBy && pSub->pOrderBy ){
   2726      return 0;                                           /* Restriction (11) */
   2727   }
   2728   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
   2729   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
   2730   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
   2731      return 0;         /* Restriction (21) */
   2732   }
   2733 
   2734   /* OBSOLETE COMMENT 1:
   2735   ** Restriction 3:  If the subquery is a join, make sure the subquery is
   2736   ** not used as the right operand of an outer join.  Examples of why this
   2737   ** is not allowed:
   2738   **
   2739   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
   2740   **
   2741   ** If we flatten the above, we would get
   2742   **
   2743   **         (t1 LEFT OUTER JOIN t2) JOIN t3
   2744   **
   2745   ** which is not at all the same thing.
   2746   **
   2747   ** OBSOLETE COMMENT 2:
   2748   ** Restriction 12:  If the subquery is the right operand of a left outer
   2749   ** join, make sure the subquery has no WHERE clause.
   2750   ** An examples of why this is not allowed:
   2751   **
   2752   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
   2753   **
   2754   ** If we flatten the above, we would get
   2755   **
   2756   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
   2757   **
   2758   ** But the t2.x>0 test will always fail on a NULL row of t2, which
   2759   ** effectively converts the OUTER JOIN into an INNER JOIN.
   2760   **
   2761   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
   2762   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
   2763   ** is fraught with danger.  Best to avoid the whole thing.  If the
   2764   ** subquery is the right term of a LEFT JOIN, then do not flatten.
   2765   */
   2766   if( (pSubitem->jointype & JT_OUTER)!=0 ){
   2767     return 0;
   2768   }
   2769 
   2770   /* Restriction 17: If the sub-query is a compound SELECT, then it must
   2771   ** use only the UNION ALL operator. And none of the simple select queries
   2772   ** that make up the compound SELECT are allowed to be aggregate or distinct
   2773   ** queries.
   2774   */
   2775   if( pSub->pPrior ){
   2776     if( pSub->pOrderBy ){
   2777       return 0;  /* Restriction 20 */
   2778     }
   2779     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
   2780       return 0;
   2781     }
   2782     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
   2783       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
   2784       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
   2785       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
   2786        || (pSub1->pPrior && pSub1->op!=TK_ALL)
   2787        || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1
   2788       ){
   2789         return 0;
   2790       }
   2791     }
   2792 
   2793     /* Restriction 18. */
   2794     if( p->pOrderBy ){
   2795       int ii;
   2796       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
   2797         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
   2798       }
   2799     }
   2800   }
   2801 
   2802   /***** If we reach this point, flattening is permitted. *****/
   2803 
   2804   /* Authorize the subquery */
   2805   pParse->zAuthContext = pSubitem->zName;
   2806   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
   2807   pParse->zAuthContext = zSavedAuthContext;
   2808 
   2809   /* If the sub-query is a compound SELECT statement, then (by restrictions
   2810   ** 17 and 18 above) it must be a UNION ALL and the parent query must
   2811   ** be of the form:
   2812   **
   2813   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
   2814   **
   2815   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
   2816   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
   2817   ** OFFSET clauses and joins them to the left-hand-side of the original
   2818   ** using UNION ALL operators. In this case N is the number of simple
   2819   ** select statements in the compound sub-query.
   2820   **
   2821   ** Example:
   2822   **
   2823   **     SELECT a+1 FROM (
   2824   **        SELECT x FROM tab
   2825   **        UNION ALL
   2826   **        SELECT y FROM tab
   2827   **        UNION ALL
   2828   **        SELECT abs(z*2) FROM tab2
   2829   **     ) WHERE a!=5 ORDER BY 1
   2830   **
   2831   ** Transformed into:
   2832   **
   2833   **     SELECT x+1 FROM tab WHERE x+1!=5
   2834   **     UNION ALL
   2835   **     SELECT y+1 FROM tab WHERE y+1!=5
   2836   **     UNION ALL
   2837   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
   2838   **     ORDER BY 1
   2839   **
   2840   ** We call this the "compound-subquery flattening".
   2841   */
   2842   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
   2843     Select *pNew;
   2844     ExprList *pOrderBy = p->pOrderBy;
   2845     Expr *pLimit = p->pLimit;
   2846     Select *pPrior = p->pPrior;
   2847     p->pOrderBy = 0;
   2848     p->pSrc = 0;
   2849     p->pPrior = 0;
   2850     p->pLimit = 0;
   2851     pNew = sqlite3SelectDup(db, p, 0);
   2852     p->pLimit = pLimit;
   2853     p->pOrderBy = pOrderBy;
   2854     p->pSrc = pSrc;
   2855     p->op = TK_ALL;
   2856     p->pRightmost = 0;
   2857     if( pNew==0 ){
   2858       pNew = pPrior;
   2859     }else{
   2860       pNew->pPrior = pPrior;
   2861       pNew->pRightmost = 0;
   2862     }
   2863     p->pPrior = pNew;
   2864     if( db->mallocFailed ) return 1;
   2865   }
   2866 
   2867   /* Begin flattening the iFrom-th entry of the FROM clause
   2868   ** in the outer query.
   2869   */
   2870   pSub = pSub1 = pSubitem->pSelect;
   2871 
   2872   /* Delete the transient table structure associated with the
   2873   ** subquery
   2874   */
   2875   sqlite3DbFree(db, pSubitem->zDatabase);
   2876   sqlite3DbFree(db, pSubitem->zName);
   2877   sqlite3DbFree(db, pSubitem->zAlias);
   2878   pSubitem->zDatabase = 0;
   2879   pSubitem->zName = 0;
   2880   pSubitem->zAlias = 0;
   2881   pSubitem->pSelect = 0;
   2882 
   2883   /* Defer deleting the Table object associated with the
   2884   ** subquery until code generation is
   2885   ** complete, since there may still exist Expr.pTab entries that
   2886   ** refer to the subquery even after flattening.  Ticket #3346.
   2887   **
   2888   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
   2889   */
   2890   if( ALWAYS(pSubitem->pTab!=0) ){
   2891     Table *pTabToDel = pSubitem->pTab;
   2892     if( pTabToDel->nRef==1 ){
   2893       Parse *pToplevel = sqlite3ParseToplevel(pParse);
   2894       pTabToDel->pNextZombie = pToplevel->pZombieTab;
   2895       pToplevel->pZombieTab = pTabToDel;
   2896     }else{
   2897       pTabToDel->nRef--;
   2898     }
   2899     pSubitem->pTab = 0;
   2900   }
   2901 
   2902   /* The following loop runs once for each term in a compound-subquery
   2903   ** flattening (as described above).  If we are doing a different kind
   2904   ** of flattening - a flattening other than a compound-subquery flattening -
   2905   ** then this loop only runs once.
   2906   **
   2907   ** This loop moves all of the FROM elements of the subquery into the
   2908   ** the FROM clause of the outer query.  Before doing this, remember
   2909   ** the cursor number for the original outer query FROM element in
   2910   ** iParent.  The iParent cursor will never be used.  Subsequent code
   2911   ** will scan expressions looking for iParent references and replace
   2912   ** those references with expressions that resolve to the subquery FROM
   2913   ** elements we are now copying in.
   2914   */
   2915   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
   2916     int nSubSrc;
   2917     u8 jointype = 0;
   2918     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
   2919     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
   2920     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
   2921 
   2922     if( pSrc ){
   2923       assert( pParent==p );  /* First time through the loop */
   2924       jointype = pSubitem->jointype;
   2925     }else{
   2926       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
   2927       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
   2928       if( pSrc==0 ){
   2929         assert( db->mallocFailed );
   2930         break;
   2931       }
   2932     }
   2933 
   2934     /* The subquery uses a single slot of the FROM clause of the outer
   2935     ** query.  If the subquery has more than one element in its FROM clause,
   2936     ** then expand the outer query to make space for it to hold all elements
   2937     ** of the subquery.
   2938     **
   2939     ** Example:
   2940     **
   2941     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
   2942     **
   2943     ** The outer query has 3 slots in its FROM clause.  One slot of the
   2944     ** outer query (the middle slot) is used by the subquery.  The next
   2945     ** block of code will expand the out query to 4 slots.  The middle
   2946     ** slot is expanded to two slots in order to make space for the
   2947     ** two elements in the FROM clause of the subquery.
   2948     */
   2949     if( nSubSrc>1 ){
   2950       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
   2951       if( db->mallocFailed ){
   2952         break;
   2953       }
   2954     }
   2955 
   2956     /* Transfer the FROM clause terms from the subquery into the
   2957     ** outer query.
   2958     */
   2959     for(i=0; i<nSubSrc; i++){
   2960       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
   2961       pSrc->a[i+iFrom] = pSubSrc->a[i];
   2962       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
   2963     }
   2964     pSrc->a[iFrom].jointype = jointype;
   2965 
   2966     /* Now begin substituting subquery result set expressions for
   2967     ** references to the iParent in the outer query.
   2968     **
   2969     ** Example:
   2970     **
   2971     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
   2972     **   \                     \_____________ subquery __________/          /
   2973     **    \_____________________ outer query ______________________________/
   2974     **
   2975     ** We look at every expression in the outer query and every place we see
   2976     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
   2977     */
   2978     pList = pParent->pEList;
   2979     for(i=0; i<pList->nExpr; i++){
   2980       if( pList->a[i].zName==0 ){
   2981         const char *zSpan = pList->a[i].zSpan;
   2982         if( ALWAYS(zSpan) ){
   2983           pList->a[i].zName = sqlite3DbStrDup(db, zSpan);
   2984         }
   2985       }
   2986     }
   2987     substExprList(db, pParent->pEList, iParent, pSub->pEList);
   2988     if( isAgg ){
   2989       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
   2990       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
   2991     }
   2992     if( pSub->pOrderBy ){
   2993       assert( pParent->pOrderBy==0 );
   2994       pParent->pOrderBy = pSub->pOrderBy;
   2995       pSub->pOrderBy = 0;
   2996     }else if( pParent->pOrderBy ){
   2997       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
   2998     }
   2999     if( pSub->pWhere ){
   3000       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
   3001     }else{
   3002       pWhere = 0;
   3003     }
   3004     if( subqueryIsAgg ){
   3005       assert( pParent->pHaving==0 );
   3006       pParent->pHaving = pParent->pWhere;
   3007       pParent->pWhere = pWhere;
   3008       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
   3009       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
   3010                                   sqlite3ExprDup(db, pSub->pHaving, 0));
   3011       assert( pParent->pGroupBy==0 );
   3012       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
   3013     }else{
   3014       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
   3015       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
   3016     }
   3017 
   3018     /* The flattened query is distinct if either the inner or the
   3019     ** outer query is distinct.
   3020     */
   3021     pParent->selFlags |= pSub->selFlags & SF_Distinct;
   3022 
   3023     /*
   3024     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
   3025     **
   3026     ** One is tempted to try to add a and b to combine the limits.  But this
   3027     ** does not work if either limit is negative.
   3028     */
   3029     if( pSub->pLimit ){
   3030       pParent->pLimit = pSub->pLimit;
   3031       pSub->pLimit = 0;
   3032     }
   3033   }
   3034 
   3035   /* Finially, delete what is left of the subquery and return
   3036   ** success.
   3037   */
   3038   sqlite3SelectDelete(db, pSub1);
   3039 
   3040   return 1;
   3041 }
   3042 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
   3043 
   3044 /*
   3045 ** Analyze the SELECT statement passed as an argument to see if it
   3046 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
   3047 ** it is, or 0 otherwise. At present, a query is considered to be
   3048 ** a min()/max() query if:
   3049 **
   3050 **   1. There is a single object in the FROM clause.
   3051 **
   3052 **   2. There is a single expression in the result set, and it is
   3053 **      either min(x) or max(x), where x is a column reference.
   3054 */
   3055 static u8 minMaxQuery(Select *p){
   3056   Expr *pExpr;
   3057   ExprList *pEList = p->pEList;
   3058 
   3059   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
   3060   pExpr = pEList->a[0].pExpr;
   3061   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
   3062   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
   3063   pEList = pExpr->x.pList;
   3064   if( pEList==0 || pEList->nExpr!=1 ) return 0;
   3065   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
   3066   assert( !ExprHasProperty(pExpr, EP_IntValue) );
   3067   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
   3068     return WHERE_ORDERBY_MIN;
   3069   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
   3070     return WHERE_ORDERBY_MAX;
   3071   }
   3072   return WHERE_ORDERBY_NORMAL;
   3073 }
   3074 
   3075 /*
   3076 ** The select statement passed as the first argument is an aggregate query.
   3077 ** The second argment is the associated aggregate-info object. This
   3078 ** function tests if the SELECT is of the form:
   3079 **
   3080 **   SELECT count(*) FROM <tbl>
   3081 **
   3082 ** where table is a database table, not a sub-select or view. If the query
   3083 ** does match this pattern, then a pointer to the Table object representing
   3084 ** <tbl> is returned. Otherwise, 0 is returned.
   3085 */
   3086 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
   3087   Table *pTab;
   3088   Expr *pExpr;
   3089 
   3090   assert( !p->pGroupBy );
   3091 
   3092   if( p->pWhere || p->pEList->nExpr!=1
   3093    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
   3094   ){
   3095     return 0;
   3096   }
   3097   pTab = p->pSrc->a[0].pTab;
   3098   pExpr = p->pEList->a[0].pExpr;
   3099   assert( pTab && !pTab->pSelect && pExpr );
   3100 
   3101   if( IsVirtual(pTab) ) return 0;
   3102   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
   3103   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
   3104   if( pExpr->flags&EP_Distinct ) return 0;
   3105 
   3106   return pTab;
   3107 }
   3108 
   3109 /*
   3110 ** If the source-list item passed as an argument was augmented with an
   3111 ** INDEXED BY clause, then try to locate the specified index. If there
   3112 ** was such a clause and the named index cannot be found, return
   3113 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
   3114 ** pFrom->pIndex and return SQLITE_OK.
   3115 */
   3116 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
   3117   if( pFrom->pTab && pFrom->zIndex ){
   3118     Table *pTab = pFrom->pTab;
   3119     char *zIndex = pFrom->zIndex;
   3120     Index *pIdx;
   3121     for(pIdx=pTab->pIndex;
   3122         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
   3123         pIdx=pIdx->pNext
   3124     );
   3125     if( !pIdx ){
   3126       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
   3127       pParse->checkSchema = 1;
   3128       return SQLITE_ERROR;
   3129     }
   3130     pFrom->pIndex = pIdx;
   3131   }
   3132   return SQLITE_OK;
   3133 }
   3134 
   3135 /*
   3136 ** This routine is a Walker callback for "expanding" a SELECT statement.
   3137 ** "Expanding" means to do the following:
   3138 **
   3139 **    (1)  Make sure VDBE cursor numbers have been assigned to every
   3140 **         element of the FROM clause.
   3141 **
   3142 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
   3143 **         defines FROM clause.  When views appear in the FROM clause,
   3144 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
   3145 **         that implements the view.  A copy is made of the view's SELECT
   3146 **         statement so that we can freely modify or delete that statement
   3147 **         without worrying about messing up the presistent representation
   3148 **         of the view.
   3149 **
   3150 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
   3151 **         on joins and the ON and USING clause of joins.
   3152 **
   3153 **    (4)  Scan the list of columns in the result set (pEList) looking
   3154 **         for instances of the "*" operator or the TABLE.* operator.
   3155 **         If found, expand each "*" to be every column in every table
   3156 **         and TABLE.* to be every column in TABLE.
   3157 **
   3158 */
   3159 static int selectExpander(Walker *pWalker, Select *p){
   3160   Parse *pParse = pWalker->pParse;
   3161   int i, j, k;
   3162   SrcList *pTabList;
   3163   ExprList *pEList;
   3164   struct SrcList_item *pFrom;
   3165   sqlite3 *db = pParse->db;
   3166 
   3167   if( db->mallocFailed  ){
   3168     return WRC_Abort;
   3169   }
   3170   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
   3171     return WRC_Prune;
   3172   }
   3173   p->selFlags |= SF_Expanded;
   3174   pTabList = p->pSrc;
   3175   pEList = p->pEList;
   3176 
   3177   /* Make sure cursor numbers have been assigned to all entries in
   3178   ** the FROM clause of the SELECT statement.
   3179   */
   3180   sqlite3SrcListAssignCursors(pParse, pTabList);
   3181 
   3182   /* Look up every table named in the FROM clause of the select.  If
   3183   ** an entry of the FROM clause is a subquery instead of a table or view,
   3184   ** then create a transient table structure to describe the subquery.
   3185   */
   3186   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
   3187     Table *pTab;
   3188     if( pFrom->pTab!=0 ){
   3189       /* This statement has already been prepared.  There is no need
   3190       ** to go further. */
   3191       assert( i==0 );
   3192       return WRC_Prune;
   3193     }
   3194     if( pFrom->zName==0 ){
   3195 #ifndef SQLITE_OMIT_SUBQUERY
   3196       Select *pSel = pFrom->pSelect;
   3197       /* A sub-query in the FROM clause of a SELECT */
   3198       assert( pSel!=0 );
   3199       assert( pFrom->pTab==0 );
   3200       sqlite3WalkSelect(pWalker, pSel);
   3201       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
   3202       if( pTab==0 ) return WRC_Abort;
   3203       pTab->nRef = 1;
   3204       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
   3205       while( pSel->pPrior ){ pSel = pSel->pPrior; }
   3206       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
   3207       pTab->iPKey = -1;
   3208       pTab->nRowEst = 1000000;
   3209       pTab->tabFlags |= TF_Ephemeral;
   3210 #endif
   3211     }else{
   3212       /* An ordinary table or view name in the FROM clause */
   3213       assert( pFrom->pTab==0 );
   3214       pFrom->pTab = pTab =
   3215         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
   3216       if( pTab==0 ) return WRC_Abort;
   3217       pTab->nRef++;
   3218 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
   3219       if( pTab->pSelect || IsVirtual(pTab) ){
   3220         /* We reach here if the named table is a really a view */
   3221         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
   3222         assert( pFrom->pSelect==0 );
   3223         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
   3224         sqlite3WalkSelect(pWalker, pFrom->pSelect);
   3225       }
   3226 #endif
   3227     }
   3228 
   3229     /* Locate the index named by the INDEXED BY clause, if any. */
   3230     if( sqlite3IndexedByLookup(pParse, pFrom) ){
   3231       return WRC_Abort;
   3232     }
   3233   }
   3234 
   3235   /* Process NATURAL keywords, and ON and USING clauses of joins.
   3236   */
   3237   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
   3238     return WRC_Abort;
   3239   }
   3240 
   3241   /* For every "*" that occurs in the column list, insert the names of
   3242   ** all columns in all tables.  And for every TABLE.* insert the names
   3243   ** of all columns in TABLE.  The parser inserted a special expression
   3244   ** with the TK_ALL operator for each "*" that it found in the column list.
   3245   ** The following code just has to locate the TK_ALL expressions and expand
   3246   ** each one to the list of all columns in all tables.
   3247   **
   3248   ** The first loop just checks to see if there are any "*" operators
   3249   ** that need expanding.
   3250   */
   3251   for(k=0; k<pEList->nExpr; k++){
   3252     Expr *pE = pEList->a[k].pExpr;
   3253     if( pE->op==TK_ALL ) break;
   3254     assert( pE->op!=TK_DOT || pE->pRight!=0 );
   3255     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
   3256     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
   3257   }
   3258   if( k<pEList->nExpr ){
   3259     /*
   3260     ** If we get here it means the result set contains one or more "*"
   3261     ** operators that need to be expanded.  Loop through each expression
   3262     ** in the result set and expand them one by one.
   3263     */
   3264     struct ExprList_item *a = pEList->a;
   3265     ExprList *pNew = 0;
   3266     int flags = pParse->db->flags;
   3267     int longNames = (flags & SQLITE_FullColNames)!=0
   3268                       && (flags & SQLITE_ShortColNames)==0;
   3269 
   3270     for(k=0; k<pEList->nExpr; k++){
   3271       Expr *pE = a[k].pExpr;
   3272       assert( pE->op!=TK_DOT || pE->pRight!=0 );
   3273       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
   3274         /* This particular expression does not need to be expanded.
   3275         */
   3276         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
   3277         if( pNew ){
   3278           pNew->a[pNew->nExpr-1].zName = a[k].zName;
   3279           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
   3280           a[k].zName = 0;
   3281           a[k].zSpan = 0;
   3282         }
   3283         a[k].pExpr = 0;
   3284       }else{
   3285         /* This expression is a "*" or a "TABLE.*" and needs to be
   3286         ** expanded. */
   3287         int tableSeen = 0;      /* Set to 1 when TABLE matches */
   3288         char *zTName;            /* text of name of TABLE */
   3289         if( pE->op==TK_DOT ){
   3290           assert( pE->pLeft!=0 );
   3291           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
   3292           zTName = pE->pLeft->u.zToken;
   3293         }else{
   3294           zTName = 0;
   3295         }
   3296         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
   3297           Table *pTab = pFrom->pTab;
   3298           char *zTabName = pFrom->zAlias;
   3299           if( zTabName==0 ){
   3300             zTabName = pTab->zName;
   3301           }
   3302           if( db->mallocFailed ) break;
   3303           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
   3304             continue;
   3305           }
   3306           tableSeen = 1;
   3307           for(j=0; j<pTab->nCol; j++){
   3308             Expr *pExpr, *pRight;
   3309             char *zName = pTab->aCol[j].zName;
   3310             char *zColname;  /* The computed column name */
   3311             char *zToFree;   /* Malloced string that needs to be freed */
   3312             Token sColname;  /* Computed column name as a token */
   3313 
   3314             /* If a column is marked as 'hidden' (currently only possible
   3315             ** for virtual tables), do not include it in the expanded
   3316             ** result-set list.
   3317             */
   3318             if( IsHiddenColumn(&pTab->aCol[j]) ){
   3319               assert(IsVirtual(pTab));
   3320               continue;
   3321             }
   3322 
   3323             if( i>0 && zTName==0 ){
   3324               if( (pFrom->jointype & JT_NATURAL)!=0
   3325                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
   3326               ){
   3327                 /* In a NATURAL join, omit the join columns from the
   3328                 ** table to the right of the join */
   3329                 continue;
   3330               }
   3331               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
   3332                 /* In a join with a USING clause, omit columns in the
   3333                 ** using clause from the table on the right. */
   3334                 continue;
   3335               }
   3336             }
   3337             pRight = sqlite3Expr(db, TK_ID, zName);
   3338             zColname = zName;
   3339             zToFree = 0;
   3340             if( longNames || pTabList->nSrc>1 ){
   3341               Expr *pLeft;
   3342               pLeft = sqlite3Expr(db, TK_ID, zTabName);
   3343               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
   3344               if( longNames ){
   3345                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
   3346                 zToFree = zColname;
   3347               }
   3348             }else{
   3349               pExpr = pRight;
   3350             }
   3351             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
   3352             sColname.z = zColname;
   3353             sColname.n = sqlite3Strlen30(zColname);
   3354             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
   3355             sqlite3DbFree(db, zToFree);
   3356           }
   3357         }
   3358         if( !tableSeen ){
   3359           if( zTName ){
   3360             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
   3361           }else{
   3362             sqlite3ErrorMsg(pParse, "no tables specified");
   3363           }
   3364         }
   3365       }
   3366     }
   3367     sqlite3ExprListDelete(db, pEList);
   3368     p->pEList = pNew;
   3369   }
   3370 #if SQLITE_MAX_COLUMN
   3371   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
   3372     sqlite3ErrorMsg(pParse, "too many columns in result set");
   3373   }
   3374 #endif
   3375   return WRC_Continue;
   3376 }
   3377 
   3378 /*
   3379 ** No-op routine for the parse-tree walker.
   3380 **
   3381 ** When this routine is the Walker.xExprCallback then expression trees
   3382 ** are walked without any actions being taken at each node.  Presumably,
   3383 ** when this routine is used for Walker.xExprCallback then
   3384 ** Walker.xSelectCallback is set to do something useful for every
   3385 ** subquery in the parser tree.
   3386 */
   3387 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
   3388   UNUSED_PARAMETER2(NotUsed, NotUsed2);
   3389   return WRC_Continue;
   3390 }
   3391 
   3392 /*
   3393 ** This routine "expands" a SELECT statement and all of its subqueries.
   3394 ** For additional information on what it means to "expand" a SELECT
   3395 ** statement, see the comment on the selectExpand worker callback above.
   3396 **
   3397 ** Expanding a SELECT statement is the first step in processing a
   3398 ** SELECT statement.  The SELECT statement must be expanded before
   3399 ** name resolution is performed.
   3400 **
   3401 ** If anything goes wrong, an error message is written into pParse.
   3402 ** The calling function can detect the problem by looking at pParse->nErr
   3403 ** and/or pParse->db->mallocFailed.
   3404 */
   3405 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
   3406   Walker w;
   3407   w.xSelectCallback = selectExpander;
   3408   w.xExprCallback = exprWalkNoop;
   3409   w.pParse = pParse;
   3410   sqlite3WalkSelect(&w, pSelect);
   3411 }
   3412 
   3413 
   3414 #ifndef SQLITE_OMIT_SUBQUERY
   3415 /*
   3416 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
   3417 ** interface.
   3418 **
   3419 ** For each FROM-clause subquery, add Column.zType and Column.zColl
   3420 ** information to the Table structure that represents the result set
   3421 ** of that subquery.
   3422 **
   3423 ** The Table structure that represents the result set was constructed
   3424 ** by selectExpander() but the type and collation information was omitted
   3425 ** at that point because identifiers had not yet been resolved.  This
   3426 ** routine is called after identifier resolution.
   3427 */
   3428 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
   3429   Parse *pParse;
   3430   int i;
   3431   SrcList *pTabList;
   3432   struct SrcList_item *pFrom;
   3433 
   3434   assert( p->selFlags & SF_Resolved );
   3435   if( (p->selFlags & SF_HasTypeInfo)==0 ){
   3436     p->selFlags |= SF_HasTypeInfo;
   3437     pParse = pWalker->pParse;
   3438     pTabList = p->pSrc;
   3439     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
   3440       Table *pTab = pFrom->pTab;
   3441       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
   3442         /* A sub-query in the FROM clause of a SELECT */
   3443         Select *pSel = pFrom->pSelect;
   3444         assert( pSel );
   3445         while( pSel->pPrior ) pSel = pSel->pPrior;
   3446         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
   3447       }
   3448     }
   3449   }
   3450   return WRC_Continue;
   3451 }
   3452 #endif
   3453 
   3454 
   3455 /*
   3456 ** This routine adds datatype and collating sequence information to
   3457 ** the Table structures of all FROM-clause subqueries in a
   3458 ** SELECT statement.
   3459 **
   3460 ** Use this routine after name resolution.
   3461 */
   3462 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
   3463 #ifndef SQLITE_OMIT_SUBQUERY
   3464   Walker w;
   3465   w.xSelectCallback = selectAddSubqueryTypeInfo;
   3466   w.xExprCallback = exprWalkNoop;
   3467   w.pParse = pParse;
   3468   sqlite3WalkSelect(&w, pSelect);
   3469 #endif
   3470 }
   3471 
   3472 
   3473 /*
   3474 ** This routine sets of a SELECT statement for processing.  The
   3475 ** following is accomplished:
   3476 **
   3477 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
   3478 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
   3479 **     *  ON and USING clauses are shifted into WHERE statements
   3480 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
   3481 **     *  Identifiers in expression are matched to tables.
   3482 **
   3483 ** This routine acts recursively on all subqueries within the SELECT.
   3484 */
   3485 void sqlite3SelectPrep(
   3486   Parse *pParse,         /* The parser context */
   3487   Select *p,             /* The SELECT statement being coded. */
   3488   NameContext *pOuterNC  /* Name context for container */
   3489 ){
   3490   sqlite3 *db;
   3491   if( NEVER(p==0) ) return;
   3492   db = pParse->db;
   3493   if( p->selFlags & SF_HasTypeInfo ) return;
   3494   sqlite3SelectExpand(pParse, p);
   3495   if( pParse->nErr || db->mallocFailed ) return;
   3496   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
   3497   if( pParse->nErr || db->mallocFailed ) return;
   3498   sqlite3SelectAddTypeInfo(pParse, p);
   3499 }
   3500 
   3501 /*
   3502 ** Reset the aggregate accumulator.
   3503 **
   3504 ** The aggregate accumulator is a set of memory cells that hold
   3505 ** intermediate results while calculating an aggregate.  This
   3506 ** routine simply stores NULLs in all of those memory cells.
   3507 */
   3508 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
   3509   Vdbe *v = pParse->pVdbe;
   3510   int i;
   3511   struct AggInfo_func *pFunc;
   3512   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
   3513     return;
   3514   }
   3515   for(i=0; i<pAggInfo->nColumn; i++){
   3516     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
   3517   }
   3518   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
   3519     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
   3520     if( pFunc->iDistinct>=0 ){
   3521       Expr *pE = pFunc->pExpr;
   3522       assert( !ExprHasProperty(pE, EP_xIsSelect) );
   3523       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
   3524         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
   3525            "argument");
   3526         pFunc->iDistinct = -1;
   3527       }else{
   3528         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
   3529         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
   3530                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
   3531       }
   3532     }
   3533   }
   3534 }
   3535 
   3536 /*
   3537 ** Invoke the OP_AggFinalize opcode for every aggregate function
   3538 ** in the AggInfo structure.
   3539 */
   3540 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
   3541   Vdbe *v = pParse->pVdbe;
   3542   int i;
   3543   struct AggInfo_func *pF;
   3544   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
   3545     ExprList *pList = pF->pExpr->x.pList;
   3546     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
   3547     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
   3548                       (void*)pF->pFunc, P4_FUNCDEF);
   3549   }
   3550 }
   3551 
   3552 /*
   3553 ** Update the accumulator memory cells for an aggregate based on
   3554 ** the current cursor position.
   3555 */
   3556 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
   3557   Vdbe *v = pParse->pVdbe;
   3558   int i;
   3559   struct AggInfo_func *pF;
   3560   struct AggInfo_col *pC;
   3561 
   3562   pAggInfo->directMode = 1;
   3563   sqlite3ExprCacheClear(pParse);
   3564   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
   3565     int nArg;
   3566     int addrNext = 0;
   3567     int regAgg;
   3568     ExprList *pList = pF->pExpr->x.pList;
   3569     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
   3570     if( pList ){
   3571       nArg = pList->nExpr;
   3572       regAgg = sqlite3GetTempRange(pParse, nArg);
   3573       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
   3574     }else{
   3575       nArg = 0;
   3576       regAgg = 0;
   3577     }
   3578     if( pF->iDistinct>=0 ){
   3579       addrNext = sqlite3VdbeMakeLabel(v);
   3580       assert( nArg==1 );
   3581       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
   3582     }
   3583     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
   3584       CollSeq *pColl = 0;
   3585       struct ExprList_item *pItem;
   3586       int j;
   3587       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
   3588       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
   3589         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
   3590       }
   3591       if( !pColl ){
   3592         pColl = pParse->db->pDfltColl;
   3593       }
   3594       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
   3595     }
   3596     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
   3597                       (void*)pF->pFunc, P4_FUNCDEF);
   3598     sqlite3VdbeChangeP5(v, (u8)nArg);
   3599     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
   3600     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
   3601     if( addrNext ){
   3602       sqlite3VdbeResolveLabel(v, addrNext);
   3603       sqlite3ExprCacheClear(pParse);
   3604     }
   3605   }
   3606 
   3607   /* Before populating the accumulator registers, clear the column cache.
   3608   ** Otherwise, if any of the required column values are already present
   3609   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
   3610   ** to pC->iMem. But by the time the value is used, the original register
   3611   ** may have been used, invalidating the underlying buffer holding the
   3612   ** text or blob value. See ticket [883034dcb5].
   3613   **
   3614   ** Another solution would be to change the OP_SCopy used to copy cached
   3615   ** values to an OP_Copy.
   3616   */
   3617   sqlite3ExprCacheClear(pParse);
   3618   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
   3619     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
   3620   }
   3621   pAggInfo->directMode = 0;
   3622   sqlite3ExprCacheClear(pParse);
   3623 }
   3624 
   3625 /*
   3626 ** Add a single OP_Explain instruction to the VDBE to explain a simple
   3627 ** count(*) query ("SELECT count(*) FROM pTab").
   3628 */
   3629 #ifndef SQLITE_OMIT_EXPLAIN
   3630 static void explainSimpleCount(
   3631   Parse *pParse,                  /* Parse context */
   3632   Table *pTab,                    /* Table being queried */
   3633   Index *pIdx                     /* Index used to optimize scan, or NULL */
   3634 ){
   3635   if( pParse->explain==2 ){
   3636     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
   3637         pTab->zName,
   3638         pIdx ? "USING COVERING INDEX " : "",
   3639         pIdx ? pIdx->zName : "",
   3640         pTab->nRowEst
   3641     );
   3642     sqlite3VdbeAddOp4(
   3643         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
   3644     );
   3645   }
   3646 }
   3647 #else
   3648 # define explainSimpleCount(a,b,c)
   3649 #endif
   3650 
   3651 /*
   3652 ** Generate code for the SELECT statement given in the p argument.
   3653 **
   3654 ** The results are distributed in various ways depending on the
   3655 ** contents of the SelectDest structure pointed to by argument pDest
   3656 ** as follows:
   3657 **
   3658 **     pDest->eDest    Result
   3659 **     ------------    -------------------------------------------
   3660 **     SRT_Output      Generate a row of output (using the OP_ResultRow
   3661 **                     opcode) for each row in the result set.
   3662 **
   3663 **     SRT_Mem         Only valid if the result is a single column.
   3664 **                     Store the first column of the first result row
   3665 **                     in register pDest->iParm then abandon the rest
   3666 **                     of the query.  This destination implies "LIMIT 1".
   3667 **
   3668 **     SRT_Set         The result must be a single column.  Store each
   3669 **                     row of result as the key in table pDest->iParm.
   3670 **                     Apply the affinity pDest->affinity before storing
   3671 **                     results.  Used to implement "IN (SELECT ...)".
   3672 **
   3673 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
   3674 **
   3675 **     SRT_Except      Remove results from the temporary table pDest->iParm.
   3676 **
   3677 **     SRT_Table       Store results in temporary table pDest->iParm.
   3678 **                     This is like SRT_EphemTab except that the table
   3679 **                     is assumed to already be open.
   3680 **
   3681 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
   3682 **                     the result there. The cursor is left open after
   3683 **                     returning.  This is like SRT_Table except that
   3684 **                     this destination uses OP_OpenEphemeral to create
   3685 **                     the table first.
   3686 **
   3687 **     SRT_Coroutine   Generate a co-routine that returns a new row of
   3688 **                     results each time it is invoked.  The entry point
   3689 **                     of the co-routine is stored in register pDest->iParm.
   3690 **
   3691 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
   3692 **                     set is not empty.
   3693 **
   3694 **     SRT_Discard     Throw the results away.  This is used by SELECT
   3695 **                     statements within triggers whose only purpose is
   3696 **                     the side-effects of functions.
   3697 **
   3698 ** This routine returns the number of errors.  If any errors are
   3699 ** encountered, then an appropriate error message is left in
   3700 ** pParse->zErrMsg.
   3701 **
   3702 ** This routine does NOT free the Select structure passed in.  The
   3703 ** calling function needs to do that.
   3704 */
   3705 int sqlite3Select(
   3706   Parse *pParse,         /* The parser context */
   3707   Select *p,             /* The SELECT statement being coded. */
   3708   SelectDest *pDest      /* What to do with the query results */
   3709 ){
   3710   int i, j;              /* Loop counters */
   3711   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
   3712   Vdbe *v;               /* The virtual machine under construction */
   3713   int isAgg;             /* True for select lists like "count(*)" */
   3714   ExprList *pEList;      /* List of columns to extract. */
   3715   SrcList *pTabList;     /* List of tables to select from */
   3716   Expr *pWhere;          /* The WHERE clause.  May be NULL */
   3717   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
   3718   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
   3719   Expr *pHaving;         /* The HAVING clause.  May be NULL */
   3720   int isDistinct;        /* True if the DISTINCT keyword is present */
   3721   int distinct;          /* Table to use for the distinct set */
   3722   int rc = 1;            /* Value to return from this function */
   3723   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
   3724   AggInfo sAggInfo;      /* Information used by aggregate queries */
   3725   int iEnd;              /* Address of the end of the query */
   3726   sqlite3 *db;           /* The database connection */
   3727 
   3728 #ifndef SQLITE_OMIT_EXPLAIN
   3729   int iRestoreSelectId = pParse->iSelectId;
   3730   pParse->iSelectId = pParse->iNextSelectId++;
   3731 #endif
   3732 
   3733   db = pParse->db;
   3734   if( p==0 || db->mallocFailed || pParse->nErr ){
   3735     return 1;
   3736   }
   3737   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
   3738   memset(&sAggInfo, 0, sizeof(sAggInfo));
   3739 
   3740   if( IgnorableOrderby(pDest) ){
   3741     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
   3742            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
   3743     /* If ORDER BY makes no difference in the output then neither does
   3744     ** DISTINCT so it can be removed too. */
   3745     sqlite3ExprListDelete(db, p->pOrderBy);
   3746     p->pOrderBy = 0;
   3747     p->selFlags &= ~SF_Distinct;
   3748   }
   3749   sqlite3SelectPrep(pParse, p, 0);
   3750   pOrderBy = p->pOrderBy;
   3751   pTabList = p->pSrc;
   3752   pEList = p->pEList;
   3753   if( pParse->nErr || db->mallocFailed ){
   3754     goto select_end;
   3755   }
   3756   isAgg = (p->selFlags & SF_Aggregate)!=0;
   3757   assert( pEList!=0 );
   3758 
   3759   /* Begin generating code.
   3760   */
   3761   v = sqlite3GetVdbe(pParse);
   3762   if( v==0 ) goto select_end;
   3763 
   3764   /* If writing to memory or generating a set
   3765   ** only a single column may be output.
   3766   */
   3767 #ifndef SQLITE_OMIT_SUBQUERY
   3768   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
   3769     goto select_end;
   3770   }
   3771 #endif
   3772 
   3773   /* Generate code for all sub-queries in the FROM clause
   3774   */
   3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
   3776   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
   3777     struct SrcList_item *pItem = &pTabList->a[i];
   3778     SelectDest dest;
   3779     Select *pSub = pItem->pSelect;
   3780     int isAggSub;
   3781 
   3782     if( pSub==0 || pItem->isPopulated ) continue;
   3783 
   3784     /* Increment Parse.nHeight by the height of the largest expression
   3785     ** tree refered to by this, the parent select. The child select
   3786     ** may contain expression trees of at most
   3787     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
   3788     ** more conservative than necessary, but much easier than enforcing
   3789     ** an exact limit.
   3790     */
   3791     pParse->nHeight += sqlite3SelectExprHeight(p);
   3792 
   3793     /* Check to see if the subquery can be absorbed into the parent. */
   3794     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
   3795     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
   3796       if( isAggSub ){
   3797         isAgg = 1;
   3798         p->selFlags |= SF_Aggregate;
   3799       }
   3800       i = -1;
   3801     }else{
   3802       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
   3803       assert( pItem->isPopulated==0 );
   3804       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
   3805       sqlite3Select(pParse, pSub, &dest);
   3806       pItem->isPopulated = 1;
   3807       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
   3808     }
   3809     if( /*pParse->nErr ||*/ db->mallocFailed ){
   3810       goto select_end;
   3811     }
   3812     pParse->nHeight -= sqlite3SelectExprHeight(p);
   3813     pTabList = p->pSrc;
   3814     if( !IgnorableOrderby(pDest) ){
   3815       pOrderBy = p->pOrderBy;
   3816     }
   3817   }
   3818   pEList = p->pEList;
   3819 #endif
   3820   pWhere = p->pWhere;
   3821   pGroupBy = p->pGroupBy;
   3822   pHaving = p->pHaving;
   3823   isDistinct = (p->selFlags & SF_Distinct)!=0;
   3824 
   3825 #ifndef SQLITE_OMIT_COMPOUND_SELECT
   3826   /* If there is are a sequence of queries, do the earlier ones first.
   3827   */
   3828   if( p->pPrior ){
   3829     if( p->pRightmost==0 ){
   3830       Select *pLoop, *pRight = 0;
   3831       int cnt = 0;
   3832       int mxSelect;
   3833       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
   3834         pLoop->pRightmost = p;
   3835         pLoop->pNext = pRight;
   3836         pRight = pLoop;
   3837       }
   3838       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
   3839       if( mxSelect && cnt>mxSelect ){
   3840         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
   3841         goto select_end;
   3842       }
   3843     }
   3844     rc = multiSelect(pParse, p, pDest);
   3845     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
   3846     return rc;
   3847   }
   3848 #endif
   3849 
   3850   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
   3851   ** GROUP BY might use an index, DISTINCT never does.
   3852   */
   3853   assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
   3854   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
   3855     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
   3856     pGroupBy = p->pGroupBy;
   3857     p->selFlags &= ~SF_Distinct;
   3858   }
   3859 
   3860   /* If there is both a GROUP BY and an ORDER BY clause and they are
   3861   ** identical, then disable the ORDER BY clause since the GROUP BY
   3862   ** will cause elements to come out in the correct order.  This is
   3863   ** an optimization - the correct answer should result regardless.
   3864   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
   3865   ** to disable this optimization for testing purposes.
   3866   */
   3867   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
   3868          && (db->flags & SQLITE_GroupByOrder)==0 ){
   3869     pOrderBy = 0;
   3870   }
   3871 
   3872   /* If there is an ORDER BY clause, then this sorting
   3873   ** index might end up being unused if the data can be
   3874   ** extracted in pre-sorted order.  If that is the case, then the
   3875   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
   3876   ** we figure out that the sorting index is not needed.  The addrSortIndex
   3877   ** variable is used to facilitate that change.
   3878   */
   3879   if( pOrderBy ){
   3880     KeyInfo *pKeyInfo;
   3881     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
   3882     pOrderBy->iECursor = pParse->nTab++;
   3883     p->addrOpenEphm[2] = addrSortIndex =
   3884       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
   3885                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
   3886                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
   3887   }else{
   3888     addrSortIndex = -1;
   3889   }
   3890 
   3891   /* If the output is destined for a temporary table, open that table.
   3892   */
   3893   if( pDest->eDest==SRT_EphemTab ){
   3894     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
   3895   }
   3896 
   3897   /* Set the limiter.
   3898   */
   3899   iEnd = sqlite3VdbeMakeLabel(v);
   3900   p->nSelectRow = (double)LARGEST_INT64;
   3901   computeLimitRegisters(pParse, p, iEnd);
   3902 
   3903   /* Open a virtual index to use for the distinct set.
   3904   */
   3905   if( p->selFlags & SF_Distinct ){
   3906     KeyInfo *pKeyInfo;
   3907     assert( isAgg || pGroupBy );
   3908     distinct = pParse->nTab++;
   3909     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
   3910     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
   3911                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
   3912     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
   3913   }else{
   3914     distinct = -1;
   3915   }
   3916 
   3917   /* Aggregate and non-aggregate queries are handled differently */
   3918   if( !isAgg && pGroupBy==0 ){
   3919     /* This case is for non-aggregate queries
   3920     ** Begin the database scan
   3921     */
   3922     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
   3923     if( pWInfo==0 ) goto select_end;
   3924     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
   3925 
   3926     /* If sorting index that was created by a prior OP_OpenEphemeral
   3927     ** instruction ended up not being needed, then change the OP_OpenEphemeral
   3928     ** into an OP_Noop.
   3929     */
   3930     if( addrSortIndex>=0 && pOrderBy==0 ){
   3931       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
   3932       p->addrOpenEphm[2] = -1;
   3933     }
   3934 
   3935     /* Use the standard inner loop
   3936     */
   3937     assert(!isDistinct);
   3938     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
   3939                     pWInfo->iContinue, pWInfo->iBreak);
   3940 
   3941     /* End the database scan loop.
   3942     */
   3943     sqlite3WhereEnd(pWInfo);
   3944   }else{
   3945     /* This is the processing for aggregate queries */
   3946     NameContext sNC;    /* Name context for processing aggregate information */
   3947     int iAMem;          /* First Mem address for storing current GROUP BY */
   3948     int iBMem;          /* First Mem address for previous GROUP BY */
   3949     int iUseFlag;       /* Mem address holding flag indicating that at least
   3950                         ** one row of the input to the aggregator has been
   3951                         ** processed */
   3952     int iAbortFlag;     /* Mem address which causes query abort if positive */
   3953     int groupBySort;    /* Rows come from source in GROUP BY order */
   3954     int addrEnd;        /* End of processing for this SELECT */
   3955 
   3956     /* Remove any and all aliases between the result set and the
   3957     ** GROUP BY clause.
   3958     */
   3959     if( pGroupBy ){
   3960       int k;                        /* Loop counter */
   3961       struct ExprList_item *pItem;  /* For looping over expression in a list */
   3962 
   3963       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
   3964         pItem->iAlias = 0;
   3965       }
   3966       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
   3967         pItem->iAlias = 0;
   3968       }
   3969       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
   3970     }else{
   3971       p->nSelectRow = (double)1;
   3972     }
   3973 
   3974 
   3975     /* Create a label to jump to when we want to abort the query */
   3976     addrEnd = sqlite3VdbeMakeLabel(v);
   3977 
   3978     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
   3979     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
   3980     ** SELECT statement.
   3981     */
   3982     memset(&sNC, 0, sizeof(sNC));
   3983     sNC.pParse = pParse;
   3984     sNC.pSrcList = pTabList;
   3985     sNC.pAggInfo = &sAggInfo;
   3986     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
   3987     sAggInfo.pGroupBy = pGroupBy;
   3988     sqlite3ExprAnalyzeAggList(&sNC, pEList);
   3989     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
   3990     if( pHaving ){
   3991       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
   3992     }
   3993     sAggInfo.nAccumulator = sAggInfo.nColumn;
   3994     for(i=0; i<sAggInfo.nFunc; i++){
   3995       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
   3996       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
   3997     }
   3998     if( db->mallocFailed ) goto select_end;
   3999 
   4000     /* Processing for aggregates with GROUP BY is very different and
   4001     ** much more complex than aggregates without a GROUP BY.
   4002     */
   4003     if( pGroupBy ){
   4004       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
   4005       int j1;             /* A-vs-B comparision jump */
   4006       int addrOutputRow;  /* Start of subroutine that outputs a result row */
   4007       int regOutputRow;   /* Return address register for output subroutine */
   4008       int addrSetAbort;   /* Set the abort flag and return */
   4009       int addrTopOfLoop;  /* Top of the input loop */
   4010       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
   4011       int addrReset;      /* Subroutine for resetting the accumulator */
   4012       int regReset;       /* Return address register for reset subroutine */
   4013 
   4014       /* If there is a GROUP BY clause we might need a sorting index to
   4015       ** implement it.  Allocate that sorting index now.  If it turns out
   4016       ** that we do not need it after all, the OpenEphemeral instruction
   4017       ** will be converted into a Noop.
   4018       */
   4019       sAggInfo.sortingIdx = pParse->nTab++;
   4020       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
   4021       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
   4022           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
   4023           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
   4024 
   4025       /* Initialize memory locations used by GROUP BY aggregate processing
   4026       */
   4027       iUseFlag = ++pParse->nMem;
   4028       iAbortFlag = ++pParse->nMem;
   4029       regOutputRow = ++pParse->nMem;
   4030       addrOutputRow = sqlite3VdbeMakeLabel(v);
   4031       regReset = ++pParse->nMem;
   4032       addrReset = sqlite3VdbeMakeLabel(v);
   4033       iAMem = pParse->nMem + 1;
   4034       pParse->nMem += pGroupBy->nExpr;
   4035       iBMem = pParse->nMem + 1;
   4036       pParse->nMem += pGroupBy->nExpr;
   4037       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
   4038       VdbeComment((v, "clear abort flag"));
   4039       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
   4040       VdbeComment((v, "indicate accumulator empty"));
   4041 
   4042       /* Begin a loop that will extract all source rows in GROUP BY order.
   4043       ** This might involve two separate loops with an OP_Sort in between, or
   4044       ** it might be a single loop that uses an index to extract information
   4045       ** in the right order to begin with.
   4046       */
   4047       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
   4048       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
   4049       if( pWInfo==0 ) goto select_end;
   4050       if( pGroupBy==0 ){
   4051         /* The optimizer is able to deliver rows in group by order so
   4052         ** we do not have to sort.  The OP_OpenEphemeral table will be
   4053         ** cancelled later because we still need to use the pKeyInfo
   4054         */
   4055         pGroupBy = p->pGroupBy;
   4056         groupBySort = 0;
   4057       }else{
   4058         /* Rows are coming out in undetermined order.  We have to push
   4059         ** each row into a sorting index, terminate the first loop,
   4060         ** then loop over the sorting index in order to get the output
   4061         ** in sorted order
   4062         */
   4063         int regBase;
   4064         int regRecord;
   4065         int nCol;
   4066         int nGroupBy;
   4067 
   4068         explainTempTable(pParse,
   4069             isDistinct && !(p->selFlags&SF_Distinct)?"DISTINCT":"GROUP BY");
   4070 
   4071         groupBySort = 1;
   4072         nGroupBy = pGroupBy->nExpr;
   4073         nCol = nGroupBy + 1;
   4074         j = nGroupBy+1;
   4075         for(i=0; i<sAggInfo.nColumn; i++){
   4076           if( sAggInfo.aCol[i].iSorterColumn>=j ){
   4077             nCol++;
   4078             j++;
   4079           }
   4080         }
   4081         regBase = sqlite3GetTempRange(pParse, nCol);
   4082         sqlite3ExprCacheClear(pParse);
   4083         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
   4084         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
   4085         j = nGroupBy+1;
   4086         for(i=0; i<sAggInfo.nColumn; i++){
   4087           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
   4088           if( pCol->iSorterColumn>=j ){
   4089             int r1 = j + regBase;
   4090             int r2;
   4091 
   4092             r2 = sqlite3ExprCodeGetColumn(pParse,
   4093                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
   4094             if( r1!=r2 ){
   4095               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
   4096             }
   4097             j++;
   4098           }
   4099         }
   4100         regRecord = sqlite3GetTempReg(pParse);
   4101         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
   4102         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
   4103         sqlite3ReleaseTempReg(pParse, regRecord);
   4104         sqlite3ReleaseTempRange(pParse, regBase, nCol);
   4105         sqlite3WhereEnd(pWInfo);
   4106         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
   4107         VdbeComment((v, "GROUP BY sort"));
   4108         sAggInfo.useSortingIdx = 1;
   4109         sqlite3ExprCacheClear(pParse);
   4110       }
   4111 
   4112       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
   4113       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
   4114       ** Then compare the current GROUP BY terms against the GROUP BY terms
   4115       ** from the previous row currently stored in a0, a1, a2...
   4116       */
   4117       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
   4118       sqlite3ExprCacheClear(pParse);
   4119       for(j=0; j<pGroupBy->nExpr; j++){
   4120         if( groupBySort ){
   4121           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
   4122         }else{
   4123           sAggInfo.directMode = 1;
   4124           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
   4125         }
   4126       }
   4127       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
   4128                           (char*)pKeyInfo, P4_KEYINFO);
   4129       j1 = sqlite3VdbeCurrentAddr(v);
   4130       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
   4131 
   4132       /* Generate code that runs whenever the GROUP BY changes.
   4133       ** Changes in the GROUP BY are detected by the previous code
   4134       ** block.  If there were no changes, this block is skipped.
   4135       **
   4136       ** This code copies current group by terms in b0,b1,b2,...
   4137       ** over to a0,a1,a2.  It then calls the output subroutine
   4138       ** and resets the aggregate accumulator registers in preparation
   4139       ** for the next GROUP BY batch.
   4140       */
   4141       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
   4142       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
   4143       VdbeComment((v, "output one row"));
   4144       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
   4145       VdbeComment((v, "check abort flag"));
   4146       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
   4147       VdbeComment((v, "reset accumulator"));
   4148 
   4149       /* Update the aggregate accumulators based on the content of
   4150       ** the current row
   4151       */
   4152       sqlite3VdbeJumpHere(v, j1);
   4153       updateAccumulator(pParse, &sAggInfo);
   4154       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
   4155       VdbeComment((v, "indicate data in accumulator"));
   4156 
   4157       /* End of the loop
   4158       */
   4159       if( groupBySort ){
   4160         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
   4161       }else{
   4162         sqlite3WhereEnd(pWInfo);
   4163         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
   4164       }
   4165 
   4166       /* Output the final row of result
   4167       */
   4168       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
   4169       VdbeComment((v, "output final row"));
   4170 
   4171       /* Jump over the subroutines
   4172       */
   4173       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
   4174 
   4175       /* Generate a subroutine that outputs a single row of the result
   4176       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
   4177       ** is less than or equal to zero, the subroutine is a no-op.  If
   4178       ** the processing calls for the query to abort, this subroutine
   4179       ** increments the iAbortFlag memory location before returning in
   4180       ** order to signal the caller to abort.
   4181       */
   4182       addrSetAbort = sqlite3VdbeCurrentAddr(v);
   4183       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
   4184       VdbeComment((v, "set abort flag"));
   4185       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
   4186       sqlite3VdbeResolveLabel(v, addrOutputRow);
   4187       addrOutputRow = sqlite3VdbeCurrentAddr(v);
   4188       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
   4189       VdbeComment((v, "Groupby result generator entry point"));
   4190       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
   4191       finalizeAggFunctions(pParse, &sAggInfo);
   4192       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
   4193       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
   4194                       distinct, pDest,
   4195                       addrOutputRow+1, addrSetAbort);
   4196       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
   4197       VdbeComment((v, "end groupby result generator"));
   4198 
   4199       /* Generate a subroutine that will reset the group-by accumulator
   4200       */
   4201       sqlite3VdbeResolveLabel(v, addrReset);
   4202       resetAccumulator(pParse, &sAggInfo);
   4203       sqlite3VdbeAddOp1(v, OP_Return, regReset);
   4204 
   4205     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
   4206     else {
   4207       ExprList *pDel = 0;
   4208 #ifndef SQLITE_OMIT_BTREECOUNT
   4209       Table *pTab;
   4210       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
   4211         /* If isSimpleCount() returns a pointer to a Table structure, then
   4212         ** the SQL statement is of the form:
   4213         **
   4214         **   SELECT count(*) FROM <tbl>
   4215         **
   4216         ** where the Table structure returned represents table <tbl>.
   4217         **
   4218         ** This statement is so common that it is optimized specially. The
   4219         ** OP_Count instruction is executed either on the intkey table that
   4220         ** contains the data for table <tbl> or on one of its indexes. It
   4221         ** is better to execute the op on an index, as indexes are almost
   4222         ** always spread across less pages than their corresponding tables.
   4223         */
   4224         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
   4225         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
   4226         Index *pIdx;                         /* Iterator variable */
   4227         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
   4228         Index *pBest = 0;                    /* Best index found so far */
   4229         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
   4230 
   4231         sqlite3CodeVerifySchema(pParse, iDb);
   4232         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
   4233 
   4234         /* Search for the index that has the least amount of columns. If
   4235         ** there is such an index, and it has less columns than the table
   4236         ** does, then we can assume that it consumes less space on disk and
   4237         ** will therefore be cheaper to scan to determine the query result.
   4238         ** In this case set iRoot to the root page number of the index b-tree
   4239         ** and pKeyInfo to the KeyInfo structure required to navigate the
   4240         ** index.
   4241         **
   4242         ** In practice the KeyInfo structure will not be used. It is only
   4243         ** passed to keep OP_OpenRead happy.
   4244         */
   4245         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
   4246           if( !pBest || pIdx->nColumn<pBest->nColumn ){
   4247             pBest = pIdx;
   4248           }
   4249         }
   4250         if( pBest && pBest->nColumn<pTab->nCol ){
   4251           iRoot = pBest->tnum;
   4252           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
   4253         }
   4254 
   4255         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
   4256         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
   4257         if( pKeyInfo ){
   4258           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
   4259         }
   4260         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
   4261         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
   4262         explainSimpleCount(pParse, pTab, pBest);
   4263       }else
   4264 #endif /* SQLITE_OMIT_BTREECOUNT */
   4265       {
   4266         /* Check if the query is of one of the following forms:
   4267         **
   4268         **   SELECT min(x) FROM ...
   4269         **   SELECT max(x) FROM ...
   4270         **
   4271         ** If it is, then ask the code in where.c to attempt to sort results
   4272         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
   4273         ** If where.c is able to produce results sorted in this order, then
   4274         ** add vdbe code to break out of the processing loop after the
   4275         ** first iteration (since the first iteration of the loop is
   4276         ** guaranteed to operate on the row with the minimum or maximum
   4277         ** value of x, the only row required).
   4278         **
   4279         ** A special flag must be passed to sqlite3WhereBegin() to slightly
   4280         ** modify behaviour as follows:
   4281         **
   4282         **   + If the query is a "SELECT min(x)", then the loop coded by
   4283         **     where.c should not iterate over any values with a NULL value
   4284         **     for x.
   4285         **
   4286         **   + The optimizer code in where.c (the thing that decides which
   4287         **     index or indices to use) should place a different priority on
   4288         **     satisfying the 'ORDER BY' clause than it does in other cases.
   4289         **     Refer to code and comments in where.c for details.
   4290         */
   4291         ExprList *pMinMax = 0;
   4292         u8 flag = minMaxQuery(p);
   4293         if( flag ){
   4294           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
   4295           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
   4296           pDel = pMinMax;
   4297           if( pMinMax && !db->mallocFailed ){
   4298             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
   4299             pMinMax->a[0].pExpr->op = TK_COLUMN;
   4300           }
   4301         }
   4302 
   4303         /* This case runs if the aggregate has no GROUP BY clause.  The
   4304         ** processing is much simpler since there is only a single row
   4305         ** of output.
   4306         */
   4307         resetAccumulator(pParse, &sAggInfo);
   4308         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
   4309         if( pWInfo==0 ){
   4310           sqlite3ExprListDelete(db, pDel);
   4311           goto select_end;
   4312         }
   4313         updateAccumulator(pParse, &sAggInfo);
   4314         if( !pMinMax && flag ){
   4315           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
   4316           VdbeComment((v, "%s() by index",
   4317                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
   4318         }
   4319         sqlite3WhereEnd(pWInfo);
   4320         finalizeAggFunctions(pParse, &sAggInfo);
   4321       }
   4322 
   4323       pOrderBy = 0;
   4324       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
   4325       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
   4326                       pDest, addrEnd, addrEnd);
   4327       sqlite3ExprListDelete(db, pDel);
   4328     }
   4329     sqlite3VdbeResolveLabel(v, addrEnd);
   4330 
   4331   } /* endif aggregate query */
   4332 
   4333   if( distinct>=0 ){
   4334     explainTempTable(pParse, "DISTINCT");
   4335   }
   4336 
   4337   /* If there is an ORDER BY clause, then we need to sort the results
   4338   ** and send them to the callback one by one.
   4339   */
   4340   if( pOrderBy ){
   4341     explainTempTable(pParse, "ORDER BY");
   4342     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
   4343   }
   4344 
   4345   /* Jump here to skip this query
   4346   */
   4347   sqlite3VdbeResolveLabel(v, iEnd);
   4348 
   4349   /* The SELECT was successfully coded.   Set the return code to 0
   4350   ** to indicate no errors.
   4351   */
   4352   rc = 0;
   4353 
   4354   /* Control jumps to here if an error is encountered above, or upon
   4355   ** successful coding of the SELECT.
   4356   */
   4357 select_end:
   4358   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
   4359 
   4360   /* Identify column names if results of the SELECT are to be output.
   4361   */
   4362   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
   4363     generateColumnNames(pParse, pTabList, pEList);
   4364   }
   4365 
   4366   sqlite3DbFree(db, sAggInfo.aCol);
   4367   sqlite3DbFree(db, sAggInfo.aFunc);
   4368   return rc;
   4369 }
   4370 
   4371 #if defined(SQLITE_DEBUG)
   4372 /*
   4373 *******************************************************************************
   4374 ** The following code is used for testing and debugging only.  The code
   4375 ** that follows does not appear in normal builds.
   4376 **
   4377 ** These routines are used to print out the content of all or part of a
   4378 ** parse structures such as Select or Expr.  Such printouts are useful
   4379 ** for helping to understand what is happening inside the code generator
   4380 ** during the execution of complex SELECT statements.
   4381 **
   4382 ** These routine are not called anywhere from within the normal
   4383 ** code base.  Then are intended to be called from within the debugger
   4384 ** or from temporary "printf" statements inserted for debugging.
   4385 */
   4386 void sqlite3PrintExpr(Expr *p){
   4387   if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
   4388     sqlite3DebugPrintf("(%s", p->u.zToken);
   4389   }else{
   4390     sqlite3DebugPrintf("(%d", p->op);
   4391   }
   4392   if( p->pLeft ){
   4393     sqlite3DebugPrintf(" ");
   4394     sqlite3PrintExpr(p->pLeft);
   4395   }
   4396   if( p->pRight ){
   4397     sqlite3DebugPrintf(" ");
   4398     sqlite3PrintExpr(p->pRight);
   4399   }
   4400   sqlite3DebugPrintf(")");
   4401 }
   4402 void sqlite3PrintExprList(ExprList *pList){
   4403   int i;
   4404   for(i=0; i<pList->nExpr; i++){
   4405     sqlite3PrintExpr(pList->a[i].pExpr);
   4406     if( i<pList->nExpr-1 ){
   4407       sqlite3DebugPrintf(", ");
   4408     }
   4409   }
   4410 }
   4411 void sqlite3PrintSelect(Select *p, int indent){
   4412   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
   4413   sqlite3PrintExprList(p->pEList);
   4414   sqlite3DebugPrintf("\n");
   4415   if( p->pSrc ){
   4416     char *zPrefix;
   4417     int i;
   4418     zPrefix = "FROM";
   4419     for(i=0; i<p->pSrc->nSrc; i++){
   4420       struct SrcList_item *pItem = &p->pSrc->a[i];
   4421       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
   4422       zPrefix = "";
   4423       if( pItem->pSelect ){
   4424         sqlite3DebugPrintf("(\n");
   4425         sqlite3PrintSelect(pItem->pSelect, indent+10);
   4426         sqlite3DebugPrintf("%*s)", indent+8, "");
   4427       }else if( pItem->zName ){
   4428         sqlite3DebugPrintf("%s", pItem->zName);
   4429       }
   4430       if( pItem->pTab ){
   4431         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
   4432       }
   4433       if( pItem->zAlias ){
   4434         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
   4435       }
   4436       if( i<p->pSrc->nSrc-1 ){
   4437         sqlite3DebugPrintf(",");
   4438       }
   4439       sqlite3DebugPrintf("\n");
   4440     }
   4441   }
   4442   if( p->pWhere ){
   4443     sqlite3DebugPrintf("%*s WHERE ", indent, "");
   4444     sqlite3PrintExpr(p->pWhere);
   4445     sqlite3DebugPrintf("\n");
   4446   }
   4447   if( p->pGroupBy ){
   4448     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
   4449     sqlite3PrintExprList(p->pGroupBy);
   4450     sqlite3DebugPrintf("\n");
   4451   }
   4452   if( p->pHaving ){
   4453     sqlite3DebugPrintf("%*s HAVING ", indent, "");
   4454     sqlite3PrintExpr(p->pHaving);
   4455     sqlite3DebugPrintf("\n");
   4456   }
   4457   if( p->pOrderBy ){
   4458     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
   4459     sqlite3PrintExprList(p->pOrderBy);
   4460     sqlite3DebugPrintf("\n");
   4461   }
   4462 }
   4463 /* End of the structure debug printing code
   4464 *****************************************************************************/
   4465 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
   4466