1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "method_verifier-inl.h" 18 19 #include <iostream> 20 21 #include "base/logging.h" 22 #include "base/mutex-inl.h" 23 #include "class_linker.h" 24 #include "compiler_callbacks.h" 25 #include "dex_file-inl.h" 26 #include "dex_instruction-inl.h" 27 #include "dex_instruction_visitor.h" 28 #include "field_helper.h" 29 #include "gc/accounting/card_table-inl.h" 30 #include "indenter.h" 31 #include "intern_table.h" 32 #include "leb128.h" 33 #include "method_helper-inl.h" 34 #include "mirror/art_field-inl.h" 35 #include "mirror/art_method-inl.h" 36 #include "mirror/class.h" 37 #include "mirror/class-inl.h" 38 #include "mirror/dex_cache-inl.h" 39 #include "mirror/object-inl.h" 40 #include "mirror/object_array-inl.h" 41 #include "register_line-inl.h" 42 #include "runtime.h" 43 #include "scoped_thread_state_change.h" 44 #include "handle_scope-inl.h" 45 #include "verifier/dex_gc_map.h" 46 47 namespace art { 48 namespace verifier { 49 50 static constexpr bool kTimeVerifyMethod = !kIsDebugBuild; 51 static constexpr bool gDebugVerify = false; 52 // TODO: Add a constant to method_verifier to turn on verbose logging? 53 54 void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags, 55 uint32_t insns_size, uint16_t registers_size, 56 MethodVerifier* verifier) { 57 DCHECK_GT(insns_size, 0U); 58 register_lines_.reset(new RegisterLine*[insns_size]()); 59 size_ = insns_size; 60 for (uint32_t i = 0; i < insns_size; i++) { 61 bool interesting = false; 62 switch (mode) { 63 case kTrackRegsAll: 64 interesting = flags[i].IsOpcode(); 65 break; 66 case kTrackCompilerInterestPoints: 67 interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget(); 68 break; 69 case kTrackRegsBranches: 70 interesting = flags[i].IsBranchTarget(); 71 break; 72 default: 73 break; 74 } 75 if (interesting) { 76 register_lines_[i] = RegisterLine::Create(registers_size, verifier); 77 } 78 } 79 } 80 81 PcToRegisterLineTable::~PcToRegisterLineTable() { 82 for (size_t i = 0; i < size_; i++) { 83 delete register_lines_[i]; 84 if (kIsDebugBuild) { 85 register_lines_[i] = nullptr; 86 } 87 } 88 } 89 90 // Note: returns true on failure. 91 ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition, 92 const char* error_msg, uint32_t work_insn_idx) { 93 if (kIsDebugBuild) { 94 // In a debug build, abort if the error condition is wrong. 95 DCHECK(condition) << error_msg << work_insn_idx; 96 } else { 97 // In a non-debug build, just fail the class. 98 if (!condition) { 99 verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx; 100 return true; 101 } 102 } 103 104 return false; 105 } 106 107 MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass, 108 bool allow_soft_failures, 109 std::string* error) { 110 if (klass->IsVerified()) { 111 return kNoFailure; 112 } 113 bool early_failure = false; 114 std::string failure_message; 115 const DexFile& dex_file = klass->GetDexFile(); 116 const DexFile::ClassDef* class_def = klass->GetClassDef(); 117 mirror::Class* super = klass->GetSuperClass(); 118 std::string temp; 119 if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) { 120 early_failure = true; 121 failure_message = " that has no super class"; 122 } else if (super != nullptr && super->IsFinal()) { 123 early_failure = true; 124 failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super); 125 } else if (class_def == nullptr) { 126 early_failure = true; 127 failure_message = " that isn't present in dex file " + dex_file.GetLocation(); 128 } 129 if (early_failure) { 130 *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message; 131 if (Runtime::Current()->IsCompiler()) { 132 ClassReference ref(&dex_file, klass->GetDexClassDefIndex()); 133 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); 134 } 135 return kHardFailure; 136 } 137 StackHandleScope<2> hs(Thread::Current()); 138 Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache())); 139 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader())); 140 return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error); 141 } 142 143 MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file, 144 Handle<mirror::DexCache> dex_cache, 145 Handle<mirror::ClassLoader> class_loader, 146 const DexFile::ClassDef* class_def, 147 bool allow_soft_failures, 148 std::string* error) { 149 DCHECK(class_def != nullptr); 150 const byte* class_data = dex_file->GetClassData(*class_def); 151 if (class_data == nullptr) { 152 // empty class, probably a marker interface 153 return kNoFailure; 154 } 155 ClassDataItemIterator it(*dex_file, class_data); 156 while (it.HasNextStaticField() || it.HasNextInstanceField()) { 157 it.Next(); 158 } 159 size_t error_count = 0; 160 bool hard_fail = false; 161 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 162 int64_t previous_direct_method_idx = -1; 163 while (it.HasNextDirectMethod()) { 164 uint32_t method_idx = it.GetMemberIndex(); 165 if (method_idx == previous_direct_method_idx) { 166 // smali can create dex files with two encoded_methods sharing the same method_idx 167 // http://code.google.com/p/smali/issues/detail?id=119 168 it.Next(); 169 continue; 170 } 171 previous_direct_method_idx = method_idx; 172 InvokeType type = it.GetMethodInvokeType(*class_def); 173 mirror::ArtMethod* method = 174 linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, 175 NullHandle<mirror::ArtMethod>(), type); 176 if (method == nullptr) { 177 DCHECK(Thread::Current()->IsExceptionPending()); 178 // We couldn't resolve the method, but continue regardless. 179 Thread::Current()->ClearException(); 180 } 181 MethodVerifier::FailureKind result = VerifyMethod(method_idx, 182 dex_file, 183 dex_cache, 184 class_loader, 185 class_def, 186 it.GetMethodCodeItem(), 187 method, 188 it.GetMethodAccessFlags(), 189 allow_soft_failures, 190 false); 191 if (result != kNoFailure) { 192 if (result == kHardFailure) { 193 hard_fail = true; 194 if (error_count > 0) { 195 *error += "\n"; 196 } 197 *error = "Verifier rejected class "; 198 *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def)); 199 *error += " due to bad method "; 200 *error += PrettyMethod(method_idx, *dex_file); 201 } 202 ++error_count; 203 } 204 it.Next(); 205 } 206 int64_t previous_virtual_method_idx = -1; 207 while (it.HasNextVirtualMethod()) { 208 uint32_t method_idx = it.GetMemberIndex(); 209 if (method_idx == previous_virtual_method_idx) { 210 // smali can create dex files with two encoded_methods sharing the same method_idx 211 // http://code.google.com/p/smali/issues/detail?id=119 212 it.Next(); 213 continue; 214 } 215 previous_virtual_method_idx = method_idx; 216 InvokeType type = it.GetMethodInvokeType(*class_def); 217 mirror::ArtMethod* method = 218 linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, 219 NullHandle<mirror::ArtMethod>(), type); 220 if (method == nullptr) { 221 DCHECK(Thread::Current()->IsExceptionPending()); 222 // We couldn't resolve the method, but continue regardless. 223 Thread::Current()->ClearException(); 224 } 225 MethodVerifier::FailureKind result = VerifyMethod(method_idx, 226 dex_file, 227 dex_cache, 228 class_loader, 229 class_def, 230 it.GetMethodCodeItem(), 231 method, 232 it.GetMethodAccessFlags(), 233 allow_soft_failures, 234 false); 235 if (result != kNoFailure) { 236 if (result == kHardFailure) { 237 hard_fail = true; 238 if (error_count > 0) { 239 *error += "\n"; 240 } 241 *error = "Verifier rejected class "; 242 *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def)); 243 *error += " due to bad method "; 244 *error += PrettyMethod(method_idx, *dex_file); 245 } 246 ++error_count; 247 } 248 it.Next(); 249 } 250 if (error_count == 0) { 251 return kNoFailure; 252 } else { 253 return hard_fail ? kHardFailure : kSoftFailure; 254 } 255 } 256 257 MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx, 258 const DexFile* dex_file, 259 Handle<mirror::DexCache> dex_cache, 260 Handle<mirror::ClassLoader> class_loader, 261 const DexFile::ClassDef* class_def, 262 const DexFile::CodeItem* code_item, 263 mirror::ArtMethod* method, 264 uint32_t method_access_flags, 265 bool allow_soft_failures, 266 bool need_precise_constants) { 267 MethodVerifier::FailureKind result = kNoFailure; 268 uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0; 269 270 MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item, 271 method_idx, method, method_access_flags, true, allow_soft_failures, 272 need_precise_constants); 273 if (verifier.Verify()) { 274 // Verification completed, however failures may be pending that didn't cause the verification 275 // to hard fail. 276 CHECK(!verifier.have_pending_hard_failure_); 277 if (verifier.failures_.size() != 0) { 278 if (VLOG_IS_ON(verifier)) { 279 verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in " 280 << PrettyMethod(method_idx, *dex_file) << "\n"); 281 } 282 result = kSoftFailure; 283 } 284 } else { 285 // Bad method data. 286 CHECK_NE(verifier.failures_.size(), 0U); 287 CHECK(verifier.have_pending_hard_failure_); 288 verifier.DumpFailures(LOG(INFO) << "Verification error in " 289 << PrettyMethod(method_idx, *dex_file) << "\n"); 290 if (gDebugVerify) { 291 std::cout << "\n" << verifier.info_messages_.str(); 292 verifier.Dump(std::cout); 293 } 294 result = kHardFailure; 295 } 296 if (kTimeVerifyMethod) { 297 uint64_t duration_ns = NanoTime() - start_ns; 298 if (duration_ns > MsToNs(100)) { 299 LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file) 300 << " took " << PrettyDuration(duration_ns); 301 } 302 } 303 return result; 304 } 305 306 MethodVerifier* MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx, 307 const DexFile* dex_file, 308 Handle<mirror::DexCache> dex_cache, 309 Handle<mirror::ClassLoader> class_loader, 310 const DexFile::ClassDef* class_def, 311 const DexFile::CodeItem* code_item, 312 mirror::ArtMethod* method, 313 uint32_t method_access_flags) { 314 MethodVerifier* verifier = new MethodVerifier(dex_file, &dex_cache, &class_loader, class_def, 315 code_item, dex_method_idx, method, 316 method_access_flags, true, true, true, true); 317 verifier->Verify(); 318 verifier->DumpFailures(os); 319 os << verifier->info_messages_.str(); 320 verifier->Dump(os); 321 322 return verifier; 323 } 324 325 MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache, 326 Handle<mirror::ClassLoader>* class_loader, 327 const DexFile::ClassDef* class_def, 328 const DexFile::CodeItem* code_item, uint32_t dex_method_idx, 329 mirror::ArtMethod* method, uint32_t method_access_flags, 330 bool can_load_classes, bool allow_soft_failures, 331 bool need_precise_constants, bool verify_to_dump) 332 : reg_types_(can_load_classes), 333 work_insn_idx_(-1), 334 dex_method_idx_(dex_method_idx), 335 mirror_method_(method), 336 method_access_flags_(method_access_flags), 337 return_type_(nullptr), 338 dex_file_(dex_file), 339 dex_cache_(dex_cache), 340 class_loader_(class_loader), 341 class_def_(class_def), 342 code_item_(code_item), 343 declaring_class_(nullptr), 344 interesting_dex_pc_(-1), 345 monitor_enter_dex_pcs_(nullptr), 346 have_pending_hard_failure_(false), 347 have_pending_runtime_throw_failure_(false), 348 new_instance_count_(0), 349 monitor_enter_count_(0), 350 can_load_classes_(can_load_classes), 351 allow_soft_failures_(allow_soft_failures), 352 need_precise_constants_(need_precise_constants), 353 has_check_casts_(false), 354 has_virtual_or_interface_invokes_(false), 355 verify_to_dump_(verify_to_dump) { 356 Runtime::Current()->AddMethodVerifier(this); 357 DCHECK(class_def != nullptr); 358 } 359 360 MethodVerifier::~MethodVerifier() { 361 Runtime::Current()->RemoveMethodVerifier(this); 362 STLDeleteElements(&failure_messages_); 363 } 364 365 void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc, 366 std::vector<uint32_t>* monitor_enter_dex_pcs) { 367 StackHandleScope<2> hs(Thread::Current()); 368 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache())); 369 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader())); 370 MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(), 371 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, 372 true, false); 373 verifier.interesting_dex_pc_ = dex_pc; 374 verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs; 375 verifier.FindLocksAtDexPc(); 376 } 377 378 void MethodVerifier::FindLocksAtDexPc() { 379 CHECK(monitor_enter_dex_pcs_ != nullptr); 380 CHECK(code_item_ != nullptr); // This only makes sense for methods with code. 381 382 // Strictly speaking, we ought to be able to get away with doing a subset of the full method 383 // verification. In practice, the phase we want relies on data structures set up by all the 384 // earlier passes, so we just run the full method verification and bail out early when we've 385 // got what we wanted. 386 Verify(); 387 } 388 389 mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m, 390 uint32_t dex_pc) { 391 StackHandleScope<2> hs(Thread::Current()); 392 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache())); 393 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader())); 394 MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(), 395 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true, 396 true, false); 397 return verifier.FindAccessedFieldAtDexPc(dex_pc); 398 } 399 400 mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) { 401 CHECK(code_item_ != nullptr); // This only makes sense for methods with code. 402 403 // Strictly speaking, we ought to be able to get away with doing a subset of the full method 404 // verification. In practice, the phase we want relies on data structures set up by all the 405 // earlier passes, so we just run the full method verification and bail out early when we've 406 // got what we wanted. 407 bool success = Verify(); 408 if (!success) { 409 return nullptr; 410 } 411 RegisterLine* register_line = reg_table_.GetLine(dex_pc); 412 if (register_line == nullptr) { 413 return nullptr; 414 } 415 const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc); 416 return GetQuickFieldAccess(inst, register_line); 417 } 418 419 mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m, 420 uint32_t dex_pc) { 421 StackHandleScope<2> hs(Thread::Current()); 422 Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache())); 423 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader())); 424 MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(), 425 m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true, 426 true, false); 427 return verifier.FindInvokedMethodAtDexPc(dex_pc); 428 } 429 430 mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) { 431 CHECK(code_item_ != nullptr); // This only makes sense for methods with code. 432 433 // Strictly speaking, we ought to be able to get away with doing a subset of the full method 434 // verification. In practice, the phase we want relies on data structures set up by all the 435 // earlier passes, so we just run the full method verification and bail out early when we've 436 // got what we wanted. 437 bool success = Verify(); 438 if (!success) { 439 return nullptr; 440 } 441 RegisterLine* register_line = reg_table_.GetLine(dex_pc); 442 if (register_line == nullptr) { 443 return nullptr; 444 } 445 const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc); 446 const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK); 447 return GetQuickInvokedMethod(inst, register_line, is_range); 448 } 449 450 bool MethodVerifier::Verify() { 451 // If there aren't any instructions, make sure that's expected, then exit successfully. 452 if (code_item_ == nullptr) { 453 if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) { 454 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method"; 455 return false; 456 } else { 457 return true; 458 } 459 } 460 // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers. 461 if (code_item_->ins_size_ > code_item_->registers_size_) { 462 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_ 463 << " regs=" << code_item_->registers_size_; 464 return false; 465 } 466 // Allocate and initialize an array to hold instruction data. 467 insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]()); 468 // Run through the instructions and see if the width checks out. 469 bool result = ComputeWidthsAndCountOps(); 470 // Flag instructions guarded by a "try" block and check exception handlers. 471 result = result && ScanTryCatchBlocks(); 472 // Perform static instruction verification. 473 result = result && VerifyInstructions(); 474 // Perform code-flow analysis and return. 475 result = result && VerifyCodeFlow(); 476 // Compute information for compiler. 477 if (result && Runtime::Current()->IsCompiler()) { 478 result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this); 479 } 480 return result; 481 } 482 483 std::ostream& MethodVerifier::Fail(VerifyError error) { 484 switch (error) { 485 case VERIFY_ERROR_NO_CLASS: 486 case VERIFY_ERROR_NO_FIELD: 487 case VERIFY_ERROR_NO_METHOD: 488 case VERIFY_ERROR_ACCESS_CLASS: 489 case VERIFY_ERROR_ACCESS_FIELD: 490 case VERIFY_ERROR_ACCESS_METHOD: 491 case VERIFY_ERROR_INSTANTIATION: 492 case VERIFY_ERROR_CLASS_CHANGE: 493 if (Runtime::Current()->IsCompiler() || !can_load_classes_) { 494 // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx, 495 // class change and instantiation errors into soft verification errors so that we re-verify 496 // at runtime. We may fail to find or to agree on access because of not yet available class 497 // loaders, or class loaders that will differ at runtime. In these cases, we don't want to 498 // affect the soundness of the code being compiled. Instead, the generated code runs "slow 499 // paths" that dynamically perform the verification and cause the behavior to be that akin 500 // to an interpreter. 501 error = VERIFY_ERROR_BAD_CLASS_SOFT; 502 } else { 503 // If we fail again at runtime, mark that this instruction would throw and force this 504 // method to be executed using the interpreter with checks. 505 have_pending_runtime_throw_failure_ = true; 506 } 507 break; 508 // Indication that verification should be retried at runtime. 509 case VERIFY_ERROR_BAD_CLASS_SOFT: 510 if (!allow_soft_failures_) { 511 have_pending_hard_failure_ = true; 512 } 513 break; 514 // Hard verification failures at compile time will still fail at runtime, so the class is 515 // marked as rejected to prevent it from being compiled. 516 case VERIFY_ERROR_BAD_CLASS_HARD: { 517 if (Runtime::Current()->IsCompiler()) { 518 ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_)); 519 Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref); 520 } 521 have_pending_hard_failure_ = true; 522 break; 523 } 524 } 525 failures_.push_back(error); 526 std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(), 527 work_insn_idx_)); 528 std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate); 529 failure_messages_.push_back(failure_message); 530 return *failure_message; 531 } 532 533 std::ostream& MethodVerifier::LogVerifyInfo() { 534 return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_) 535 << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : "; 536 } 537 538 void MethodVerifier::PrependToLastFailMessage(std::string prepend) { 539 size_t failure_num = failure_messages_.size(); 540 DCHECK_NE(failure_num, 0U); 541 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1]; 542 prepend += last_fail_message->str(); 543 failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate); 544 delete last_fail_message; 545 } 546 547 void MethodVerifier::AppendToLastFailMessage(std::string append) { 548 size_t failure_num = failure_messages_.size(); 549 DCHECK_NE(failure_num, 0U); 550 std::ostringstream* last_fail_message = failure_messages_[failure_num - 1]; 551 (*last_fail_message) << append; 552 } 553 554 bool MethodVerifier::ComputeWidthsAndCountOps() { 555 const uint16_t* insns = code_item_->insns_; 556 size_t insns_size = code_item_->insns_size_in_code_units_; 557 const Instruction* inst = Instruction::At(insns); 558 size_t new_instance_count = 0; 559 size_t monitor_enter_count = 0; 560 size_t dex_pc = 0; 561 562 while (dex_pc < insns_size) { 563 Instruction::Code opcode = inst->Opcode(); 564 switch (opcode) { 565 case Instruction::APUT_OBJECT: 566 case Instruction::CHECK_CAST: 567 has_check_casts_ = true; 568 break; 569 case Instruction::INVOKE_VIRTUAL: 570 case Instruction::INVOKE_VIRTUAL_RANGE: 571 case Instruction::INVOKE_INTERFACE: 572 case Instruction::INVOKE_INTERFACE_RANGE: 573 has_virtual_or_interface_invokes_ = true; 574 break; 575 case Instruction::MONITOR_ENTER: 576 monitor_enter_count++; 577 break; 578 case Instruction::NEW_INSTANCE: 579 new_instance_count++; 580 break; 581 default: 582 break; 583 } 584 size_t inst_size = inst->SizeInCodeUnits(); 585 insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size); 586 dex_pc += inst_size; 587 inst = inst->Next(); 588 } 589 590 if (dex_pc != insns_size) { 591 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected (" 592 << dex_pc << " vs. " << insns_size << ")"; 593 return false; 594 } 595 596 new_instance_count_ = new_instance_count; 597 monitor_enter_count_ = monitor_enter_count; 598 return true; 599 } 600 601 bool MethodVerifier::ScanTryCatchBlocks() { 602 uint32_t tries_size = code_item_->tries_size_; 603 if (tries_size == 0) { 604 return true; 605 } 606 uint32_t insns_size = code_item_->insns_size_in_code_units_; 607 const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0); 608 609 for (uint32_t idx = 0; idx < tries_size; idx++) { 610 const DexFile::TryItem* try_item = &tries[idx]; 611 uint32_t start = try_item->start_addr_; 612 uint32_t end = start + try_item->insn_count_; 613 if ((start >= end) || (start >= insns_size) || (end > insns_size)) { 614 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start 615 << " endAddr=" << end << " (size=" << insns_size << ")"; 616 return false; 617 } 618 if (!insn_flags_[start].IsOpcode()) { 619 Fail(VERIFY_ERROR_BAD_CLASS_HARD) 620 << "'try' block starts inside an instruction (" << start << ")"; 621 return false; 622 } 623 for (uint32_t dex_pc = start; dex_pc < end; 624 dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) { 625 insn_flags_[dex_pc].SetInTry(); 626 } 627 } 628 // Iterate over each of the handlers to verify target addresses. 629 const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0); 630 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); 631 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 632 for (uint32_t idx = 0; idx < handlers_size; idx++) { 633 CatchHandlerIterator iterator(handlers_ptr); 634 for (; iterator.HasNext(); iterator.Next()) { 635 uint32_t dex_pc= iterator.GetHandlerAddress(); 636 if (!insn_flags_[dex_pc].IsOpcode()) { 637 Fail(VERIFY_ERROR_BAD_CLASS_HARD) 638 << "exception handler starts at bad address (" << dex_pc << ")"; 639 return false; 640 } 641 insn_flags_[dex_pc].SetBranchTarget(); 642 // Ensure exception types are resolved so that they don't need resolution to be delivered, 643 // unresolved exception types will be ignored by exception delivery 644 if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) { 645 mirror::Class* exception_type = linker->ResolveType(*dex_file_, 646 iterator.GetHandlerTypeIndex(), 647 *dex_cache_, *class_loader_); 648 if (exception_type == nullptr) { 649 DCHECK(Thread::Current()->IsExceptionPending()); 650 Thread::Current()->ClearException(); 651 } 652 } 653 } 654 handlers_ptr = iterator.EndDataPointer(); 655 } 656 return true; 657 } 658 659 bool MethodVerifier::VerifyInstructions() { 660 const Instruction* inst = Instruction::At(code_item_->insns_); 661 662 /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */ 663 insn_flags_[0].SetBranchTarget(); 664 insn_flags_[0].SetCompileTimeInfoPoint(); 665 666 uint32_t insns_size = code_item_->insns_size_in_code_units_; 667 for (uint32_t dex_pc = 0; dex_pc < insns_size;) { 668 if (!VerifyInstruction(inst, dex_pc)) { 669 DCHECK_NE(failures_.size(), 0U); 670 return false; 671 } 672 /* Flag instructions that are garbage collection points */ 673 // All invoke points are marked as "Throw" points already. 674 // We are relying on this to also count all the invokes as interesting. 675 if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) { 676 insn_flags_[dex_pc].SetCompileTimeInfoPoint(); 677 } else if (inst->IsReturn()) { 678 insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn(); 679 } 680 dex_pc += inst->SizeInCodeUnits(); 681 inst = inst->Next(); 682 } 683 return true; 684 } 685 686 bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) { 687 bool result = true; 688 switch (inst->GetVerifyTypeArgumentA()) { 689 case Instruction::kVerifyRegA: 690 result = result && CheckRegisterIndex(inst->VRegA()); 691 break; 692 case Instruction::kVerifyRegAWide: 693 result = result && CheckWideRegisterIndex(inst->VRegA()); 694 break; 695 } 696 switch (inst->GetVerifyTypeArgumentB()) { 697 case Instruction::kVerifyRegB: 698 result = result && CheckRegisterIndex(inst->VRegB()); 699 break; 700 case Instruction::kVerifyRegBField: 701 result = result && CheckFieldIndex(inst->VRegB()); 702 break; 703 case Instruction::kVerifyRegBMethod: 704 result = result && CheckMethodIndex(inst->VRegB()); 705 break; 706 case Instruction::kVerifyRegBNewInstance: 707 result = result && CheckNewInstance(inst->VRegB()); 708 break; 709 case Instruction::kVerifyRegBString: 710 result = result && CheckStringIndex(inst->VRegB()); 711 break; 712 case Instruction::kVerifyRegBType: 713 result = result && CheckTypeIndex(inst->VRegB()); 714 break; 715 case Instruction::kVerifyRegBWide: 716 result = result && CheckWideRegisterIndex(inst->VRegB()); 717 break; 718 } 719 switch (inst->GetVerifyTypeArgumentC()) { 720 case Instruction::kVerifyRegC: 721 result = result && CheckRegisterIndex(inst->VRegC()); 722 break; 723 case Instruction::kVerifyRegCField: 724 result = result && CheckFieldIndex(inst->VRegC()); 725 break; 726 case Instruction::kVerifyRegCNewArray: 727 result = result && CheckNewArray(inst->VRegC()); 728 break; 729 case Instruction::kVerifyRegCType: 730 result = result && CheckTypeIndex(inst->VRegC()); 731 break; 732 case Instruction::kVerifyRegCWide: 733 result = result && CheckWideRegisterIndex(inst->VRegC()); 734 break; 735 } 736 switch (inst->GetVerifyExtraFlags()) { 737 case Instruction::kVerifyArrayData: 738 result = result && CheckArrayData(code_offset); 739 break; 740 case Instruction::kVerifyBranchTarget: 741 result = result && CheckBranchTarget(code_offset); 742 break; 743 case Instruction::kVerifySwitchTargets: 744 result = result && CheckSwitchTargets(code_offset); 745 break; 746 case Instruction::kVerifyVarArgNonZero: 747 // Fall-through. 748 case Instruction::kVerifyVarArg: { 749 if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) { 750 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in " 751 "non-range invoke"; 752 return false; 753 } 754 uint32_t args[Instruction::kMaxVarArgRegs]; 755 inst->GetVarArgs(args); 756 result = result && CheckVarArgRegs(inst->VRegA(), args); 757 break; 758 } 759 case Instruction::kVerifyVarArgRangeNonZero: 760 // Fall-through. 761 case Instruction::kVerifyVarArgRange: 762 if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero && 763 inst->VRegA() <= 0) { 764 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in " 765 "range invoke"; 766 return false; 767 } 768 result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC()); 769 break; 770 case Instruction::kVerifyError: 771 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name(); 772 result = false; 773 break; 774 } 775 if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) { 776 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name(); 777 result = false; 778 } 779 return result; 780 } 781 782 bool MethodVerifier::CheckRegisterIndex(uint32_t idx) { 783 if (idx >= code_item_->registers_size_) { 784 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= " 785 << code_item_->registers_size_ << ")"; 786 return false; 787 } 788 return true; 789 } 790 791 bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) { 792 if (idx + 1 >= code_item_->registers_size_) { 793 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx 794 << "+1 >= " << code_item_->registers_size_ << ")"; 795 return false; 796 } 797 return true; 798 } 799 800 bool MethodVerifier::CheckFieldIndex(uint32_t idx) { 801 if (idx >= dex_file_->GetHeader().field_ids_size_) { 802 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max " 803 << dex_file_->GetHeader().field_ids_size_ << ")"; 804 return false; 805 } 806 return true; 807 } 808 809 bool MethodVerifier::CheckMethodIndex(uint32_t idx) { 810 if (idx >= dex_file_->GetHeader().method_ids_size_) { 811 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max " 812 << dex_file_->GetHeader().method_ids_size_ << ")"; 813 return false; 814 } 815 return true; 816 } 817 818 bool MethodVerifier::CheckNewInstance(uint32_t idx) { 819 if (idx >= dex_file_->GetHeader().type_ids_size_) { 820 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max " 821 << dex_file_->GetHeader().type_ids_size_ << ")"; 822 return false; 823 } 824 // We don't need the actual class, just a pointer to the class name. 825 const char* descriptor = dex_file_->StringByTypeIdx(idx); 826 if (descriptor[0] != 'L') { 827 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'"; 828 return false; 829 } 830 return true; 831 } 832 833 bool MethodVerifier::CheckStringIndex(uint32_t idx) { 834 if (idx >= dex_file_->GetHeader().string_ids_size_) { 835 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max " 836 << dex_file_->GetHeader().string_ids_size_ << ")"; 837 return false; 838 } 839 return true; 840 } 841 842 bool MethodVerifier::CheckTypeIndex(uint32_t idx) { 843 if (idx >= dex_file_->GetHeader().type_ids_size_) { 844 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max " 845 << dex_file_->GetHeader().type_ids_size_ << ")"; 846 return false; 847 } 848 return true; 849 } 850 851 bool MethodVerifier::CheckNewArray(uint32_t idx) { 852 if (idx >= dex_file_->GetHeader().type_ids_size_) { 853 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max " 854 << dex_file_->GetHeader().type_ids_size_ << ")"; 855 return false; 856 } 857 int bracket_count = 0; 858 const char* descriptor = dex_file_->StringByTypeIdx(idx); 859 const char* cp = descriptor; 860 while (*cp++ == '[') { 861 bracket_count++; 862 } 863 if (bracket_count == 0) { 864 /* The given class must be an array type. */ 865 Fail(VERIFY_ERROR_BAD_CLASS_HARD) 866 << "can't new-array class '" << descriptor << "' (not an array)"; 867 return false; 868 } else if (bracket_count > 255) { 869 /* It is illegal to create an array of more than 255 dimensions. */ 870 Fail(VERIFY_ERROR_BAD_CLASS_HARD) 871 << "can't new-array class '" << descriptor << "' (exceeds limit)"; 872 return false; 873 } 874 return true; 875 } 876 877 bool MethodVerifier::CheckArrayData(uint32_t cur_offset) { 878 const uint32_t insn_count = code_item_->insns_size_in_code_units_; 879 const uint16_t* insns = code_item_->insns_ + cur_offset; 880 const uint16_t* array_data; 881 int32_t array_data_offset; 882 883 DCHECK_LT(cur_offset, insn_count); 884 /* make sure the start of the array data table is in range */ 885 array_data_offset = insns[1] | (((int32_t) insns[2]) << 16); 886 if ((int32_t) cur_offset + array_data_offset < 0 || 887 cur_offset + array_data_offset + 2 >= insn_count) { 888 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset 889 << ", data offset " << array_data_offset 890 << ", count " << insn_count; 891 return false; 892 } 893 /* offset to array data table is a relative branch-style offset */ 894 array_data = insns + array_data_offset; 895 /* make sure the table is 32-bit aligned */ 896 if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) { 897 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset 898 << ", data offset " << array_data_offset; 899 return false; 900 } 901 uint32_t value_width = array_data[1]; 902 uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]); 903 uint32_t table_size = 4 + (value_width * value_count + 1) / 2; 904 /* make sure the end of the switch is in range */ 905 if (cur_offset + array_data_offset + table_size > insn_count) { 906 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset 907 << ", data offset " << array_data_offset << ", end " 908 << cur_offset + array_data_offset + table_size 909 << ", count " << insn_count; 910 return false; 911 } 912 return true; 913 } 914 915 bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) { 916 int32_t offset; 917 bool isConditional, selfOkay; 918 if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) { 919 return false; 920 } 921 if (!selfOkay && offset == 0) { 922 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at" 923 << reinterpret_cast<void*>(cur_offset); 924 return false; 925 } 926 // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime 927 // to have identical "wrap-around" behavior, but it's unwise to depend on that. 928 if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) { 929 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow " 930 << reinterpret_cast<void*>(cur_offset) << " +" << offset; 931 return false; 932 } 933 const uint32_t insn_count = code_item_->insns_size_in_code_units_; 934 int32_t abs_offset = cur_offset + offset; 935 if (abs_offset < 0 || 936 (uint32_t) abs_offset >= insn_count || 937 !insn_flags_[abs_offset].IsOpcode()) { 938 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> " 939 << reinterpret_cast<void*>(abs_offset) << ") at " 940 << reinterpret_cast<void*>(cur_offset); 941 return false; 942 } 943 insn_flags_[abs_offset].SetBranchTarget(); 944 return true; 945 } 946 947 bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional, 948 bool* selfOkay) { 949 const uint16_t* insns = code_item_->insns_ + cur_offset; 950 *pConditional = false; 951 *selfOkay = false; 952 switch (*insns & 0xff) { 953 case Instruction::GOTO: 954 *pOffset = ((int16_t) *insns) >> 8; 955 break; 956 case Instruction::GOTO_32: 957 *pOffset = insns[1] | (((uint32_t) insns[2]) << 16); 958 *selfOkay = true; 959 break; 960 case Instruction::GOTO_16: 961 *pOffset = (int16_t) insns[1]; 962 break; 963 case Instruction::IF_EQ: 964 case Instruction::IF_NE: 965 case Instruction::IF_LT: 966 case Instruction::IF_GE: 967 case Instruction::IF_GT: 968 case Instruction::IF_LE: 969 case Instruction::IF_EQZ: 970 case Instruction::IF_NEZ: 971 case Instruction::IF_LTZ: 972 case Instruction::IF_GEZ: 973 case Instruction::IF_GTZ: 974 case Instruction::IF_LEZ: 975 *pOffset = (int16_t) insns[1]; 976 *pConditional = true; 977 break; 978 default: 979 return false; 980 break; 981 } 982 return true; 983 } 984 985 bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) { 986 const uint32_t insn_count = code_item_->insns_size_in_code_units_; 987 DCHECK_LT(cur_offset, insn_count); 988 const uint16_t* insns = code_item_->insns_ + cur_offset; 989 /* make sure the start of the switch is in range */ 990 int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16; 991 if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) { 992 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset 993 << ", switch offset " << switch_offset 994 << ", count " << insn_count; 995 return false; 996 } 997 /* offset to switch table is a relative branch-style offset */ 998 const uint16_t* switch_insns = insns + switch_offset; 999 /* make sure the table is 32-bit aligned */ 1000 if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) { 1001 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset 1002 << ", switch offset " << switch_offset; 1003 return false; 1004 } 1005 uint32_t switch_count = switch_insns[1]; 1006 int32_t keys_offset, targets_offset; 1007 uint16_t expected_signature; 1008 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { 1009 /* 0=sig, 1=count, 2/3=firstKey */ 1010 targets_offset = 4; 1011 keys_offset = -1; 1012 expected_signature = Instruction::kPackedSwitchSignature; 1013 } else { 1014 /* 0=sig, 1=count, 2..count*2 = keys */ 1015 keys_offset = 2; 1016 targets_offset = 2 + 2 * switch_count; 1017 expected_signature = Instruction::kSparseSwitchSignature; 1018 } 1019 uint32_t table_size = targets_offset + switch_count * 2; 1020 if (switch_insns[0] != expected_signature) { 1021 Fail(VERIFY_ERROR_BAD_CLASS_HARD) 1022 << StringPrintf("wrong signature for switch table (%x, wanted %x)", 1023 switch_insns[0], expected_signature); 1024 return false; 1025 } 1026 /* make sure the end of the switch is in range */ 1027 if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) { 1028 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset 1029 << ", switch offset " << switch_offset 1030 << ", end " << (cur_offset + switch_offset + table_size) 1031 << ", count " << insn_count; 1032 return false; 1033 } 1034 /* for a sparse switch, verify the keys are in ascending order */ 1035 if (keys_offset > 0 && switch_count > 1) { 1036 int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16); 1037 for (uint32_t targ = 1; targ < switch_count; targ++) { 1038 int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] | 1039 (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16); 1040 if (key <= last_key) { 1041 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key 1042 << ", this=" << key; 1043 return false; 1044 } 1045 last_key = key; 1046 } 1047 } 1048 /* verify each switch target */ 1049 for (uint32_t targ = 0; targ < switch_count; targ++) { 1050 int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] | 1051 (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16); 1052 int32_t abs_offset = cur_offset + offset; 1053 if (abs_offset < 0 || 1054 abs_offset >= (int32_t) insn_count || 1055 !insn_flags_[abs_offset].IsOpcode()) { 1056 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset 1057 << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at " 1058 << reinterpret_cast<void*>(cur_offset) 1059 << "[" << targ << "]"; 1060 return false; 1061 } 1062 insn_flags_[abs_offset].SetBranchTarget(); 1063 } 1064 return true; 1065 } 1066 1067 bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) { 1068 if (vA > Instruction::kMaxVarArgRegs) { 1069 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)"; 1070 return false; 1071 } 1072 uint16_t registers_size = code_item_->registers_size_; 1073 for (uint32_t idx = 0; idx < vA; idx++) { 1074 if (arg[idx] >= registers_size) { 1075 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx] 1076 << ") in non-range invoke (>= " << registers_size << ")"; 1077 return false; 1078 } 1079 } 1080 1081 return true; 1082 } 1083 1084 bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) { 1085 uint16_t registers_size = code_item_->registers_size_; 1086 // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of 1087 // integer overflow when adding them here. 1088 if (vA + vC > registers_size) { 1089 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC 1090 << " in range invoke (> " << registers_size << ")"; 1091 return false; 1092 } 1093 return true; 1094 } 1095 1096 bool MethodVerifier::VerifyCodeFlow() { 1097 uint16_t registers_size = code_item_->registers_size_; 1098 uint32_t insns_size = code_item_->insns_size_in_code_units_; 1099 1100 if (registers_size * insns_size > 4*1024*1024) { 1101 LOG(WARNING) << "warning: method is huge (regs=" << registers_size 1102 << " insns_size=" << insns_size << ")"; 1103 } 1104 /* Create and initialize table holding register status */ 1105 reg_table_.Init(kTrackCompilerInterestPoints, 1106 insn_flags_.get(), 1107 insns_size, 1108 registers_size, 1109 this); 1110 1111 1112 work_line_.reset(RegisterLine::Create(registers_size, this)); 1113 saved_line_.reset(RegisterLine::Create(registers_size, this)); 1114 1115 /* Initialize register types of method arguments. */ 1116 if (!SetTypesFromSignature()) { 1117 DCHECK_NE(failures_.size(), 0U); 1118 std::string prepend("Bad signature in "); 1119 prepend += PrettyMethod(dex_method_idx_, *dex_file_); 1120 PrependToLastFailMessage(prepend); 1121 return false; 1122 } 1123 /* Perform code flow verification. */ 1124 if (!CodeFlowVerifyMethod()) { 1125 DCHECK_NE(failures_.size(), 0U); 1126 return false; 1127 } 1128 return true; 1129 } 1130 1131 std::ostream& MethodVerifier::DumpFailures(std::ostream& os) { 1132 DCHECK_EQ(failures_.size(), failure_messages_.size()); 1133 for (size_t i = 0; i < failures_.size(); ++i) { 1134 os << failure_messages_[i]->str() << "\n"; 1135 } 1136 return os; 1137 } 1138 1139 extern "C" void MethodVerifierGdbDump(MethodVerifier* v) 1140 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 1141 v->Dump(std::cerr); 1142 } 1143 1144 void MethodVerifier::Dump(std::ostream& os) { 1145 if (code_item_ == nullptr) { 1146 os << "Native method\n"; 1147 return; 1148 } 1149 { 1150 os << "Register Types:\n"; 1151 Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); 1152 std::ostream indent_os(&indent_filter); 1153 reg_types_.Dump(indent_os); 1154 } 1155 os << "Dumping instructions and register lines:\n"; 1156 Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count); 1157 std::ostream indent_os(&indent_filter); 1158 const Instruction* inst = Instruction::At(code_item_->insns_); 1159 for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_; 1160 dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) { 1161 RegisterLine* reg_line = reg_table_.GetLine(dex_pc); 1162 if (reg_line != nullptr) { 1163 indent_os << reg_line->Dump() << "\n"; 1164 } 1165 indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " "; 1166 const bool kDumpHexOfInstruction = false; 1167 if (kDumpHexOfInstruction) { 1168 indent_os << inst->DumpHex(5) << " "; 1169 } 1170 indent_os << inst->DumpString(dex_file_) << "\n"; 1171 inst = inst->Next(); 1172 } 1173 } 1174 1175 static bool IsPrimitiveDescriptor(char descriptor) { 1176 switch (descriptor) { 1177 case 'I': 1178 case 'C': 1179 case 'S': 1180 case 'B': 1181 case 'Z': 1182 case 'F': 1183 case 'D': 1184 case 'J': 1185 return true; 1186 default: 1187 return false; 1188 } 1189 } 1190 1191 bool MethodVerifier::SetTypesFromSignature() { 1192 RegisterLine* reg_line = reg_table_.GetLine(0); 1193 int arg_start = code_item_->registers_size_ - code_item_->ins_size_; 1194 size_t expected_args = code_item_->ins_size_; /* long/double count as two */ 1195 1196 DCHECK_GE(arg_start, 0); /* should have been verified earlier */ 1197 // Include the "this" pointer. 1198 size_t cur_arg = 0; 1199 if (!IsStatic()) { 1200 // If this is a constructor for a class other than java.lang.Object, mark the first ("this") 1201 // argument as uninitialized. This restricts field access until the superclass constructor is 1202 // called. 1203 RegType& declaring_class = GetDeclaringClass(); 1204 if (IsConstructor() && !declaring_class.IsJavaLangObject()) { 1205 reg_line->SetRegisterType(arg_start + cur_arg, 1206 reg_types_.UninitializedThisArgument(declaring_class)); 1207 } else { 1208 reg_line->SetRegisterType(arg_start + cur_arg, declaring_class); 1209 } 1210 cur_arg++; 1211 } 1212 1213 const DexFile::ProtoId& proto_id = 1214 dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_)); 1215 DexFileParameterIterator iterator(*dex_file_, proto_id); 1216 1217 for (; iterator.HasNext(); iterator.Next()) { 1218 const char* descriptor = iterator.GetDescriptor(); 1219 if (descriptor == nullptr) { 1220 LOG(FATAL) << "Null descriptor"; 1221 } 1222 if (cur_arg >= expected_args) { 1223 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args 1224 << " args, found more (" << descriptor << ")"; 1225 return false; 1226 } 1227 switch (descriptor[0]) { 1228 case 'L': 1229 case '[': 1230 // We assume that reference arguments are initialized. The only way it could be otherwise 1231 // (assuming the caller was verified) is if the current method is <init>, but in that case 1232 // it's effectively considered initialized the instant we reach here (in the sense that we 1233 // can return without doing anything or call virtual methods). 1234 { 1235 RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx()); 1236 if (!reg_type.IsNonZeroReferenceTypes()) { 1237 DCHECK(HasFailures()); 1238 return false; 1239 } 1240 reg_line->SetRegisterType(arg_start + cur_arg, reg_type); 1241 } 1242 break; 1243 case 'Z': 1244 reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean()); 1245 break; 1246 case 'C': 1247 reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char()); 1248 break; 1249 case 'B': 1250 reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte()); 1251 break; 1252 case 'I': 1253 reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer()); 1254 break; 1255 case 'S': 1256 reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short()); 1257 break; 1258 case 'F': 1259 reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float()); 1260 break; 1261 case 'J': 1262 case 'D': { 1263 if (cur_arg + 1 >= expected_args) { 1264 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args 1265 << " args, found more (" << descriptor << ")"; 1266 return false; 1267 } 1268 1269 RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo(); 1270 RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi(); 1271 reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half); 1272 cur_arg++; 1273 break; 1274 } 1275 default: 1276 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '" 1277 << descriptor << "'"; 1278 return false; 1279 } 1280 cur_arg++; 1281 } 1282 if (cur_arg != expected_args) { 1283 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args 1284 << " arguments, found " << cur_arg; 1285 return false; 1286 } 1287 const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id); 1288 // Validate return type. We don't do the type lookup; just want to make sure that it has the right 1289 // format. Only major difference from the method argument format is that 'V' is supported. 1290 bool result; 1291 if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') { 1292 result = descriptor[1] == '\0'; 1293 } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive 1294 size_t i = 0; 1295 do { 1296 i++; 1297 } while (descriptor[i] == '['); // process leading [ 1298 if (descriptor[i] == 'L') { // object array 1299 do { 1300 i++; // find closing ; 1301 } while (descriptor[i] != ';' && descriptor[i] != '\0'); 1302 result = descriptor[i] == ';'; 1303 } else { // primitive array 1304 result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0'; 1305 } 1306 } else if (descriptor[0] == 'L') { 1307 // could be more thorough here, but shouldn't be required 1308 size_t i = 0; 1309 do { 1310 i++; 1311 } while (descriptor[i] != ';' && descriptor[i] != '\0'); 1312 result = descriptor[i] == ';'; 1313 } else { 1314 result = false; 1315 } 1316 if (!result) { 1317 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '" 1318 << descriptor << "'"; 1319 } 1320 return result; 1321 } 1322 1323 bool MethodVerifier::CodeFlowVerifyMethod() { 1324 const uint16_t* insns = code_item_->insns_; 1325 const uint32_t insns_size = code_item_->insns_size_in_code_units_; 1326 1327 /* Begin by marking the first instruction as "changed". */ 1328 insn_flags_[0].SetChanged(); 1329 uint32_t start_guess = 0; 1330 1331 /* Continue until no instructions are marked "changed". */ 1332 while (true) { 1333 // Find the first marked one. Use "start_guess" as a way to find one quickly. 1334 uint32_t insn_idx = start_guess; 1335 for (; insn_idx < insns_size; insn_idx++) { 1336 if (insn_flags_[insn_idx].IsChanged()) 1337 break; 1338 } 1339 if (insn_idx == insns_size) { 1340 if (start_guess != 0) { 1341 /* try again, starting from the top */ 1342 start_guess = 0; 1343 continue; 1344 } else { 1345 /* all flags are clear */ 1346 break; 1347 } 1348 } 1349 // We carry the working set of registers from instruction to instruction. If this address can 1350 // be the target of a branch (or throw) instruction, or if we're skipping around chasing 1351 // "changed" flags, we need to load the set of registers from the table. 1352 // Because we always prefer to continue on to the next instruction, we should never have a 1353 // situation where we have a stray "changed" flag set on an instruction that isn't a branch 1354 // target. 1355 work_insn_idx_ = insn_idx; 1356 if (insn_flags_[insn_idx].IsBranchTarget()) { 1357 work_line_->CopyFromLine(reg_table_.GetLine(insn_idx)); 1358 } else if (kIsDebugBuild) { 1359 /* 1360 * Sanity check: retrieve the stored register line (assuming 1361 * a full table) and make sure it actually matches. 1362 */ 1363 RegisterLine* register_line = reg_table_.GetLine(insn_idx); 1364 if (register_line != nullptr) { 1365 if (work_line_->CompareLine(register_line) != 0) { 1366 Dump(std::cout); 1367 std::cout << info_messages_.str(); 1368 LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_) 1369 << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n" 1370 << " work_line=" << *work_line_ << "\n" 1371 << " expected=" << *register_line; 1372 } 1373 } 1374 } 1375 if (!CodeFlowVerifyInstruction(&start_guess)) { 1376 std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_)); 1377 prepend += " failed to verify: "; 1378 PrependToLastFailMessage(prepend); 1379 return false; 1380 } 1381 /* Clear "changed" and mark as visited. */ 1382 insn_flags_[insn_idx].SetVisited(); 1383 insn_flags_[insn_idx].ClearChanged(); 1384 } 1385 1386 if (gDebugVerify) { 1387 /* 1388 * Scan for dead code. There's nothing "evil" about dead code 1389 * (besides the wasted space), but it indicates a flaw somewhere 1390 * down the line, possibly in the verifier. 1391 * 1392 * If we've substituted "always throw" instructions into the stream, 1393 * we are almost certainly going to have some dead code. 1394 */ 1395 int dead_start = -1; 1396 uint32_t insn_idx = 0; 1397 for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) { 1398 /* 1399 * Switch-statement data doesn't get "visited" by scanner. It 1400 * may or may not be preceded by a padding NOP (for alignment). 1401 */ 1402 if (insns[insn_idx] == Instruction::kPackedSwitchSignature || 1403 insns[insn_idx] == Instruction::kSparseSwitchSignature || 1404 insns[insn_idx] == Instruction::kArrayDataSignature || 1405 (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) && 1406 (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature || 1407 insns[insn_idx + 1] == Instruction::kSparseSwitchSignature || 1408 insns[insn_idx + 1] == Instruction::kArrayDataSignature))) { 1409 insn_flags_[insn_idx].SetVisited(); 1410 } 1411 1412 if (!insn_flags_[insn_idx].IsVisited()) { 1413 if (dead_start < 0) 1414 dead_start = insn_idx; 1415 } else if (dead_start >= 0) { 1416 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) 1417 << "-" << reinterpret_cast<void*>(insn_idx - 1); 1418 dead_start = -1; 1419 } 1420 } 1421 if (dead_start >= 0) { 1422 LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) 1423 << "-" << reinterpret_cast<void*>(insn_idx - 1); 1424 } 1425 // To dump the state of the verify after a method, do something like: 1426 // if (PrettyMethod(dex_method_idx_, *dex_file_) == 1427 // "boolean java.lang.String.equals(java.lang.Object)") { 1428 // LOG(INFO) << info_messages_.str(); 1429 // } 1430 } 1431 return true; 1432 } 1433 1434 bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) { 1435 // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about. 1436 // We want the state _before_ the instruction, for the case where the dex pc we're 1437 // interested in is itself a monitor-enter instruction (which is a likely place 1438 // for a thread to be suspended). 1439 if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) { 1440 monitor_enter_dex_pcs_->clear(); // The new work line is more accurate than the previous one. 1441 for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) { 1442 monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i)); 1443 } 1444 } 1445 1446 /* 1447 * Once we finish decoding the instruction, we need to figure out where 1448 * we can go from here. There are three possible ways to transfer 1449 * control to another statement: 1450 * 1451 * (1) Continue to the next instruction. Applies to all but 1452 * unconditional branches, method returns, and exception throws. 1453 * (2) Branch to one or more possible locations. Applies to branches 1454 * and switch statements. 1455 * (3) Exception handlers. Applies to any instruction that can 1456 * throw an exception that is handled by an encompassing "try" 1457 * block. 1458 * 1459 * We can also return, in which case there is no successor instruction 1460 * from this point. 1461 * 1462 * The behavior can be determined from the opcode flags. 1463 */ 1464 const uint16_t* insns = code_item_->insns_ + work_insn_idx_; 1465 const Instruction* inst = Instruction::At(insns); 1466 int opcode_flags = Instruction::FlagsOf(inst->Opcode()); 1467 1468 int32_t branch_target = 0; 1469 bool just_set_result = false; 1470 if (gDebugVerify) { 1471 // Generate processing back trace to debug verifier 1472 LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n" 1473 << *work_line_.get() << "\n"; 1474 } 1475 1476 /* 1477 * Make a copy of the previous register state. If the instruction 1478 * can throw an exception, we will copy/merge this into the "catch" 1479 * address rather than work_line, because we don't want the result 1480 * from the "successful" code path (e.g. a check-cast that "improves" 1481 * a type) to be visible to the exception handler. 1482 */ 1483 if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) { 1484 saved_line_->CopyFromLine(work_line_.get()); 1485 } else if (kIsDebugBuild) { 1486 saved_line_->FillWithGarbage(); 1487 } 1488 1489 1490 // We need to ensure the work line is consistent while performing validation. When we spot a 1491 // peephole pattern we compute a new line for either the fallthrough instruction or the 1492 // branch target. 1493 std::unique_ptr<RegisterLine> branch_line; 1494 std::unique_ptr<RegisterLine> fallthrough_line; 1495 1496 switch (inst->Opcode()) { 1497 case Instruction::NOP: 1498 /* 1499 * A "pure" NOP has no effect on anything. Data tables start with 1500 * a signature that looks like a NOP; if we see one of these in 1501 * the course of executing code then we have a problem. 1502 */ 1503 if (inst->VRegA_10x() != 0) { 1504 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream"; 1505 } 1506 break; 1507 1508 case Instruction::MOVE: 1509 work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr); 1510 break; 1511 case Instruction::MOVE_FROM16: 1512 work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr); 1513 break; 1514 case Instruction::MOVE_16: 1515 work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr); 1516 break; 1517 case Instruction::MOVE_WIDE: 1518 work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x()); 1519 break; 1520 case Instruction::MOVE_WIDE_FROM16: 1521 work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x()); 1522 break; 1523 case Instruction::MOVE_WIDE_16: 1524 work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x()); 1525 break; 1526 case Instruction::MOVE_OBJECT: 1527 work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef); 1528 break; 1529 case Instruction::MOVE_OBJECT_FROM16: 1530 work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef); 1531 break; 1532 case Instruction::MOVE_OBJECT_16: 1533 work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef); 1534 break; 1535 1536 /* 1537 * The move-result instructions copy data out of a "pseudo-register" 1538 * with the results from the last method invocation. In practice we 1539 * might want to hold the result in an actual CPU register, so the 1540 * Dalvik spec requires that these only appear immediately after an 1541 * invoke or filled-new-array. 1542 * 1543 * These calls invalidate the "result" register. (This is now 1544 * redundant with the reset done below, but it can make the debug info 1545 * easier to read in some cases.) 1546 */ 1547 case Instruction::MOVE_RESULT: 1548 work_line_->CopyResultRegister1(inst->VRegA_11x(), false); 1549 break; 1550 case Instruction::MOVE_RESULT_WIDE: 1551 work_line_->CopyResultRegister2(inst->VRegA_11x()); 1552 break; 1553 case Instruction::MOVE_RESULT_OBJECT: 1554 work_line_->CopyResultRegister1(inst->VRegA_11x(), true); 1555 break; 1556 1557 case Instruction::MOVE_EXCEPTION: { 1558 // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case 1559 // where one entrypoint to the catch block is not actually an exception path. 1560 if (work_insn_idx_ == 0) { 1561 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0"; 1562 break; 1563 } 1564 /* 1565 * This statement can only appear as the first instruction in an exception handler. We verify 1566 * that as part of extracting the exception type from the catch block list. 1567 */ 1568 RegType& res_type = GetCaughtExceptionType(); 1569 work_line_->SetRegisterType(inst->VRegA_11x(), res_type); 1570 break; 1571 } 1572 case Instruction::RETURN_VOID: 1573 if (!IsConstructor() || work_line_->CheckConstructorReturn()) { 1574 if (!GetMethodReturnType().IsConflict()) { 1575 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected"; 1576 } 1577 } 1578 break; 1579 case Instruction::RETURN: 1580 if (!IsConstructor() || work_line_->CheckConstructorReturn()) { 1581 /* check the method signature */ 1582 RegType& return_type = GetMethodReturnType(); 1583 if (!return_type.IsCategory1Types()) { 1584 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type " 1585 << return_type; 1586 } else { 1587 // Compilers may generate synthetic functions that write byte values into boolean fields. 1588 // Also, it may use integer values for boolean, byte, short, and character return types. 1589 const uint32_t vregA = inst->VRegA_11x(); 1590 RegType& src_type = work_line_->GetRegisterType(vregA); 1591 bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) || 1592 ((return_type.IsBoolean() || return_type.IsByte() || 1593 return_type.IsShort() || return_type.IsChar()) && 1594 src_type.IsInteger())); 1595 /* check the register contents */ 1596 bool success = 1597 work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type); 1598 if (!success) { 1599 AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA)); 1600 } 1601 } 1602 } 1603 break; 1604 case Instruction::RETURN_WIDE: 1605 if (!IsConstructor() || work_line_->CheckConstructorReturn()) { 1606 /* check the method signature */ 1607 RegType& return_type = GetMethodReturnType(); 1608 if (!return_type.IsCategory2Types()) { 1609 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected"; 1610 } else { 1611 /* check the register contents */ 1612 const uint32_t vregA = inst->VRegA_11x(); 1613 bool success = work_line_->VerifyRegisterType(vregA, return_type); 1614 if (!success) { 1615 AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA)); 1616 } 1617 } 1618 } 1619 break; 1620 case Instruction::RETURN_OBJECT: 1621 if (!IsConstructor() || work_line_->CheckConstructorReturn()) { 1622 RegType& return_type = GetMethodReturnType(); 1623 if (!return_type.IsReferenceTypes()) { 1624 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected"; 1625 } else { 1626 /* return_type is the *expected* return type, not register value */ 1627 DCHECK(!return_type.IsZero()); 1628 DCHECK(!return_type.IsUninitializedReference()); 1629 const uint32_t vregA = inst->VRegA_11x(); 1630 RegType& reg_type = work_line_->GetRegisterType(vregA); 1631 // Disallow returning uninitialized values and verify that the reference in vAA is an 1632 // instance of the "return_type" 1633 if (reg_type.IsUninitializedTypes()) { 1634 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '" 1635 << reg_type << "'"; 1636 } else if (!return_type.IsAssignableFrom(reg_type)) { 1637 if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) { 1638 Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type 1639 << "' or '" << reg_type << "'"; 1640 } else { 1641 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type 1642 << "', but expected from declaration '" << return_type << "'"; 1643 } 1644 } 1645 } 1646 } 1647 break; 1648 1649 /* could be boolean, int, float, or a null reference */ 1650 case Instruction::CONST_4: { 1651 int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28; 1652 work_line_->SetRegisterType(inst->VRegA_11n(), 1653 DetermineCat1Constant(val, need_precise_constants_)); 1654 break; 1655 } 1656 case Instruction::CONST_16: { 1657 int16_t val = static_cast<int16_t>(inst->VRegB_21s()); 1658 work_line_->SetRegisterType(inst->VRegA_21s(), 1659 DetermineCat1Constant(val, need_precise_constants_)); 1660 break; 1661 } 1662 case Instruction::CONST: { 1663 int32_t val = inst->VRegB_31i(); 1664 work_line_->SetRegisterType(inst->VRegA_31i(), 1665 DetermineCat1Constant(val, need_precise_constants_)); 1666 break; 1667 } 1668 case Instruction::CONST_HIGH16: { 1669 int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16); 1670 work_line_->SetRegisterType(inst->VRegA_21h(), 1671 DetermineCat1Constant(val, need_precise_constants_)); 1672 break; 1673 } 1674 /* could be long or double; resolved upon use */ 1675 case Instruction::CONST_WIDE_16: { 1676 int64_t val = static_cast<int16_t>(inst->VRegB_21s()); 1677 RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); 1678 RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); 1679 work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi); 1680 break; 1681 } 1682 case Instruction::CONST_WIDE_32: { 1683 int64_t val = static_cast<int32_t>(inst->VRegB_31i()); 1684 RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); 1685 RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); 1686 work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi); 1687 break; 1688 } 1689 case Instruction::CONST_WIDE: { 1690 int64_t val = inst->VRegB_51l(); 1691 RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); 1692 RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); 1693 work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi); 1694 break; 1695 } 1696 case Instruction::CONST_WIDE_HIGH16: { 1697 int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48; 1698 RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true); 1699 RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true); 1700 work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi); 1701 break; 1702 } 1703 case Instruction::CONST_STRING: 1704 work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString()); 1705 break; 1706 case Instruction::CONST_STRING_JUMBO: 1707 work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString()); 1708 break; 1709 case Instruction::CONST_CLASS: { 1710 // Get type from instruction if unresolved then we need an access check 1711 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved 1712 RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c()); 1713 // Register holds class, ie its type is class, on error it will hold Conflict. 1714 work_line_->SetRegisterType(inst->VRegA_21c(), 1715 res_type.IsConflict() ? res_type 1716 : reg_types_.JavaLangClass(true)); 1717 break; 1718 } 1719 case Instruction::MONITOR_ENTER: 1720 work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_); 1721 break; 1722 case Instruction::MONITOR_EXIT: 1723 /* 1724 * monitor-exit instructions are odd. They can throw exceptions, 1725 * but when they do they act as if they succeeded and the PC is 1726 * pointing to the following instruction. (This behavior goes back 1727 * to the need to handle asynchronous exceptions, a now-deprecated 1728 * feature that Dalvik doesn't support.) 1729 * 1730 * In practice we don't need to worry about this. The only 1731 * exceptions that can be thrown from monitor-exit are for a 1732 * null reference and -exit without a matching -enter. If the 1733 * structured locking checks are working, the former would have 1734 * failed on the -enter instruction, and the latter is impossible. 1735 * 1736 * This is fortunate, because issue 3221411 prevents us from 1737 * chasing the "can throw" path when monitor verification is 1738 * enabled. If we can fully verify the locking we can ignore 1739 * some catch blocks (which will show up as "dead" code when 1740 * we skip them here); if we can't, then the code path could be 1741 * "live" so we still need to check it. 1742 */ 1743 opcode_flags &= ~Instruction::kThrow; 1744 work_line_->PopMonitor(inst->VRegA_11x()); 1745 break; 1746 1747 case Instruction::CHECK_CAST: 1748 case Instruction::INSTANCE_OF: { 1749 /* 1750 * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This 1751 * could be a "upcast" -- not expected, so we don't try to address it.) 1752 * 1753 * If it fails, an exception is thrown, which we deal with later by ignoring the update to 1754 * dec_insn.vA when branching to a handler. 1755 */ 1756 const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST); 1757 const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c(); 1758 RegType& res_type = ResolveClassAndCheckAccess(type_idx); 1759 if (res_type.IsConflict()) { 1760 // If this is a primitive type, fail HARD. 1761 mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx); 1762 if (klass != nullptr && klass->IsPrimitive()) { 1763 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type " 1764 << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in " 1765 << GetDeclaringClass(); 1766 break; 1767 } 1768 1769 DCHECK_NE(failures_.size(), 0U); 1770 if (!is_checkcast) { 1771 work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean()); 1772 } 1773 break; // bad class 1774 } 1775 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved 1776 uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c(); 1777 RegType& orig_type = work_line_->GetRegisterType(orig_type_reg); 1778 if (!res_type.IsNonZeroReferenceTypes()) { 1779 if (is_checkcast) { 1780 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type; 1781 } else { 1782 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type; 1783 } 1784 } else if (!orig_type.IsReferenceTypes()) { 1785 if (is_checkcast) { 1786 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg; 1787 } else { 1788 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg; 1789 } 1790 } else { 1791 if (is_checkcast) { 1792 work_line_->SetRegisterType(inst->VRegA_21c(), res_type); 1793 } else { 1794 work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean()); 1795 } 1796 } 1797 break; 1798 } 1799 case Instruction::ARRAY_LENGTH: { 1800 RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x()); 1801 if (res_type.IsReferenceTypes()) { 1802 if (!res_type.IsArrayTypes() && !res_type.IsZero()) { // ie not an array or null 1803 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type; 1804 } else { 1805 work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer()); 1806 } 1807 } else { 1808 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type; 1809 } 1810 break; 1811 } 1812 case Instruction::NEW_INSTANCE: { 1813 RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c()); 1814 if (res_type.IsConflict()) { 1815 DCHECK_NE(failures_.size(), 0U); 1816 break; // bad class 1817 } 1818 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved 1819 // can't create an instance of an interface or abstract class */ 1820 if (!res_type.IsInstantiableTypes()) { 1821 Fail(VERIFY_ERROR_INSTANTIATION) 1822 << "new-instance on primitive, interface or abstract class" << res_type; 1823 // Soft failure so carry on to set register type. 1824 } 1825 RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_); 1826 // Any registers holding previous allocations from this address that have not yet been 1827 // initialized must be marked invalid. 1828 work_line_->MarkUninitRefsAsInvalid(uninit_type); 1829 // add the new uninitialized reference to the register state 1830 work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type); 1831 break; 1832 } 1833 case Instruction::NEW_ARRAY: 1834 VerifyNewArray(inst, false, false); 1835 break; 1836 case Instruction::FILLED_NEW_ARRAY: 1837 VerifyNewArray(inst, true, false); 1838 just_set_result = true; // Filled new array sets result register 1839 break; 1840 case Instruction::FILLED_NEW_ARRAY_RANGE: 1841 VerifyNewArray(inst, true, true); 1842 just_set_result = true; // Filled new array range sets result register 1843 break; 1844 case Instruction::CMPL_FLOAT: 1845 case Instruction::CMPG_FLOAT: 1846 if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) { 1847 break; 1848 } 1849 if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) { 1850 break; 1851 } 1852 work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer()); 1853 break; 1854 case Instruction::CMPL_DOUBLE: 1855 case Instruction::CMPG_DOUBLE: 1856 if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(), 1857 reg_types_.DoubleHi())) { 1858 break; 1859 } 1860 if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(), 1861 reg_types_.DoubleHi())) { 1862 break; 1863 } 1864 work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer()); 1865 break; 1866 case Instruction::CMP_LONG: 1867 if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(), 1868 reg_types_.LongHi())) { 1869 break; 1870 } 1871 if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(), 1872 reg_types_.LongHi())) { 1873 break; 1874 } 1875 work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer()); 1876 break; 1877 case Instruction::THROW: { 1878 RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x()); 1879 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) { 1880 Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT) 1881 << "thrown class " << res_type << " not instanceof Throwable"; 1882 } 1883 break; 1884 } 1885 case Instruction::GOTO: 1886 case Instruction::GOTO_16: 1887 case Instruction::GOTO_32: 1888 /* no effect on or use of registers */ 1889 break; 1890 1891 case Instruction::PACKED_SWITCH: 1892 case Instruction::SPARSE_SWITCH: 1893 /* verify that vAA is an integer, or can be converted to one */ 1894 work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer()); 1895 break; 1896 1897 case Instruction::FILL_ARRAY_DATA: { 1898 /* Similar to the verification done for APUT */ 1899 RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t()); 1900 /* array_type can be null if the reg type is Zero */ 1901 if (!array_type.IsZero()) { 1902 if (!array_type.IsArrayTypes()) { 1903 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type " 1904 << array_type; 1905 } else { 1906 RegType& component_type = reg_types_.GetComponentType(array_type, 1907 class_loader_->Get()); 1908 DCHECK(!component_type.IsConflict()); 1909 if (component_type.IsNonZeroReferenceTypes()) { 1910 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type " 1911 << component_type; 1912 } else { 1913 // Now verify if the element width in the table matches the element width declared in 1914 // the array 1915 const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16)); 1916 if (array_data[0] != Instruction::kArrayDataSignature) { 1917 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data"; 1918 } else { 1919 size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType()); 1920 // Since we don't compress the data in Dex, expect to see equal width of data stored 1921 // in the table and expected from the array class. 1922 if (array_data[1] != elem_width) { 1923 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1] 1924 << " vs " << elem_width << ")"; 1925 } 1926 } 1927 } 1928 } 1929 } 1930 break; 1931 } 1932 case Instruction::IF_EQ: 1933 case Instruction::IF_NE: { 1934 RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t()); 1935 RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t()); 1936 bool mismatch = false; 1937 if (reg_type1.IsZero()) { // zero then integral or reference expected 1938 mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes(); 1939 } else if (reg_type1.IsReferenceTypes()) { // both references? 1940 mismatch = !reg_type2.IsReferenceTypes(); 1941 } else { // both integral? 1942 mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes(); 1943 } 1944 if (mismatch) { 1945 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << "," 1946 << reg_type2 << ") must both be references or integral"; 1947 } 1948 break; 1949 } 1950 case Instruction::IF_LT: 1951 case Instruction::IF_GE: 1952 case Instruction::IF_GT: 1953 case Instruction::IF_LE: { 1954 RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t()); 1955 RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t()); 1956 if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) { 1957 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << "," 1958 << reg_type2 << ") must be integral"; 1959 } 1960 break; 1961 } 1962 case Instruction::IF_EQZ: 1963 case Instruction::IF_NEZ: { 1964 RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t()); 1965 if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) { 1966 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type 1967 << " unexpected as arg to if-eqz/if-nez"; 1968 } 1969 1970 // Find previous instruction - its existence is a precondition to peephole optimization. 1971 uint32_t instance_of_idx = 0; 1972 if (0 != work_insn_idx_) { 1973 instance_of_idx = work_insn_idx_ - 1; 1974 while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) { 1975 instance_of_idx--; 1976 } 1977 if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(), 1978 "Unable to get previous instruction of if-eqz/if-nez for work index ", 1979 work_insn_idx_)) { 1980 break; 1981 } 1982 } else { 1983 break; 1984 } 1985 1986 const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx); 1987 1988 /* Check for peep-hole pattern of: 1989 * ...; 1990 * instance-of vX, vY, T; 1991 * ifXXX vX, label ; 1992 * ...; 1993 * label: 1994 * ...; 1995 * and sharpen the type of vY to be type T. 1996 * Note, this pattern can't be if: 1997 * - if there are other branches to this branch, 1998 * - when vX == vY. 1999 */ 2000 if (!CurrentInsnFlags()->IsBranchTarget() && 2001 (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) && 2002 (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) && 2003 (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) { 2004 // Check the type of the instance-of is different than that of registers type, as if they 2005 // are the same there is no work to be done here. Check that the conversion is not to or 2006 // from an unresolved type as type information is imprecise. If the instance-of is to an 2007 // interface then ignore the type information as interfaces can only be treated as Objects 2008 // and we don't want to disallow field and other operations on the object. If the value 2009 // being instance-of checked against is known null (zero) then allow the optimization as 2010 // we didn't have type information. If the merge of the instance-of type with the original 2011 // type is assignable to the original then allow optimization. This check is performed to 2012 // ensure that subsequent merges don't lose type information - such as becoming an 2013 // interface from a class that would lose information relevant to field checks. 2014 RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c()); 2015 RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c()); 2016 2017 if (!orig_type.Equals(cast_type) && 2018 !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() && 2019 cast_type.HasClass() && // Could be conflict type, make sure it has a class. 2020 !cast_type.GetClass()->IsInterface() && 2021 (orig_type.IsZero() || 2022 orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, ®_types_)))) { 2023 RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this); 2024 if (inst->Opcode() == Instruction::IF_EQZ) { 2025 fallthrough_line.reset(update_line); 2026 } else { 2027 branch_line.reset(update_line); 2028 } 2029 update_line->CopyFromLine(work_line_.get()); 2030 update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type); 2031 if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) { 2032 // See if instance-of was preceded by a move-object operation, common due to the small 2033 // register encoding space of instance-of, and propagate type information to the source 2034 // of the move-object. 2035 uint32_t move_idx = instance_of_idx - 1; 2036 while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) { 2037 move_idx--; 2038 } 2039 if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(), 2040 "Unable to get previous instruction of if-eqz/if-nez for work index ", 2041 work_insn_idx_)) { 2042 break; 2043 } 2044 const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx); 2045 switch (move_inst->Opcode()) { 2046 case Instruction::MOVE_OBJECT: 2047 if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) { 2048 update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type); 2049 } 2050 break; 2051 case Instruction::MOVE_OBJECT_FROM16: 2052 if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) { 2053 update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type); 2054 } 2055 break; 2056 case Instruction::MOVE_OBJECT_16: 2057 if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) { 2058 update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type); 2059 } 2060 break; 2061 default: 2062 break; 2063 } 2064 } 2065 } 2066 } 2067 2068 break; 2069 } 2070 case Instruction::IF_LTZ: 2071 case Instruction::IF_GEZ: 2072 case Instruction::IF_GTZ: 2073 case Instruction::IF_LEZ: { 2074 RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t()); 2075 if (!reg_type.IsIntegralTypes()) { 2076 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type 2077 << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez"; 2078 } 2079 break; 2080 } 2081 case Instruction::AGET_BOOLEAN: 2082 VerifyAGet(inst, reg_types_.Boolean(), true); 2083 break; 2084 case Instruction::AGET_BYTE: 2085 VerifyAGet(inst, reg_types_.Byte(), true); 2086 break; 2087 case Instruction::AGET_CHAR: 2088 VerifyAGet(inst, reg_types_.Char(), true); 2089 break; 2090 case Instruction::AGET_SHORT: 2091 VerifyAGet(inst, reg_types_.Short(), true); 2092 break; 2093 case Instruction::AGET: 2094 VerifyAGet(inst, reg_types_.Integer(), true); 2095 break; 2096 case Instruction::AGET_WIDE: 2097 VerifyAGet(inst, reg_types_.LongLo(), true); 2098 break; 2099 case Instruction::AGET_OBJECT: 2100 VerifyAGet(inst, reg_types_.JavaLangObject(false), false); 2101 break; 2102 2103 case Instruction::APUT_BOOLEAN: 2104 VerifyAPut(inst, reg_types_.Boolean(), true); 2105 break; 2106 case Instruction::APUT_BYTE: 2107 VerifyAPut(inst, reg_types_.Byte(), true); 2108 break; 2109 case Instruction::APUT_CHAR: 2110 VerifyAPut(inst, reg_types_.Char(), true); 2111 break; 2112 case Instruction::APUT_SHORT: 2113 VerifyAPut(inst, reg_types_.Short(), true); 2114 break; 2115 case Instruction::APUT: 2116 VerifyAPut(inst, reg_types_.Integer(), true); 2117 break; 2118 case Instruction::APUT_WIDE: 2119 VerifyAPut(inst, reg_types_.LongLo(), true); 2120 break; 2121 case Instruction::APUT_OBJECT: 2122 VerifyAPut(inst, reg_types_.JavaLangObject(false), false); 2123 break; 2124 2125 case Instruction::IGET_BOOLEAN: 2126 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false); 2127 break; 2128 case Instruction::IGET_BYTE: 2129 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false); 2130 break; 2131 case Instruction::IGET_CHAR: 2132 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false); 2133 break; 2134 case Instruction::IGET_SHORT: 2135 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false); 2136 break; 2137 case Instruction::IGET: 2138 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false); 2139 break; 2140 case Instruction::IGET_WIDE: 2141 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false); 2142 break; 2143 case Instruction::IGET_OBJECT: 2144 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false, 2145 false); 2146 break; 2147 2148 case Instruction::IPUT_BOOLEAN: 2149 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false); 2150 break; 2151 case Instruction::IPUT_BYTE: 2152 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false); 2153 break; 2154 case Instruction::IPUT_CHAR: 2155 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false); 2156 break; 2157 case Instruction::IPUT_SHORT: 2158 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false); 2159 break; 2160 case Instruction::IPUT: 2161 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false); 2162 break; 2163 case Instruction::IPUT_WIDE: 2164 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false); 2165 break; 2166 case Instruction::IPUT_OBJECT: 2167 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false, 2168 false); 2169 break; 2170 2171 case Instruction::SGET_BOOLEAN: 2172 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true); 2173 break; 2174 case Instruction::SGET_BYTE: 2175 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true); 2176 break; 2177 case Instruction::SGET_CHAR: 2178 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true); 2179 break; 2180 case Instruction::SGET_SHORT: 2181 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true); 2182 break; 2183 case Instruction::SGET: 2184 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true); 2185 break; 2186 case Instruction::SGET_WIDE: 2187 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true); 2188 break; 2189 case Instruction::SGET_OBJECT: 2190 VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false, 2191 true); 2192 break; 2193 2194 case Instruction::SPUT_BOOLEAN: 2195 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true); 2196 break; 2197 case Instruction::SPUT_BYTE: 2198 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true); 2199 break; 2200 case Instruction::SPUT_CHAR: 2201 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true); 2202 break; 2203 case Instruction::SPUT_SHORT: 2204 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true); 2205 break; 2206 case Instruction::SPUT: 2207 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true); 2208 break; 2209 case Instruction::SPUT_WIDE: 2210 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true); 2211 break; 2212 case Instruction::SPUT_OBJECT: 2213 VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false, 2214 true); 2215 break; 2216 2217 case Instruction::INVOKE_VIRTUAL: 2218 case Instruction::INVOKE_VIRTUAL_RANGE: 2219 case Instruction::INVOKE_SUPER: 2220 case Instruction::INVOKE_SUPER_RANGE: { 2221 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE || 2222 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE); 2223 bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER || 2224 inst->Opcode() == Instruction::INVOKE_SUPER_RANGE); 2225 mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, 2226 is_super); 2227 RegType* return_type = nullptr; 2228 if (called_method != nullptr) { 2229 Thread* self = Thread::Current(); 2230 StackHandleScope<1> hs(self); 2231 Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method)); 2232 MethodHelper mh(h_called_method); 2233 mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_); 2234 if (return_type_class != nullptr) { 2235 return_type = ®_types_.FromClass(h_called_method->GetReturnTypeDescriptor(), 2236 return_type_class, 2237 return_type_class->CannotBeAssignedFromOtherTypes()); 2238 } else { 2239 DCHECK(!can_load_classes_ || self->IsExceptionPending()); 2240 self->ClearException(); 2241 } 2242 } 2243 if (return_type == nullptr) { 2244 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 2245 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); 2246 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; 2247 const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx); 2248 return_type = ®_types_.FromDescriptor(class_loader_->Get(), descriptor, false); 2249 } 2250 if (!return_type->IsLowHalf()) { 2251 work_line_->SetResultRegisterType(*return_type); 2252 } else { 2253 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_)); 2254 } 2255 just_set_result = true; 2256 break; 2257 } 2258 case Instruction::INVOKE_DIRECT: 2259 case Instruction::INVOKE_DIRECT_RANGE: { 2260 bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE); 2261 mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, 2262 is_range, false); 2263 const char* return_type_descriptor; 2264 bool is_constructor; 2265 RegType* return_type = nullptr; 2266 if (called_method == nullptr) { 2267 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 2268 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); 2269 is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0; 2270 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; 2271 return_type_descriptor = dex_file_->StringByTypeIdx(return_type_idx); 2272 } else { 2273 is_constructor = called_method->IsConstructor(); 2274 return_type_descriptor = called_method->GetReturnTypeDescriptor(); 2275 Thread* self = Thread::Current(); 2276 StackHandleScope<1> hs(self); 2277 Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method)); 2278 MethodHelper mh(h_called_method); 2279 mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_); 2280 if (return_type_class != nullptr) { 2281 return_type = ®_types_.FromClass(return_type_descriptor, 2282 return_type_class, 2283 return_type_class->CannotBeAssignedFromOtherTypes()); 2284 } else { 2285 DCHECK(!can_load_classes_ || self->IsExceptionPending()); 2286 self->ClearException(); 2287 } 2288 } 2289 if (is_constructor) { 2290 /* 2291 * Some additional checks when calling a constructor. We know from the invocation arg check 2292 * that the "this" argument is an instance of called_method->klass. Now we further restrict 2293 * that to require that called_method->klass is the same as this->klass or this->super, 2294 * allowing the latter only if the "this" argument is the same as the "this" argument to 2295 * this method (which implies that we're in a constructor ourselves). 2296 */ 2297 RegType& this_type = work_line_->GetInvocationThis(inst, is_range); 2298 if (this_type.IsConflict()) // failure. 2299 break; 2300 2301 /* no null refs allowed (?) */ 2302 if (this_type.IsZero()) { 2303 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref"; 2304 break; 2305 } 2306 2307 /* must be in same class or in superclass */ 2308 // RegType& this_super_klass = this_type.GetSuperClass(®_types_); 2309 // TODO: re-enable constructor type verification 2310 // if (this_super_klass.IsConflict()) { 2311 // Unknown super class, fail so we re-check at runtime. 2312 // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'"; 2313 // break; 2314 // } 2315 2316 /* arg must be an uninitialized reference */ 2317 if (!this_type.IsUninitializedTypes()) { 2318 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference " 2319 << this_type; 2320 break; 2321 } 2322 2323 /* 2324 * Replace the uninitialized reference with an initialized one. We need to do this for all 2325 * registers that have the same object instance in them, not just the "this" register. 2326 */ 2327 work_line_->MarkRefsAsInitialized(this_type); 2328 } 2329 if (return_type == nullptr) { 2330 return_type = ®_types_.FromDescriptor(class_loader_->Get(), 2331 return_type_descriptor, false); 2332 } 2333 if (!return_type->IsLowHalf()) { 2334 work_line_->SetResultRegisterType(*return_type); 2335 } else { 2336 work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(®_types_)); 2337 } 2338 just_set_result = true; 2339 break; 2340 } 2341 case Instruction::INVOKE_STATIC: 2342 case Instruction::INVOKE_STATIC_RANGE: { 2343 bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE); 2344 mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, 2345 METHOD_STATIC, 2346 is_range, 2347 false); 2348 const char* descriptor; 2349 if (called_method == nullptr) { 2350 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 2351 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); 2352 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; 2353 descriptor = dex_file_->StringByTypeIdx(return_type_idx); 2354 } else { 2355 descriptor = called_method->GetReturnTypeDescriptor(); 2356 } 2357 RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, 2358 false); 2359 if (!return_type.IsLowHalf()) { 2360 work_line_->SetResultRegisterType(return_type); 2361 } else { 2362 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); 2363 } 2364 just_set_result = true; 2365 } 2366 break; 2367 case Instruction::INVOKE_INTERFACE: 2368 case Instruction::INVOKE_INTERFACE_RANGE: { 2369 bool is_range = (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE); 2370 mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst, 2371 METHOD_INTERFACE, 2372 is_range, 2373 false); 2374 if (abs_method != nullptr) { 2375 mirror::Class* called_interface = abs_method->GetDeclaringClass(); 2376 if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) { 2377 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '" 2378 << PrettyMethod(abs_method) << "'"; 2379 break; 2380 } 2381 } 2382 /* Get the type of the "this" arg, which should either be a sub-interface of called 2383 * interface or Object (see comments in RegType::JoinClass). 2384 */ 2385 RegType& this_type = work_line_->GetInvocationThis(inst, is_range); 2386 if (this_type.IsZero()) { 2387 /* null pointer always passes (and always fails at runtime) */ 2388 } else { 2389 if (this_type.IsUninitializedTypes()) { 2390 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object " 2391 << this_type; 2392 break; 2393 } 2394 // In the past we have tried to assert that "called_interface" is assignable 2395 // from "this_type.GetClass()", however, as we do an imprecise Join 2396 // (RegType::JoinClass) we don't have full information on what interfaces are 2397 // implemented by "this_type". For example, two classes may implement the same 2398 // interfaces and have a common parent that doesn't implement the interface. The 2399 // join will set "this_type" to the parent class and a test that this implements 2400 // the interface will incorrectly fail. 2401 } 2402 /* 2403 * We don't have an object instance, so we can't find the concrete method. However, all of 2404 * the type information is in the abstract method, so we're good. 2405 */ 2406 const char* descriptor; 2407 if (abs_method == nullptr) { 2408 uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 2409 const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); 2410 uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; 2411 descriptor = dex_file_->StringByTypeIdx(return_type_idx); 2412 } else { 2413 descriptor = abs_method->GetReturnTypeDescriptor(); 2414 } 2415 RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, 2416 false); 2417 if (!return_type.IsLowHalf()) { 2418 work_line_->SetResultRegisterType(return_type); 2419 } else { 2420 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); 2421 } 2422 just_set_result = true; 2423 break; 2424 } 2425 case Instruction::NEG_INT: 2426 case Instruction::NOT_INT: 2427 work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer()); 2428 break; 2429 case Instruction::NEG_LONG: 2430 case Instruction::NOT_LONG: 2431 work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2432 reg_types_.LongLo(), reg_types_.LongHi()); 2433 break; 2434 case Instruction::NEG_FLOAT: 2435 work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float()); 2436 break; 2437 case Instruction::NEG_DOUBLE: 2438 work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2439 reg_types_.DoubleLo(), reg_types_.DoubleHi()); 2440 break; 2441 case Instruction::INT_TO_LONG: 2442 work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2443 reg_types_.Integer()); 2444 break; 2445 case Instruction::INT_TO_FLOAT: 2446 work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer()); 2447 break; 2448 case Instruction::INT_TO_DOUBLE: 2449 work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2450 reg_types_.Integer()); 2451 break; 2452 case Instruction::LONG_TO_INT: 2453 work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(), 2454 reg_types_.LongLo(), reg_types_.LongHi()); 2455 break; 2456 case Instruction::LONG_TO_FLOAT: 2457 work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(), 2458 reg_types_.LongLo(), reg_types_.LongHi()); 2459 break; 2460 case Instruction::LONG_TO_DOUBLE: 2461 work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2462 reg_types_.LongLo(), reg_types_.LongHi()); 2463 break; 2464 case Instruction::FLOAT_TO_INT: 2465 work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float()); 2466 break; 2467 case Instruction::FLOAT_TO_LONG: 2468 work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2469 reg_types_.Float()); 2470 break; 2471 case Instruction::FLOAT_TO_DOUBLE: 2472 work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2473 reg_types_.Float()); 2474 break; 2475 case Instruction::DOUBLE_TO_INT: 2476 work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(), 2477 reg_types_.DoubleLo(), reg_types_.DoubleHi()); 2478 break; 2479 case Instruction::DOUBLE_TO_LONG: 2480 work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2481 reg_types_.DoubleLo(), reg_types_.DoubleHi()); 2482 break; 2483 case Instruction::DOUBLE_TO_FLOAT: 2484 work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(), 2485 reg_types_.DoubleLo(), reg_types_.DoubleHi()); 2486 break; 2487 case Instruction::INT_TO_BYTE: 2488 work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer()); 2489 break; 2490 case Instruction::INT_TO_CHAR: 2491 work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer()); 2492 break; 2493 case Instruction::INT_TO_SHORT: 2494 work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer()); 2495 break; 2496 2497 case Instruction::ADD_INT: 2498 case Instruction::SUB_INT: 2499 case Instruction::MUL_INT: 2500 case Instruction::REM_INT: 2501 case Instruction::DIV_INT: 2502 case Instruction::SHL_INT: 2503 case Instruction::SHR_INT: 2504 case Instruction::USHR_INT: 2505 work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(), 2506 reg_types_.Integer(), false); 2507 break; 2508 case Instruction::AND_INT: 2509 case Instruction::OR_INT: 2510 case Instruction::XOR_INT: 2511 work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(), 2512 reg_types_.Integer(), true); 2513 break; 2514 case Instruction::ADD_LONG: 2515 case Instruction::SUB_LONG: 2516 case Instruction::MUL_LONG: 2517 case Instruction::DIV_LONG: 2518 case Instruction::REM_LONG: 2519 case Instruction::AND_LONG: 2520 case Instruction::OR_LONG: 2521 case Instruction::XOR_LONG: 2522 work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2523 reg_types_.LongLo(), reg_types_.LongHi(), 2524 reg_types_.LongLo(), reg_types_.LongHi()); 2525 break; 2526 case Instruction::SHL_LONG: 2527 case Instruction::SHR_LONG: 2528 case Instruction::USHR_LONG: 2529 /* shift distance is Int, making these different from other binary operations */ 2530 work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2531 reg_types_.Integer()); 2532 break; 2533 case Instruction::ADD_FLOAT: 2534 case Instruction::SUB_FLOAT: 2535 case Instruction::MUL_FLOAT: 2536 case Instruction::DIV_FLOAT: 2537 case Instruction::REM_FLOAT: 2538 work_line_->CheckBinaryOp(inst, 2539 reg_types_.Float(), 2540 reg_types_.Float(), 2541 reg_types_.Float(), 2542 false); 2543 break; 2544 case Instruction::ADD_DOUBLE: 2545 case Instruction::SUB_DOUBLE: 2546 case Instruction::MUL_DOUBLE: 2547 case Instruction::DIV_DOUBLE: 2548 case Instruction::REM_DOUBLE: 2549 work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2550 reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2551 reg_types_.DoubleLo(), reg_types_.DoubleHi()); 2552 break; 2553 case Instruction::ADD_INT_2ADDR: 2554 case Instruction::SUB_INT_2ADDR: 2555 case Instruction::MUL_INT_2ADDR: 2556 case Instruction::REM_INT_2ADDR: 2557 case Instruction::SHL_INT_2ADDR: 2558 case Instruction::SHR_INT_2ADDR: 2559 case Instruction::USHR_INT_2ADDR: 2560 work_line_->CheckBinaryOp2addr(inst, 2561 reg_types_.Integer(), 2562 reg_types_.Integer(), 2563 reg_types_.Integer(), 2564 false); 2565 break; 2566 case Instruction::AND_INT_2ADDR: 2567 case Instruction::OR_INT_2ADDR: 2568 case Instruction::XOR_INT_2ADDR: 2569 work_line_->CheckBinaryOp2addr(inst, 2570 reg_types_.Integer(), 2571 reg_types_.Integer(), 2572 reg_types_.Integer(), 2573 true); 2574 break; 2575 case Instruction::DIV_INT_2ADDR: 2576 work_line_->CheckBinaryOp2addr(inst, 2577 reg_types_.Integer(), 2578 reg_types_.Integer(), 2579 reg_types_.Integer(), 2580 false); 2581 break; 2582 case Instruction::ADD_LONG_2ADDR: 2583 case Instruction::SUB_LONG_2ADDR: 2584 case Instruction::MUL_LONG_2ADDR: 2585 case Instruction::DIV_LONG_2ADDR: 2586 case Instruction::REM_LONG_2ADDR: 2587 case Instruction::AND_LONG_2ADDR: 2588 case Instruction::OR_LONG_2ADDR: 2589 case Instruction::XOR_LONG_2ADDR: 2590 work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2591 reg_types_.LongLo(), reg_types_.LongHi(), 2592 reg_types_.LongLo(), reg_types_.LongHi()); 2593 break; 2594 case Instruction::SHL_LONG_2ADDR: 2595 case Instruction::SHR_LONG_2ADDR: 2596 case Instruction::USHR_LONG_2ADDR: 2597 work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(), 2598 reg_types_.Integer()); 2599 break; 2600 case Instruction::ADD_FLOAT_2ADDR: 2601 case Instruction::SUB_FLOAT_2ADDR: 2602 case Instruction::MUL_FLOAT_2ADDR: 2603 case Instruction::DIV_FLOAT_2ADDR: 2604 case Instruction::REM_FLOAT_2ADDR: 2605 work_line_->CheckBinaryOp2addr(inst, 2606 reg_types_.Float(), 2607 reg_types_.Float(), 2608 reg_types_.Float(), 2609 false); 2610 break; 2611 case Instruction::ADD_DOUBLE_2ADDR: 2612 case Instruction::SUB_DOUBLE_2ADDR: 2613 case Instruction::MUL_DOUBLE_2ADDR: 2614 case Instruction::DIV_DOUBLE_2ADDR: 2615 case Instruction::REM_DOUBLE_2ADDR: 2616 work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2617 reg_types_.DoubleLo(), reg_types_.DoubleHi(), 2618 reg_types_.DoubleLo(), reg_types_.DoubleHi()); 2619 break; 2620 case Instruction::ADD_INT_LIT16: 2621 case Instruction::RSUB_INT: 2622 case Instruction::MUL_INT_LIT16: 2623 case Instruction::DIV_INT_LIT16: 2624 case Instruction::REM_INT_LIT16: 2625 work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true); 2626 break; 2627 case Instruction::AND_INT_LIT16: 2628 case Instruction::OR_INT_LIT16: 2629 case Instruction::XOR_INT_LIT16: 2630 work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true); 2631 break; 2632 case Instruction::ADD_INT_LIT8: 2633 case Instruction::RSUB_INT_LIT8: 2634 case Instruction::MUL_INT_LIT8: 2635 case Instruction::DIV_INT_LIT8: 2636 case Instruction::REM_INT_LIT8: 2637 case Instruction::SHL_INT_LIT8: 2638 case Instruction::SHR_INT_LIT8: 2639 case Instruction::USHR_INT_LIT8: 2640 work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false); 2641 break; 2642 case Instruction::AND_INT_LIT8: 2643 case Instruction::OR_INT_LIT8: 2644 case Instruction::XOR_INT_LIT8: 2645 work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false); 2646 break; 2647 2648 // Special instructions. 2649 case Instruction::RETURN_VOID_BARRIER: 2650 if (!IsConstructor() || IsStatic()) { 2651 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected"; 2652 } 2653 break; 2654 // Note: the following instructions encode offsets derived from class linking. 2655 // As such they use Class*/Field*/AbstractMethod* as these offsets only have 2656 // meaning if the class linking and resolution were successful. 2657 case Instruction::IGET_QUICK: 2658 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true); 2659 break; 2660 case Instruction::IGET_WIDE_QUICK: 2661 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true); 2662 break; 2663 case Instruction::IGET_OBJECT_QUICK: 2664 VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false); 2665 break; 2666 case Instruction::IPUT_QUICK: 2667 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true); 2668 break; 2669 case Instruction::IPUT_WIDE_QUICK: 2670 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true); 2671 break; 2672 case Instruction::IPUT_OBJECT_QUICK: 2673 VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false); 2674 break; 2675 case Instruction::INVOKE_VIRTUAL_QUICK: 2676 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { 2677 bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK); 2678 mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range); 2679 if (called_method != nullptr) { 2680 const char* descriptor = called_method->GetReturnTypeDescriptor(); 2681 RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, 2682 false); 2683 if (!return_type.IsLowHalf()) { 2684 work_line_->SetResultRegisterType(return_type); 2685 } else { 2686 work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(®_types_)); 2687 } 2688 just_set_result = true; 2689 } 2690 break; 2691 } 2692 2693 /* These should never appear during verification. */ 2694 case Instruction::UNUSED_3E: 2695 case Instruction::UNUSED_3F: 2696 case Instruction::UNUSED_40: 2697 case Instruction::UNUSED_41: 2698 case Instruction::UNUSED_42: 2699 case Instruction::UNUSED_43: 2700 case Instruction::UNUSED_79: 2701 case Instruction::UNUSED_7A: 2702 case Instruction::UNUSED_EB: 2703 case Instruction::UNUSED_EC: 2704 case Instruction::UNUSED_ED: 2705 case Instruction::UNUSED_EE: 2706 case Instruction::UNUSED_EF: 2707 case Instruction::UNUSED_F0: 2708 case Instruction::UNUSED_F1: 2709 case Instruction::UNUSED_F2: 2710 case Instruction::UNUSED_F3: 2711 case Instruction::UNUSED_F4: 2712 case Instruction::UNUSED_F5: 2713 case Instruction::UNUSED_F6: 2714 case Instruction::UNUSED_F7: 2715 case Instruction::UNUSED_F8: 2716 case Instruction::UNUSED_F9: 2717 case Instruction::UNUSED_FA: 2718 case Instruction::UNUSED_FB: 2719 case Instruction::UNUSED_FC: 2720 case Instruction::UNUSED_FD: 2721 case Instruction::UNUSED_FE: 2722 case Instruction::UNUSED_FF: 2723 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_); 2724 break; 2725 2726 /* 2727 * DO NOT add a "default" clause here. Without it the compiler will 2728 * complain if an instruction is missing (which is desirable). 2729 */ 2730 } // end - switch (dec_insn.opcode) 2731 2732 if (have_pending_hard_failure_) { 2733 if (Runtime::Current()->IsCompiler()) { 2734 /* When compiling, check that the last failure is a hard failure */ 2735 CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD); 2736 } 2737 /* immediate failure, reject class */ 2738 info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_); 2739 return false; 2740 } else if (have_pending_runtime_throw_failure_) { 2741 /* checking interpreter will throw, mark following code as unreachable */ 2742 opcode_flags = Instruction::kThrow; 2743 } 2744 /* 2745 * If we didn't just set the result register, clear it out. This ensures that you can only use 2746 * "move-result" immediately after the result is set. (We could check this statically, but it's 2747 * not expensive and it makes our debugging output cleaner.) 2748 */ 2749 if (!just_set_result) { 2750 work_line_->SetResultTypeToUnknown(); 2751 } 2752 2753 2754 2755 /* 2756 * Handle "branch". Tag the branch target. 2757 * 2758 * NOTE: instructions like Instruction::EQZ provide information about the 2759 * state of the register when the branch is taken or not taken. For example, 2760 * somebody could get a reference field, check it for zero, and if the 2761 * branch is taken immediately store that register in a boolean field 2762 * since the value is known to be zero. We do not currently account for 2763 * that, and will reject the code. 2764 * 2765 * TODO: avoid re-fetching the branch target 2766 */ 2767 if ((opcode_flags & Instruction::kBranch) != 0) { 2768 bool isConditional, selfOkay; 2769 if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) { 2770 /* should never happen after static verification */ 2771 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch"; 2772 return false; 2773 } 2774 DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0); 2775 if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) { 2776 return false; 2777 } 2778 /* update branch target, set "changed" if appropriate */ 2779 if (nullptr != branch_line.get()) { 2780 if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) { 2781 return false; 2782 } 2783 } else { 2784 if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) { 2785 return false; 2786 } 2787 } 2788 } 2789 2790 /* 2791 * Handle "switch". Tag all possible branch targets. 2792 * 2793 * We've already verified that the table is structurally sound, so we 2794 * just need to walk through and tag the targets. 2795 */ 2796 if ((opcode_flags & Instruction::kSwitch) != 0) { 2797 int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16); 2798 const uint16_t* switch_insns = insns + offset_to_switch; 2799 int switch_count = switch_insns[1]; 2800 int offset_to_targets, targ; 2801 2802 if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { 2803 /* 0 = sig, 1 = count, 2/3 = first key */ 2804 offset_to_targets = 4; 2805 } else { 2806 /* 0 = sig, 1 = count, 2..count * 2 = keys */ 2807 DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH); 2808 offset_to_targets = 2 + 2 * switch_count; 2809 } 2810 2811 /* verify each switch target */ 2812 for (targ = 0; targ < switch_count; targ++) { 2813 int offset; 2814 uint32_t abs_offset; 2815 2816 /* offsets are 32-bit, and only partly endian-swapped */ 2817 offset = switch_insns[offset_to_targets + targ * 2] | 2818 (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16); 2819 abs_offset = work_insn_idx_ + offset; 2820 DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_); 2821 if (!CheckNotMoveException(code_item_->insns_, abs_offset)) { 2822 return false; 2823 } 2824 if (!UpdateRegisters(abs_offset, work_line_.get(), false)) { 2825 return false; 2826 } 2827 } 2828 } 2829 2830 /* 2831 * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a 2832 * "try" block when they throw, control transfers out of the method.) 2833 */ 2834 if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) { 2835 bool has_catch_all_handler = false; 2836 CatchHandlerIterator iterator(*code_item_, work_insn_idx_); 2837 2838 // Need the linker to try and resolve the handled class to check if it's Throwable. 2839 ClassLinker* linker = Runtime::Current()->GetClassLinker(); 2840 2841 for (; iterator.HasNext(); iterator.Next()) { 2842 uint16_t handler_type_idx = iterator.GetHandlerTypeIndex(); 2843 if (handler_type_idx == DexFile::kDexNoIndex16) { 2844 has_catch_all_handler = true; 2845 } else { 2846 // It is also a catch-all if it is java.lang.Throwable. 2847 mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_, 2848 *class_loader_); 2849 if (klass != nullptr) { 2850 if (klass == mirror::Throwable::GetJavaLangThrowable()) { 2851 has_catch_all_handler = true; 2852 } 2853 } else { 2854 // Clear exception. 2855 Thread* self = Thread::Current(); 2856 DCHECK(self->IsExceptionPending()); 2857 self->ClearException(); 2858 } 2859 } 2860 /* 2861 * Merge registers into the "catch" block. We want to use the "savedRegs" rather than 2862 * "work_regs", because at runtime the exception will be thrown before the instruction 2863 * modifies any registers. 2864 */ 2865 if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) { 2866 return false; 2867 } 2868 } 2869 2870 /* 2871 * If the monitor stack depth is nonzero, there must be a "catch all" handler for this 2872 * instruction. This does apply to monitor-exit because of async exception handling. 2873 */ 2874 if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) { 2875 /* 2876 * The state in work_line reflects the post-execution state. If the current instruction is a 2877 * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws, 2878 * it will do so before grabbing the lock). 2879 */ 2880 if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) { 2881 Fail(VERIFY_ERROR_BAD_CLASS_HARD) 2882 << "expected to be within a catch-all for an instruction where a monitor is held"; 2883 return false; 2884 } 2885 } 2886 } 2887 2888 /* Handle "continue". Tag the next consecutive instruction. 2889 * Note: Keep the code handling "continue" case below the "branch" and "switch" cases, 2890 * because it changes work_line_ when performing peephole optimization 2891 * and this change should not be used in those cases. 2892 */ 2893 if ((opcode_flags & Instruction::kContinue) != 0) { 2894 uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits(); 2895 if (next_insn_idx >= code_item_->insns_size_in_code_units_) { 2896 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area"; 2897 return false; 2898 } 2899 // The only way to get to a move-exception instruction is to get thrown there. Make sure the 2900 // next instruction isn't one. 2901 if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) { 2902 return false; 2903 } 2904 if (nullptr != fallthrough_line.get()) { 2905 // Make workline consistent with fallthrough computed from peephole optimization. 2906 work_line_->CopyFromLine(fallthrough_line.get()); 2907 } 2908 if (insn_flags_[next_insn_idx].IsReturn()) { 2909 // For returns we only care about the operand to the return, all other registers are dead. 2910 const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx); 2911 Instruction::Code opcode = ret_inst->Opcode(); 2912 if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) { 2913 work_line_->MarkAllRegistersAsConflicts(); 2914 } else { 2915 if (opcode == Instruction::RETURN_WIDE) { 2916 work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x()); 2917 } else { 2918 work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x()); 2919 } 2920 } 2921 } 2922 RegisterLine* next_line = reg_table_.GetLine(next_insn_idx); 2923 if (next_line != nullptr) { 2924 // Merge registers into what we have for the next instruction, and set the "changed" flag if 2925 // needed. If the merge changes the state of the registers then the work line will be 2926 // updated. 2927 if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) { 2928 return false; 2929 } 2930 } else { 2931 /* 2932 * We're not recording register data for the next instruction, so we don't know what the 2933 * prior state was. We have to assume that something has changed and re-evaluate it. 2934 */ 2935 insn_flags_[next_insn_idx].SetChanged(); 2936 } 2937 } 2938 2939 /* If we're returning from the method, make sure monitor stack is empty. */ 2940 if ((opcode_flags & Instruction::kReturn) != 0) { 2941 if (!work_line_->VerifyMonitorStackEmpty()) { 2942 return false; 2943 } 2944 } 2945 2946 /* 2947 * Update start_guess. Advance to the next instruction of that's 2948 * possible, otherwise use the branch target if one was found. If 2949 * neither of those exists we're in a return or throw; leave start_guess 2950 * alone and let the caller sort it out. 2951 */ 2952 if ((opcode_flags & Instruction::kContinue) != 0) { 2953 *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits(); 2954 } else if ((opcode_flags & Instruction::kBranch) != 0) { 2955 /* we're still okay if branch_target is zero */ 2956 *start_guess = work_insn_idx_ + branch_target; 2957 } 2958 2959 DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_); 2960 DCHECK(insn_flags_[*start_guess].IsOpcode()); 2961 2962 return true; 2963 } // NOLINT(readability/fn_size) 2964 2965 RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) { 2966 const char* descriptor = dex_file_->StringByTypeIdx(class_idx); 2967 RegType& referrer = GetDeclaringClass(); 2968 mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx); 2969 RegType& result = 2970 klass != nullptr ? reg_types_.FromClass(descriptor, klass, 2971 klass->CannotBeAssignedFromOtherTypes()) 2972 : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false); 2973 if (result.IsConflict()) { 2974 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor 2975 << "' in " << referrer; 2976 return result; 2977 } 2978 if (klass == nullptr && !result.IsUnresolvedTypes()) { 2979 (*dex_cache_)->SetResolvedType(class_idx, result.GetClass()); 2980 } 2981 // Check if access is allowed. Unresolved types use xxxWithAccessCheck to 2982 // check at runtime if access is allowed and so pass here. If result is 2983 // primitive, skip the access check. 2984 if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() && 2985 !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) { 2986 Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '" 2987 << referrer << "' -> '" << result << "'"; 2988 } 2989 return result; 2990 } 2991 2992 RegType& MethodVerifier::GetCaughtExceptionType() { 2993 RegType* common_super = nullptr; 2994 if (code_item_->tries_size_ != 0) { 2995 const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0); 2996 uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); 2997 for (uint32_t i = 0; i < handlers_size; i++) { 2998 CatchHandlerIterator iterator(handlers_ptr); 2999 for (; iterator.HasNext(); iterator.Next()) { 3000 if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) { 3001 if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) { 3002 common_super = ®_types_.JavaLangThrowable(false); 3003 } else { 3004 RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex()); 3005 if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) { 3006 if (exception.IsUnresolvedTypes()) { 3007 // We don't know enough about the type. Fail here and let runtime handle it. 3008 Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception; 3009 return exception; 3010 } else { 3011 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception; 3012 return reg_types_.Conflict(); 3013 } 3014 } else if (common_super == nullptr) { 3015 common_super = &exception; 3016 } else if (common_super->Equals(exception)) { 3017 // odd case, but nothing to do 3018 } else { 3019 common_super = &common_super->Merge(exception, ®_types_); 3020 if (FailOrAbort(this, 3021 reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super), 3022 "java.lang.Throwable is not assignable-from common_super at ", 3023 work_insn_idx_)) { 3024 break; 3025 } 3026 } 3027 } 3028 } 3029 } 3030 handlers_ptr = iterator.EndDataPointer(); 3031 } 3032 } 3033 if (common_super == nullptr) { 3034 /* no catch blocks, or no catches with classes we can find */ 3035 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler"; 3036 return reg_types_.Conflict(); 3037 } 3038 return *common_super; 3039 } 3040 3041 mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx, 3042 MethodType method_type) { 3043 const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx); 3044 RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_); 3045 if (klass_type.IsConflict()) { 3046 std::string append(" in attempt to access method "); 3047 append += dex_file_->GetMethodName(method_id); 3048 AppendToLastFailMessage(append); 3049 return nullptr; 3050 } 3051 if (klass_type.IsUnresolvedTypes()) { 3052 return nullptr; // Can't resolve Class so no more to do here 3053 } 3054 mirror::Class* klass = klass_type.GetClass(); 3055 RegType& referrer = GetDeclaringClass(); 3056 mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx); 3057 if (res_method == nullptr) { 3058 const char* name = dex_file_->GetMethodName(method_id); 3059 const Signature signature = dex_file_->GetMethodSignature(method_id); 3060 3061 if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) { 3062 res_method = klass->FindDirectMethod(name, signature); 3063 } else if (method_type == METHOD_INTERFACE) { 3064 res_method = klass->FindInterfaceMethod(name, signature); 3065 } else { 3066 res_method = klass->FindVirtualMethod(name, signature); 3067 } 3068 if (res_method != nullptr) { 3069 (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method); 3070 } else { 3071 // If a virtual or interface method wasn't found with the expected type, look in 3072 // the direct methods. This can happen when the wrong invoke type is used or when 3073 // a class has changed, and will be flagged as an error in later checks. 3074 if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) { 3075 res_method = klass->FindDirectMethod(name, signature); 3076 } 3077 if (res_method == nullptr) { 3078 Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method " 3079 << PrettyDescriptor(klass) << "." << name 3080 << " " << signature; 3081 return nullptr; 3082 } 3083 } 3084 } 3085 // Make sure calls to constructors are "direct". There are additional restrictions but we don't 3086 // enforce them here. 3087 if (res_method->IsConstructor() && method_type != METHOD_DIRECT) { 3088 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor " 3089 << PrettyMethod(res_method); 3090 return nullptr; 3091 } 3092 // Disallow any calls to class initializers. 3093 if (res_method->IsClassInitializer()) { 3094 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer " 3095 << PrettyMethod(res_method); 3096 return nullptr; 3097 } 3098 // Check if access is allowed. 3099 if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) { 3100 Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method) 3101 << " from " << referrer << ")"; 3102 return res_method; 3103 } 3104 // Check that invoke-virtual and invoke-super are not used on private methods of the same class. 3105 if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) { 3106 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method " 3107 << PrettyMethod(res_method); 3108 return nullptr; 3109 } 3110 // Check that interface methods match interface classes. 3111 if (klass->IsInterface() && method_type != METHOD_INTERFACE) { 3112 Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method) 3113 << " is in an interface class " << PrettyClass(klass); 3114 return nullptr; 3115 } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) { 3116 Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method) 3117 << " is in a non-interface class " << PrettyClass(klass); 3118 return nullptr; 3119 } 3120 // See if the method type implied by the invoke instruction matches the access flags for the 3121 // target method. 3122 if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) || 3123 (method_type == METHOD_STATIC && !res_method->IsStatic()) || 3124 ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect()) 3125 ) { 3126 Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method " 3127 " type of " << PrettyMethod(res_method); 3128 return nullptr; 3129 } 3130 return res_method; 3131 } 3132 3133 template <class T> 3134 mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst, 3135 MethodType method_type, 3136 bool is_range, 3137 mirror::ArtMethod* res_method) { 3138 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to 3139 // match the call to the signature. Also, we might be calling through an abstract method 3140 // definition (which doesn't have register count values). 3141 const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c(); 3142 /* caught by static verifier */ 3143 DCHECK(is_range || expected_args <= 5); 3144 if (expected_args > code_item_->outs_size_) { 3145 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args 3146 << ") exceeds outsSize (" << code_item_->outs_size_ << ")"; 3147 return nullptr; 3148 } 3149 3150 uint32_t arg[5]; 3151 if (!is_range) { 3152 inst->GetVarArgs(arg); 3153 } 3154 uint32_t sig_registers = 0; 3155 3156 /* 3157 * Check the "this" argument, which must be an instance of the class that declared the method. 3158 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a 3159 * rigorous check here (which is okay since we have to do it at runtime). 3160 */ 3161 if (method_type != METHOD_STATIC) { 3162 RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range); 3163 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed. 3164 CHECK(have_pending_hard_failure_); 3165 return nullptr; 3166 } 3167 if (actual_arg_type.IsUninitializedReference()) { 3168 if (res_method) { 3169 if (!res_method->IsConstructor()) { 3170 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; 3171 return nullptr; 3172 } 3173 } else { 3174 // Check whether the name of the called method is "<init>" 3175 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 3176 if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) { 3177 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; 3178 return nullptr; 3179 } 3180 } 3181 } 3182 if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) { 3183 RegType* res_method_class; 3184 if (res_method != nullptr) { 3185 mirror::Class* klass = res_method->GetDeclaringClass(); 3186 std::string temp; 3187 res_method_class = ®_types_.FromClass(klass->GetDescriptor(&temp), klass, 3188 klass->CannotBeAssignedFromOtherTypes()); 3189 } else { 3190 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 3191 const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_; 3192 res_method_class = ®_types_.FromDescriptor(class_loader_->Get(), 3193 dex_file_->StringByTypeIdx(class_idx), 3194 false); 3195 } 3196 if (!res_method_class->IsAssignableFrom(actual_arg_type)) { 3197 Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS: 3198 VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type 3199 << "' not instance of '" << *res_method_class << "'"; 3200 // Continue on soft failures. We need to find possible hard failures to avoid problems in 3201 // the compiler. 3202 if (have_pending_hard_failure_) { 3203 return nullptr; 3204 } 3205 } 3206 } 3207 sig_registers = 1; 3208 } 3209 3210 for ( ; it->HasNext(); it->Next()) { 3211 if (sig_registers >= expected_args) { 3212 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() << 3213 " arguments, found " << sig_registers << " or more."; 3214 return nullptr; 3215 } 3216 3217 const char* param_descriptor = it->GetDescriptor(); 3218 3219 if (param_descriptor == nullptr) { 3220 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature " 3221 "component"; 3222 return nullptr; 3223 } 3224 3225 RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor, 3226 false); 3227 uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) : 3228 arg[sig_registers]; 3229 if (reg_type.IsIntegralTypes()) { 3230 RegType& src_type = work_line_->GetRegisterType(get_reg); 3231 if (!src_type.IsIntegralTypes()) { 3232 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type 3233 << " but expected " << reg_type; 3234 return res_method; 3235 } 3236 } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) { 3237 // Continue on soft failures. We need to find possible hard failures to avoid problems in the 3238 // compiler. 3239 if (have_pending_hard_failure_) { 3240 return res_method; 3241 } 3242 } 3243 sig_registers += reg_type.IsLongOrDoubleTypes() ? 2 : 1; 3244 } 3245 if (expected_args != sig_registers) { 3246 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args << 3247 " arguments, found " << sig_registers; 3248 return nullptr; 3249 } 3250 return res_method; 3251 } 3252 3253 void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst, 3254 MethodType method_type, 3255 bool is_range) { 3256 // As the method may not have been resolved, make this static check against what we expect. 3257 // The main reason for this code block is to fail hard when we find an illegal use, e.g., 3258 // wrong number of arguments or wrong primitive types, even if the method could not be resolved. 3259 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 3260 DexFileParameterIterator it(*dex_file_, 3261 dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_)); 3262 VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range, 3263 nullptr); 3264 } 3265 3266 class MethodParamListDescriptorIterator { 3267 public: 3268 explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) : 3269 res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()), 3270 params_size_(params_ == nullptr ? 0 : params_->Size()) { 3271 } 3272 3273 bool HasNext() { 3274 return pos_ < params_size_; 3275 } 3276 3277 void Next() { 3278 ++pos_; 3279 } 3280 3281 const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 3282 return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_); 3283 } 3284 3285 private: 3286 mirror::ArtMethod* res_method_; 3287 size_t pos_; 3288 const DexFile::TypeList* params_; 3289 const size_t params_size_; 3290 }; 3291 3292 mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst, 3293 MethodType method_type, 3294 bool is_range, 3295 bool is_super) { 3296 // Resolve the method. This could be an abstract or concrete method depending on what sort of call 3297 // we're making. 3298 const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); 3299 3300 mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type); 3301 if (res_method == nullptr) { // error or class is unresolved 3302 // Check what we can statically. 3303 if (!have_pending_hard_failure_) { 3304 VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range); 3305 } 3306 return nullptr; 3307 } 3308 3309 // If we're using invoke-super(method), make sure that the executing method's class' superclass 3310 // has a vtable entry for the target method. 3311 if (is_super) { 3312 DCHECK(method_type == METHOD_VIRTUAL); 3313 RegType& super = GetDeclaringClass().GetSuperClass(®_types_); 3314 if (super.IsUnresolvedTypes()) { 3315 Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from " 3316 << PrettyMethod(dex_method_idx_, *dex_file_) 3317 << " to super " << PrettyMethod(res_method); 3318 return nullptr; 3319 } 3320 mirror::Class* super_klass = super.GetClass(); 3321 if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) { 3322 Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from " 3323 << PrettyMethod(dex_method_idx_, *dex_file_) 3324 << " to super " << super 3325 << "." << res_method->GetName() 3326 << res_method->GetSignature(); 3327 return nullptr; 3328 } 3329 } 3330 3331 // Process the target method's signature. This signature may or may not 3332 MethodParamListDescriptorIterator it(res_method); 3333 return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type, 3334 is_range, res_method); 3335 } 3336 3337 mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, 3338 RegisterLine* reg_line, bool is_range) { 3339 DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK || 3340 inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK); 3341 RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range); 3342 if (!actual_arg_type.HasClass()) { 3343 VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'"; 3344 return nullptr; 3345 } 3346 mirror::Class* klass = actual_arg_type.GetClass(); 3347 mirror::Class* dispatch_class; 3348 if (klass->IsInterface()) { 3349 // Derive Object.class from Class.class.getSuperclass(). 3350 mirror::Class* object_klass = klass->GetClass()->GetSuperClass(); 3351 if (FailOrAbort(this, object_klass->IsObjectClass(), 3352 "Failed to find Object class in quickened invoke receiver", 3353 work_insn_idx_)) { 3354 return nullptr; 3355 } 3356 dispatch_class = object_klass; 3357 } else { 3358 dispatch_class = klass; 3359 } 3360 if (FailOrAbort(this, dispatch_class->HasVTable(), 3361 "Receiver class has no vtable for quickened invoke at ", 3362 work_insn_idx_)) { 3363 return nullptr; 3364 } 3365 uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); 3366 if (FailOrAbort(this, static_cast<int32_t>(vtable_index) < dispatch_class->GetVTableLength(), 3367 "Receiver class has not enough vtable slots for quickened invoke at ", 3368 work_insn_idx_)) { 3369 return nullptr; 3370 } 3371 mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index); 3372 if (FailOrAbort(this, !Thread::Current()->IsExceptionPending(), 3373 "Unexpected exception pending for quickened invoke at ", 3374 work_insn_idx_)) { 3375 return nullptr; 3376 } 3377 return res_method; 3378 } 3379 3380 mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, 3381 bool is_range) { 3382 DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_); 3383 mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), 3384 is_range); 3385 if (res_method == nullptr) { 3386 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name(); 3387 return nullptr; 3388 } 3389 if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ", 3390 work_insn_idx_)) { 3391 return nullptr; 3392 } 3393 if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ", 3394 work_insn_idx_)) { 3395 return nullptr; 3396 } 3397 3398 // We use vAA as our expected arg count, rather than res_method->insSize, because we need to 3399 // match the call to the signature. Also, we might be calling through an abstract method 3400 // definition (which doesn't have register count values). 3401 RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range); 3402 if (actual_arg_type.IsConflict()) { // GetInvocationThis failed. 3403 return nullptr; 3404 } 3405 const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c(); 3406 /* caught by static verifier */ 3407 DCHECK(is_range || expected_args <= 5); 3408 if (expected_args > code_item_->outs_size_) { 3409 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args 3410 << ") exceeds outsSize (" << code_item_->outs_size_ << ")"; 3411 return nullptr; 3412 } 3413 3414 /* 3415 * Check the "this" argument, which must be an instance of the class that declared the method. 3416 * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a 3417 * rigorous check here (which is okay since we have to do it at runtime). 3418 */ 3419 if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) { 3420 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; 3421 return nullptr; 3422 } 3423 if (!actual_arg_type.IsZero()) { 3424 mirror::Class* klass = res_method->GetDeclaringClass(); 3425 std::string temp; 3426 RegType& res_method_class = 3427 reg_types_.FromClass(klass->GetDescriptor(&temp), klass, 3428 klass->CannotBeAssignedFromOtherTypes()); 3429 if (!res_method_class.IsAssignableFrom(actual_arg_type)) { 3430 Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : 3431 VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type 3432 << "' not instance of '" << res_method_class << "'"; 3433 return nullptr; 3434 } 3435 } 3436 /* 3437 * Process the target method's signature. This signature may or may not 3438 * have been verified, so we can't assume it's properly formed. 3439 */ 3440 const DexFile::TypeList* params = res_method->GetParameterTypeList(); 3441 size_t params_size = params == nullptr ? 0 : params->Size(); 3442 uint32_t arg[5]; 3443 if (!is_range) { 3444 inst->GetVarArgs(arg); 3445 } 3446 size_t actual_args = 1; 3447 for (size_t param_index = 0; param_index < params_size; param_index++) { 3448 if (actual_args >= expected_args) { 3449 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method) 3450 << "'. Expected " << expected_args 3451 << " arguments, processing argument " << actual_args 3452 << " (where longs/doubles count twice)."; 3453 return nullptr; 3454 } 3455 const char* descriptor = 3456 res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_); 3457 if (descriptor == nullptr) { 3458 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method) 3459 << " missing signature component"; 3460 return nullptr; 3461 } 3462 RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false); 3463 uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args]; 3464 if (!work_line_->VerifyRegisterType(get_reg, reg_type)) { 3465 return res_method; 3466 } 3467 actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1; 3468 } 3469 if (actual_args != expected_args) { 3470 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method) 3471 << " expected " << expected_args << " arguments, found " << actual_args; 3472 return nullptr; 3473 } else { 3474 return res_method; 3475 } 3476 } 3477 3478 void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) { 3479 uint32_t type_idx; 3480 if (!is_filled) { 3481 DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY); 3482 type_idx = inst->VRegC_22c(); 3483 } else if (!is_range) { 3484 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY); 3485 type_idx = inst->VRegB_35c(); 3486 } else { 3487 DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE); 3488 type_idx = inst->VRegB_3rc(); 3489 } 3490 RegType& res_type = ResolveClassAndCheckAccess(type_idx); 3491 if (res_type.IsConflict()) { // bad class 3492 DCHECK_NE(failures_.size(), 0U); 3493 } else { 3494 // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved 3495 if (!res_type.IsArrayTypes()) { 3496 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type; 3497 } else if (!is_filled) { 3498 /* make sure "size" register is valid type */ 3499 work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer()); 3500 /* set register type to array class */ 3501 RegType& precise_type = reg_types_.FromUninitialized(res_type); 3502 work_line_->SetRegisterType(inst->VRegA_22c(), precise_type); 3503 } else { 3504 // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of 3505 // the list and fail. It's legal, if silly, for arg_count to be zero. 3506 RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get()); 3507 uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c(); 3508 uint32_t arg[5]; 3509 if (!is_range) { 3510 inst->GetVarArgs(arg); 3511 } 3512 for (size_t ui = 0; ui < arg_count; ui++) { 3513 uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui]; 3514 if (!work_line_->VerifyRegisterType(get_reg, expected_type)) { 3515 work_line_->SetResultRegisterType(reg_types_.Conflict()); 3516 return; 3517 } 3518 } 3519 // filled-array result goes into "result" register 3520 RegType& precise_type = reg_types_.FromUninitialized(res_type); 3521 work_line_->SetResultRegisterType(precise_type); 3522 } 3523 } 3524 } 3525 3526 void MethodVerifier::VerifyAGet(const Instruction* inst, 3527 RegType& insn_type, bool is_primitive) { 3528 RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x()); 3529 if (!index_type.IsArrayIndexTypes()) { 3530 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")"; 3531 } else { 3532 RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x()); 3533 if (array_type.IsZero()) { 3534 // Null array class; this code path will fail at runtime. Infer a merge-able type from the 3535 // instruction type. TODO: have a proper notion of bottom here. 3536 if (!is_primitive || insn_type.IsCategory1Types()) { 3537 // Reference or category 1 3538 work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero()); 3539 } else { 3540 // Category 2 3541 work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false), 3542 reg_types_.FromCat2ConstHi(0, false)); 3543 } 3544 } else if (!array_type.IsArrayTypes()) { 3545 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget"; 3546 } else { 3547 /* verify the class */ 3548 RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get()); 3549 if (!component_type.IsReferenceTypes() && !is_primitive) { 3550 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type 3551 << " source for aget-object"; 3552 } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) { 3553 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type 3554 << " source for category 1 aget"; 3555 } else if (is_primitive && !insn_type.Equals(component_type) && 3556 !((insn_type.IsInteger() && component_type.IsFloat()) || 3557 (insn_type.IsLong() && component_type.IsDouble()))) { 3558 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type 3559 << " incompatible with aget of type " << insn_type; 3560 } else { 3561 // Use knowledge of the field type which is stronger than the type inferred from the 3562 // instruction, which can't differentiate object types and ints from floats, longs from 3563 // doubles. 3564 if (!component_type.IsLowHalf()) { 3565 work_line_->SetRegisterType(inst->VRegA_23x(), component_type); 3566 } else { 3567 work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type, 3568 component_type.HighHalf(®_types_)); 3569 } 3570 } 3571 } 3572 } 3573 } 3574 3575 void MethodVerifier::VerifyPrimitivePut(RegType& target_type, RegType& insn_type, 3576 const uint32_t vregA) { 3577 // Primitive assignability rules are weaker than regular assignability rules. 3578 bool instruction_compatible; 3579 bool value_compatible; 3580 RegType& value_type = work_line_->GetRegisterType(vregA); 3581 if (target_type.IsIntegralTypes()) { 3582 instruction_compatible = target_type.Equals(insn_type); 3583 value_compatible = value_type.IsIntegralTypes(); 3584 } else if (target_type.IsFloat()) { 3585 instruction_compatible = insn_type.IsInteger(); // no put-float, so expect put-int 3586 value_compatible = value_type.IsFloatTypes(); 3587 } else if (target_type.IsLong()) { 3588 instruction_compatible = insn_type.IsLong(); 3589 // Additional register check: this is not checked statically (as part of VerifyInstructions), 3590 // as target_type depends on the resolved type of the field. 3591 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) { 3592 RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1); 3593 value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi); 3594 } else { 3595 value_compatible = false; 3596 } 3597 } else if (target_type.IsDouble()) { 3598 instruction_compatible = insn_type.IsLong(); // no put-double, so expect put-long 3599 // Additional register check: this is not checked statically (as part of VerifyInstructions), 3600 // as target_type depends on the resolved type of the field. 3601 if (instruction_compatible && work_line_->NumRegs() > vregA + 1) { 3602 RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1); 3603 value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi); 3604 } else { 3605 value_compatible = false; 3606 } 3607 } else { 3608 instruction_compatible = false; // reference with primitive store 3609 value_compatible = false; // unused 3610 } 3611 if (!instruction_compatible) { 3612 // This is a global failure rather than a class change failure as the instructions and 3613 // the descriptors for the type should have been consistent within the same file at 3614 // compile time. 3615 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type 3616 << "' but expected type '" << target_type << "'"; 3617 return; 3618 } 3619 if (!value_compatible) { 3620 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA 3621 << " of type " << value_type << " but expected " << target_type << " for put"; 3622 return; 3623 } 3624 } 3625 3626 void MethodVerifier::VerifyAPut(const Instruction* inst, 3627 RegType& insn_type, bool is_primitive) { 3628 RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x()); 3629 if (!index_type.IsArrayIndexTypes()) { 3630 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")"; 3631 } else { 3632 RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x()); 3633 if (array_type.IsZero()) { 3634 // Null array type; this code path will fail at runtime. Infer a merge-able type from the 3635 // instruction type. 3636 } else if (!array_type.IsArrayTypes()) { 3637 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput"; 3638 } else { 3639 RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get()); 3640 const uint32_t vregA = inst->VRegA_23x(); 3641 if (is_primitive) { 3642 VerifyPrimitivePut(component_type, insn_type, vregA); 3643 } else { 3644 if (!component_type.IsReferenceTypes()) { 3645 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type 3646 << " source for aput-object"; 3647 } else { 3648 // The instruction agrees with the type of array, confirm the value to be stored does too 3649 // Note: we use the instruction type (rather than the component type) for aput-object as 3650 // incompatible classes will be caught at runtime as an array store exception 3651 work_line_->VerifyRegisterType(vregA, insn_type); 3652 } 3653 } 3654 } 3655 } 3656 } 3657 3658 mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) { 3659 const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); 3660 // Check access to class 3661 RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_); 3662 if (klass_type.IsConflict()) { // bad class 3663 AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s", 3664 field_idx, dex_file_->GetFieldName(field_id), 3665 dex_file_->GetFieldDeclaringClassDescriptor(field_id))); 3666 return nullptr; 3667 } 3668 if (klass_type.IsUnresolvedTypes()) { 3669 return nullptr; // Can't resolve Class so no more to do here, will do checking at runtime. 3670 } 3671 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 3672 mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_, 3673 *class_loader_); 3674 if (field == nullptr) { 3675 VLOG(verifier) << "Unable to resolve static field " << field_idx << " (" 3676 << dex_file_->GetFieldName(field_id) << ") in " 3677 << dex_file_->GetFieldDeclaringClassDescriptor(field_id); 3678 DCHECK(Thread::Current()->IsExceptionPending()); 3679 Thread::Current()->ClearException(); 3680 return nullptr; 3681 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(), 3682 field->GetAccessFlags())) { 3683 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field) 3684 << " from " << GetDeclaringClass(); 3685 return nullptr; 3686 } else if (!field->IsStatic()) { 3687 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static"; 3688 return nullptr; 3689 } 3690 return field; 3691 } 3692 3693 mirror::ArtField* MethodVerifier::GetInstanceField(RegType& obj_type, int field_idx) { 3694 const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); 3695 // Check access to class 3696 RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_); 3697 if (klass_type.IsConflict()) { 3698 AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s", 3699 field_idx, dex_file_->GetFieldName(field_id), 3700 dex_file_->GetFieldDeclaringClassDescriptor(field_id))); 3701 return nullptr; 3702 } 3703 if (klass_type.IsUnresolvedTypes()) { 3704 return nullptr; // Can't resolve Class so no more to do here 3705 } 3706 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 3707 mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_, 3708 *class_loader_); 3709 if (field == nullptr) { 3710 VLOG(verifier) << "Unable to resolve instance field " << field_idx << " (" 3711 << dex_file_->GetFieldName(field_id) << ") in " 3712 << dex_file_->GetFieldDeclaringClassDescriptor(field_id); 3713 DCHECK(Thread::Current()->IsExceptionPending()); 3714 Thread::Current()->ClearException(); 3715 return nullptr; 3716 } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(), 3717 field->GetAccessFlags())) { 3718 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field) 3719 << " from " << GetDeclaringClass(); 3720 return nullptr; 3721 } else if (field->IsStatic()) { 3722 Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) 3723 << " to not be static"; 3724 return nullptr; 3725 } else if (obj_type.IsZero()) { 3726 // Cannot infer and check type, however, access will cause null pointer exception 3727 return field; 3728 } else if (!obj_type.IsReferenceTypes()) { 3729 // Trying to read a field from something that isn't a reference 3730 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has " 3731 << "non-reference type " << obj_type; 3732 return nullptr; 3733 } else { 3734 mirror::Class* klass = field->GetDeclaringClass(); 3735 RegType& field_klass = 3736 reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id), 3737 klass, klass->CannotBeAssignedFromOtherTypes()); 3738 if (obj_type.IsUninitializedTypes() && 3739 (!IsConstructor() || GetDeclaringClass().Equals(obj_type) || 3740 !field_klass.Equals(GetDeclaringClass()))) { 3741 // Field accesses through uninitialized references are only allowable for constructors where 3742 // the field is declared in this class 3743 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field) 3744 << " of a not fully initialized object within the context" 3745 << " of " << PrettyMethod(dex_method_idx_, *dex_file_); 3746 return nullptr; 3747 } else if (!field_klass.IsAssignableFrom(obj_type)) { 3748 // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class 3749 // of C1. For resolution to occur the declared class of the field must be compatible with 3750 // obj_type, we've discovered this wasn't so, so report the field didn't exist. 3751 Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field) 3752 << " from object of type " << obj_type; 3753 return nullptr; 3754 } else { 3755 return field; 3756 } 3757 } 3758 } 3759 3760 template <MethodVerifier::FieldAccessType kAccType> 3761 void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, RegType& insn_type, 3762 bool is_primitive, bool is_static) { 3763 uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); 3764 mirror::ArtField* field; 3765 if (is_static) { 3766 field = GetStaticField(field_idx); 3767 } else { 3768 RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c()); 3769 field = GetInstanceField(object_type, field_idx); 3770 if (UNLIKELY(have_pending_hard_failure_)) { 3771 return; 3772 } 3773 } 3774 RegType* field_type = nullptr; 3775 if (field != nullptr) { 3776 if (kAccType == FieldAccessType::kAccPut) { 3777 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) { 3778 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field) 3779 << " from other class " << GetDeclaringClass(); 3780 return; 3781 } 3782 } 3783 3784 Thread* self = Thread::Current(); 3785 mirror::Class* field_type_class; 3786 { 3787 StackHandleScope<1> hs(self); 3788 HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field)); 3789 field_type_class = FieldHelper(h_field).GetType(can_load_classes_); 3790 } 3791 if (field_type_class != nullptr) { 3792 field_type = ®_types_.FromClass(field->GetTypeDescriptor(), field_type_class, 3793 field_type_class->CannotBeAssignedFromOtherTypes()); 3794 } else { 3795 DCHECK(!can_load_classes_ || self->IsExceptionPending()); 3796 self->ClearException(); 3797 } 3798 } 3799 if (field_type == nullptr) { 3800 const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); 3801 const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id); 3802 field_type = ®_types_.FromDescriptor(class_loader_->Get(), descriptor, false); 3803 } 3804 DCHECK(field_type != nullptr); 3805 const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c(); 3806 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet, 3807 "Unexpected third access type"); 3808 if (kAccType == FieldAccessType::kAccPut) { 3809 // sput or iput. 3810 if (is_primitive) { 3811 VerifyPrimitivePut(*field_type, insn_type, vregA); 3812 } else { 3813 if (!insn_type.IsAssignableFrom(*field_type)) { 3814 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field) 3815 << " to be compatible with type '" << insn_type 3816 << "' but found type '" << *field_type 3817 << "' in put-object"; 3818 return; 3819 } 3820 work_line_->VerifyRegisterType(vregA, *field_type); 3821 } 3822 } else if (kAccType == FieldAccessType::kAccGet) { 3823 // sget or iget. 3824 if (is_primitive) { 3825 if (field_type->Equals(insn_type) || 3826 (field_type->IsFloat() && insn_type.IsInteger()) || 3827 (field_type->IsDouble() && insn_type.IsLong())) { 3828 // expected that read is of the correct primitive type or that int reads are reading 3829 // floats or long reads are reading doubles 3830 } else { 3831 // This is a global failure rather than a class change failure as the instructions and 3832 // the descriptors for the type should have been consistent within the same file at 3833 // compile time 3834 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field) 3835 << " to be of type '" << insn_type 3836 << "' but found type '" << *field_type << "' in get"; 3837 return; 3838 } 3839 } else { 3840 if (!insn_type.IsAssignableFrom(*field_type)) { 3841 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field) 3842 << " to be compatible with type '" << insn_type 3843 << "' but found type '" << *field_type 3844 << "' in get-object"; 3845 work_line_->SetRegisterType(vregA, reg_types_.Conflict()); 3846 return; 3847 } 3848 } 3849 if (!field_type->IsLowHalf()) { 3850 work_line_->SetRegisterType(vregA, *field_type); 3851 } else { 3852 work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(®_types_)); 3853 } 3854 } else { 3855 LOG(FATAL) << "Unexpected case."; 3856 } 3857 } 3858 3859 mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst, 3860 RegisterLine* reg_line) { 3861 DCHECK(inst->Opcode() == Instruction::IGET_QUICK || 3862 inst->Opcode() == Instruction::IGET_WIDE_QUICK || 3863 inst->Opcode() == Instruction::IGET_OBJECT_QUICK || 3864 inst->Opcode() == Instruction::IPUT_QUICK || 3865 inst->Opcode() == Instruction::IPUT_WIDE_QUICK || 3866 inst->Opcode() == Instruction::IPUT_OBJECT_QUICK); 3867 RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c()); 3868 if (!object_type.HasClass()) { 3869 VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'"; 3870 return nullptr; 3871 } 3872 uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c()); 3873 mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), 3874 field_offset); 3875 if (f == nullptr) { 3876 VLOG(verifier) << "Failed to find instance field at offset '" << field_offset 3877 << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'"; 3878 } 3879 return f; 3880 } 3881 3882 template <MethodVerifier::FieldAccessType kAccType> 3883 void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, RegType& insn_type, 3884 bool is_primitive) { 3885 DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_); 3886 3887 mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get()); 3888 if (field == nullptr) { 3889 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name(); 3890 return; 3891 } 3892 3893 // For an IPUT_QUICK, we now test for final flag of the field. 3894 if (kAccType == FieldAccessType::kAccPut) { 3895 if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) { 3896 Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field) 3897 << " from other class " << GetDeclaringClass(); 3898 return; 3899 } 3900 } 3901 3902 // Get the field type. 3903 RegType* field_type; 3904 { 3905 mirror::Class* field_type_class; 3906 { 3907 StackHandleScope<1> hs(Thread::Current()); 3908 HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field)); 3909 field_type_class = FieldHelper(h_field).GetType(can_load_classes_); 3910 } 3911 3912 if (field_type_class != nullptr) { 3913 field_type = ®_types_.FromClass(field->GetTypeDescriptor(), field_type_class, 3914 field_type_class->CannotBeAssignedFromOtherTypes()); 3915 } else { 3916 Thread* self = Thread::Current(); 3917 DCHECK(!can_load_classes_ || self->IsExceptionPending()); 3918 self->ClearException(); 3919 field_type = ®_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(), 3920 field->GetTypeDescriptor(), false); 3921 } 3922 if (field_type == nullptr) { 3923 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name(); 3924 return; 3925 } 3926 } 3927 3928 const uint32_t vregA = inst->VRegA_22c(); 3929 static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet, 3930 "Unexpected third access type"); 3931 if (kAccType == FieldAccessType::kAccPut) { 3932 if (is_primitive) { 3933 // Primitive field assignability rules are weaker than regular assignability rules 3934 bool instruction_compatible; 3935 bool value_compatible; 3936 RegType& value_type = work_line_->GetRegisterType(vregA); 3937 if (field_type->IsIntegralTypes()) { 3938 instruction_compatible = insn_type.IsIntegralTypes(); 3939 value_compatible = value_type.IsIntegralTypes(); 3940 } else if (field_type->IsFloat()) { 3941 instruction_compatible = insn_type.IsInteger(); // no [is]put-float, so expect [is]put-int 3942 value_compatible = value_type.IsFloatTypes(); 3943 } else if (field_type->IsLong()) { 3944 instruction_compatible = insn_type.IsLong(); 3945 value_compatible = value_type.IsLongTypes(); 3946 } else if (field_type->IsDouble()) { 3947 instruction_compatible = insn_type.IsLong(); // no [is]put-double, so expect [is]put-long 3948 value_compatible = value_type.IsDoubleTypes(); 3949 } else { 3950 instruction_compatible = false; // reference field with primitive store 3951 value_compatible = false; // unused 3952 } 3953 if (!instruction_compatible) { 3954 // This is a global failure rather than a class change failure as the instructions and 3955 // the descriptors for the type should have been consistent within the same file at 3956 // compile time 3957 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field) 3958 << " to be of type '" << insn_type 3959 << "' but found type '" << *field_type 3960 << "' in put"; 3961 return; 3962 } 3963 if (!value_compatible) { 3964 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA 3965 << " of type " << value_type 3966 << " but expected " << *field_type 3967 << " for store to " << PrettyField(field) << " in put"; 3968 return; 3969 } 3970 } else { 3971 if (!insn_type.IsAssignableFrom(*field_type)) { 3972 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field) 3973 << " to be compatible with type '" << insn_type 3974 << "' but found type '" << *field_type 3975 << "' in put-object"; 3976 return; 3977 } 3978 work_line_->VerifyRegisterType(vregA, *field_type); 3979 } 3980 } else if (kAccType == FieldAccessType::kAccGet) { 3981 if (is_primitive) { 3982 if (field_type->Equals(insn_type) || 3983 (field_type->IsFloat() && insn_type.IsIntegralTypes()) || 3984 (field_type->IsDouble() && insn_type.IsLongTypes())) { 3985 // expected that read is of the correct primitive type or that int reads are reading 3986 // floats or long reads are reading doubles 3987 } else { 3988 // This is a global failure rather than a class change failure as the instructions and 3989 // the descriptors for the type should have been consistent within the same file at 3990 // compile time 3991 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field) 3992 << " to be of type '" << insn_type 3993 << "' but found type '" << *field_type << "' in Get"; 3994 return; 3995 } 3996 } else { 3997 if (!insn_type.IsAssignableFrom(*field_type)) { 3998 Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field) 3999 << " to be compatible with type '" << insn_type 4000 << "' but found type '" << *field_type 4001 << "' in get-object"; 4002 work_line_->SetRegisterType(vregA, reg_types_.Conflict()); 4003 return; 4004 } 4005 } 4006 if (!field_type->IsLowHalf()) { 4007 work_line_->SetRegisterType(vregA, *field_type); 4008 } else { 4009 work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(®_types_)); 4010 } 4011 } else { 4012 LOG(FATAL) << "Unexpected case."; 4013 } 4014 } 4015 4016 bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) { 4017 if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) { 4018 Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception"; 4019 return false; 4020 } 4021 return true; 4022 } 4023 4024 bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line, 4025 bool update_merge_line) { 4026 bool changed = true; 4027 RegisterLine* target_line = reg_table_.GetLine(next_insn); 4028 if (!insn_flags_[next_insn].IsVisitedOrChanged()) { 4029 /* 4030 * We haven't processed this instruction before, and we haven't touched the registers here, so 4031 * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the 4032 * only way a register can transition out of "unknown", so this is not just an optimization.) 4033 */ 4034 if (!insn_flags_[next_insn].IsReturn()) { 4035 target_line->CopyFromLine(merge_line); 4036 } else { 4037 // Verify that the monitor stack is empty on return. 4038 if (!merge_line->VerifyMonitorStackEmpty()) { 4039 return false; 4040 } 4041 // For returns we only care about the operand to the return, all other registers are dead. 4042 // Initialize them as conflicts so they don't add to GC and deoptimization information. 4043 const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn); 4044 Instruction::Code opcode = ret_inst->Opcode(); 4045 if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) { 4046 target_line->MarkAllRegistersAsConflicts(); 4047 } else { 4048 target_line->CopyFromLine(merge_line); 4049 if (opcode == Instruction::RETURN_WIDE) { 4050 target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x()); 4051 } else { 4052 target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x()); 4053 } 4054 } 4055 } 4056 } else { 4057 std::unique_ptr<RegisterLine> copy(gDebugVerify ? 4058 RegisterLine::Create(target_line->NumRegs(), this) : 4059 nullptr); 4060 if (gDebugVerify) { 4061 copy->CopyFromLine(target_line); 4062 } 4063 changed = target_line->MergeRegisters(merge_line); 4064 if (have_pending_hard_failure_) { 4065 return false; 4066 } 4067 if (gDebugVerify && changed) { 4068 LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]" 4069 << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n" 4070 << *copy.get() << " MERGE\n" 4071 << *merge_line << " ==\n" 4072 << *target_line << "\n"; 4073 } 4074 if (update_merge_line && changed) { 4075 merge_line->CopyFromLine(target_line); 4076 } 4077 } 4078 if (changed) { 4079 insn_flags_[next_insn].SetChanged(); 4080 } 4081 return true; 4082 } 4083 4084 InstructionFlags* MethodVerifier::CurrentInsnFlags() { 4085 return &insn_flags_[work_insn_idx_]; 4086 } 4087 4088 RegType& MethodVerifier::GetMethodReturnType() { 4089 if (return_type_ == nullptr) { 4090 if (mirror_method_ != nullptr) { 4091 Thread* self = Thread::Current(); 4092 StackHandleScope<1> hs(self); 4093 mirror::Class* return_type_class; 4094 { 4095 HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_)); 4096 return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_); 4097 } 4098 if (return_type_class != nullptr) { 4099 return_type_ = ®_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(), 4100 return_type_class, 4101 return_type_class->CannotBeAssignedFromOtherTypes()); 4102 } else { 4103 DCHECK(!can_load_classes_ || self->IsExceptionPending()); 4104 self->ClearException(); 4105 } 4106 } 4107 if (return_type_ == nullptr) { 4108 const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_); 4109 const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id); 4110 uint16_t return_type_idx = proto_id.return_type_idx_; 4111 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx)); 4112 return_type_ = ®_types_.FromDescriptor(class_loader_->Get(), descriptor, false); 4113 } 4114 } 4115 return *return_type_; 4116 } 4117 4118 RegType& MethodVerifier::GetDeclaringClass() { 4119 if (declaring_class_ == nullptr) { 4120 const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_); 4121 const char* descriptor 4122 = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_)); 4123 if (mirror_method_ != nullptr) { 4124 mirror::Class* klass = mirror_method_->GetDeclaringClass(); 4125 declaring_class_ = ®_types_.FromClass(descriptor, klass, 4126 klass->CannotBeAssignedFromOtherTypes()); 4127 } else { 4128 declaring_class_ = ®_types_.FromDescriptor(class_loader_->Get(), descriptor, false); 4129 } 4130 } 4131 return *declaring_class_; 4132 } 4133 4134 std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) { 4135 RegisterLine* line = reg_table_.GetLine(dex_pc); 4136 DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc); 4137 std::vector<int32_t> result; 4138 for (size_t i = 0; i < line->NumRegs(); ++i) { 4139 RegType& type = line->GetRegisterType(i); 4140 if (type.IsConstant()) { 4141 result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant); 4142 result.push_back(type.ConstantValue()); 4143 } else if (type.IsConstantLo()) { 4144 result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant); 4145 result.push_back(type.ConstantValueLo()); 4146 } else if (type.IsConstantHi()) { 4147 result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant); 4148 result.push_back(type.ConstantValueHi()); 4149 } else if (type.IsIntegralTypes()) { 4150 result.push_back(kIntVReg); 4151 result.push_back(0); 4152 } else if (type.IsFloat()) { 4153 result.push_back(kFloatVReg); 4154 result.push_back(0); 4155 } else if (type.IsLong()) { 4156 result.push_back(kLongLoVReg); 4157 result.push_back(0); 4158 result.push_back(kLongHiVReg); 4159 result.push_back(0); 4160 ++i; 4161 } else if (type.IsDouble()) { 4162 result.push_back(kDoubleLoVReg); 4163 result.push_back(0); 4164 result.push_back(kDoubleHiVReg); 4165 result.push_back(0); 4166 ++i; 4167 } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) { 4168 result.push_back(kUndefined); 4169 result.push_back(0); 4170 } else { 4171 CHECK(type.IsNonZeroReferenceTypes()); 4172 result.push_back(kReferenceVReg); 4173 result.push_back(0); 4174 } 4175 } 4176 return result; 4177 } 4178 4179 RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) { 4180 if (precise) { 4181 // Precise constant type. 4182 return reg_types_.FromCat1Const(value, true); 4183 } else { 4184 // Imprecise constant type. 4185 if (value < -32768) { 4186 return reg_types_.IntConstant(); 4187 } else if (value < -128) { 4188 return reg_types_.ShortConstant(); 4189 } else if (value < 0) { 4190 return reg_types_.ByteConstant(); 4191 } else if (value == 0) { 4192 return reg_types_.Zero(); 4193 } else if (value == 1) { 4194 return reg_types_.One(); 4195 } else if (value < 128) { 4196 return reg_types_.PosByteConstant(); 4197 } else if (value < 32768) { 4198 return reg_types_.PosShortConstant(); 4199 } else if (value < 65536) { 4200 return reg_types_.CharConstant(); 4201 } else { 4202 return reg_types_.IntConstant(); 4203 } 4204 } 4205 } 4206 4207 void MethodVerifier::Init() { 4208 art::verifier::RegTypeCache::Init(); 4209 } 4210 4211 void MethodVerifier::Shutdown() { 4212 verifier::RegTypeCache::ShutDown(); 4213 } 4214 4215 void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) { 4216 RegTypeCache::VisitStaticRoots(callback, arg); 4217 } 4218 4219 void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) { 4220 reg_types_.VisitRoots(callback, arg); 4221 } 4222 4223 } // namespace verifier 4224 } // namespace art 4225