Home | History | Annotate | Download | only in scheduler
      1 // Copyright 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/scheduler/delay_based_time_source.h"
      6 
      7 #include <algorithm>
      8 #include <cmath>
      9 #include <string>
     10 
     11 #include "base/bind.h"
     12 #include "base/debug/trace_event.h"
     13 #include "base/debug/trace_event_argument.h"
     14 #include "base/location.h"
     15 #include "base/logging.h"
     16 #include "base/single_thread_task_runner.h"
     17 
     18 namespace cc {
     19 
     20 namespace {
     21 
     22 // kDoubleTickDivisor prevents ticks from running within the specified
     23 // fraction of an interval.  This helps account for jitter in the timebase as
     24 // well as quick timer reactivation.
     25 static const int kDoubleTickDivisor = 2;
     26 
     27 // kIntervalChangeThreshold is the fraction of the interval that will trigger an
     28 // immediate interval change.  kPhaseChangeThreshold is the fraction of the
     29 // interval that will trigger an immediate phase change.  If the changes are
     30 // within the thresholds, the change will take place on the next tick.  If
     31 // either change is outside the thresholds, the next tick will be canceled and
     32 // reissued immediately.
     33 static const double kIntervalChangeThreshold = 0.25;
     34 static const double kPhaseChangeThreshold = 0.25;
     35 
     36 }  // namespace
     37 
     38 // The following methods correspond to the DelayBasedTimeSource that uses
     39 // the base::TimeTicks::HighResNow as the timebase.
     40 scoped_refptr<DelayBasedTimeSourceHighRes> DelayBasedTimeSourceHighRes::Create(
     41     base::TimeDelta interval,
     42     base::SingleThreadTaskRunner* task_runner) {
     43   return make_scoped_refptr(
     44       new DelayBasedTimeSourceHighRes(interval, task_runner));
     45 }
     46 
     47 DelayBasedTimeSourceHighRes::DelayBasedTimeSourceHighRes(
     48     base::TimeDelta interval,
     49     base::SingleThreadTaskRunner* task_runner)
     50     : DelayBasedTimeSource(interval, task_runner) {
     51 }
     52 
     53 DelayBasedTimeSourceHighRes::~DelayBasedTimeSourceHighRes() {}
     54 
     55 base::TimeTicks DelayBasedTimeSourceHighRes::Now() const {
     56   return base::TimeTicks::HighResNow();
     57 }
     58 
     59 // The following methods correspond to the DelayBasedTimeSource that uses
     60 // the base::TimeTicks::Now as the timebase.
     61 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create(
     62     base::TimeDelta interval,
     63     base::SingleThreadTaskRunner* task_runner) {
     64   return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner));
     65 }
     66 
     67 DelayBasedTimeSource::DelayBasedTimeSource(
     68     base::TimeDelta interval,
     69     base::SingleThreadTaskRunner* task_runner)
     70     : client_(NULL),
     71       last_tick_time_(base::TimeTicks() - interval),
     72       current_parameters_(interval, base::TimeTicks()),
     73       next_parameters_(interval, base::TimeTicks()),
     74       active_(false),
     75       task_runner_(task_runner),
     76       weak_factory_(this) {
     77   DCHECK_GT(interval.ToInternalValue(), 0);
     78 }
     79 
     80 DelayBasedTimeSource::~DelayBasedTimeSource() {}
     81 
     82 base::TimeTicks DelayBasedTimeSource::SetActive(bool active) {
     83   TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active);
     84   if (active == active_)
     85     return base::TimeTicks();
     86   active_ = active;
     87 
     88   if (!active_) {
     89     weak_factory_.InvalidateWeakPtrs();
     90     return base::TimeTicks();
     91   }
     92 
     93   PostNextTickTask(Now());
     94 
     95   // Determine if there was a tick that was missed while not active.
     96   base::TimeTicks last_tick_time_if_always_active =
     97     current_parameters_.tick_target - current_parameters_.interval;
     98   base::TimeTicks new_tick_time_threshold =
     99     last_tick_time_ + current_parameters_.interval / kDoubleTickDivisor;
    100   if (last_tick_time_if_always_active >  new_tick_time_threshold) {
    101     last_tick_time_ = last_tick_time_if_always_active;
    102     return last_tick_time_;
    103   }
    104 
    105   return base::TimeTicks();
    106 }
    107 
    108 bool DelayBasedTimeSource::Active() const { return active_; }
    109 
    110 base::TimeTicks DelayBasedTimeSource::LastTickTime() const {
    111   return last_tick_time_;
    112 }
    113 
    114 base::TimeTicks DelayBasedTimeSource::NextTickTime() const {
    115   return Active() ? current_parameters_.tick_target : base::TimeTicks();
    116 }
    117 
    118 void DelayBasedTimeSource::OnTimerFired() {
    119   DCHECK(active_);
    120 
    121   last_tick_time_ = current_parameters_.tick_target;
    122 
    123   PostNextTickTask(Now());
    124 
    125   // Fire the tick.
    126   if (client_)
    127     client_->OnTimerTick();
    128 }
    129 
    130 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) {
    131   client_ = client;
    132 }
    133 
    134 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase,
    135                                                   base::TimeDelta interval) {
    136   DCHECK_GT(interval.ToInternalValue(), 0);
    137   next_parameters_.interval = interval;
    138   next_parameters_.tick_target = timebase;
    139 
    140   if (!active_) {
    141     // If we aren't active, there's no need to reset the timer.
    142     return;
    143   }
    144 
    145   // If the change in interval is larger than the change threshold,
    146   // request an immediate reset.
    147   double interval_delta =
    148       std::abs((interval - current_parameters_.interval).InSecondsF());
    149   double interval_change = interval_delta / interval.InSecondsF();
    150   if (interval_change > kIntervalChangeThreshold) {
    151     TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged",
    152                          TRACE_EVENT_SCOPE_THREAD);
    153     SetActive(false);
    154     SetActive(true);
    155     return;
    156   }
    157 
    158   // If the change in phase is greater than the change threshold in either
    159   // direction, request an immediate reset. This logic might result in a false
    160   // negative if there is a simultaneous small change in the interval and the
    161   // fmod just happens to return something near zero. Assuming the timebase
    162   // is very recent though, which it should be, we'll still be ok because the
    163   // old clock and new clock just happen to line up.
    164   double target_delta =
    165       std::abs((timebase - current_parameters_.tick_target).InSecondsF());
    166   double phase_change =
    167       fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF();
    168   if (phase_change > kPhaseChangeThreshold &&
    169       phase_change < (1.0 - kPhaseChangeThreshold)) {
    170     TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged",
    171                          TRACE_EVENT_SCOPE_THREAD);
    172     SetActive(false);
    173     SetActive(true);
    174     return;
    175   }
    176 }
    177 
    178 base::TimeTicks DelayBasedTimeSource::Now() const {
    179   return base::TimeTicks::Now();
    180 }
    181 
    182 // This code tries to achieve an average tick rate as close to interval_ as
    183 // possible.  To do this, it has to deal with a few basic issues:
    184 //   1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
    185 //   has to posted as 16 or 17.
    186 //   2. A delayed task may come back a bit late (a few ms), or really late
    187 //   (frames later)
    188 //
    189 // The basic idea with this scheduler here is to keep track of where we *want*
    190 // to run in tick_target_. We update this with the exact interval.
    191 //
    192 // Then, when we post our task, we take the floor of (tick_target_ and Now()).
    193 // If we started at now=0, and 60FPs (all times in milliseconds):
    194 //      now=0    target=16.667   PostDelayedTask(16)
    195 //
    196 // When our callback runs, we figure out how far off we were from that goal.
    197 // Because of the flooring operation, and assuming our timer runs exactly when
    198 // it should, this yields:
    199 //      now=16   target=16.667
    200 //
    201 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
    202 // tick. Then, we update target to be 33.333. We now post another task based on
    203 // the difference between our target and now:
    204 //      now=16   tick_target=16.667  new_target=33.333   -->
    205 //          PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
    206 //
    207 // Over time, with no late tasks, this leads to us posting tasks like this:
    208 //      now=0    tick_target=0       new_target=16.667   -->
    209 //          tick(), PostDelayedTask(16)
    210 //      now=16   tick_target=16.667  new_target=33.333   -->
    211 //          tick(), PostDelayedTask(17)
    212 //      now=33   tick_target=33.333  new_target=50.000   -->
    213 //          tick(), PostDelayedTask(17)
    214 //      now=50   tick_target=50.000  new_target=66.667   -->
    215 //          tick(), PostDelayedTask(16)
    216 //
    217 // We treat delays in tasks differently depending on the amount of delay we
    218 // encounter. Suppose we posted a task with a target=16.667:
    219 //   Case 1: late but not unrecoverably-so
    220 //      now=18 tick_target=16.667
    221 //
    222 //   Case 2: so late we obviously missed the tick
    223 //      now=25.0 tick_target=16.667
    224 //
    225 // We treat the first case as a tick anyway, and assume the delay was unusual.
    226 // Thus, we compute the new_target based on the old timebase:
    227 //      now=18   tick_target=16.667  new_target=33.333   -->
    228 //          tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
    229 // This brings us back to 18+15 = 33, which was where we would have been if the
    230 // task hadn't been late.
    231 //
    232 // For the really late delay, we we move to the next logical tick. The timebase
    233 // is not reset.
    234 //      now=37   tick_target=16.667  new_target=50.000  -->
    235 //          tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
    236 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) {
    237   base::TimeDelta new_interval = next_parameters_.interval;
    238 
    239   // |interval_offset| is the offset from |now| to the next multiple of
    240   // |interval| after |tick_target|, possibly negative if in the past.
    241   base::TimeDelta interval_offset = base::TimeDelta::FromInternalValue(
    242       (next_parameters_.tick_target - now).ToInternalValue() %
    243       new_interval.ToInternalValue());
    244   // If |now| is exactly on the interval (i.e. offset==0), don't adjust.
    245   // Otherwise, if |tick_target| was in the past, adjust forward to the next
    246   // tick after |now|.
    247   if (interval_offset.ToInternalValue() != 0 &&
    248       next_parameters_.tick_target < now) {
    249     interval_offset += new_interval;
    250   }
    251 
    252   base::TimeTicks new_tick_target = now + interval_offset;
    253   DCHECK(now <= new_tick_target)
    254       << "now = " << now.ToInternalValue()
    255       << "; new_tick_target = " << new_tick_target.ToInternalValue()
    256       << "; new_interval = " << new_interval.InMicroseconds()
    257       << "; tick_target = " << next_parameters_.tick_target.ToInternalValue()
    258       << "; interval_offset = " << interval_offset.ToInternalValue();
    259 
    260   // Avoid double ticks when:
    261   // 1) Turning off the timer and turning it right back on.
    262   // 2) Jittery data is passed to SetTimebaseAndInterval().
    263   if (new_tick_target - last_tick_time_ <= new_interval / kDoubleTickDivisor)
    264     new_tick_target += new_interval;
    265 
    266   return new_tick_target;
    267 }
    268 
    269 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) {
    270   base::TimeTicks new_tick_target = NextTickTarget(now);
    271 
    272   // Post another task *before* the tick and update state
    273   base::TimeDelta delay;
    274   if (now <= new_tick_target)
    275     delay = new_tick_target - now;
    276   task_runner_->PostDelayedTask(FROM_HERE,
    277                                 base::Bind(&DelayBasedTimeSource::OnTimerFired,
    278                                            weak_factory_.GetWeakPtr()),
    279                                 delay);
    280 
    281   next_parameters_.tick_target = new_tick_target;
    282   current_parameters_ = next_parameters_;
    283 }
    284 
    285 std::string DelayBasedTimeSource::TypeString() const {
    286   return "DelayBasedTimeSource";
    287 }
    288 
    289 std::string DelayBasedTimeSourceHighRes::TypeString() const {
    290   return "DelayBasedTimeSourceHighRes";
    291 }
    292 
    293 void DelayBasedTimeSource::AsValueInto(base::debug::TracedValue* state) const {
    294   state->SetString("type", TypeString());
    295   state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue());
    296   state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue());
    297 
    298   state->BeginDictionary("current_parameters");
    299   state->SetDouble("interval_us",
    300                    current_parameters_.interval.InMicroseconds());
    301   state->SetDouble("tick_target_us",
    302                    current_parameters_.tick_target.ToInternalValue());
    303   state->EndDictionary();
    304 
    305   state->BeginDictionary("next_parameters");
    306   state->SetDouble("interval_us", next_parameters_.interval.InMicroseconds());
    307   state->SetDouble("tick_target_us",
    308                    next_parameters_.tick_target.ToInternalValue());
    309   state->EndDictionary();
    310 
    311   state->SetBoolean("active", active_);
    312 }
    313 
    314 }  // namespace cc
    315