Home | History | Annotate | Download | only in fts2
      1 /* fts2 has a design flaw which can lead to database corruption (see
      2 ** below).  It is recommended not to use it any longer, instead use
      3 ** fts3 (or higher).  If you believe that your use of fts2 is safe,
      4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS.
      5 */
      6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \
      7         && !defined(SQLITE_ENABLE_BROKEN_FTS2)
      8 #error fts2 has a design flaw and has been deprecated.
      9 #endif
     10 /* The flaw is that fts2 uses the content table's unaliased rowid as
     11 ** the unique docid.  fts2 embeds the rowid in the index it builds,
     12 ** and expects the rowid to not change.  The SQLite VACUUM operation
     13 ** will renumber such rowids, thereby breaking fts2.  If you are using
     14 ** fts2 in a system which has disabled VACUUM, then you can continue
     15 ** to use it safely.  Note that PRAGMA auto_vacuum does NOT disable
     16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke
     17 ** VACUUM.
     18 **
     19 ** Unlike fts1, which is safe across VACUUM if you never delete
     20 ** documents, fts2 has a second exposure to this flaw, in the segments
     21 ** table.  So fts2 should be considered unsafe across VACUUM in all
     22 ** cases.
     23 */
     24 
     25 /*
     26 ** 2006 Oct 10
     27 **
     28 ** The author disclaims copyright to this source code.  In place of
     29 ** a legal notice, here is a blessing:
     30 **
     31 **    May you do good and not evil.
     32 **    May you find forgiveness for yourself and forgive others.
     33 **    May you share freely, never taking more than you give.
     34 **
     35 ******************************************************************************
     36 **
     37 ** This is an SQLite module implementing full-text search.
     38 */
     39 
     40 /* TODO(shess): To make it easier to spot changes without groveling
     41 ** through changelogs, I've defined GEARS_FTS2_CHANGES to call them
     42 ** out, and I will document them here.  On imports, these changes
     43 ** should be reviewed to make sure they are still present, or are
     44 ** dropped as appropriate.
     45 **
     46 ** SQLite core adds the custom function fts2_tokenizer() to be used
     47 ** for defining new tokenizers.  The second parameter is a vtable
     48 ** pointer encoded as a blob.  Obviously this cannot be exposed to
     49 ** Gears callers for security reasons.  It could be suppressed in the
     50 ** authorizer, but for now I have simply commented the definition out.
     51 */
     52 #define GEARS_FTS2_CHANGES 1
     53 
     54 /*
     55 ** The code in this file is only compiled if:
     56 **
     57 **     * The FTS2 module is being built as an extension
     58 **       (in which case SQLITE_CORE is not defined), or
     59 **
     60 **     * The FTS2 module is being built into the core of
     61 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
     62 */
     63 
     64 /* TODO(shess) Consider exporting this comment to an HTML file or the
     65 ** wiki.
     66 */
     67 /* The full-text index is stored in a series of b+tree (-like)
     68 ** structures called segments which map terms to doclists.  The
     69 ** structures are like b+trees in layout, but are constructed from the
     70 ** bottom up in optimal fashion and are not updatable.  Since trees
     71 ** are built from the bottom up, things will be described from the
     72 ** bottom up.
     73 **
     74 **
     75 **** Varints ****
     76 ** The basic unit of encoding is a variable-length integer called a
     77 ** varint.  We encode variable-length integers in little-endian order
     78 ** using seven bits * per byte as follows:
     79 **
     80 ** KEY:
     81 **         A = 0xxxxxxx    7 bits of data and one flag bit
     82 **         B = 1xxxxxxx    7 bits of data and one flag bit
     83 **
     84 **  7 bits - A
     85 ** 14 bits - BA
     86 ** 21 bits - BBA
     87 ** and so on.
     88 **
     89 ** This is identical to how sqlite encodes varints (see util.c).
     90 **
     91 **
     92 **** Document lists ****
     93 ** A doclist (document list) holds a docid-sorted list of hits for a
     94 ** given term.  Doclists hold docids, and can optionally associate
     95 ** token positions and offsets with docids.
     96 **
     97 ** A DL_POSITIONS_OFFSETS doclist is stored like this:
     98 **
     99 ** array {
    100 **   varint docid;
    101 **   array {                (position list for column 0)
    102 **     varint position;     (delta from previous position plus POS_BASE)
    103 **     varint startOffset;  (delta from previous startOffset)
    104 **     varint endOffset;    (delta from startOffset)
    105 **   }
    106 **   array {
    107 **     varint POS_COLUMN;   (marks start of position list for new column)
    108 **     varint column;       (index of new column)
    109 **     array {
    110 **       varint position;   (delta from previous position plus POS_BASE)
    111 **       varint startOffset;(delta from previous startOffset)
    112 **       varint endOffset;  (delta from startOffset)
    113 **     }
    114 **   }
    115 **   varint POS_END;        (marks end of positions for this document.
    116 ** }
    117 **
    118 ** Here, array { X } means zero or more occurrences of X, adjacent in
    119 ** memory.  A "position" is an index of a token in the token stream
    120 ** generated by the tokenizer, while an "offset" is a byte offset,
    121 ** both based at 0.  Note that POS_END and POS_COLUMN occur in the
    122 ** same logical place as the position element, and act as sentinals
    123 ** ending a position list array.
    124 **
    125 ** A DL_POSITIONS doclist omits the startOffset and endOffset
    126 ** information.  A DL_DOCIDS doclist omits both the position and
    127 ** offset information, becoming an array of varint-encoded docids.
    128 **
    129 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize
    130 ** the type.  Due to how deletion is implemented in the segmentation
    131 ** system, on-disk doclists MUST store at least positions.
    132 **
    133 **
    134 **** Segment leaf nodes ****
    135 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
    136 ** nodes are written using LeafWriter, and read using LeafReader (to
    137 ** iterate through a single leaf node's data) and LeavesReader (to
    138 ** iterate through a segment's entire leaf layer).  Leaf nodes have
    139 ** the format:
    140 **
    141 ** varint iHeight;             (height from leaf level, always 0)
    142 ** varint nTerm;               (length of first term)
    143 ** char pTerm[nTerm];          (content of first term)
    144 ** varint nDoclist;            (length of term's associated doclist)
    145 ** char pDoclist[nDoclist];    (content of doclist)
    146 ** array {
    147 **                             (further terms are delta-encoded)
    148 **   varint nPrefix;           (length of prefix shared with previous term)
    149 **   varint nSuffix;           (length of unshared suffix)
    150 **   char pTermSuffix[nSuffix];(unshared suffix of next term)
    151 **   varint nDoclist;          (length of term's associated doclist)
    152 **   char pDoclist[nDoclist];  (content of doclist)
    153 ** }
    154 **
    155 ** Here, array { X } means zero or more occurrences of X, adjacent in
    156 ** memory.
    157 **
    158 ** Leaf nodes are broken into blocks which are stored contiguously in
    159 ** the %_segments table in sorted order.  This means that when the end
    160 ** of a node is reached, the next term is in the node with the next
    161 ** greater node id.
    162 **
    163 ** New data is spilled to a new leaf node when the current node
    164 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
    165 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
    166 ** node (a leaf node with a single term and doclist).  The goal of
    167 ** these settings is to pack together groups of small doclists while
    168 ** making it efficient to directly access large doclists.  The
    169 ** assumption is that large doclists represent terms which are more
    170 ** likely to be query targets.
    171 **
    172 ** TODO(shess) It may be useful for blocking decisions to be more
    173 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
    174 ** node rather than splitting into 2k and .5k nodes.  My intuition is
    175 ** that this might extend through 2x or 4x the pagesize.
    176 **
    177 **
    178 **** Segment interior nodes ****
    179 ** Segment interior nodes store blockids for subtree nodes and terms
    180 ** to describe what data is stored by the each subtree.  Interior
    181 ** nodes are written using InteriorWriter, and read using
    182 ** InteriorReader.  InteriorWriters are created as needed when
    183 ** SegmentWriter creates new leaf nodes, or when an interior node
    184 ** itself grows too big and must be split.  The format of interior
    185 ** nodes:
    186 **
    187 ** varint iHeight;           (height from leaf level, always >0)
    188 ** varint iBlockid;          (block id of node's leftmost subtree)
    189 ** optional {
    190 **   varint nTerm;           (length of first term)
    191 **   char pTerm[nTerm];      (content of first term)
    192 **   array {
    193 **                                (further terms are delta-encoded)
    194 **     varint nPrefix;            (length of shared prefix with previous term)
    195 **     varint nSuffix;            (length of unshared suffix)
    196 **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
    197 **   }
    198 ** }
    199 **
    200 ** Here, optional { X } means an optional element, while array { X }
    201 ** means zero or more occurrences of X, adjacent in memory.
    202 **
    203 ** An interior node encodes n terms separating n+1 subtrees.  The
    204 ** subtree blocks are contiguous, so only the first subtree's blockid
    205 ** is encoded.  The subtree at iBlockid will contain all terms less
    206 ** than the first term encoded (or all terms if no term is encoded).
    207 ** Otherwise, for terms greater than or equal to pTerm[i] but less
    208 ** than pTerm[i+1], the subtree for that term will be rooted at
    209 ** iBlockid+i.  Interior nodes only store enough term data to
    210 ** distinguish adjacent children (if the rightmost term of the left
    211 ** child is "something", and the leftmost term of the right child is
    212 ** "wicked", only "w" is stored).
    213 **
    214 ** New data is spilled to a new interior node at the same height when
    215 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
    216 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
    217 ** interior nodes and making the tree too skinny.  The interior nodes
    218 ** at a given height are naturally tracked by interior nodes at
    219 ** height+1, and so on.
    220 **
    221 **
    222 **** Segment directory ****
    223 ** The segment directory in table %_segdir stores meta-information for
    224 ** merging and deleting segments, and also the root node of the
    225 ** segment's tree.
    226 **
    227 ** The root node is the top node of the segment's tree after encoding
    228 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
    229 ** This could be either a leaf node or an interior node.  If the top
    230 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
    231 ** and a new root interior node is generated (which should always fit
    232 ** within ROOT_MAX because it only needs space for 2 varints, the
    233 ** height and the blockid of the previous root).
    234 **
    235 ** The meta-information in the segment directory is:
    236 **   level               - segment level (see below)
    237 **   idx                 - index within level
    238 **                       - (level,idx uniquely identify a segment)
    239 **   start_block         - first leaf node
    240 **   leaves_end_block    - last leaf node
    241 **   end_block           - last block (including interior nodes)
    242 **   root                - contents of root node
    243 **
    244 ** If the root node is a leaf node, then start_block,
    245 ** leaves_end_block, and end_block are all 0.
    246 **
    247 **
    248 **** Segment merging ****
    249 ** To amortize update costs, segments are groups into levels and
    250 ** merged in matches.  Each increase in level represents exponentially
    251 ** more documents.
    252 **
    253 ** New documents (actually, document updates) are tokenized and
    254 ** written individually (using LeafWriter) to a level 0 segment, with
    255 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
    256 ** level 0 segments are merged into a single level 1 segment.  Level 1
    257 ** is populated like level 0, and eventually MERGE_COUNT level 1
    258 ** segments are merged to a single level 2 segment (representing
    259 ** MERGE_COUNT^2 updates), and so on.
    260 **
    261 ** A segment merge traverses all segments at a given level in
    262 ** parallel, performing a straightforward sorted merge.  Since segment
    263 ** leaf nodes are written in to the %_segments table in order, this
    264 ** merge traverses the underlying sqlite disk structures efficiently.
    265 ** After the merge, all segment blocks from the merged level are
    266 ** deleted.
    267 **
    268 ** MERGE_COUNT controls how often we merge segments.  16 seems to be
    269 ** somewhat of a sweet spot for insertion performance.  32 and 64 show
    270 ** very similar performance numbers to 16 on insertion, though they're
    271 ** a tiny bit slower (perhaps due to more overhead in merge-time
    272 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
    273 ** 16, 2 about 66% slower than 16.
    274 **
    275 ** At query time, high MERGE_COUNT increases the number of segments
    276 ** which need to be scanned and merged.  For instance, with 100k docs
    277 ** inserted:
    278 **
    279 **    MERGE_COUNT   segments
    280 **       16           25
    281 **        8           12
    282 **        4           10
    283 **        2            6
    284 **
    285 ** This appears to have only a moderate impact on queries for very
    286 ** frequent terms (which are somewhat dominated by segment merge
    287 ** costs), and infrequent and non-existent terms still seem to be fast
    288 ** even with many segments.
    289 **
    290 ** TODO(shess) That said, it would be nice to have a better query-side
    291 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
    292 ** optimizations to things like doclist merging will swing the sweet
    293 ** spot around.
    294 **
    295 **
    296 **
    297 **** Handling of deletions and updates ****
    298 ** Since we're using a segmented structure, with no docid-oriented
    299 ** index into the term index, we clearly cannot simply update the term
    300 ** index when a document is deleted or updated.  For deletions, we
    301 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
    302 ** we simply write the new doclist.  Segment merges overwrite older
    303 ** data for a particular docid with newer data, so deletes or updates
    304 ** will eventually overtake the earlier data and knock it out.  The
    305 ** query logic likewise merges doclists so that newer data knocks out
    306 ** older data.
    307 **
    308 ** TODO(shess) Provide a VACUUM type operation to clear out all
    309 ** deletions and duplications.  This would basically be a forced merge
    310 ** into a single segment.
    311 */
    312 
    313 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
    314 
    315 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE)
    316 # define SQLITE_CORE 1
    317 #endif
    318 
    319 #include <assert.h>
    320 #include <stdlib.h>
    321 #include <stdio.h>
    322 #include <string.h>
    323 #include "fts2.h"
    324 #include "fts2_hash.h"
    325 #include "fts2_tokenizer.h"
    326 #include "sqlite3.h"
    327 #ifndef SQLITE_CORE
    328 # include "sqlite3ext.h"
    329   SQLITE_EXTENSION_INIT1
    330 #endif
    331 
    332 
    333 /* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it
    334 ** would be nice to order the file better, perhaps something along the
    335 ** lines of:
    336 **
    337 **  - utility functions
    338 **  - table setup functions
    339 **  - table update functions
    340 **  - table query functions
    341 **
    342 ** Put the query functions last because they're likely to reference
    343 ** typedefs or functions from the table update section.
    344 */
    345 
    346 #if 0
    347 # define TRACE(A)  printf A; fflush(stdout)
    348 #else
    349 # define TRACE(A)
    350 #endif
    351 
    352 #if 0
    353 /* Useful to set breakpoints.  See main.c sqlite3Corrupt(). */
    354 static int fts2Corrupt(void){
    355   return SQLITE_CORRUPT;
    356 }
    357 # define SQLITE_CORRUPT_BKPT fts2Corrupt()
    358 #else
    359 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
    360 #endif
    361 
    362 /* It is not safe to call isspace(), tolower(), or isalnum() on
    363 ** hi-bit-set characters.  This is the same solution used in the
    364 ** tokenizer.
    365 */
    366 /* TODO(shess) The snippet-generation code should be using the
    367 ** tokenizer-generated tokens rather than doing its own local
    368 ** tokenization.
    369 */
    370 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
    371 static int safe_isspace(char c){
    372   return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
    373 }
    374 static int safe_tolower(char c){
    375   return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c;
    376 }
    377 static int safe_isalnum(char c){
    378   return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z');
    379 }
    380 
    381 typedef enum DocListType {
    382   DL_DOCIDS,              /* docids only */
    383   DL_POSITIONS,           /* docids + positions */
    384   DL_POSITIONS_OFFSETS    /* docids + positions + offsets */
    385 } DocListType;
    386 
    387 /*
    388 ** By default, only positions and not offsets are stored in the doclists.
    389 ** To change this so that offsets are stored too, compile with
    390 **
    391 **          -DDL_DEFAULT=DL_POSITIONS_OFFSETS
    392 **
    393 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
    394 ** into (no deletes or updates).
    395 */
    396 #ifndef DL_DEFAULT
    397 # define DL_DEFAULT DL_POSITIONS
    398 #endif
    399 
    400 enum {
    401   POS_END = 0,        /* end of this position list */
    402   POS_COLUMN,         /* followed by new column number */
    403   POS_BASE
    404 };
    405 
    406 /* MERGE_COUNT controls how often we merge segments (see comment at
    407 ** top of file).
    408 */
    409 #define MERGE_COUNT 16
    410 
    411 /* utility functions */
    412 
    413 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
    414 ** record to prevent errors of the form:
    415 **
    416 ** my_function(SomeType *b){
    417 **   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b)
    418 ** }
    419 */
    420 /* TODO(shess) Obvious candidates for a header file. */
    421 #define CLEAR(b) memset(b, '\0', sizeof(*(b)))
    422 
    423 #ifndef NDEBUG
    424 #  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
    425 #else
    426 #  define SCRAMBLE(b)
    427 #endif
    428 
    429 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
    430 #define VARINT_MAX 10
    431 
    432 /* Write a 64-bit variable-length integer to memory starting at p[0].
    433  * The length of data written will be between 1 and VARINT_MAX bytes.
    434  * The number of bytes written is returned. */
    435 static int putVarint(char *p, sqlite_int64 v){
    436   unsigned char *q = (unsigned char *) p;
    437   sqlite_uint64 vu = v;
    438   do{
    439     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
    440     vu >>= 7;
    441   }while( vu!=0 );
    442   q[-1] &= 0x7f;  /* turn off high bit in final byte */
    443   assert( q - (unsigned char *)p <= VARINT_MAX );
    444   return (int) (q - (unsigned char *)p);
    445 }
    446 
    447 /* Read a 64-bit variable-length integer from memory starting at p[0].
    448  * Return the number of bytes read, or 0 on error.
    449  * The value is stored in *v. */
    450 static int getVarintSafe(const char *p, sqlite_int64 *v, int max){
    451   const unsigned char *q = (const unsigned char *) p;
    452   sqlite_uint64 x = 0, y = 1;
    453   if( max>VARINT_MAX ) max = VARINT_MAX;
    454   while( max && (*q & 0x80) == 0x80 ){
    455     max--;
    456     x += y * (*q++ & 0x7f);
    457     y <<= 7;
    458   }
    459   if ( !max ){
    460     assert( 0 );
    461     return 0;  /* tried to read too much; bad data */
    462   }
    463   x += y * (*q++);
    464   *v = (sqlite_int64) x;
    465   return (int) (q - (unsigned char *)p);
    466 }
    467 
    468 static int getVarint(const char *p, sqlite_int64 *v){
    469   return getVarintSafe(p, v, VARINT_MAX);
    470 }
    471 
    472 static int getVarint32Safe(const char *p, int *pi, int max){
    473  sqlite_int64 i;
    474  int ret = getVarintSafe(p, &i, max);
    475  if( !ret ) return ret;
    476  *pi = (int) i;
    477  assert( *pi==i );
    478  return ret;
    479 }
    480 
    481 static int getVarint32(const char* p, int *pi){
    482   return getVarint32Safe(p, pi, VARINT_MAX);
    483 }
    484 
    485 /*******************************************************************/
    486 /* DataBuffer is used to collect data into a buffer in piecemeal
    487 ** fashion.  It implements the usual distinction between amount of
    488 ** data currently stored (nData) and buffer capacity (nCapacity).
    489 **
    490 ** dataBufferInit - create a buffer with given initial capacity.
    491 ** dataBufferReset - forget buffer's data, retaining capacity.
    492 ** dataBufferDestroy - free buffer's data.
    493 ** dataBufferSwap - swap contents of two buffers.
    494 ** dataBufferExpand - expand capacity without adding data.
    495 ** dataBufferAppend - append data.
    496 ** dataBufferAppend2 - append two pieces of data at once.
    497 ** dataBufferReplace - replace buffer's data.
    498 */
    499 typedef struct DataBuffer {
    500   char *pData;          /* Pointer to malloc'ed buffer. */
    501   int nCapacity;        /* Size of pData buffer. */
    502   int nData;            /* End of data loaded into pData. */
    503 } DataBuffer;
    504 
    505 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
    506   assert( nCapacity>=0 );
    507   pBuffer->nData = 0;
    508   pBuffer->nCapacity = nCapacity;
    509   pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
    510 }
    511 static void dataBufferReset(DataBuffer *pBuffer){
    512   pBuffer->nData = 0;
    513 }
    514 static void dataBufferDestroy(DataBuffer *pBuffer){
    515   if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
    516   SCRAMBLE(pBuffer);
    517 }
    518 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
    519   DataBuffer tmp = *pBuffer1;
    520   *pBuffer1 = *pBuffer2;
    521   *pBuffer2 = tmp;
    522 }
    523 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
    524   assert( nAddCapacity>0 );
    525   /* TODO(shess) Consider expanding more aggressively.  Note that the
    526   ** underlying malloc implementation may take care of such things for
    527   ** us already.
    528   */
    529   if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
    530     pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
    531     pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
    532   }
    533 }
    534 static void dataBufferAppend(DataBuffer *pBuffer,
    535                              const char *pSource, int nSource){
    536   assert( nSource>0 && pSource!=NULL );
    537   dataBufferExpand(pBuffer, nSource);
    538   memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
    539   pBuffer->nData += nSource;
    540 }
    541 static void dataBufferAppend2(DataBuffer *pBuffer,
    542                               const char *pSource1, int nSource1,
    543                               const char *pSource2, int nSource2){
    544   assert( nSource1>0 && pSource1!=NULL );
    545   assert( nSource2>0 && pSource2!=NULL );
    546   dataBufferExpand(pBuffer, nSource1+nSource2);
    547   memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
    548   memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
    549   pBuffer->nData += nSource1+nSource2;
    550 }
    551 static void dataBufferReplace(DataBuffer *pBuffer,
    552                               const char *pSource, int nSource){
    553   dataBufferReset(pBuffer);
    554   dataBufferAppend(pBuffer, pSource, nSource);
    555 }
    556 
    557 /* StringBuffer is a null-terminated version of DataBuffer. */
    558 typedef struct StringBuffer {
    559   DataBuffer b;            /* Includes null terminator. */
    560 } StringBuffer;
    561 
    562 static void initStringBuffer(StringBuffer *sb){
    563   dataBufferInit(&sb->b, 100);
    564   dataBufferReplace(&sb->b, "", 1);
    565 }
    566 static int stringBufferLength(StringBuffer *sb){
    567   return sb->b.nData-1;
    568 }
    569 static char *stringBufferData(StringBuffer *sb){
    570   return sb->b.pData;
    571 }
    572 static void stringBufferDestroy(StringBuffer *sb){
    573   dataBufferDestroy(&sb->b);
    574 }
    575 
    576 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
    577   assert( sb->b.nData>0 );
    578   if( nFrom>0 ){
    579     sb->b.nData--;
    580     dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
    581   }
    582 }
    583 static void append(StringBuffer *sb, const char *zFrom){
    584   nappend(sb, zFrom, strlen(zFrom));
    585 }
    586 
    587 /* Append a list of strings separated by commas. */
    588 static void appendList(StringBuffer *sb, int nString, char **azString){
    589   int i;
    590   for(i=0; i<nString; ++i){
    591     if( i>0 ) append(sb, ", ");
    592     append(sb, azString[i]);
    593   }
    594 }
    595 
    596 static int endsInWhiteSpace(StringBuffer *p){
    597   return stringBufferLength(p)>0 &&
    598     safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
    599 }
    600 
    601 /* If the StringBuffer ends in something other than white space, add a
    602 ** single space character to the end.
    603 */
    604 static void appendWhiteSpace(StringBuffer *p){
    605   if( stringBufferLength(p)==0 ) return;
    606   if( !endsInWhiteSpace(p) ) append(p, " ");
    607 }
    608 
    609 /* Remove white space from the end of the StringBuffer */
    610 static void trimWhiteSpace(StringBuffer *p){
    611   while( endsInWhiteSpace(p) ){
    612     p->b.pData[--p->b.nData-1] = '\0';
    613   }
    614 }
    615 
    616 /*******************************************************************/
    617 /* DLReader is used to read document elements from a doclist.  The
    618 ** current docid is cached, so dlrDocid() is fast.  DLReader does not
    619 ** own the doclist buffer.
    620 **
    621 ** dlrAtEnd - true if there's no more data to read.
    622 ** dlrDocid - docid of current document.
    623 ** dlrDocData - doclist data for current document (including docid).
    624 ** dlrDocDataBytes - length of same.
    625 ** dlrAllDataBytes - length of all remaining data.
    626 ** dlrPosData - position data for current document.
    627 ** dlrPosDataLen - length of pos data for current document (incl POS_END).
    628 ** dlrStep - step to current document.
    629 ** dlrInit - initial for doclist of given type against given data.
    630 ** dlrDestroy - clean up.
    631 **
    632 ** Expected usage is something like:
    633 **
    634 **   DLReader reader;
    635 **   dlrInit(&reader, pData, nData);
    636 **   while( !dlrAtEnd(&reader) ){
    637 **     // calls to dlrDocid() and kin.
    638 **     dlrStep(&reader);
    639 **   }
    640 **   dlrDestroy(&reader);
    641 */
    642 typedef struct DLReader {
    643   DocListType iType;
    644   const char *pData;
    645   int nData;
    646 
    647   sqlite_int64 iDocid;
    648   int nElement;
    649 } DLReader;
    650 
    651 static int dlrAtEnd(DLReader *pReader){
    652   assert( pReader->nData>=0 );
    653   return pReader->nData<=0;
    654 }
    655 static sqlite_int64 dlrDocid(DLReader *pReader){
    656   assert( !dlrAtEnd(pReader) );
    657   return pReader->iDocid;
    658 }
    659 static const char *dlrDocData(DLReader *pReader){
    660   assert( !dlrAtEnd(pReader) );
    661   return pReader->pData;
    662 }
    663 static int dlrDocDataBytes(DLReader *pReader){
    664   assert( !dlrAtEnd(pReader) );
    665   return pReader->nElement;
    666 }
    667 static int dlrAllDataBytes(DLReader *pReader){
    668   assert( !dlrAtEnd(pReader) );
    669   return pReader->nData;
    670 }
    671 /* TODO(shess) Consider adding a field to track iDocid varint length
    672 ** to make these two functions faster.  This might matter (a tiny bit)
    673 ** for queries.
    674 */
    675 static const char *dlrPosData(DLReader *pReader){
    676   sqlite_int64 iDummy;
    677   int n = getVarintSafe(pReader->pData, &iDummy, pReader->nElement);
    678   if( !n ) return NULL;
    679   assert( !dlrAtEnd(pReader) );
    680   return pReader->pData+n;
    681 }
    682 static int dlrPosDataLen(DLReader *pReader){
    683   sqlite_int64 iDummy;
    684   int n = getVarint(pReader->pData, &iDummy);
    685   assert( !dlrAtEnd(pReader) );
    686   return pReader->nElement-n;
    687 }
    688 static int dlrStep(DLReader *pReader){
    689   assert( !dlrAtEnd(pReader) );
    690 
    691   /* Skip past current doclist element. */
    692   assert( pReader->nElement<=pReader->nData );
    693   pReader->pData += pReader->nElement;
    694   pReader->nData -= pReader->nElement;
    695 
    696   /* If there is more data, read the next doclist element. */
    697   if( pReader->nData>0 ){
    698     sqlite_int64 iDocidDelta;
    699     int nTotal = 0;
    700     int iDummy, n = getVarintSafe(pReader->pData, &iDocidDelta, pReader->nData);
    701     if( !n ) return SQLITE_CORRUPT_BKPT;
    702     nTotal += n;
    703     pReader->iDocid += iDocidDelta;
    704     if( pReader->iType>=DL_POSITIONS ){
    705       while( 1 ){
    706         n = getVarint32Safe(pReader->pData+nTotal, &iDummy,
    707                             pReader->nData-nTotal);
    708         if( !n ) return SQLITE_CORRUPT_BKPT;
    709         nTotal += n;
    710         if( iDummy==POS_END ) break;
    711         if( iDummy==POS_COLUMN ){
    712           n = getVarint32Safe(pReader->pData+nTotal, &iDummy,
    713                               pReader->nData-nTotal);
    714           if( !n ) return SQLITE_CORRUPT_BKPT;
    715           nTotal += n;
    716         }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
    717           n = getVarint32Safe(pReader->pData+nTotal, &iDummy,
    718                               pReader->nData-nTotal);
    719           if( !n ) return SQLITE_CORRUPT_BKPT;
    720           nTotal += n;
    721           n = getVarint32Safe(pReader->pData+nTotal, &iDummy,
    722                               pReader->nData-nTotal);
    723           if( !n ) return SQLITE_CORRUPT_BKPT;
    724           nTotal += n;
    725         }
    726       }
    727     }
    728     pReader->nElement = nTotal;
    729     assert( pReader->nElement<=pReader->nData );
    730   }
    731   return SQLITE_OK;
    732 }
    733 static void dlrDestroy(DLReader *pReader){
    734   SCRAMBLE(pReader);
    735 }
    736 static int dlrInit(DLReader *pReader, DocListType iType,
    737                    const char *pData, int nData){
    738   int rc;
    739   assert( pData!=NULL && nData!=0 );
    740   pReader->iType = iType;
    741   pReader->pData = pData;
    742   pReader->nData = nData;
    743   pReader->nElement = 0;
    744   pReader->iDocid = 0;
    745 
    746   /* Load the first element's data.  There must be a first element. */
    747   rc = dlrStep(pReader);
    748   if( rc!=SQLITE_OK ) dlrDestroy(pReader);
    749   return rc;
    750 }
    751 
    752 #ifndef NDEBUG
    753 /* Verify that the doclist can be validly decoded.  Also returns the
    754 ** last docid found because it is convenient in other assertions for
    755 ** DLWriter.
    756 */
    757 static void docListValidate(DocListType iType, const char *pData, int nData,
    758                             sqlite_int64 *pLastDocid){
    759   sqlite_int64 iPrevDocid = 0;
    760   assert( nData>0 );
    761   assert( pData!=0 );
    762   assert( pData+nData>pData );
    763   while( nData!=0 ){
    764     sqlite_int64 iDocidDelta;
    765     int n = getVarint(pData, &iDocidDelta);
    766     iPrevDocid += iDocidDelta;
    767     if( iType>DL_DOCIDS ){
    768       int iDummy;
    769       while( 1 ){
    770         n += getVarint32(pData+n, &iDummy);
    771         if( iDummy==POS_END ) break;
    772         if( iDummy==POS_COLUMN ){
    773           n += getVarint32(pData+n, &iDummy);
    774         }else if( iType>DL_POSITIONS ){
    775           n += getVarint32(pData+n, &iDummy);
    776           n += getVarint32(pData+n, &iDummy);
    777         }
    778         assert( n<=nData );
    779       }
    780     }
    781     assert( n<=nData );
    782     pData += n;
    783     nData -= n;
    784   }
    785   if( pLastDocid ) *pLastDocid = iPrevDocid;
    786 }
    787 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
    788 #else
    789 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
    790 #endif
    791 
    792 /*******************************************************************/
    793 /* DLWriter is used to write doclist data to a DataBuffer.  DLWriter
    794 ** always appends to the buffer and does not own it.
    795 **
    796 ** dlwInit - initialize to write a given type doclistto a buffer.
    797 ** dlwDestroy - clear the writer's memory.  Does not free buffer.
    798 ** dlwAppend - append raw doclist data to buffer.
    799 ** dlwCopy - copy next doclist from reader to writer.
    800 ** dlwAdd - construct doclist element and append to buffer.
    801 **    Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
    802 */
    803 typedef struct DLWriter {
    804   DocListType iType;
    805   DataBuffer *b;
    806   sqlite_int64 iPrevDocid;
    807 #ifndef NDEBUG
    808   int has_iPrevDocid;
    809 #endif
    810 } DLWriter;
    811 
    812 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
    813   pWriter->b = b;
    814   pWriter->iType = iType;
    815   pWriter->iPrevDocid = 0;
    816 #ifndef NDEBUG
    817   pWriter->has_iPrevDocid = 0;
    818 #endif
    819 }
    820 static void dlwDestroy(DLWriter *pWriter){
    821   SCRAMBLE(pWriter);
    822 }
    823 /* iFirstDocid is the first docid in the doclist in pData.  It is
    824 ** needed because pData may point within a larger doclist, in which
    825 ** case the first item would be delta-encoded.
    826 **
    827 ** iLastDocid is the final docid in the doclist in pData.  It is
    828 ** needed to create the new iPrevDocid for future delta-encoding.  The
    829 ** code could decode the passed doclist to recreate iLastDocid, but
    830 ** the only current user (docListMerge) already has decoded this
    831 ** information.
    832 */
    833 /* TODO(shess) This has become just a helper for docListMerge.
    834 ** Consider a refactor to make this cleaner.
    835 */
    836 static int dlwAppend(DLWriter *pWriter,
    837                      const char *pData, int nData,
    838                      sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
    839   sqlite_int64 iDocid = 0;
    840   char c[VARINT_MAX];
    841   int nFirstOld, nFirstNew;     /* Old and new varint len of first docid. */
    842 #ifndef NDEBUG
    843   sqlite_int64 iLastDocidDelta;
    844 #endif
    845 
    846   /* Recode the initial docid as delta from iPrevDocid. */
    847   nFirstOld = getVarintSafe(pData, &iDocid, nData);
    848   if( !nFirstOld ) return SQLITE_CORRUPT_BKPT;
    849   assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
    850   nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid);
    851 
    852   /* Verify that the incoming doclist is valid AND that it ends with
    853   ** the expected docid.  This is essential because we'll trust this
    854   ** docid in future delta-encoding.
    855   */
    856   ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
    857   assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
    858 
    859   /* Append recoded initial docid and everything else.  Rest of docids
    860   ** should have been delta-encoded from previous initial docid.
    861   */
    862   if( nFirstOld<nData ){
    863     dataBufferAppend2(pWriter->b, c, nFirstNew,
    864                       pData+nFirstOld, nData-nFirstOld);
    865   }else{
    866     dataBufferAppend(pWriter->b, c, nFirstNew);
    867   }
    868   pWriter->iPrevDocid = iLastDocid;
    869   return SQLITE_OK;
    870 }
    871 static int dlwCopy(DLWriter *pWriter, DLReader *pReader){
    872   return dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
    873                    dlrDocid(pReader), dlrDocid(pReader));
    874 }
    875 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
    876   char c[VARINT_MAX];
    877   int n = putVarint(c, iDocid-pWriter->iPrevDocid);
    878 
    879   /* Docids must ascend. */
    880   assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
    881   assert( pWriter->iType==DL_DOCIDS );
    882 
    883   dataBufferAppend(pWriter->b, c, n);
    884   pWriter->iPrevDocid = iDocid;
    885 #ifndef NDEBUG
    886   pWriter->has_iPrevDocid = 1;
    887 #endif
    888 }
    889 
    890 /*******************************************************************/
    891 /* PLReader is used to read data from a document's position list.  As
    892 ** the caller steps through the list, data is cached so that varints
    893 ** only need to be decoded once.
    894 **
    895 ** plrInit, plrDestroy - create/destroy a reader.
    896 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
    897 ** plrAtEnd - at end of stream, only call plrDestroy once true.
    898 ** plrStep - step to the next element.
    899 */
    900 typedef struct PLReader {
    901   /* These refer to the next position's data.  nData will reach 0 when
    902   ** reading the last position, so plrStep() signals EOF by setting
    903   ** pData to NULL.
    904   */
    905   const char *pData;
    906   int nData;
    907 
    908   DocListType iType;
    909   int iColumn;         /* the last column read */
    910   int iPosition;       /* the last position read */
    911   int iStartOffset;    /* the last start offset read */
    912   int iEndOffset;      /* the last end offset read */
    913 } PLReader;
    914 
    915 static int plrAtEnd(PLReader *pReader){
    916   return pReader->pData==NULL;
    917 }
    918 static int plrColumn(PLReader *pReader){
    919   assert( !plrAtEnd(pReader) );
    920   return pReader->iColumn;
    921 }
    922 static int plrPosition(PLReader *pReader){
    923   assert( !plrAtEnd(pReader) );
    924   return pReader->iPosition;
    925 }
    926 static int plrStartOffset(PLReader *pReader){
    927   assert( !plrAtEnd(pReader) );
    928   return pReader->iStartOffset;
    929 }
    930 static int plrEndOffset(PLReader *pReader){
    931   assert( !plrAtEnd(pReader) );
    932   return pReader->iEndOffset;
    933 }
    934 static int plrStep(PLReader *pReader){
    935   int i, n, nTotal = 0;
    936 
    937   assert( !plrAtEnd(pReader) );
    938 
    939   if( pReader->nData<=0 ){
    940     pReader->pData = NULL;
    941     return SQLITE_OK;
    942   }
    943 
    944   n = getVarint32Safe(pReader->pData, &i, pReader->nData);
    945   if( !n ) return SQLITE_CORRUPT_BKPT;
    946   nTotal += n;
    947   if( i==POS_COLUMN ){
    948     n = getVarint32Safe(pReader->pData+nTotal, &pReader->iColumn,
    949                         pReader->nData-nTotal);
    950     if( !n ) return SQLITE_CORRUPT_BKPT;
    951     nTotal += n;
    952     pReader->iPosition = 0;
    953     pReader->iStartOffset = 0;
    954     n = getVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal);
    955     if( !n ) return SQLITE_CORRUPT_BKPT;
    956     nTotal += n;
    957   }
    958   /* Should never see adjacent column changes. */
    959   assert( i!=POS_COLUMN );
    960 
    961   if( i==POS_END ){
    962     assert( nTotal<=pReader->nData );
    963     pReader->nData = 0;
    964     pReader->pData = NULL;
    965     return SQLITE_OK;
    966   }
    967 
    968   pReader->iPosition += i-POS_BASE;
    969   if( pReader->iType==DL_POSITIONS_OFFSETS ){
    970     n = getVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal);
    971     if( !n ) return SQLITE_CORRUPT_BKPT;
    972     nTotal += n;
    973     pReader->iStartOffset += i;
    974     n = getVarint32Safe(pReader->pData+nTotal, &i, pReader->nData-nTotal);
    975     if( !n ) return SQLITE_CORRUPT_BKPT;
    976     nTotal += n;
    977     pReader->iEndOffset = pReader->iStartOffset+i;
    978   }
    979   assert( nTotal<=pReader->nData );
    980   pReader->pData += nTotal;
    981   pReader->nData -= nTotal;
    982   return SQLITE_OK;
    983 }
    984 
    985 static void plrDestroy(PLReader *pReader){
    986   SCRAMBLE(pReader);
    987 }
    988 
    989 static int plrInit(PLReader *pReader, DLReader *pDLReader){
    990   int rc;
    991   pReader->pData = dlrPosData(pDLReader);
    992   pReader->nData = dlrPosDataLen(pDLReader);
    993   pReader->iType = pDLReader->iType;
    994   pReader->iColumn = 0;
    995   pReader->iPosition = 0;
    996   pReader->iStartOffset = 0;
    997   pReader->iEndOffset = 0;
    998   rc = plrStep(pReader);
    999   if( rc!=SQLITE_OK ) plrDestroy(pReader);
   1000   return rc;
   1001 }
   1002 
   1003 /*******************************************************************/
   1004 /* PLWriter is used in constructing a document's position list.  As a
   1005 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
   1006 ** PLWriter writes to the associated DLWriter's buffer.
   1007 **
   1008 ** plwInit - init for writing a document's poslist.
   1009 ** plwDestroy - clear a writer.
   1010 ** plwAdd - append position and offset information.
   1011 ** plwCopy - copy next position's data from reader to writer.
   1012 ** plwTerminate - add any necessary doclist terminator.
   1013 **
   1014 ** Calling plwAdd() after plwTerminate() may result in a corrupt
   1015 ** doclist.
   1016 */
   1017 /* TODO(shess) Until we've written the second item, we can cache the
   1018 ** first item's information.  Then we'd have three states:
   1019 **
   1020 ** - initialized with docid, no positions.
   1021 ** - docid and one position.
   1022 ** - docid and multiple positions.
   1023 **
   1024 ** Only the last state needs to actually write to dlw->b, which would
   1025 ** be an improvement in the DLCollector case.
   1026 */
   1027 typedef struct PLWriter {
   1028   DLWriter *dlw;
   1029 
   1030   int iColumn;    /* the last column written */
   1031   int iPos;       /* the last position written */
   1032   int iOffset;    /* the last start offset written */
   1033 } PLWriter;
   1034 
   1035 /* TODO(shess) In the case where the parent is reading these values
   1036 ** from a PLReader, we could optimize to a copy if that PLReader has
   1037 ** the same type as pWriter.
   1038 */
   1039 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
   1040                    int iStartOffset, int iEndOffset){
   1041   /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
   1042   ** iStartOffsetDelta, and iEndOffsetDelta.
   1043   */
   1044   char c[5*VARINT_MAX];
   1045   int n = 0;
   1046 
   1047   /* Ban plwAdd() after plwTerminate(). */
   1048   assert( pWriter->iPos!=-1 );
   1049 
   1050   if( pWriter->dlw->iType==DL_DOCIDS ) return;
   1051 
   1052   if( iColumn!=pWriter->iColumn ){
   1053     n += putVarint(c+n, POS_COLUMN);
   1054     n += putVarint(c+n, iColumn);
   1055     pWriter->iColumn = iColumn;
   1056     pWriter->iPos = 0;
   1057     pWriter->iOffset = 0;
   1058   }
   1059   assert( iPos>=pWriter->iPos );
   1060   n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
   1061   pWriter->iPos = iPos;
   1062   if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
   1063     assert( iStartOffset>=pWriter->iOffset );
   1064     n += putVarint(c+n, iStartOffset-pWriter->iOffset);
   1065     pWriter->iOffset = iStartOffset;
   1066     assert( iEndOffset>=iStartOffset );
   1067     n += putVarint(c+n, iEndOffset-iStartOffset);
   1068   }
   1069   dataBufferAppend(pWriter->dlw->b, c, n);
   1070 }
   1071 static void plwCopy(PLWriter *pWriter, PLReader *pReader){
   1072   plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
   1073          plrStartOffset(pReader), plrEndOffset(pReader));
   1074 }
   1075 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
   1076   char c[VARINT_MAX];
   1077   int n;
   1078 
   1079   pWriter->dlw = dlw;
   1080 
   1081   /* Docids must ascend. */
   1082   assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
   1083   n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid);
   1084   dataBufferAppend(pWriter->dlw->b, c, n);
   1085   pWriter->dlw->iPrevDocid = iDocid;
   1086 #ifndef NDEBUG
   1087   pWriter->dlw->has_iPrevDocid = 1;
   1088 #endif
   1089 
   1090   pWriter->iColumn = 0;
   1091   pWriter->iPos = 0;
   1092   pWriter->iOffset = 0;
   1093 }
   1094 /* TODO(shess) Should plwDestroy() also terminate the doclist?  But
   1095 ** then plwDestroy() would no longer be just a destructor, it would
   1096 ** also be doing work, which isn't consistent with the overall idiom.
   1097 ** Another option would be for plwAdd() to always append any necessary
   1098 ** terminator, so that the output is always correct.  But that would
   1099 ** add incremental work to the common case with the only benefit being
   1100 ** API elegance.  Punt for now.
   1101 */
   1102 static void plwTerminate(PLWriter *pWriter){
   1103   if( pWriter->dlw->iType>DL_DOCIDS ){
   1104     char c[VARINT_MAX];
   1105     int n = putVarint(c, POS_END);
   1106     dataBufferAppend(pWriter->dlw->b, c, n);
   1107   }
   1108 #ifndef NDEBUG
   1109   /* Mark as terminated for assert in plwAdd(). */
   1110   pWriter->iPos = -1;
   1111 #endif
   1112 }
   1113 static void plwDestroy(PLWriter *pWriter){
   1114   SCRAMBLE(pWriter);
   1115 }
   1116 
   1117 /*******************************************************************/
   1118 /* DLCollector wraps PLWriter and DLWriter to provide a
   1119 ** dynamically-allocated doclist area to use during tokenization.
   1120 **
   1121 ** dlcNew - malloc up and initialize a collector.
   1122 ** dlcDelete - destroy a collector and all contained items.
   1123 ** dlcAddPos - append position and offset information.
   1124 ** dlcAddDoclist - add the collected doclist to the given buffer.
   1125 ** dlcNext - terminate the current document and open another.
   1126 */
   1127 typedef struct DLCollector {
   1128   DataBuffer b;
   1129   DLWriter dlw;
   1130   PLWriter plw;
   1131 } DLCollector;
   1132 
   1133 /* TODO(shess) This could also be done by calling plwTerminate() and
   1134 ** dataBufferAppend().  I tried that, expecting nominal performance
   1135 ** differences, but it seemed to pretty reliably be worth 1% to code
   1136 ** it this way.  I suspect it is the incremental malloc overhead (some
   1137 ** percentage of the plwTerminate() calls will cause a realloc), so
   1138 ** this might be worth revisiting if the DataBuffer implementation
   1139 ** changes.
   1140 */
   1141 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
   1142   if( pCollector->dlw.iType>DL_DOCIDS ){
   1143     char c[VARINT_MAX];
   1144     int n = putVarint(c, POS_END);
   1145     dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
   1146   }else{
   1147     dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
   1148   }
   1149 }
   1150 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
   1151   plwTerminate(&pCollector->plw);
   1152   plwDestroy(&pCollector->plw);
   1153   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
   1154 }
   1155 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
   1156                       int iStartOffset, int iEndOffset){
   1157   plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
   1158 }
   1159 
   1160 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
   1161   DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
   1162   dataBufferInit(&pCollector->b, 0);
   1163   dlwInit(&pCollector->dlw, iType, &pCollector->b);
   1164   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
   1165   return pCollector;
   1166 }
   1167 static void dlcDelete(DLCollector *pCollector){
   1168   plwDestroy(&pCollector->plw);
   1169   dlwDestroy(&pCollector->dlw);
   1170   dataBufferDestroy(&pCollector->b);
   1171   SCRAMBLE(pCollector);
   1172   sqlite3_free(pCollector);
   1173 }
   1174 
   1175 
   1176 /* Copy the doclist data of iType in pData/nData into *out, trimming
   1177 ** unnecessary data as we go.  Only columns matching iColumn are
   1178 ** copied, all columns copied if iColumn is -1.  Elements with no
   1179 ** matching columns are dropped.  The output is an iOutType doclist.
   1180 */
   1181 /* NOTE(shess) This code is only valid after all doclists are merged.
   1182 ** If this is run before merges, then doclist items which represent
   1183 ** deletion will be trimmed, and will thus not effect a deletion
   1184 ** during the merge.
   1185 */
   1186 static int docListTrim(DocListType iType, const char *pData, int nData,
   1187                        int iColumn, DocListType iOutType, DataBuffer *out){
   1188   DLReader dlReader;
   1189   DLWriter dlWriter;
   1190   int rc;
   1191 
   1192   assert( iOutType<=iType );
   1193 
   1194   rc = dlrInit(&dlReader, iType, pData, nData);
   1195   if( rc!=SQLITE_OK ) return rc;
   1196   dlwInit(&dlWriter, iOutType, out);
   1197 
   1198   while( !dlrAtEnd(&dlReader) ){
   1199     PLReader plReader;
   1200     PLWriter plWriter;
   1201     int match = 0;
   1202 
   1203     rc = plrInit(&plReader, &dlReader);
   1204     if( rc!=SQLITE_OK ) break;
   1205 
   1206     while( !plrAtEnd(&plReader) ){
   1207       if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
   1208         if( !match ){
   1209           plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
   1210           match = 1;
   1211         }
   1212         plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
   1213                plrStartOffset(&plReader), plrEndOffset(&plReader));
   1214       }
   1215       rc = plrStep(&plReader);
   1216       if( rc!=SQLITE_OK ){
   1217         plrDestroy(&plReader);
   1218         goto err;
   1219       }
   1220     }
   1221     if( match ){
   1222       plwTerminate(&plWriter);
   1223       plwDestroy(&plWriter);
   1224     }
   1225 
   1226     plrDestroy(&plReader);
   1227     rc = dlrStep(&dlReader);
   1228     if( rc!=SQLITE_OK ) break;
   1229   }
   1230 err:
   1231   dlwDestroy(&dlWriter);
   1232   dlrDestroy(&dlReader);
   1233   return rc;
   1234 }
   1235 
   1236 /* Used by docListMerge() to keep doclists in the ascending order by
   1237 ** docid, then ascending order by age (so the newest comes first).
   1238 */
   1239 typedef struct OrderedDLReader {
   1240   DLReader *pReader;
   1241 
   1242   /* TODO(shess) If we assume that docListMerge pReaders is ordered by
   1243   ** age (which we do), then we could use pReader comparisons to break
   1244   ** ties.
   1245   */
   1246   int idx;
   1247 } OrderedDLReader;
   1248 
   1249 /* Order eof to end, then by docid asc, idx desc. */
   1250 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
   1251   if( dlrAtEnd(r1->pReader) ){
   1252     if( dlrAtEnd(r2->pReader) ) return 0;  /* Both atEnd(). */
   1253     return 1;                              /* Only r1 atEnd(). */
   1254   }
   1255   if( dlrAtEnd(r2->pReader) ) return -1;   /* Only r2 atEnd(). */
   1256 
   1257   if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
   1258   if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
   1259 
   1260   /* Descending on idx. */
   1261   return r2->idx-r1->idx;
   1262 }
   1263 
   1264 /* Bubble p[0] to appropriate place in p[1..n-1].  Assumes that
   1265 ** p[1..n-1] is already sorted.
   1266 */
   1267 /* TODO(shess) Is this frequent enough to warrant a binary search?
   1268 ** Before implementing that, instrument the code to check.  In most
   1269 ** current usage, I expect that p[0] will be less than p[1] a very
   1270 ** high proportion of the time.
   1271 */
   1272 static void orderedDLReaderReorder(OrderedDLReader *p, int n){
   1273   while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
   1274     OrderedDLReader tmp = p[0];
   1275     p[0] = p[1];
   1276     p[1] = tmp;
   1277     n--;
   1278     p++;
   1279   }
   1280 }
   1281 
   1282 /* Given an array of doclist readers, merge their doclist elements
   1283 ** into out in sorted order (by docid), dropping elements from older
   1284 ** readers when there is a duplicate docid.  pReaders is assumed to be
   1285 ** ordered by age, oldest first.
   1286 */
   1287 /* TODO(shess) nReaders must be <= MERGE_COUNT.  This should probably
   1288 ** be fixed.
   1289 */
   1290 static int docListMerge(DataBuffer *out,
   1291                         DLReader *pReaders, int nReaders){
   1292   OrderedDLReader readers[MERGE_COUNT];
   1293   DLWriter writer;
   1294   int i, n;
   1295   const char *pStart = 0;
   1296   int nStart = 0;
   1297   sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
   1298   int rc = SQLITE_OK;
   1299 
   1300   assert( nReaders>0 );
   1301   if( nReaders==1 ){
   1302     dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
   1303     return SQLITE_OK;
   1304   }
   1305 
   1306   assert( nReaders<=MERGE_COUNT );
   1307   n = 0;
   1308   for(i=0; i<nReaders; i++){
   1309     assert( pReaders[i].iType==pReaders[0].iType );
   1310     readers[i].pReader = pReaders+i;
   1311     readers[i].idx = i;
   1312     n += dlrAllDataBytes(&pReaders[i]);
   1313   }
   1314   /* Conservatively size output to sum of inputs.  Output should end
   1315   ** up strictly smaller than input.
   1316   */
   1317   dataBufferExpand(out, n);
   1318 
   1319   /* Get the readers into sorted order. */
   1320   while( i-->0 ){
   1321     orderedDLReaderReorder(readers+i, nReaders-i);
   1322   }
   1323 
   1324   dlwInit(&writer, pReaders[0].iType, out);
   1325   while( !dlrAtEnd(readers[0].pReader) ){
   1326     sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
   1327 
   1328     /* If this is a continuation of the current buffer to copy, extend
   1329     ** that buffer.  memcpy() seems to be more efficient if it has a
   1330     ** lots of data to copy.
   1331     */
   1332     if( dlrDocData(readers[0].pReader)==pStart+nStart ){
   1333       nStart += dlrDocDataBytes(readers[0].pReader);
   1334     }else{
   1335       if( pStart!=0 ){
   1336         rc = dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
   1337         if( rc!=SQLITE_OK ) goto err;
   1338       }
   1339       pStart = dlrDocData(readers[0].pReader);
   1340       nStart = dlrDocDataBytes(readers[0].pReader);
   1341       iFirstDocid = iDocid;
   1342     }
   1343     iLastDocid = iDocid;
   1344     rc = dlrStep(readers[0].pReader);
   1345     if( rc!=SQLITE_OK ) goto err;
   1346 
   1347     /* Drop all of the older elements with the same docid. */
   1348     for(i=1; i<nReaders &&
   1349              !dlrAtEnd(readers[i].pReader) &&
   1350              dlrDocid(readers[i].pReader)==iDocid; i++){
   1351       rc = dlrStep(readers[i].pReader);
   1352       if( rc!=SQLITE_OK ) goto err;
   1353     }
   1354 
   1355     /* Get the readers back into order. */
   1356     while( i-->0 ){
   1357       orderedDLReaderReorder(readers+i, nReaders-i);
   1358     }
   1359   }
   1360 
   1361   /* Copy over any remaining elements. */
   1362   if( nStart>0 )
   1363     rc = dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
   1364 err:
   1365   dlwDestroy(&writer);
   1366   return rc;
   1367 }
   1368 
   1369 /* Helper function for posListUnion().  Compares the current position
   1370 ** between left and right, returning as standard C idiom of <0 if
   1371 ** left<right, >0 if left>right, and 0 if left==right.  "End" always
   1372 ** compares greater.
   1373 */
   1374 static int posListCmp(PLReader *pLeft, PLReader *pRight){
   1375   assert( pLeft->iType==pRight->iType );
   1376   if( pLeft->iType==DL_DOCIDS ) return 0;
   1377 
   1378   if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
   1379   if( plrAtEnd(pRight) ) return -1;
   1380 
   1381   if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
   1382   if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
   1383 
   1384   if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
   1385   if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
   1386   if( pLeft->iType==DL_POSITIONS ) return 0;
   1387 
   1388   if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
   1389   if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
   1390 
   1391   if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
   1392   if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
   1393 
   1394   return 0;
   1395 }
   1396 
   1397 /* Write the union of position lists in pLeft and pRight to pOut.
   1398 ** "Union" in this case meaning "All unique position tuples".  Should
   1399 ** work with any doclist type, though both inputs and the output
   1400 ** should be the same type.
   1401 */
   1402 static int posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
   1403   PLReader left, right;
   1404   PLWriter writer;
   1405   int rc;
   1406 
   1407   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
   1408   assert( pLeft->iType==pRight->iType );
   1409   assert( pLeft->iType==pOut->iType );
   1410 
   1411   rc = plrInit(&left, pLeft);
   1412   if( rc != SQLITE_OK ) return rc;
   1413   rc = plrInit(&right, pRight);
   1414   if( rc != SQLITE_OK ){
   1415     plrDestroy(&left);
   1416     return rc;
   1417   }
   1418   plwInit(&writer, pOut, dlrDocid(pLeft));
   1419 
   1420   while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
   1421     int c = posListCmp(&left, &right);
   1422     if( c<0 ){
   1423       plwCopy(&writer, &left);
   1424       rc = plrStep(&left);
   1425       if( rc != SQLITE_OK ) break;
   1426     }else if( c>0 ){
   1427       plwCopy(&writer, &right);
   1428       rc = plrStep(&right);
   1429       if( rc != SQLITE_OK ) break;
   1430     }else{
   1431       plwCopy(&writer, &left);
   1432       rc = plrStep(&left);
   1433       if( rc != SQLITE_OK ) break;
   1434       rc = plrStep(&right);
   1435       if( rc != SQLITE_OK ) break;
   1436     }
   1437   }
   1438 
   1439   plwTerminate(&writer);
   1440   plwDestroy(&writer);
   1441   plrDestroy(&left);
   1442   plrDestroy(&right);
   1443   return rc;
   1444 }
   1445 
   1446 /* Write the union of doclists in pLeft and pRight to pOut.  For
   1447 ** docids in common between the inputs, the union of the position
   1448 ** lists is written.  Inputs and outputs are always type DL_DEFAULT.
   1449 */
   1450 static int docListUnion(
   1451   const char *pLeft, int nLeft,
   1452   const char *pRight, int nRight,
   1453   DataBuffer *pOut      /* Write the combined doclist here */
   1454 ){
   1455   DLReader left, right;
   1456   DLWriter writer;
   1457   int rc;
   1458 
   1459   if( nLeft==0 ){
   1460     if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
   1461     return SQLITE_OK;
   1462   }
   1463   if( nRight==0 ){
   1464     dataBufferAppend(pOut, pLeft, nLeft);
   1465     return SQLITE_OK;
   1466   }
   1467 
   1468   rc = dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
   1469   if( rc!=SQLITE_OK ) return rc;
   1470   rc = dlrInit(&right, DL_DEFAULT, pRight, nRight);
   1471   if( rc!=SQLITE_OK ){
   1472     dlrDestroy(&left);
   1473     return rc;
   1474   }
   1475   dlwInit(&writer, DL_DEFAULT, pOut);
   1476 
   1477   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
   1478     if( dlrAtEnd(&right) ){
   1479       rc = dlwCopy(&writer, &left);
   1480       if( rc!=SQLITE_OK ) break;
   1481       rc = dlrStep(&left);
   1482       if( rc!=SQLITE_OK ) break;
   1483     }else if( dlrAtEnd(&left) ){
   1484       rc = dlwCopy(&writer, &right);
   1485       if( rc!=SQLITE_OK ) break;
   1486       rc = dlrStep(&right);
   1487       if( rc!=SQLITE_OK ) break;
   1488     }else if( dlrDocid(&left)<dlrDocid(&right) ){
   1489       rc = dlwCopy(&writer, &left);
   1490       if( rc!=SQLITE_OK ) break;
   1491       rc = dlrStep(&left);
   1492       if( rc!=SQLITE_OK ) break;
   1493     }else if( dlrDocid(&left)>dlrDocid(&right) ){
   1494       rc = dlwCopy(&writer, &right);
   1495       if( rc!=SQLITE_OK ) break;
   1496       rc = dlrStep(&right);
   1497       if( rc!=SQLITE_OK ) break;
   1498     }else{
   1499       rc = posListUnion(&left, &right, &writer);
   1500       if( rc!=SQLITE_OK ) break;
   1501       rc = dlrStep(&left);
   1502       if( rc!=SQLITE_OK ) break;
   1503       rc = dlrStep(&right);
   1504       if( rc!=SQLITE_OK ) break;
   1505     }
   1506   }
   1507 
   1508   dlrDestroy(&left);
   1509   dlrDestroy(&right);
   1510   dlwDestroy(&writer);
   1511   return rc;
   1512 }
   1513 
   1514 /* pLeft and pRight are DLReaders positioned to the same docid.
   1515 **
   1516 ** If there are no instances in pLeft or pRight where the position
   1517 ** of pLeft is one less than the position of pRight, then this
   1518 ** routine adds nothing to pOut.
   1519 **
   1520 ** If there are one or more instances where positions from pLeft
   1521 ** are exactly one less than positions from pRight, then add a new
   1522 ** document record to pOut.  If pOut wants to hold positions, then
   1523 ** include the positions from pRight that are one more than a
   1524 ** position in pLeft.  In other words:  pRight.iPos==pLeft.iPos+1.
   1525 */
   1526 static int posListPhraseMerge(DLReader *pLeft, DLReader *pRight,
   1527                               DLWriter *pOut){
   1528   PLReader left, right;
   1529   PLWriter writer;
   1530   int match = 0;
   1531   int rc;
   1532 
   1533   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
   1534   assert( pOut->iType!=DL_POSITIONS_OFFSETS );
   1535 
   1536   rc = plrInit(&left, pLeft);
   1537   if( rc!=SQLITE_OK ) return rc;
   1538   rc = plrInit(&right, pRight);
   1539   if( rc!=SQLITE_OK ){
   1540     plrDestroy(&left);
   1541     return rc;
   1542   }
   1543 
   1544   while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
   1545     if( plrColumn(&left)<plrColumn(&right) ){
   1546       rc = plrStep(&left);
   1547       if( rc!=SQLITE_OK ) break;
   1548     }else if( plrColumn(&left)>plrColumn(&right) ){
   1549       rc = plrStep(&right);
   1550       if( rc!=SQLITE_OK ) break;
   1551     }else if( plrPosition(&left)+1<plrPosition(&right) ){
   1552       rc = plrStep(&left);
   1553       if( rc!=SQLITE_OK ) break;
   1554     }else if( plrPosition(&left)+1>plrPosition(&right) ){
   1555       rc = plrStep(&right);
   1556       if( rc!=SQLITE_OK ) break;
   1557     }else{
   1558       if( !match ){
   1559         plwInit(&writer, pOut, dlrDocid(pLeft));
   1560         match = 1;
   1561       }
   1562       plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
   1563       rc = plrStep(&left);
   1564       if( rc!=SQLITE_OK ) break;
   1565       rc = plrStep(&right);
   1566       if( rc!=SQLITE_OK ) break;
   1567     }
   1568   }
   1569 
   1570   if( match ){
   1571     plwTerminate(&writer);
   1572     plwDestroy(&writer);
   1573   }
   1574 
   1575   plrDestroy(&left);
   1576   plrDestroy(&right);
   1577   return rc;
   1578 }
   1579 
   1580 /* We have two doclists with positions:  pLeft and pRight.
   1581 ** Write the phrase intersection of these two doclists into pOut.
   1582 **
   1583 ** A phrase intersection means that two documents only match
   1584 ** if pLeft.iPos+1==pRight.iPos.
   1585 **
   1586 ** iType controls the type of data written to pOut.  If iType is
   1587 ** DL_POSITIONS, the positions are those from pRight.
   1588 */
   1589 static int docListPhraseMerge(
   1590   const char *pLeft, int nLeft,
   1591   const char *pRight, int nRight,
   1592   DocListType iType,
   1593   DataBuffer *pOut      /* Write the combined doclist here */
   1594 ){
   1595   DLReader left, right;
   1596   DLWriter writer;
   1597   int rc;
   1598 
   1599   if( nLeft==0 || nRight==0 ) return SQLITE_OK;
   1600 
   1601   assert( iType!=DL_POSITIONS_OFFSETS );
   1602 
   1603   rc = dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
   1604   if( rc!=SQLITE_OK ) return rc;
   1605   rc = dlrInit(&right, DL_POSITIONS, pRight, nRight);
   1606   if( rc!=SQLITE_OK ){
   1607     dlrDestroy(&left);
   1608     return rc;
   1609   }
   1610   dlwInit(&writer, iType, pOut);
   1611 
   1612   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
   1613     if( dlrDocid(&left)<dlrDocid(&right) ){
   1614       rc = dlrStep(&left);
   1615       if( rc!=SQLITE_OK ) break;
   1616     }else if( dlrDocid(&right)<dlrDocid(&left) ){
   1617       rc = dlrStep(&right);
   1618       if( rc!=SQLITE_OK ) break;
   1619     }else{
   1620       rc = posListPhraseMerge(&left, &right, &writer);
   1621       if( rc!=SQLITE_OK ) break;
   1622       rc = dlrStep(&left);
   1623       if( rc!=SQLITE_OK ) break;
   1624       rc = dlrStep(&right);
   1625       if( rc!=SQLITE_OK ) break;
   1626     }
   1627   }
   1628 
   1629   dlrDestroy(&left);
   1630   dlrDestroy(&right);
   1631   dlwDestroy(&writer);
   1632   return rc;
   1633 }
   1634 
   1635 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
   1636 ** Write the intersection of these two doclists into pOut as a
   1637 ** DL_DOCIDS doclist.
   1638 */
   1639 static int docListAndMerge(
   1640   const char *pLeft, int nLeft,
   1641   const char *pRight, int nRight,
   1642   DataBuffer *pOut      /* Write the combined doclist here */
   1643 ){
   1644   DLReader left, right;
   1645   DLWriter writer;
   1646   int rc;
   1647 
   1648   if( nLeft==0 || nRight==0 ) return SQLITE_OK;
   1649 
   1650   rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
   1651   if( rc!=SQLITE_OK ) return rc;
   1652   rc = dlrInit(&right, DL_DOCIDS, pRight, nRight);
   1653   if( rc!=SQLITE_OK ){
   1654     dlrDestroy(&left);
   1655     return rc;
   1656   }
   1657   dlwInit(&writer, DL_DOCIDS, pOut);
   1658 
   1659   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
   1660     if( dlrDocid(&left)<dlrDocid(&right) ){
   1661       rc = dlrStep(&left);
   1662       if( rc!=SQLITE_OK ) break;
   1663     }else if( dlrDocid(&right)<dlrDocid(&left) ){
   1664       rc = dlrStep(&right);
   1665       if( rc!=SQLITE_OK ) break;
   1666     }else{
   1667       dlwAdd(&writer, dlrDocid(&left));
   1668       rc = dlrStep(&left);
   1669       if( rc!=SQLITE_OK ) break;
   1670       rc = dlrStep(&right);
   1671       if( rc!=SQLITE_OK ) break;
   1672     }
   1673   }
   1674 
   1675   dlrDestroy(&left);
   1676   dlrDestroy(&right);
   1677   dlwDestroy(&writer);
   1678   return rc;
   1679 }
   1680 
   1681 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
   1682 ** Write the union of these two doclists into pOut as a
   1683 ** DL_DOCIDS doclist.
   1684 */
   1685 static int docListOrMerge(
   1686   const char *pLeft, int nLeft,
   1687   const char *pRight, int nRight,
   1688   DataBuffer *pOut      /* Write the combined doclist here */
   1689 ){
   1690   DLReader left, right;
   1691   DLWriter writer;
   1692   int rc;
   1693 
   1694   if( nLeft==0 ){
   1695     if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
   1696     return SQLITE_OK;
   1697   }
   1698   if( nRight==0 ){
   1699     dataBufferAppend(pOut, pLeft, nLeft);
   1700     return SQLITE_OK;
   1701   }
   1702 
   1703   rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
   1704   if( rc!=SQLITE_OK ) return rc;
   1705   rc = dlrInit(&right, DL_DOCIDS, pRight, nRight);
   1706   if( rc!=SQLITE_OK ){
   1707     dlrDestroy(&left);
   1708     return rc;
   1709   }
   1710   dlwInit(&writer, DL_DOCIDS, pOut);
   1711 
   1712   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
   1713     if( dlrAtEnd(&right) ){
   1714       dlwAdd(&writer, dlrDocid(&left));
   1715       rc = dlrStep(&left);
   1716       if( rc!=SQLITE_OK ) break;
   1717     }else if( dlrAtEnd(&left) ){
   1718       dlwAdd(&writer, dlrDocid(&right));
   1719       rc = dlrStep(&right);
   1720       if( rc!=SQLITE_OK ) break;
   1721     }else if( dlrDocid(&left)<dlrDocid(&right) ){
   1722       dlwAdd(&writer, dlrDocid(&left));
   1723       rc = dlrStep(&left);
   1724       if( rc!=SQLITE_OK ) break;
   1725     }else if( dlrDocid(&right)<dlrDocid(&left) ){
   1726       dlwAdd(&writer, dlrDocid(&right));
   1727       rc = dlrStep(&right);
   1728       if( rc!=SQLITE_OK ) break;
   1729     }else{
   1730       dlwAdd(&writer, dlrDocid(&left));
   1731       rc = dlrStep(&left);
   1732       if( rc!=SQLITE_OK ) break;
   1733       rc = dlrStep(&right);
   1734       if( rc!=SQLITE_OK ) break;
   1735     }
   1736   }
   1737 
   1738   dlrDestroy(&left);
   1739   dlrDestroy(&right);
   1740   dlwDestroy(&writer);
   1741   return rc;
   1742 }
   1743 
   1744 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
   1745 ** Write into pOut as DL_DOCIDS doclist containing all documents that
   1746 ** occur in pLeft but not in pRight.
   1747 */
   1748 static int docListExceptMerge(
   1749   const char *pLeft, int nLeft,
   1750   const char *pRight, int nRight,
   1751   DataBuffer *pOut      /* Write the combined doclist here */
   1752 ){
   1753   DLReader left, right;
   1754   DLWriter writer;
   1755   int rc;
   1756 
   1757   if( nLeft==0 ) return SQLITE_OK;
   1758   if( nRight==0 ){
   1759     dataBufferAppend(pOut, pLeft, nLeft);
   1760     return SQLITE_OK;
   1761   }
   1762 
   1763   rc = dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
   1764   if( rc!=SQLITE_OK ) return rc;
   1765   rc = dlrInit(&right, DL_DOCIDS, pRight, nRight);
   1766   if( rc!=SQLITE_OK ){
   1767     dlrDestroy(&left);
   1768     return rc;
   1769   }
   1770   dlwInit(&writer, DL_DOCIDS, pOut);
   1771 
   1772   while( !dlrAtEnd(&left) ){
   1773     while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
   1774       rc = dlrStep(&right);
   1775       if( rc!=SQLITE_OK ) goto err;
   1776     }
   1777     if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
   1778       dlwAdd(&writer, dlrDocid(&left));
   1779     }
   1780     rc = dlrStep(&left);
   1781     if( rc!=SQLITE_OK ) break;
   1782   }
   1783 
   1784 err:
   1785   dlrDestroy(&left);
   1786   dlrDestroy(&right);
   1787   dlwDestroy(&writer);
   1788   return rc;
   1789 }
   1790 
   1791 static char *string_dup_n(const char *s, int n){
   1792   char *str = sqlite3_malloc(n + 1);
   1793   memcpy(str, s, n);
   1794   str[n] = '\0';
   1795   return str;
   1796 }
   1797 
   1798 /* Duplicate a string; the caller must free() the returned string.
   1799  * (We don't use strdup() since it is not part of the standard C library and
   1800  * may not be available everywhere.) */
   1801 static char *string_dup(const char *s){
   1802   return string_dup_n(s, strlen(s));
   1803 }
   1804 
   1805 /* Format a string, replacing each occurrence of the % character with
   1806  * zDb.zName.  This may be more convenient than sqlite_mprintf()
   1807  * when one string is used repeatedly in a format string.
   1808  * The caller must free() the returned string. */
   1809 static char *string_format(const char *zFormat,
   1810                            const char *zDb, const char *zName){
   1811   const char *p;
   1812   size_t len = 0;
   1813   size_t nDb = strlen(zDb);
   1814   size_t nName = strlen(zName);
   1815   size_t nFullTableName = nDb+1+nName;
   1816   char *result;
   1817   char *r;
   1818 
   1819   /* first compute length needed */
   1820   for(p = zFormat ; *p ; ++p){
   1821     len += (*p=='%' ? nFullTableName : 1);
   1822   }
   1823   len += 1;  /* for null terminator */
   1824 
   1825   r = result = sqlite3_malloc(len);
   1826   for(p = zFormat; *p; ++p){
   1827     if( *p=='%' ){
   1828       memcpy(r, zDb, nDb);
   1829       r += nDb;
   1830       *r++ = '.';
   1831       memcpy(r, zName, nName);
   1832       r += nName;
   1833     } else {
   1834       *r++ = *p;
   1835     }
   1836   }
   1837   *r++ = '\0';
   1838   assert( r == result + len );
   1839   return result;
   1840 }
   1841 
   1842 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
   1843                     const char *zFormat){
   1844   char *zCommand = string_format(zFormat, zDb, zName);
   1845   int rc;
   1846   TRACE(("FTS2 sql: %s\n", zCommand));
   1847   rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
   1848   sqlite3_free(zCommand);
   1849   return rc;
   1850 }
   1851 
   1852 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
   1853                        sqlite3_stmt **ppStmt, const char *zFormat){
   1854   char *zCommand = string_format(zFormat, zDb, zName);
   1855   int rc;
   1856   TRACE(("FTS2 prepare: %s\n", zCommand));
   1857   rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
   1858   sqlite3_free(zCommand);
   1859   return rc;
   1860 }
   1861 
   1862 /* end utility functions */
   1863 
   1864 /* Forward reference */
   1865 typedef struct fulltext_vtab fulltext_vtab;
   1866 
   1867 /* A single term in a query is represented by an instances of
   1868 ** the following structure.
   1869 */
   1870 typedef struct QueryTerm {
   1871   short int nPhrase; /* How many following terms are part of the same phrase */
   1872   short int iPhrase; /* This is the i-th term of a phrase. */
   1873   short int iColumn; /* Column of the index that must match this term */
   1874   signed char isOr;  /* this term is preceded by "OR" */
   1875   signed char isNot; /* this term is preceded by "-" */
   1876   signed char isPrefix; /* this term is followed by "*" */
   1877   char *pTerm;       /* text of the term.  '\000' terminated.  malloced */
   1878   int nTerm;         /* Number of bytes in pTerm[] */
   1879 } QueryTerm;
   1880 
   1881 
   1882 /* A query string is parsed into a Query structure.
   1883  *
   1884  * We could, in theory, allow query strings to be complicated
   1885  * nested expressions with precedence determined by parentheses.
   1886  * But none of the major search engines do this.  (Perhaps the
   1887  * feeling is that an parenthesized expression is two complex of
   1888  * an idea for the average user to grasp.)  Taking our lead from
   1889  * the major search engines, we will allow queries to be a list
   1890  * of terms (with an implied AND operator) or phrases in double-quotes,
   1891  * with a single optional "-" before each non-phrase term to designate
   1892  * negation and an optional OR connector.
   1893  *
   1894  * OR binds more tightly than the implied AND, which is what the
   1895  * major search engines seem to do.  So, for example:
   1896  *
   1897  *    [one two OR three]     ==>    one AND (two OR three)
   1898  *    [one OR two three]     ==>    (one OR two) AND three
   1899  *
   1900  * A "-" before a term matches all entries that lack that term.
   1901  * The "-" must occur immediately before the term with in intervening
   1902  * space.  This is how the search engines do it.
   1903  *
   1904  * A NOT term cannot be the right-hand operand of an OR.  If this
   1905  * occurs in the query string, the NOT is ignored:
   1906  *
   1907  *    [one OR -two]          ==>    one OR two
   1908  *
   1909  */
   1910 typedef struct Query {
   1911   fulltext_vtab *pFts;  /* The full text index */
   1912   int nTerms;           /* Number of terms in the query */
   1913   QueryTerm *pTerms;    /* Array of terms.  Space obtained from malloc() */
   1914   int nextIsOr;         /* Set the isOr flag on the next inserted term */
   1915   int nextColumn;       /* Next word parsed must be in this column */
   1916   int dfltColumn;       /* The default column */
   1917 } Query;
   1918 
   1919 
   1920 /*
   1921 ** An instance of the following structure keeps track of generated
   1922 ** matching-word offset information and snippets.
   1923 */
   1924 typedef struct Snippet {
   1925   int nMatch;     /* Total number of matches */
   1926   int nAlloc;     /* Space allocated for aMatch[] */
   1927   struct snippetMatch { /* One entry for each matching term */
   1928     char snStatus;       /* Status flag for use while constructing snippets */
   1929     short int iCol;      /* The column that contains the match */
   1930     short int iTerm;     /* The index in Query.pTerms[] of the matching term */
   1931     short int nByte;     /* Number of bytes in the term */
   1932     int iStart;          /* The offset to the first character of the term */
   1933   } *aMatch;      /* Points to space obtained from malloc */
   1934   char *zOffset;  /* Text rendering of aMatch[] */
   1935   int nOffset;    /* strlen(zOffset) */
   1936   char *zSnippet; /* Snippet text */
   1937   int nSnippet;   /* strlen(zSnippet) */
   1938 } Snippet;
   1939 
   1940 
   1941 typedef enum QueryType {
   1942   QUERY_GENERIC,   /* table scan */
   1943   QUERY_ROWID,     /* lookup by rowid */
   1944   QUERY_FULLTEXT   /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
   1945 } QueryType;
   1946 
   1947 typedef enum fulltext_statement {
   1948   CONTENT_INSERT_STMT,
   1949   CONTENT_SELECT_STMT,
   1950   CONTENT_UPDATE_STMT,
   1951   CONTENT_DELETE_STMT,
   1952   CONTENT_EXISTS_STMT,
   1953 
   1954   BLOCK_INSERT_STMT,
   1955   BLOCK_SELECT_STMT,
   1956   BLOCK_DELETE_STMT,
   1957   BLOCK_DELETE_ALL_STMT,
   1958 
   1959   SEGDIR_MAX_INDEX_STMT,
   1960   SEGDIR_SET_STMT,
   1961   SEGDIR_SELECT_LEVEL_STMT,
   1962   SEGDIR_SPAN_STMT,
   1963   SEGDIR_DELETE_STMT,
   1964   SEGDIR_SELECT_SEGMENT_STMT,
   1965   SEGDIR_SELECT_ALL_STMT,
   1966   SEGDIR_DELETE_ALL_STMT,
   1967   SEGDIR_COUNT_STMT,
   1968 
   1969   MAX_STMT                     /* Always at end! */
   1970 } fulltext_statement;
   1971 
   1972 /* These must exactly match the enum above. */
   1973 /* TODO(shess): Is there some risk that a statement will be used in two
   1974 ** cursors at once, e.g.  if a query joins a virtual table to itself?
   1975 ** If so perhaps we should move some of these to the cursor object.
   1976 */
   1977 static const char *const fulltext_zStatement[MAX_STMT] = {
   1978   /* CONTENT_INSERT */ NULL,  /* generated in contentInsertStatement() */
   1979   /* CONTENT_SELECT */ "select * from %_content where rowid = ?",
   1980   /* CONTENT_UPDATE */ NULL,  /* generated in contentUpdateStatement() */
   1981   /* CONTENT_DELETE */ "delete from %_content where rowid = ?",
   1982   /* CONTENT_EXISTS */ "select rowid from %_content limit 1",
   1983 
   1984   /* BLOCK_INSERT */ "insert into %_segments values (?)",
   1985   /* BLOCK_SELECT */ "select block from %_segments where rowid = ?",
   1986   /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?",
   1987   /* BLOCK_DELETE_ALL */ "delete from %_segments",
   1988 
   1989   /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
   1990   /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
   1991   /* SEGDIR_SELECT_LEVEL */
   1992   "select start_block, leaves_end_block, root, idx from %_segdir "
   1993   " where level = ? order by idx",
   1994   /* SEGDIR_SPAN */
   1995   "select min(start_block), max(end_block) from %_segdir "
   1996   " where level = ? and start_block <> 0",
   1997   /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
   1998 
   1999   /* NOTE(shess): The first three results of the following two
   2000   ** statements must match.
   2001   */
   2002   /* SEGDIR_SELECT_SEGMENT */
   2003   "select start_block, leaves_end_block, root from %_segdir "
   2004   " where level = ? and idx = ?",
   2005   /* SEGDIR_SELECT_ALL */
   2006   "select start_block, leaves_end_block, root from %_segdir "
   2007   " order by level desc, idx asc",
   2008   /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
   2009   /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
   2010 };
   2011 
   2012 /*
   2013 ** A connection to a fulltext index is an instance of the following
   2014 ** structure.  The xCreate and xConnect methods create an instance
   2015 ** of this structure and xDestroy and xDisconnect free that instance.
   2016 ** All other methods receive a pointer to the structure as one of their
   2017 ** arguments.
   2018 */
   2019 struct fulltext_vtab {
   2020   sqlite3_vtab base;               /* Base class used by SQLite core */
   2021   sqlite3 *db;                     /* The database connection */
   2022   const char *zDb;                 /* logical database name */
   2023   const char *zName;               /* virtual table name */
   2024   int nColumn;                     /* number of columns in virtual table */
   2025   char **azColumn;                 /* column names.  malloced */
   2026   char **azContentColumn;          /* column names in content table; malloced */
   2027   sqlite3_tokenizer *pTokenizer;   /* tokenizer for inserts and queries */
   2028 
   2029   /* Precompiled statements which we keep as long as the table is
   2030   ** open.
   2031   */
   2032   sqlite3_stmt *pFulltextStatements[MAX_STMT];
   2033 
   2034   /* Precompiled statements used for segment merges.  We run a
   2035   ** separate select across the leaf level of each tree being merged.
   2036   */
   2037   sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
   2038   /* The statement used to prepare pLeafSelectStmts. */
   2039 #define LEAF_SELECT \
   2040   "select block from %_segments where rowid between ? and ? order by rowid"
   2041 
   2042   /* These buffer pending index updates during transactions.
   2043   ** nPendingData estimates the memory size of the pending data.  It
   2044   ** doesn't include the hash-bucket overhead, nor any malloc
   2045   ** overhead.  When nPendingData exceeds kPendingThreshold, the
   2046   ** buffer is flushed even before the transaction closes.
   2047   ** pendingTerms stores the data, and is only valid when nPendingData
   2048   ** is >=0 (nPendingData<0 means pendingTerms has not been
   2049   ** initialized).  iPrevDocid is the last docid written, used to make
   2050   ** certain we're inserting in sorted order.
   2051   */
   2052   int nPendingData;
   2053 #define kPendingThreshold (1*1024*1024)
   2054   sqlite_int64 iPrevDocid;
   2055   fts2Hash pendingTerms;
   2056 };
   2057 
   2058 /*
   2059 ** When the core wants to do a query, it create a cursor using a
   2060 ** call to xOpen.  This structure is an instance of a cursor.  It
   2061 ** is destroyed by xClose.
   2062 */
   2063 typedef struct fulltext_cursor {
   2064   sqlite3_vtab_cursor base;        /* Base class used by SQLite core */
   2065   QueryType iCursorType;           /* Copy of sqlite3_index_info.idxNum */
   2066   sqlite3_stmt *pStmt;             /* Prepared statement in use by the cursor */
   2067   int eof;                         /* True if at End Of Results */
   2068   Query q;                         /* Parsed query string */
   2069   Snippet snippet;                 /* Cached snippet for the current row */
   2070   int iColumn;                     /* Column being searched */
   2071   DataBuffer result;               /* Doclist results from fulltextQuery */
   2072   DLReader reader;                 /* Result reader if result not empty */
   2073 } fulltext_cursor;
   2074 
   2075 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
   2076   return (fulltext_vtab *) c->base.pVtab;
   2077 }
   2078 
   2079 static const sqlite3_module fts2Module;   /* forward declaration */
   2080 
   2081 /* Return a dynamically generated statement of the form
   2082  *   insert into %_content (rowid, ...) values (?, ...)
   2083  */
   2084 static const char *contentInsertStatement(fulltext_vtab *v){
   2085   StringBuffer sb;
   2086   int i;
   2087 
   2088   initStringBuffer(&sb);
   2089   append(&sb, "insert into %_content (rowid, ");
   2090   appendList(&sb, v->nColumn, v->azContentColumn);
   2091   append(&sb, ") values (?");
   2092   for(i=0; i<v->nColumn; ++i)
   2093     append(&sb, ", ?");
   2094   append(&sb, ")");
   2095   return stringBufferData(&sb);
   2096 }
   2097 
   2098 /* Return a dynamically generated statement of the form
   2099  *   update %_content set [col_0] = ?, [col_1] = ?, ...
   2100  *                    where rowid = ?
   2101  */
   2102 static const char *contentUpdateStatement(fulltext_vtab *v){
   2103   StringBuffer sb;
   2104   int i;
   2105 
   2106   initStringBuffer(&sb);
   2107   append(&sb, "update %_content set ");
   2108   for(i=0; i<v->nColumn; ++i) {
   2109     if( i>0 ){
   2110       append(&sb, ", ");
   2111     }
   2112     append(&sb, v->azContentColumn[i]);
   2113     append(&sb, " = ?");
   2114   }
   2115   append(&sb, " where rowid = ?");
   2116   return stringBufferData(&sb);
   2117 }
   2118 
   2119 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
   2120 ** If the indicated statement has never been prepared, it is prepared
   2121 ** and cached, otherwise the cached version is reset.
   2122 */
   2123 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
   2124                              sqlite3_stmt **ppStmt){
   2125   assert( iStmt<MAX_STMT );
   2126   if( v->pFulltextStatements[iStmt]==NULL ){
   2127     const char *zStmt;
   2128     int rc;
   2129     switch( iStmt ){
   2130       case CONTENT_INSERT_STMT:
   2131         zStmt = contentInsertStatement(v); break;
   2132       case CONTENT_UPDATE_STMT:
   2133         zStmt = contentUpdateStatement(v); break;
   2134       default:
   2135         zStmt = fulltext_zStatement[iStmt];
   2136     }
   2137     rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
   2138                          zStmt);
   2139     if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
   2140     if( rc!=SQLITE_OK ) return rc;
   2141   } else {
   2142     int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
   2143     if( rc!=SQLITE_OK ) return rc;
   2144   }
   2145 
   2146   *ppStmt = v->pFulltextStatements[iStmt];
   2147   return SQLITE_OK;
   2148 }
   2149 
   2150 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
   2151 ** SQLITE_ROW to SQLITE_ERROR.  Useful for statements like UPDATE,
   2152 ** where we expect no results.
   2153 */
   2154 static int sql_single_step(sqlite3_stmt *s){
   2155   int rc = sqlite3_step(s);
   2156   return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
   2157 }
   2158 
   2159 /* Like sql_get_statement(), but for special replicated LEAF_SELECT
   2160 ** statements.  idx -1 is a special case for an uncached version of
   2161 ** the statement (used in the optimize implementation).
   2162 */
   2163 /* TODO(shess) Write version for generic statements and then share
   2164 ** that between the cached-statement functions.
   2165 */
   2166 static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
   2167                                   sqlite3_stmt **ppStmt){
   2168   assert( idx>=-1 && idx<MERGE_COUNT );
   2169   if( idx==-1 ){
   2170     return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
   2171   }else if( v->pLeafSelectStmts[idx]==NULL ){
   2172     int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
   2173                          LEAF_SELECT);
   2174     if( rc!=SQLITE_OK ) return rc;
   2175   }else{
   2176     int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
   2177     if( rc!=SQLITE_OK ) return rc;
   2178   }
   2179 
   2180   *ppStmt = v->pLeafSelectStmts[idx];
   2181   return SQLITE_OK;
   2182 }
   2183 
   2184 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */
   2185 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid,
   2186                           sqlite3_value **pValues){
   2187   sqlite3_stmt *s;
   2188   int i;
   2189   int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
   2190   if( rc!=SQLITE_OK ) return rc;
   2191 
   2192   rc = sqlite3_bind_value(s, 1, rowid);
   2193   if( rc!=SQLITE_OK ) return rc;
   2194 
   2195   for(i=0; i<v->nColumn; ++i){
   2196     rc = sqlite3_bind_value(s, 2+i, pValues[i]);
   2197     if( rc!=SQLITE_OK ) return rc;
   2198   }
   2199 
   2200   return sql_single_step(s);
   2201 }
   2202 
   2203 /* update %_content set col0 = pValues[0], col1 = pValues[1], ...
   2204  *                  where rowid = [iRowid] */
   2205 static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
   2206                           sqlite_int64 iRowid){
   2207   sqlite3_stmt *s;
   2208   int i;
   2209   int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
   2210   if( rc!=SQLITE_OK ) return rc;
   2211 
   2212   for(i=0; i<v->nColumn; ++i){
   2213     rc = sqlite3_bind_value(s, 1+i, pValues[i]);
   2214     if( rc!=SQLITE_OK ) return rc;
   2215   }
   2216 
   2217   rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid);
   2218   if( rc!=SQLITE_OK ) return rc;
   2219 
   2220   return sql_single_step(s);
   2221 }
   2222 
   2223 static void freeStringArray(int nString, const char **pString){
   2224   int i;
   2225 
   2226   for (i=0 ; i < nString ; ++i) {
   2227     if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
   2228   }
   2229   sqlite3_free((void *) pString);
   2230 }
   2231 
   2232 /* select * from %_content where rowid = [iRow]
   2233  * The caller must delete the returned array and all strings in it.
   2234  * null fields will be NULL in the returned array.
   2235  *
   2236  * TODO: Perhaps we should return pointer/length strings here for consistency
   2237  * with other code which uses pointer/length. */
   2238 static int content_select(fulltext_vtab *v, sqlite_int64 iRow,
   2239                           const char ***pValues){
   2240   sqlite3_stmt *s;
   2241   const char **values;
   2242   int i;
   2243   int rc;
   2244 
   2245   *pValues = NULL;
   2246 
   2247   rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
   2248   if( rc!=SQLITE_OK ) return rc;
   2249 
   2250   rc = sqlite3_bind_int64(s, 1, iRow);
   2251   if( rc!=SQLITE_OK ) return rc;
   2252 
   2253   rc = sqlite3_step(s);
   2254   if( rc!=SQLITE_ROW ) return rc;
   2255 
   2256   values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
   2257   for(i=0; i<v->nColumn; ++i){
   2258     if( sqlite3_column_type(s, i)==SQLITE_NULL ){
   2259       values[i] = NULL;
   2260     }else{
   2261       values[i] = string_dup((char*)sqlite3_column_text(s, i));
   2262     }
   2263   }
   2264 
   2265   /* We expect only one row.  We must execute another sqlite3_step()
   2266    * to complete the iteration; otherwise the table will remain locked. */
   2267   rc = sqlite3_step(s);
   2268   if( rc==SQLITE_DONE ){
   2269     *pValues = values;
   2270     return SQLITE_OK;
   2271   }
   2272 
   2273   freeStringArray(v->nColumn, values);
   2274   return rc;
   2275 }
   2276 
   2277 /* delete from %_content where rowid = [iRow ] */
   2278 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){
   2279   sqlite3_stmt *s;
   2280   int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
   2281   if( rc!=SQLITE_OK ) return rc;
   2282 
   2283   rc = sqlite3_bind_int64(s, 1, iRow);
   2284   if( rc!=SQLITE_OK ) return rc;
   2285 
   2286   return sql_single_step(s);
   2287 }
   2288 
   2289 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
   2290 ** no rows exist, and any error in case of failure.
   2291 */
   2292 static int content_exists(fulltext_vtab *v){
   2293   sqlite3_stmt *s;
   2294   int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
   2295   if( rc!=SQLITE_OK ) return rc;
   2296 
   2297   rc = sqlite3_step(s);
   2298   if( rc!=SQLITE_ROW ) return rc;
   2299 
   2300   /* We expect only one row.  We must execute another sqlite3_step()
   2301    * to complete the iteration; otherwise the table will remain locked. */
   2302   rc = sqlite3_step(s);
   2303   if( rc==SQLITE_DONE ) return SQLITE_ROW;
   2304   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   2305   return rc;
   2306 }
   2307 
   2308 /* insert into %_segments values ([pData])
   2309 **   returns assigned rowid in *piBlockid
   2310 */
   2311 static int block_insert(fulltext_vtab *v, const char *pData, int nData,
   2312                         sqlite_int64 *piBlockid){
   2313   sqlite3_stmt *s;
   2314   int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
   2315   if( rc!=SQLITE_OK ) return rc;
   2316 
   2317   rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
   2318   if( rc!=SQLITE_OK ) return rc;
   2319 
   2320   rc = sqlite3_step(s);
   2321   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   2322   if( rc!=SQLITE_DONE ) return rc;
   2323 
   2324   *piBlockid = sqlite3_last_insert_rowid(v->db);
   2325   return SQLITE_OK;
   2326 }
   2327 
   2328 /* delete from %_segments
   2329 **   where rowid between [iStartBlockid] and [iEndBlockid]
   2330 **
   2331 ** Deletes the range of blocks, inclusive, used to delete the blocks
   2332 ** which form a segment.
   2333 */
   2334 static int block_delete(fulltext_vtab *v,
   2335                         sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
   2336   sqlite3_stmt *s;
   2337   int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
   2338   if( rc!=SQLITE_OK ) return rc;
   2339 
   2340   rc = sqlite3_bind_int64(s, 1, iStartBlockid);
   2341   if( rc!=SQLITE_OK ) return rc;
   2342 
   2343   rc = sqlite3_bind_int64(s, 2, iEndBlockid);
   2344   if( rc!=SQLITE_OK ) return rc;
   2345 
   2346   return sql_single_step(s);
   2347 }
   2348 
   2349 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
   2350 ** at iLevel.  Returns SQLITE_DONE if there are no segments at
   2351 ** iLevel.  Otherwise returns an error.
   2352 */
   2353 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
   2354   sqlite3_stmt *s;
   2355   int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
   2356   if( rc!=SQLITE_OK ) return rc;
   2357 
   2358   rc = sqlite3_bind_int(s, 1, iLevel);
   2359   if( rc!=SQLITE_OK ) return rc;
   2360 
   2361   rc = sqlite3_step(s);
   2362   /* Should always get at least one row due to how max() works. */
   2363   if( rc==SQLITE_DONE ) return SQLITE_DONE;
   2364   if( rc!=SQLITE_ROW ) return rc;
   2365 
   2366   /* NULL means that there were no inputs to max(). */
   2367   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
   2368     rc = sqlite3_step(s);
   2369     if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   2370     return rc;
   2371   }
   2372 
   2373   *pidx = sqlite3_column_int(s, 0);
   2374 
   2375   /* We expect only one row.  We must execute another sqlite3_step()
   2376    * to complete the iteration; otherwise the table will remain locked. */
   2377   rc = sqlite3_step(s);
   2378   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   2379   if( rc!=SQLITE_DONE ) return rc;
   2380   return SQLITE_ROW;
   2381 }
   2382 
   2383 /* insert into %_segdir values (
   2384 **   [iLevel], [idx],
   2385 **   [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
   2386 **   [pRootData]
   2387 ** )
   2388 */
   2389 static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
   2390                       sqlite_int64 iStartBlockid,
   2391                       sqlite_int64 iLeavesEndBlockid,
   2392                       sqlite_int64 iEndBlockid,
   2393                       const char *pRootData, int nRootData){
   2394   sqlite3_stmt *s;
   2395   int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
   2396   if( rc!=SQLITE_OK ) return rc;
   2397 
   2398   rc = sqlite3_bind_int(s, 1, iLevel);
   2399   if( rc!=SQLITE_OK ) return rc;
   2400 
   2401   rc = sqlite3_bind_int(s, 2, idx);
   2402   if( rc!=SQLITE_OK ) return rc;
   2403 
   2404   rc = sqlite3_bind_int64(s, 3, iStartBlockid);
   2405   if( rc!=SQLITE_OK ) return rc;
   2406 
   2407   rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
   2408   if( rc!=SQLITE_OK ) return rc;
   2409 
   2410   rc = sqlite3_bind_int64(s, 5, iEndBlockid);
   2411   if( rc!=SQLITE_OK ) return rc;
   2412 
   2413   rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
   2414   if( rc!=SQLITE_OK ) return rc;
   2415 
   2416   return sql_single_step(s);
   2417 }
   2418 
   2419 /* Queries %_segdir for the block span of the segments in level
   2420 ** iLevel.  Returns SQLITE_DONE if there are no blocks for iLevel,
   2421 ** SQLITE_ROW if there are blocks, else an error.
   2422 */
   2423 static int segdir_span(fulltext_vtab *v, int iLevel,
   2424                        sqlite_int64 *piStartBlockid,
   2425                        sqlite_int64 *piEndBlockid){
   2426   sqlite3_stmt *s;
   2427   int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
   2428   if( rc!=SQLITE_OK ) return rc;
   2429 
   2430   rc = sqlite3_bind_int(s, 1, iLevel);
   2431   if( rc!=SQLITE_OK ) return rc;
   2432 
   2433   rc = sqlite3_step(s);
   2434   if( rc==SQLITE_DONE ) return SQLITE_DONE;  /* Should never happen */
   2435   if( rc!=SQLITE_ROW ) return rc;
   2436 
   2437   /* This happens if all segments at this level are entirely inline. */
   2438   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
   2439     /* We expect only one row.  We must execute another sqlite3_step()
   2440      * to complete the iteration; otherwise the table will remain locked. */
   2441     int rc2 = sqlite3_step(s);
   2442     if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
   2443     return rc2;
   2444   }
   2445 
   2446   *piStartBlockid = sqlite3_column_int64(s, 0);
   2447   *piEndBlockid = sqlite3_column_int64(s, 1);
   2448 
   2449   /* We expect only one row.  We must execute another sqlite3_step()
   2450    * to complete the iteration; otherwise the table will remain locked. */
   2451   rc = sqlite3_step(s);
   2452   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   2453   if( rc!=SQLITE_DONE ) return rc;
   2454   return SQLITE_ROW;
   2455 }
   2456 
   2457 /* Delete the segment blocks and segment directory records for all
   2458 ** segments at iLevel.
   2459 */
   2460 static int segdir_delete(fulltext_vtab *v, int iLevel){
   2461   sqlite3_stmt *s;
   2462   sqlite_int64 iStartBlockid, iEndBlockid;
   2463   int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
   2464   if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
   2465 
   2466   if( rc==SQLITE_ROW ){
   2467     rc = block_delete(v, iStartBlockid, iEndBlockid);
   2468     if( rc!=SQLITE_OK ) return rc;
   2469   }
   2470 
   2471   /* Delete the segment directory itself. */
   2472   rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
   2473   if( rc!=SQLITE_OK ) return rc;
   2474 
   2475   rc = sqlite3_bind_int64(s, 1, iLevel);
   2476   if( rc!=SQLITE_OK ) return rc;
   2477 
   2478   return sql_single_step(s);
   2479 }
   2480 
   2481 /* Delete entire fts index, SQLITE_OK on success, relevant error on
   2482 ** failure.
   2483 */
   2484 static int segdir_delete_all(fulltext_vtab *v){
   2485   sqlite3_stmt *s;
   2486   int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
   2487   if( rc!=SQLITE_OK ) return rc;
   2488 
   2489   rc = sql_single_step(s);
   2490   if( rc!=SQLITE_OK ) return rc;
   2491 
   2492   rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
   2493   if( rc!=SQLITE_OK ) return rc;
   2494 
   2495   return sql_single_step(s);
   2496 }
   2497 
   2498 /* Returns SQLITE_OK with *pnSegments set to the number of entries in
   2499 ** %_segdir and *piMaxLevel set to the highest level which has a
   2500 ** segment.  Otherwise returns the SQLite error which caused failure.
   2501 */
   2502 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
   2503   sqlite3_stmt *s;
   2504   int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
   2505   if( rc!=SQLITE_OK ) return rc;
   2506 
   2507   rc = sqlite3_step(s);
   2508   /* TODO(shess): This case should not be possible?  Should stronger
   2509   ** measures be taken if it happens?
   2510   */
   2511   if( rc==SQLITE_DONE ){
   2512     *pnSegments = 0;
   2513     *piMaxLevel = 0;
   2514     return SQLITE_OK;
   2515   }
   2516   if( rc!=SQLITE_ROW ) return rc;
   2517 
   2518   *pnSegments = sqlite3_column_int(s, 0);
   2519   *piMaxLevel = sqlite3_column_int(s, 1);
   2520 
   2521   /* We expect only one row.  We must execute another sqlite3_step()
   2522    * to complete the iteration; otherwise the table will remain locked. */
   2523   rc = sqlite3_step(s);
   2524   if( rc==SQLITE_DONE ) return SQLITE_OK;
   2525   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   2526   return rc;
   2527 }
   2528 
   2529 /* TODO(shess) clearPendingTerms() is far down the file because
   2530 ** writeZeroSegment() is far down the file because LeafWriter is far
   2531 ** down the file.  Consider refactoring the code to move the non-vtab
   2532 ** code above the vtab code so that we don't need this forward
   2533 ** reference.
   2534 */
   2535 static int clearPendingTerms(fulltext_vtab *v);
   2536 
   2537 /*
   2538 ** Free the memory used to contain a fulltext_vtab structure.
   2539 */
   2540 static void fulltext_vtab_destroy(fulltext_vtab *v){
   2541   int iStmt, i;
   2542 
   2543   TRACE(("FTS2 Destroy %p\n", v));
   2544   for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
   2545     if( v->pFulltextStatements[iStmt]!=NULL ){
   2546       sqlite3_finalize(v->pFulltextStatements[iStmt]);
   2547       v->pFulltextStatements[iStmt] = NULL;
   2548     }
   2549   }
   2550 
   2551   for( i=0; i<MERGE_COUNT; i++ ){
   2552     if( v->pLeafSelectStmts[i]!=NULL ){
   2553       sqlite3_finalize(v->pLeafSelectStmts[i]);
   2554       v->pLeafSelectStmts[i] = NULL;
   2555     }
   2556   }
   2557 
   2558   if( v->pTokenizer!=NULL ){
   2559     v->pTokenizer->pModule->xDestroy(v->pTokenizer);
   2560     v->pTokenizer = NULL;
   2561   }
   2562 
   2563   clearPendingTerms(v);
   2564 
   2565   sqlite3_free(v->azColumn);
   2566   for(i = 0; i < v->nColumn; ++i) {
   2567     sqlite3_free(v->azContentColumn[i]);
   2568   }
   2569   sqlite3_free(v->azContentColumn);
   2570   sqlite3_free(v);
   2571 }
   2572 
   2573 /*
   2574 ** Token types for parsing the arguments to xConnect or xCreate.
   2575 */
   2576 #define TOKEN_EOF         0    /* End of file */
   2577 #define TOKEN_SPACE       1    /* Any kind of whitespace */
   2578 #define TOKEN_ID          2    /* An identifier */
   2579 #define TOKEN_STRING      3    /* A string literal */
   2580 #define TOKEN_PUNCT       4    /* A single punctuation character */
   2581 
   2582 /*
   2583 ** If X is a character that can be used in an identifier then
   2584 ** IdChar(X) will be true.  Otherwise it is false.
   2585 **
   2586 ** For ASCII, any character with the high-order bit set is
   2587 ** allowed in an identifier.  For 7-bit characters,
   2588 ** sqlite3IsIdChar[X] must be 1.
   2589 **
   2590 ** Ticket #1066.  the SQL standard does not allow '$' in the
   2591 ** middle of identfiers.  But many SQL implementations do.
   2592 ** SQLite will allow '$' in identifiers for compatibility.
   2593 ** But the feature is undocumented.
   2594 */
   2595 static const char isIdChar[] = {
   2596 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
   2597     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
   2598     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
   2599     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
   2600     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
   2601     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
   2602     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
   2603 };
   2604 #define IdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20]))
   2605 
   2606 
   2607 /*
   2608 ** Return the length of the token that begins at z[0].
   2609 ** Store the token type in *tokenType before returning.
   2610 */
   2611 static int getToken(const char *z, int *tokenType){
   2612   int i, c;
   2613   switch( *z ){
   2614     case 0: {
   2615       *tokenType = TOKEN_EOF;
   2616       return 0;
   2617     }
   2618     case ' ': case '\t': case '\n': case '\f': case '\r': {
   2619       for(i=1; safe_isspace(z[i]); i++){}
   2620       *tokenType = TOKEN_SPACE;
   2621       return i;
   2622     }
   2623     case '`':
   2624     case '\'':
   2625     case '"': {
   2626       int delim = z[0];
   2627       for(i=1; (c=z[i])!=0; i++){
   2628         if( c==delim ){
   2629           if( z[i+1]==delim ){
   2630             i++;
   2631           }else{
   2632             break;
   2633           }
   2634         }
   2635       }
   2636       *tokenType = TOKEN_STRING;
   2637       return i + (c!=0);
   2638     }
   2639     case '[': {
   2640       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
   2641       *tokenType = TOKEN_ID;
   2642       return i;
   2643     }
   2644     default: {
   2645       if( !IdChar(*z) ){
   2646         break;
   2647       }
   2648       for(i=1; IdChar(z[i]); i++){}
   2649       *tokenType = TOKEN_ID;
   2650       return i;
   2651     }
   2652   }
   2653   *tokenType = TOKEN_PUNCT;
   2654   return 1;
   2655 }
   2656 
   2657 /*
   2658 ** A token extracted from a string is an instance of the following
   2659 ** structure.
   2660 */
   2661 typedef struct Token {
   2662   const char *z;       /* Pointer to token text.  Not '\000' terminated */
   2663   short int n;         /* Length of the token text in bytes. */
   2664 } Token;
   2665 
   2666 /*
   2667 ** Given a input string (which is really one of the argv[] parameters
   2668 ** passed into xConnect or xCreate) split the string up into tokens.
   2669 ** Return an array of pointers to '\000' terminated strings, one string
   2670 ** for each non-whitespace token.
   2671 **
   2672 ** The returned array is terminated by a single NULL pointer.
   2673 **
   2674 ** Space to hold the returned array is obtained from a single
   2675 ** malloc and should be freed by passing the return value to free().
   2676 ** The individual strings within the token list are all a part of
   2677 ** the single memory allocation and will all be freed at once.
   2678 */
   2679 static char **tokenizeString(const char *z, int *pnToken){
   2680   int nToken = 0;
   2681   Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
   2682   int n = 1;
   2683   int e, i;
   2684   int totalSize = 0;
   2685   char **azToken;
   2686   char *zCopy;
   2687   while( n>0 ){
   2688     n = getToken(z, &e);
   2689     if( e!=TOKEN_SPACE ){
   2690       aToken[nToken].z = z;
   2691       aToken[nToken].n = n;
   2692       nToken++;
   2693       totalSize += n+1;
   2694     }
   2695     z += n;
   2696   }
   2697   azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
   2698   zCopy = (char*)&azToken[nToken];
   2699   nToken--;
   2700   for(i=0; i<nToken; i++){
   2701     azToken[i] = zCopy;
   2702     n = aToken[i].n;
   2703     memcpy(zCopy, aToken[i].z, n);
   2704     zCopy[n] = 0;
   2705     zCopy += n+1;
   2706   }
   2707   azToken[nToken] = 0;
   2708   sqlite3_free(aToken);
   2709   *pnToken = nToken;
   2710   return azToken;
   2711 }
   2712 
   2713 /*
   2714 ** Convert an SQL-style quoted string into a normal string by removing
   2715 ** the quote characters.  The conversion is done in-place.  If the
   2716 ** input does not begin with a quote character, then this routine
   2717 ** is a no-op.
   2718 **
   2719 ** Examples:
   2720 **
   2721 **     "abc"   becomes   abc
   2722 **     'xyz'   becomes   xyz
   2723 **     [pqr]   becomes   pqr
   2724 **     `mno`   becomes   mno
   2725 */
   2726 static void dequoteString(char *z){
   2727   int quote;
   2728   int i, j;
   2729   if( z==0 ) return;
   2730   quote = z[0];
   2731   switch( quote ){
   2732     case '\'':  break;
   2733     case '"':   break;
   2734     case '`':   break;                /* For MySQL compatibility */
   2735     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
   2736     default:    return;
   2737   }
   2738   for(i=1, j=0; z[i]; i++){
   2739     if( z[i]==quote ){
   2740       if( z[i+1]==quote ){
   2741         z[j++] = quote;
   2742         i++;
   2743       }else{
   2744         z[j++] = 0;
   2745         break;
   2746       }
   2747     }else{
   2748       z[j++] = z[i];
   2749     }
   2750   }
   2751 }
   2752 
   2753 /*
   2754 ** The input azIn is a NULL-terminated list of tokens.  Remove the first
   2755 ** token and all punctuation tokens.  Remove the quotes from
   2756 ** around string literal tokens.
   2757 **
   2758 ** Example:
   2759 **
   2760 **     input:      tokenize chinese ( 'simplifed' , 'mixed' )
   2761 **     output:     chinese simplifed mixed
   2762 **
   2763 ** Another example:
   2764 **
   2765 **     input:      delimiters ( '[' , ']' , '...' )
   2766 **     output:     [ ] ...
   2767 */
   2768 static void tokenListToIdList(char **azIn){
   2769   int i, j;
   2770   if( azIn ){
   2771     for(i=0, j=-1; azIn[i]; i++){
   2772       if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
   2773         dequoteString(azIn[i]);
   2774         if( j>=0 ){
   2775           azIn[j] = azIn[i];
   2776         }
   2777         j++;
   2778       }
   2779     }
   2780     azIn[j] = 0;
   2781   }
   2782 }
   2783 
   2784 
   2785 /*
   2786 ** Find the first alphanumeric token in the string zIn.  Null-terminate
   2787 ** this token.  Remove any quotation marks.  And return a pointer to
   2788 ** the result.
   2789 */
   2790 static char *firstToken(char *zIn, char **pzTail){
   2791   int n, ttype;
   2792   while(1){
   2793     n = getToken(zIn, &ttype);
   2794     if( ttype==TOKEN_SPACE ){
   2795       zIn += n;
   2796     }else if( ttype==TOKEN_EOF ){
   2797       *pzTail = zIn;
   2798       return 0;
   2799     }else{
   2800       zIn[n] = 0;
   2801       *pzTail = &zIn[1];
   2802       dequoteString(zIn);
   2803       return zIn;
   2804     }
   2805   }
   2806   /*NOTREACHED*/
   2807 }
   2808 
   2809 /* Return true if...
   2810 **
   2811 **   *  s begins with the string t, ignoring case
   2812 **   *  s is longer than t
   2813 **   *  The first character of s beyond t is not a alphanumeric
   2814 **
   2815 ** Ignore leading space in *s.
   2816 **
   2817 ** To put it another way, return true if the first token of
   2818 ** s[] is t[].
   2819 */
   2820 static int startsWith(const char *s, const char *t){
   2821   while( safe_isspace(*s) ){ s++; }
   2822   while( *t ){
   2823     if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
   2824   }
   2825   return *s!='_' && !safe_isalnum(*s);
   2826 }
   2827 
   2828 /*
   2829 ** An instance of this structure defines the "spec" of a
   2830 ** full text index.  This structure is populated by parseSpec
   2831 ** and use by fulltextConnect and fulltextCreate.
   2832 */
   2833 typedef struct TableSpec {
   2834   const char *zDb;         /* Logical database name */
   2835   const char *zName;       /* Name of the full-text index */
   2836   int nColumn;             /* Number of columns to be indexed */
   2837   char **azColumn;         /* Original names of columns to be indexed */
   2838   char **azContentColumn;  /* Column names for %_content */
   2839   char **azTokenizer;      /* Name of tokenizer and its arguments */
   2840 } TableSpec;
   2841 
   2842 /*
   2843 ** Reclaim all of the memory used by a TableSpec
   2844 */
   2845 static void clearTableSpec(TableSpec *p) {
   2846   sqlite3_free(p->azColumn);
   2847   sqlite3_free(p->azContentColumn);
   2848   sqlite3_free(p->azTokenizer);
   2849 }
   2850 
   2851 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
   2852  *
   2853  * CREATE VIRTUAL TABLE email
   2854  *        USING fts2(subject, body, tokenize mytokenizer(myarg))
   2855  *
   2856  * We return parsed information in a TableSpec structure.
   2857  *
   2858  */
   2859 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
   2860                      char**pzErr){
   2861   int i, n;
   2862   char *z, *zDummy;
   2863   char **azArg;
   2864   const char *zTokenizer = 0;    /* argv[] entry describing the tokenizer */
   2865 
   2866   assert( argc>=3 );
   2867   /* Current interface:
   2868   ** argv[0] - module name
   2869   ** argv[1] - database name
   2870   ** argv[2] - table name
   2871   ** argv[3..] - columns, optionally followed by tokenizer specification
   2872   **             and snippet delimiters specification.
   2873   */
   2874 
   2875   /* Make a copy of the complete argv[][] array in a single allocation.
   2876   ** The argv[][] array is read-only and transient.  We can write to the
   2877   ** copy in order to modify things and the copy is persistent.
   2878   */
   2879   CLEAR(pSpec);
   2880   for(i=n=0; i<argc; i++){
   2881     n += strlen(argv[i]) + 1;
   2882   }
   2883   azArg = sqlite3_malloc( sizeof(char*)*argc + n );
   2884   if( azArg==0 ){
   2885     return SQLITE_NOMEM;
   2886   }
   2887   z = (char*)&azArg[argc];
   2888   for(i=0; i<argc; i++){
   2889     azArg[i] = z;
   2890     strcpy(z, argv[i]);
   2891     z += strlen(z)+1;
   2892   }
   2893 
   2894   /* Identify the column names and the tokenizer and delimiter arguments
   2895   ** in the argv[][] array.
   2896   */
   2897   pSpec->zDb = azArg[1];
   2898   pSpec->zName = azArg[2];
   2899   pSpec->nColumn = 0;
   2900   pSpec->azColumn = azArg;
   2901   zTokenizer = "tokenize simple";
   2902   for(i=3; i<argc; ++i){
   2903     if( startsWith(azArg[i],"tokenize") ){
   2904       zTokenizer = azArg[i];
   2905     }else{
   2906       z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
   2907       pSpec->nColumn++;
   2908     }
   2909   }
   2910   if( pSpec->nColumn==0 ){
   2911     azArg[0] = "content";
   2912     pSpec->nColumn = 1;
   2913   }
   2914 
   2915   /*
   2916   ** Construct the list of content column names.
   2917   **
   2918   ** Each content column name will be of the form cNNAAAA
   2919   ** where NN is the column number and AAAA is the sanitized
   2920   ** column name.  "sanitized" means that special characters are
   2921   ** converted to "_".  The cNN prefix guarantees that all column
   2922   ** names are unique.
   2923   **
   2924   ** The AAAA suffix is not strictly necessary.  It is included
   2925   ** for the convenience of people who might examine the generated
   2926   ** %_content table and wonder what the columns are used for.
   2927   */
   2928   pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
   2929   if( pSpec->azContentColumn==0 ){
   2930     clearTableSpec(pSpec);
   2931     return SQLITE_NOMEM;
   2932   }
   2933   for(i=0; i<pSpec->nColumn; i++){
   2934     char *p;
   2935     pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
   2936     for (p = pSpec->azContentColumn[i]; *p ; ++p) {
   2937       if( !safe_isalnum(*p) ) *p = '_';
   2938     }
   2939   }
   2940 
   2941   /*
   2942   ** Parse the tokenizer specification string.
   2943   */
   2944   pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
   2945   tokenListToIdList(pSpec->azTokenizer);
   2946 
   2947   return SQLITE_OK;
   2948 }
   2949 
   2950 /*
   2951 ** Generate a CREATE TABLE statement that describes the schema of
   2952 ** the virtual table.  Return a pointer to this schema string.
   2953 **
   2954 ** Space is obtained from sqlite3_mprintf() and should be freed
   2955 ** using sqlite3_free().
   2956 */
   2957 static char *fulltextSchema(
   2958   int nColumn,                  /* Number of columns */
   2959   const char *const* azColumn,  /* List of columns */
   2960   const char *zTableName        /* Name of the table */
   2961 ){
   2962   int i;
   2963   char *zSchema, *zNext;
   2964   const char *zSep = "(";
   2965   zSchema = sqlite3_mprintf("CREATE TABLE x");
   2966   for(i=0; i<nColumn; i++){
   2967     zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
   2968     sqlite3_free(zSchema);
   2969     zSchema = zNext;
   2970     zSep = ",";
   2971   }
   2972   zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName);
   2973   sqlite3_free(zSchema);
   2974   return zNext;
   2975 }
   2976 
   2977 /*
   2978 ** Build a new sqlite3_vtab structure that will describe the
   2979 ** fulltext index defined by spec.
   2980 */
   2981 static int constructVtab(
   2982   sqlite3 *db,              /* The SQLite database connection */
   2983   fts2Hash *pHash,          /* Hash table containing tokenizers */
   2984   TableSpec *spec,          /* Parsed spec information from parseSpec() */
   2985   sqlite3_vtab **ppVTab,    /* Write the resulting vtab structure here */
   2986   char **pzErr              /* Write any error message here */
   2987 ){
   2988   int rc;
   2989   int n;
   2990   fulltext_vtab *v = 0;
   2991   const sqlite3_tokenizer_module *m = NULL;
   2992   char *schema;
   2993 
   2994   char const *zTok;         /* Name of tokenizer to use for this fts table */
   2995   int nTok;                 /* Length of zTok, including nul terminator */
   2996 
   2997   v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
   2998   if( v==0 ) return SQLITE_NOMEM;
   2999   CLEAR(v);
   3000   /* sqlite will initialize v->base */
   3001   v->db = db;
   3002   v->zDb = spec->zDb;       /* Freed when azColumn is freed */
   3003   v->zName = spec->zName;   /* Freed when azColumn is freed */
   3004   v->nColumn = spec->nColumn;
   3005   v->azContentColumn = spec->azContentColumn;
   3006   spec->azContentColumn = 0;
   3007   v->azColumn = spec->azColumn;
   3008   spec->azColumn = 0;
   3009 
   3010   if( spec->azTokenizer==0 ){
   3011     return SQLITE_NOMEM;
   3012   }
   3013 
   3014   zTok = spec->azTokenizer[0];
   3015   if( !zTok ){
   3016     zTok = "simple";
   3017   }
   3018   nTok = strlen(zTok)+1;
   3019 
   3020   m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok);
   3021   if( !m ){
   3022     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
   3023     rc = SQLITE_ERROR;
   3024     goto err;
   3025   }
   3026 
   3027   for(n=0; spec->azTokenizer[n]; n++){}
   3028   if( n ){
   3029     rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
   3030                     &v->pTokenizer);
   3031   }else{
   3032     rc = m->xCreate(0, 0, &v->pTokenizer);
   3033   }
   3034   if( rc!=SQLITE_OK ) goto err;
   3035   v->pTokenizer->pModule = m;
   3036 
   3037   /* TODO: verify the existence of backing tables foo_content, foo_term */
   3038 
   3039   schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
   3040                           spec->zName);
   3041   rc = sqlite3_declare_vtab(db, schema);
   3042   sqlite3_free(schema);
   3043   if( rc!=SQLITE_OK ) goto err;
   3044 
   3045   memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
   3046 
   3047   /* Indicate that the buffer is not live. */
   3048   v->nPendingData = -1;
   3049 
   3050   *ppVTab = &v->base;
   3051   TRACE(("FTS2 Connect %p\n", v));
   3052 
   3053   return rc;
   3054 
   3055 err:
   3056   fulltext_vtab_destroy(v);
   3057   return rc;
   3058 }
   3059 
   3060 static int fulltextConnect(
   3061   sqlite3 *db,
   3062   void *pAux,
   3063   int argc, const char *const*argv,
   3064   sqlite3_vtab **ppVTab,
   3065   char **pzErr
   3066 ){
   3067   TableSpec spec;
   3068   int rc = parseSpec(&spec, argc, argv, pzErr);
   3069   if( rc!=SQLITE_OK ) return rc;
   3070 
   3071   rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
   3072   clearTableSpec(&spec);
   3073   return rc;
   3074 }
   3075 
   3076 /* The %_content table holds the text of each document, with
   3077 ** the rowid used as the docid.
   3078 */
   3079 /* TODO(shess) This comment needs elaboration to match the updated
   3080 ** code.  Work it into the top-of-file comment at that time.
   3081 */
   3082 static int fulltextCreate(sqlite3 *db, void *pAux,
   3083                           int argc, const char * const *argv,
   3084                           sqlite3_vtab **ppVTab, char **pzErr){
   3085   int rc;
   3086   TableSpec spec;
   3087   StringBuffer schema;
   3088   TRACE(("FTS2 Create\n"));
   3089 
   3090   rc = parseSpec(&spec, argc, argv, pzErr);
   3091   if( rc!=SQLITE_OK ) return rc;
   3092 
   3093   initStringBuffer(&schema);
   3094   append(&schema, "CREATE TABLE %_content(");
   3095   appendList(&schema, spec.nColumn, spec.azContentColumn);
   3096   append(&schema, ")");
   3097   rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
   3098   stringBufferDestroy(&schema);
   3099   if( rc!=SQLITE_OK ) goto out;
   3100 
   3101   rc = sql_exec(db, spec.zDb, spec.zName,
   3102                 "create table %_segments(block blob);");
   3103   if( rc!=SQLITE_OK ) goto out;
   3104 
   3105   rc = sql_exec(db, spec.zDb, spec.zName,
   3106                 "create table %_segdir("
   3107                 "  level integer,"
   3108                 "  idx integer,"
   3109                 "  start_block integer,"
   3110                 "  leaves_end_block integer,"
   3111                 "  end_block integer,"
   3112                 "  root blob,"
   3113                 "  primary key(level, idx)"
   3114                 ");");
   3115   if( rc!=SQLITE_OK ) goto out;
   3116 
   3117   rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
   3118 
   3119 out:
   3120   clearTableSpec(&spec);
   3121   return rc;
   3122 }
   3123 
   3124 /* Decide how to handle an SQL query. */
   3125 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
   3126   int i;
   3127   TRACE(("FTS2 BestIndex\n"));
   3128 
   3129   for(i=0; i<pInfo->nConstraint; ++i){
   3130     const struct sqlite3_index_constraint *pConstraint;
   3131     pConstraint = &pInfo->aConstraint[i];
   3132     if( pConstraint->usable ) {
   3133       if( pConstraint->iColumn==-1 &&
   3134           pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
   3135         pInfo->idxNum = QUERY_ROWID;      /* lookup by rowid */
   3136         TRACE(("FTS2 QUERY_ROWID\n"));
   3137       } else if( pConstraint->iColumn>=0 &&
   3138                  pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
   3139         /* full-text search */
   3140         pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
   3141         TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
   3142       } else continue;
   3143 
   3144       pInfo->aConstraintUsage[i].argvIndex = 1;
   3145       pInfo->aConstraintUsage[i].omit = 1;
   3146 
   3147       /* An arbitrary value for now.
   3148        * TODO: Perhaps rowid matches should be considered cheaper than
   3149        * full-text searches. */
   3150       pInfo->estimatedCost = 1.0;
   3151 
   3152       return SQLITE_OK;
   3153     }
   3154   }
   3155   pInfo->idxNum = QUERY_GENERIC;
   3156   return SQLITE_OK;
   3157 }
   3158 
   3159 static int fulltextDisconnect(sqlite3_vtab *pVTab){
   3160   TRACE(("FTS2 Disconnect %p\n", pVTab));
   3161   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
   3162   return SQLITE_OK;
   3163 }
   3164 
   3165 static int fulltextDestroy(sqlite3_vtab *pVTab){
   3166   fulltext_vtab *v = (fulltext_vtab *)pVTab;
   3167   int rc;
   3168 
   3169   TRACE(("FTS2 Destroy %p\n", pVTab));
   3170   rc = sql_exec(v->db, v->zDb, v->zName,
   3171                 "drop table if exists %_content;"
   3172                 "drop table if exists %_segments;"
   3173                 "drop table if exists %_segdir;"
   3174                 );
   3175   if( rc!=SQLITE_OK ) return rc;
   3176 
   3177   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
   3178   return SQLITE_OK;
   3179 }
   3180 
   3181 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
   3182   fulltext_cursor *c;
   3183 
   3184   c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
   3185   if( c ){
   3186     memset(c, 0, sizeof(fulltext_cursor));
   3187     /* sqlite will initialize c->base */
   3188     *ppCursor = &c->base;
   3189     TRACE(("FTS2 Open %p: %p\n", pVTab, c));
   3190     return SQLITE_OK;
   3191   }else{
   3192     return SQLITE_NOMEM;
   3193   }
   3194 }
   3195 
   3196 
   3197 /* Free all of the dynamically allocated memory held by *q
   3198 */
   3199 static void queryClear(Query *q){
   3200   int i;
   3201   for(i = 0; i < q->nTerms; ++i){
   3202     sqlite3_free(q->pTerms[i].pTerm);
   3203   }
   3204   sqlite3_free(q->pTerms);
   3205   CLEAR(q);
   3206 }
   3207 
   3208 /* Free all of the dynamically allocated memory held by the
   3209 ** Snippet
   3210 */
   3211 static void snippetClear(Snippet *p){
   3212   sqlite3_free(p->aMatch);
   3213   sqlite3_free(p->zOffset);
   3214   sqlite3_free(p->zSnippet);
   3215   CLEAR(p);
   3216 }
   3217 /*
   3218 ** Append a single entry to the p->aMatch[] log.
   3219 */
   3220 static void snippetAppendMatch(
   3221   Snippet *p,               /* Append the entry to this snippet */
   3222   int iCol, int iTerm,      /* The column and query term */
   3223   int iStart, int nByte     /* Offset and size of the match */
   3224 ){
   3225   int i;
   3226   struct snippetMatch *pMatch;
   3227   if( p->nMatch+1>=p->nAlloc ){
   3228     p->nAlloc = p->nAlloc*2 + 10;
   3229     p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
   3230     if( p->aMatch==0 ){
   3231       p->nMatch = 0;
   3232       p->nAlloc = 0;
   3233       return;
   3234     }
   3235   }
   3236   i = p->nMatch++;
   3237   pMatch = &p->aMatch[i];
   3238   pMatch->iCol = iCol;
   3239   pMatch->iTerm = iTerm;
   3240   pMatch->iStart = iStart;
   3241   pMatch->nByte = nByte;
   3242 }
   3243 
   3244 /*
   3245 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
   3246 */
   3247 #define FTS2_ROTOR_SZ   (32)
   3248 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1)
   3249 
   3250 /*
   3251 ** Add entries to pSnippet->aMatch[] for every match that occurs against
   3252 ** document zDoc[0..nDoc-1] which is stored in column iColumn.
   3253 */
   3254 static void snippetOffsetsOfColumn(
   3255   Query *pQuery,
   3256   Snippet *pSnippet,
   3257   int iColumn,
   3258   const char *zDoc,
   3259   int nDoc
   3260 ){
   3261   const sqlite3_tokenizer_module *pTModule;  /* The tokenizer module */
   3262   sqlite3_tokenizer *pTokenizer;             /* The specific tokenizer */
   3263   sqlite3_tokenizer_cursor *pTCursor;        /* Tokenizer cursor */
   3264   fulltext_vtab *pVtab;                /* The full text index */
   3265   int nColumn;                         /* Number of columns in the index */
   3266   const QueryTerm *aTerm;              /* Query string terms */
   3267   int nTerm;                           /* Number of query string terms */
   3268   int i, j;                            /* Loop counters */
   3269   int rc;                              /* Return code */
   3270   unsigned int match, prevMatch;       /* Phrase search bitmasks */
   3271   const char *zToken;                  /* Next token from the tokenizer */
   3272   int nToken;                          /* Size of zToken */
   3273   int iBegin, iEnd, iPos;              /* Offsets of beginning and end */
   3274 
   3275   /* The following variables keep a circular buffer of the last
   3276   ** few tokens */
   3277   unsigned int iRotor = 0;             /* Index of current token */
   3278   int iRotorBegin[FTS2_ROTOR_SZ];      /* Beginning offset of token */
   3279   int iRotorLen[FTS2_ROTOR_SZ];        /* Length of token */
   3280 
   3281   pVtab = pQuery->pFts;
   3282   nColumn = pVtab->nColumn;
   3283   pTokenizer = pVtab->pTokenizer;
   3284   pTModule = pTokenizer->pModule;
   3285   rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
   3286   if( rc ) return;
   3287   pTCursor->pTokenizer = pTokenizer;
   3288   aTerm = pQuery->pTerms;
   3289   nTerm = pQuery->nTerms;
   3290   if( nTerm>=FTS2_ROTOR_SZ ){
   3291     nTerm = FTS2_ROTOR_SZ - 1;
   3292   }
   3293   prevMatch = 0;
   3294   while(1){
   3295     rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
   3296     if( rc ) break;
   3297     iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin;
   3298     iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin;
   3299     match = 0;
   3300     for(i=0; i<nTerm; i++){
   3301       int iCol;
   3302       iCol = aTerm[i].iColumn;
   3303       if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
   3304       if( aTerm[i].nTerm>nToken ) continue;
   3305       if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
   3306       assert( aTerm[i].nTerm<=nToken );
   3307       if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
   3308       if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
   3309       match |= 1<<i;
   3310       if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
   3311         for(j=aTerm[i].iPhrase-1; j>=0; j--){
   3312           int k = (iRotor-j) & FTS2_ROTOR_MASK;
   3313           snippetAppendMatch(pSnippet, iColumn, i-j,
   3314                 iRotorBegin[k], iRotorLen[k]);
   3315         }
   3316       }
   3317     }
   3318     prevMatch = match<<1;
   3319     iRotor++;
   3320   }
   3321   pTModule->xClose(pTCursor);
   3322 }
   3323 
   3324 
   3325 /*
   3326 ** Compute all offsets for the current row of the query.
   3327 ** If the offsets have already been computed, this routine is a no-op.
   3328 */
   3329 static void snippetAllOffsets(fulltext_cursor *p){
   3330   int nColumn;
   3331   int iColumn, i;
   3332   int iFirst, iLast;
   3333   fulltext_vtab *pFts;
   3334 
   3335   if( p->snippet.nMatch ) return;
   3336   if( p->q.nTerms==0 ) return;
   3337   pFts = p->q.pFts;
   3338   nColumn = pFts->nColumn;
   3339   iColumn = (p->iCursorType - QUERY_FULLTEXT);
   3340   if( iColumn<0 || iColumn>=nColumn ){
   3341     iFirst = 0;
   3342     iLast = nColumn-1;
   3343   }else{
   3344     iFirst = iColumn;
   3345     iLast = iColumn;
   3346   }
   3347   for(i=iFirst; i<=iLast; i++){
   3348     const char *zDoc;
   3349     int nDoc;
   3350     zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
   3351     nDoc = sqlite3_column_bytes(p->pStmt, i+1);
   3352     snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
   3353   }
   3354 }
   3355 
   3356 /*
   3357 ** Convert the information in the aMatch[] array of the snippet
   3358 ** into the string zOffset[0..nOffset-1].
   3359 */
   3360 static void snippetOffsetText(Snippet *p){
   3361   int i;
   3362   int cnt = 0;
   3363   StringBuffer sb;
   3364   char zBuf[200];
   3365   if( p->zOffset ) return;
   3366   initStringBuffer(&sb);
   3367   for(i=0; i<p->nMatch; i++){
   3368     struct snippetMatch *pMatch = &p->aMatch[i];
   3369     zBuf[0] = ' ';
   3370     sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
   3371         pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
   3372     append(&sb, zBuf);
   3373     cnt++;
   3374   }
   3375   p->zOffset = stringBufferData(&sb);
   3376   p->nOffset = stringBufferLength(&sb);
   3377 }
   3378 
   3379 /*
   3380 ** zDoc[0..nDoc-1] is phrase of text.  aMatch[0..nMatch-1] are a set
   3381 ** of matching words some of which might be in zDoc.  zDoc is column
   3382 ** number iCol.
   3383 **
   3384 ** iBreak is suggested spot in zDoc where we could begin or end an
   3385 ** excerpt.  Return a value similar to iBreak but possibly adjusted
   3386 ** to be a little left or right so that the break point is better.
   3387 */
   3388 static int wordBoundary(
   3389   int iBreak,                   /* The suggested break point */
   3390   const char *zDoc,             /* Document text */
   3391   int nDoc,                     /* Number of bytes in zDoc[] */
   3392   struct snippetMatch *aMatch,  /* Matching words */
   3393   int nMatch,                   /* Number of entries in aMatch[] */
   3394   int iCol                      /* The column number for zDoc[] */
   3395 ){
   3396   int i;
   3397   if( iBreak<=10 ){
   3398     return 0;
   3399   }
   3400   if( iBreak>=nDoc-10 ){
   3401     return nDoc;
   3402   }
   3403   for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
   3404   while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
   3405   if( i<nMatch ){
   3406     if( aMatch[i].iStart<iBreak+10 ){
   3407       return aMatch[i].iStart;
   3408     }
   3409     if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
   3410       return aMatch[i-1].iStart;
   3411     }
   3412   }
   3413   for(i=1; i<=10; i++){
   3414     if( safe_isspace(zDoc[iBreak-i]) ){
   3415       return iBreak - i + 1;
   3416     }
   3417     if( safe_isspace(zDoc[iBreak+i]) ){
   3418       return iBreak + i + 1;
   3419     }
   3420   }
   3421   return iBreak;
   3422 }
   3423 
   3424 
   3425 
   3426 /*
   3427 ** Allowed values for Snippet.aMatch[].snStatus
   3428 */
   3429 #define SNIPPET_IGNORE  0   /* It is ok to omit this match from the snippet */
   3430 #define SNIPPET_DESIRED 1   /* We want to include this match in the snippet */
   3431 
   3432 /*
   3433 ** Generate the text of a snippet.
   3434 */
   3435 static void snippetText(
   3436   fulltext_cursor *pCursor,   /* The cursor we need the snippet for */
   3437   const char *zStartMark,     /* Markup to appear before each match */
   3438   const char *zEndMark,       /* Markup to appear after each match */
   3439   const char *zEllipsis       /* Ellipsis mark */
   3440 ){
   3441   int i, j;
   3442   struct snippetMatch *aMatch;
   3443   int nMatch;
   3444   int nDesired;
   3445   StringBuffer sb;
   3446   int tailCol;
   3447   int tailOffset;
   3448   int iCol;
   3449   int nDoc;
   3450   const char *zDoc;
   3451   int iStart, iEnd;
   3452   int tailEllipsis = 0;
   3453   int iMatch;
   3454 
   3455 
   3456   sqlite3_free(pCursor->snippet.zSnippet);
   3457   pCursor->snippet.zSnippet = 0;
   3458   aMatch = pCursor->snippet.aMatch;
   3459   nMatch = pCursor->snippet.nMatch;
   3460   initStringBuffer(&sb);
   3461 
   3462   for(i=0; i<nMatch; i++){
   3463     aMatch[i].snStatus = SNIPPET_IGNORE;
   3464   }
   3465   nDesired = 0;
   3466   for(i=0; i<pCursor->q.nTerms; i++){
   3467     for(j=0; j<nMatch; j++){
   3468       if( aMatch[j].iTerm==i ){
   3469         aMatch[j].snStatus = SNIPPET_DESIRED;
   3470         nDesired++;
   3471         break;
   3472       }
   3473     }
   3474   }
   3475 
   3476   iMatch = 0;
   3477   tailCol = -1;
   3478   tailOffset = 0;
   3479   for(i=0; i<nMatch && nDesired>0; i++){
   3480     if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
   3481     nDesired--;
   3482     iCol = aMatch[i].iCol;
   3483     zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
   3484     nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
   3485     iStart = aMatch[i].iStart - 40;
   3486     iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
   3487     if( iStart<=10 ){
   3488       iStart = 0;
   3489     }
   3490     if( iCol==tailCol && iStart<=tailOffset+20 ){
   3491       iStart = tailOffset;
   3492     }
   3493     if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
   3494       trimWhiteSpace(&sb);
   3495       appendWhiteSpace(&sb);
   3496       append(&sb, zEllipsis);
   3497       appendWhiteSpace(&sb);
   3498     }
   3499     iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
   3500     iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
   3501     if( iEnd>=nDoc-10 ){
   3502       iEnd = nDoc;
   3503       tailEllipsis = 0;
   3504     }else{
   3505       tailEllipsis = 1;
   3506     }
   3507     while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
   3508     while( iStart<iEnd ){
   3509       while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
   3510              && aMatch[iMatch].iCol<=iCol ){
   3511         iMatch++;
   3512       }
   3513       if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
   3514              && aMatch[iMatch].iCol==iCol ){
   3515         nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
   3516         iStart = aMatch[iMatch].iStart;
   3517         append(&sb, zStartMark);
   3518         nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
   3519         append(&sb, zEndMark);
   3520         iStart += aMatch[iMatch].nByte;
   3521         for(j=iMatch+1; j<nMatch; j++){
   3522           if( aMatch[j].iTerm==aMatch[iMatch].iTerm
   3523               && aMatch[j].snStatus==SNIPPET_DESIRED ){
   3524             nDesired--;
   3525             aMatch[j].snStatus = SNIPPET_IGNORE;
   3526           }
   3527         }
   3528       }else{
   3529         nappend(&sb, &zDoc[iStart], iEnd - iStart);
   3530         iStart = iEnd;
   3531       }
   3532     }
   3533     tailCol = iCol;
   3534     tailOffset = iEnd;
   3535   }
   3536   trimWhiteSpace(&sb);
   3537   if( tailEllipsis ){
   3538     appendWhiteSpace(&sb);
   3539     append(&sb, zEllipsis);
   3540   }
   3541   pCursor->snippet.zSnippet = stringBufferData(&sb);
   3542   pCursor->snippet.nSnippet = stringBufferLength(&sb);
   3543 }
   3544 
   3545 
   3546 /*
   3547 ** Close the cursor.  For additional information see the documentation
   3548 ** on the xClose method of the virtual table interface.
   3549 */
   3550 static int fulltextClose(sqlite3_vtab_cursor *pCursor){
   3551   fulltext_cursor *c = (fulltext_cursor *) pCursor;
   3552   TRACE(("FTS2 Close %p\n", c));
   3553   sqlite3_finalize(c->pStmt);
   3554   queryClear(&c->q);
   3555   snippetClear(&c->snippet);
   3556   if( c->result.nData!=0 ) dlrDestroy(&c->reader);
   3557   dataBufferDestroy(&c->result);
   3558   sqlite3_free(c);
   3559   return SQLITE_OK;
   3560 }
   3561 
   3562 static int fulltextNext(sqlite3_vtab_cursor *pCursor){
   3563   fulltext_cursor *c = (fulltext_cursor *) pCursor;
   3564   int rc;
   3565 
   3566   TRACE(("FTS2 Next %p\n", pCursor));
   3567   snippetClear(&c->snippet);
   3568   if( c->iCursorType < QUERY_FULLTEXT ){
   3569     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
   3570     rc = sqlite3_step(c->pStmt);
   3571     switch( rc ){
   3572       case SQLITE_ROW:
   3573         c->eof = 0;
   3574         return SQLITE_OK;
   3575       case SQLITE_DONE:
   3576         c->eof = 1;
   3577         return SQLITE_OK;
   3578       default:
   3579         c->eof = 1;
   3580         return rc;
   3581     }
   3582   } else {  /* full-text query */
   3583     rc = sqlite3_reset(c->pStmt);
   3584     if( rc!=SQLITE_OK ) return rc;
   3585 
   3586     if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
   3587       c->eof = 1;
   3588       return SQLITE_OK;
   3589     }
   3590     rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
   3591     if( rc!=SQLITE_OK ) return rc;
   3592     rc = dlrStep(&c->reader);
   3593     if( rc!=SQLITE_OK ) return rc;
   3594     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
   3595     rc = sqlite3_step(c->pStmt);
   3596     if( rc==SQLITE_ROW ){   /* the case we expect */
   3597       c->eof = 0;
   3598       return SQLITE_OK;
   3599     }
   3600 
   3601     /* Corrupt if the index refers to missing document. */
   3602     if( rc==SQLITE_DONE ) return SQLITE_CORRUPT_BKPT;
   3603 
   3604     return rc;
   3605   }
   3606 }
   3607 
   3608 
   3609 /* TODO(shess) If we pushed LeafReader to the top of the file, or to
   3610 ** another file, term_select() could be pushed above
   3611 ** docListOfTerm().
   3612 */
   3613 static int termSelect(fulltext_vtab *v, int iColumn,
   3614                       const char *pTerm, int nTerm, int isPrefix,
   3615                       DocListType iType, DataBuffer *out);
   3616 
   3617 /* Return a DocList corresponding to the query term *pTerm.  If *pTerm
   3618 ** is the first term of a phrase query, go ahead and evaluate the phrase
   3619 ** query and return the doclist for the entire phrase query.
   3620 **
   3621 ** The resulting DL_DOCIDS doclist is stored in pResult, which is
   3622 ** overwritten.
   3623 */
   3624 static int docListOfTerm(
   3625   fulltext_vtab *v,   /* The full text index */
   3626   int iColumn,        /* column to restrict to.  No restriction if >=nColumn */
   3627   QueryTerm *pQTerm,  /* Term we are looking for, or 1st term of a phrase */
   3628   DataBuffer *pResult /* Write the result here */
   3629 ){
   3630   DataBuffer left, right, new;
   3631   int i, rc;
   3632 
   3633   /* No phrase search if no position info. */
   3634   assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
   3635 
   3636   /* This code should never be called with buffered updates. */
   3637   assert( v->nPendingData<0 );
   3638 
   3639   dataBufferInit(&left, 0);
   3640   rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
   3641                   0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left);
   3642   if( rc ) return rc;
   3643   for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
   3644     dataBufferInit(&right, 0);
   3645     rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
   3646                     pQTerm[i].isPrefix, DL_POSITIONS, &right);
   3647     if( rc ){
   3648       dataBufferDestroy(&left);
   3649       return rc;
   3650     }
   3651     dataBufferInit(&new, 0);
   3652     rc = docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
   3653                             i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new);
   3654     dataBufferDestroy(&left);
   3655     dataBufferDestroy(&right);
   3656     if( rc!=SQLITE_OK ){
   3657       dataBufferDestroy(&new);
   3658       return rc;
   3659     }
   3660     left = new;
   3661   }
   3662   *pResult = left;
   3663   return rc;
   3664 }
   3665 
   3666 /* Add a new term pTerm[0..nTerm-1] to the query *q.
   3667 */
   3668 static void queryAdd(Query *q, const char *pTerm, int nTerm){
   3669   QueryTerm *t;
   3670   ++q->nTerms;
   3671   q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
   3672   if( q->pTerms==0 ){
   3673     q->nTerms = 0;
   3674     return;
   3675   }
   3676   t = &q->pTerms[q->nTerms - 1];
   3677   CLEAR(t);
   3678   t->pTerm = sqlite3_malloc(nTerm+1);
   3679   memcpy(t->pTerm, pTerm, nTerm);
   3680   t->pTerm[nTerm] = 0;
   3681   t->nTerm = nTerm;
   3682   t->isOr = q->nextIsOr;
   3683   t->isPrefix = 0;
   3684   q->nextIsOr = 0;
   3685   t->iColumn = q->nextColumn;
   3686   q->nextColumn = q->dfltColumn;
   3687 }
   3688 
   3689 /*
   3690 ** Check to see if the string zToken[0...nToken-1] matches any
   3691 ** column name in the virtual table.   If it does,
   3692 ** return the zero-indexed column number.  If not, return -1.
   3693 */
   3694 static int checkColumnSpecifier(
   3695   fulltext_vtab *pVtab,    /* The virtual table */
   3696   const char *zToken,      /* Text of the token */
   3697   int nToken               /* Number of characters in the token */
   3698 ){
   3699   int i;
   3700   for(i=0; i<pVtab->nColumn; i++){
   3701     if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
   3702         && pVtab->azColumn[i][nToken]==0 ){
   3703       return i;
   3704     }
   3705   }
   3706   return -1;
   3707 }
   3708 
   3709 /*
   3710 ** Parse the text at pSegment[0..nSegment-1].  Add additional terms
   3711 ** to the query being assemblied in pQuery.
   3712 **
   3713 ** inPhrase is true if pSegment[0..nSegement-1] is contained within
   3714 ** double-quotes.  If inPhrase is true, then the first term
   3715 ** is marked with the number of terms in the phrase less one and
   3716 ** OR and "-" syntax is ignored.  If inPhrase is false, then every
   3717 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
   3718 */
   3719 static int tokenizeSegment(
   3720   sqlite3_tokenizer *pTokenizer,          /* The tokenizer to use */
   3721   const char *pSegment, int nSegment,     /* Query expression being parsed */
   3722   int inPhrase,                           /* True if within "..." */
   3723   Query *pQuery                           /* Append results here */
   3724 ){
   3725   const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
   3726   sqlite3_tokenizer_cursor *pCursor;
   3727   int firstIndex = pQuery->nTerms;
   3728   int iCol;
   3729   int nTerm = 1;
   3730   int iEndLast = -1;
   3731 
   3732   int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
   3733   if( rc!=SQLITE_OK ) return rc;
   3734   pCursor->pTokenizer = pTokenizer;
   3735 
   3736   while( 1 ){
   3737     const char *pToken;
   3738     int nToken, iBegin, iEnd, iPos;
   3739 
   3740     rc = pModule->xNext(pCursor,
   3741                         &pToken, &nToken,
   3742                         &iBegin, &iEnd, &iPos);
   3743     if( rc!=SQLITE_OK ) break;
   3744     if( !inPhrase &&
   3745         pSegment[iEnd]==':' &&
   3746          (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
   3747       pQuery->nextColumn = iCol;
   3748       continue;
   3749     }
   3750     if( !inPhrase && pQuery->nTerms>0 && nToken==2
   3751          && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){
   3752       pQuery->nextIsOr = 1;
   3753       continue;
   3754     }
   3755 
   3756     /*
   3757      * The ICU tokenizer considers '*' a break character, so the code below
   3758      * sets isPrefix correctly, but since that code doesn't eat the '*', the
   3759      * ICU tokenizer returns it as the next token.  So eat it here until a
   3760      * better solution presents itself.
   3761      */
   3762     if( pQuery->nTerms>0 && nToken==1 && pSegment[iBegin]=='*' &&
   3763         iEndLast==iBegin){
   3764       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
   3765       continue;
   3766     }
   3767     iEndLast = iEnd;
   3768 
   3769     queryAdd(pQuery, pToken, nToken);
   3770     if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
   3771       pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
   3772     }
   3773     if( iEnd<nSegment && pSegment[iEnd]=='*' ){
   3774       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
   3775     }
   3776     pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
   3777     if( inPhrase ){
   3778       nTerm++;
   3779     }
   3780   }
   3781 
   3782   if( inPhrase && pQuery->nTerms>firstIndex ){
   3783     pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
   3784   }
   3785 
   3786   return pModule->xClose(pCursor);
   3787 }
   3788 
   3789 /* Parse a query string, yielding a Query object pQuery.
   3790 **
   3791 ** The calling function will need to queryClear() to clean up
   3792 ** the dynamically allocated memory held by pQuery.
   3793 */
   3794 static int parseQuery(
   3795   fulltext_vtab *v,        /* The fulltext index */
   3796   const char *zInput,      /* Input text of the query string */
   3797   int nInput,              /* Size of the input text */
   3798   int dfltColumn,          /* Default column of the index to match against */
   3799   Query *pQuery            /* Write the parse results here. */
   3800 ){
   3801   int iInput, inPhrase = 0;
   3802 
   3803   if( zInput==0 ) nInput = 0;
   3804   if( nInput<0 ) nInput = strlen(zInput);
   3805   pQuery->nTerms = 0;
   3806   pQuery->pTerms = NULL;
   3807   pQuery->nextIsOr = 0;
   3808   pQuery->nextColumn = dfltColumn;
   3809   pQuery->dfltColumn = dfltColumn;
   3810   pQuery->pFts = v;
   3811 
   3812   for(iInput=0; iInput<nInput; ++iInput){
   3813     int i;
   3814     for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
   3815     if( i>iInput ){
   3816       tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
   3817                        pQuery);
   3818     }
   3819     iInput = i;
   3820     if( i<nInput ){
   3821       assert( zInput[i]=='"' );
   3822       inPhrase = !inPhrase;
   3823     }
   3824   }
   3825 
   3826   if( inPhrase ){
   3827     /* unmatched quote */
   3828     queryClear(pQuery);
   3829     return SQLITE_ERROR;
   3830   }
   3831   return SQLITE_OK;
   3832 }
   3833 
   3834 /* TODO(shess) Refactor the code to remove this forward decl. */
   3835 static int flushPendingTerms(fulltext_vtab *v);
   3836 
   3837 /* Perform a full-text query using the search expression in
   3838 ** zInput[0..nInput-1].  Return a list of matching documents
   3839 ** in pResult.
   3840 **
   3841 ** Queries must match column iColumn.  Or if iColumn>=nColumn
   3842 ** they are allowed to match against any column.
   3843 */
   3844 static int fulltextQuery(
   3845   fulltext_vtab *v,      /* The full text index */
   3846   int iColumn,           /* Match against this column by default */
   3847   const char *zInput,    /* The query string */
   3848   int nInput,            /* Number of bytes in zInput[] */
   3849   DataBuffer *pResult,   /* Write the result doclist here */
   3850   Query *pQuery          /* Put parsed query string here */
   3851 ){
   3852   int i, iNext, rc;
   3853   DataBuffer left, right, or, new;
   3854   int nNot = 0;
   3855   QueryTerm *aTerm;
   3856 
   3857   /* TODO(shess) Instead of flushing pendingTerms, we could query for
   3858   ** the relevant term and merge the doclist into what we receive from
   3859   ** the database.  Wait and see if this is a common issue, first.
   3860   **
   3861   ** A good reason not to flush is to not generate update-related
   3862   ** error codes from here.
   3863   */
   3864 
   3865   /* Flush any buffered updates before executing the query. */
   3866   rc = flushPendingTerms(v);
   3867   if( rc!=SQLITE_OK ) return rc;
   3868 
   3869   /* TODO(shess) I think that the queryClear() calls below are not
   3870   ** necessary, because fulltextClose() already clears the query.
   3871   */
   3872   rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
   3873   if( rc!=SQLITE_OK ) return rc;
   3874 
   3875   /* Empty or NULL queries return no results. */
   3876   if( pQuery->nTerms==0 ){
   3877     dataBufferInit(pResult, 0);
   3878     return SQLITE_OK;
   3879   }
   3880 
   3881   /* Merge AND terms. */
   3882   /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
   3883   aTerm = pQuery->pTerms;
   3884   for(i = 0; i<pQuery->nTerms; i=iNext){
   3885     if( aTerm[i].isNot ){
   3886       /* Handle all NOT terms in a separate pass */
   3887       nNot++;
   3888       iNext = i + aTerm[i].nPhrase+1;
   3889       continue;
   3890     }
   3891     iNext = i + aTerm[i].nPhrase + 1;
   3892     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
   3893     if( rc ){
   3894       if( i!=nNot ) dataBufferDestroy(&left);
   3895       queryClear(pQuery);
   3896       return rc;
   3897     }
   3898     while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
   3899       rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
   3900       iNext += aTerm[iNext].nPhrase + 1;
   3901       if( rc ){
   3902         if( i!=nNot ) dataBufferDestroy(&left);
   3903         dataBufferDestroy(&right);
   3904         queryClear(pQuery);
   3905         return rc;
   3906       }
   3907       dataBufferInit(&new, 0);
   3908       rc = docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
   3909       dataBufferDestroy(&right);
   3910       dataBufferDestroy(&or);
   3911       if( rc!=SQLITE_OK ){
   3912         if( i!=nNot ) dataBufferDestroy(&left);
   3913         queryClear(pQuery);
   3914         dataBufferDestroy(&new);
   3915         return rc;
   3916       }
   3917       right = new;
   3918     }
   3919     if( i==nNot ){           /* first term processed. */
   3920       left = right;
   3921     }else{
   3922       dataBufferInit(&new, 0);
   3923       rc = docListAndMerge(left.pData, left.nData,
   3924                            right.pData, right.nData, &new);
   3925       dataBufferDestroy(&right);
   3926       dataBufferDestroy(&left);
   3927       if( rc!=SQLITE_OK ){
   3928         queryClear(pQuery);
   3929         dataBufferDestroy(&new);
   3930         return rc;
   3931       }
   3932       left = new;
   3933     }
   3934   }
   3935 
   3936   if( nNot==pQuery->nTerms ){
   3937     /* We do not yet know how to handle a query of only NOT terms */
   3938     return SQLITE_ERROR;
   3939   }
   3940 
   3941   /* Do the EXCEPT terms */
   3942   for(i=0; i<pQuery->nTerms;  i += aTerm[i].nPhrase + 1){
   3943     if( !aTerm[i].isNot ) continue;
   3944     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
   3945     if( rc ){
   3946       queryClear(pQuery);
   3947       dataBufferDestroy(&left);
   3948       return rc;
   3949     }
   3950     dataBufferInit(&new, 0);
   3951     rc = docListExceptMerge(left.pData, left.nData,
   3952                             right.pData, right.nData, &new);
   3953     dataBufferDestroy(&right);
   3954     dataBufferDestroy(&left);
   3955     if( rc!=SQLITE_OK ){
   3956       queryClear(pQuery);
   3957       dataBufferDestroy(&new);
   3958       return rc;
   3959     }
   3960     left = new;
   3961   }
   3962 
   3963   *pResult = left;
   3964   return rc;
   3965 }
   3966 
   3967 /*
   3968 ** This is the xFilter interface for the virtual table.  See
   3969 ** the virtual table xFilter method documentation for additional
   3970 ** information.
   3971 **
   3972 ** If idxNum==QUERY_GENERIC then do a full table scan against
   3973 ** the %_content table.
   3974 **
   3975 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry
   3976 ** in the %_content table.
   3977 **
   3978 ** If idxNum>=QUERY_FULLTEXT then use the full text index.  The
   3979 ** column on the left-hand side of the MATCH operator is column
   3980 ** number idxNum-QUERY_FULLTEXT, 0 indexed.  argv[0] is the right-hand
   3981 ** side of the MATCH operator.
   3982 */
   3983 /* TODO(shess) Upgrade the cursor initialization and destruction to
   3984 ** account for fulltextFilter() being called multiple times on the
   3985 ** same cursor.  The current solution is very fragile.  Apply fix to
   3986 ** fts2 as appropriate.
   3987 */
   3988 static int fulltextFilter(
   3989   sqlite3_vtab_cursor *pCursor,     /* The cursor used for this query */
   3990   int idxNum, const char *idxStr,   /* Which indexing scheme to use */
   3991   int argc, sqlite3_value **argv    /* Arguments for the indexing scheme */
   3992 ){
   3993   fulltext_cursor *c = (fulltext_cursor *) pCursor;
   3994   fulltext_vtab *v = cursor_vtab(c);
   3995   int rc;
   3996 
   3997   TRACE(("FTS2 Filter %p\n",pCursor));
   3998 
   3999   /* If the cursor has a statement that was not prepared according to
   4000   ** idxNum, clear it.  I believe all calls to fulltextFilter with a
   4001   ** given cursor will have the same idxNum , but in this case it's
   4002   ** easy to be safe.
   4003   */
   4004   if( c->pStmt && c->iCursorType!=idxNum ){
   4005     sqlite3_finalize(c->pStmt);
   4006     c->pStmt = NULL;
   4007   }
   4008 
   4009   /* Get a fresh statement appropriate to idxNum. */
   4010   /* TODO(shess): Add a prepared-statement cache in the vt structure.
   4011   ** The cache must handle multiple open cursors.  Easier to cache the
   4012   ** statement variants at the vt to reduce malloc/realloc/free here.
   4013   ** Or we could have a StringBuffer variant which allowed stack
   4014   ** construction for small values.
   4015   */
   4016   if( !c->pStmt ){
   4017     char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s",
   4018                                  idxNum==QUERY_GENERIC ? "" : "where rowid=?");
   4019     rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql);
   4020     sqlite3_free(zSql);
   4021     if( rc!=SQLITE_OK ) return rc;
   4022     c->iCursorType = idxNum;
   4023   }else{
   4024     sqlite3_reset(c->pStmt);
   4025     assert( c->iCursorType==idxNum );
   4026   }
   4027 
   4028   switch( idxNum ){
   4029     case QUERY_GENERIC:
   4030       break;
   4031 
   4032     case QUERY_ROWID:
   4033       rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
   4034       if( rc!=SQLITE_OK ) return rc;
   4035       break;
   4036 
   4037     default:   /* full-text search */
   4038     {
   4039       const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
   4040       assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
   4041       assert( argc==1 );
   4042       queryClear(&c->q);
   4043       if( c->result.nData!=0 ){
   4044         /* This case happens if the same cursor is used repeatedly. */
   4045         dlrDestroy(&c->reader);
   4046         dataBufferReset(&c->result);
   4047       }else{
   4048         dataBufferInit(&c->result, 0);
   4049       }
   4050       rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
   4051       if( rc!=SQLITE_OK ) return rc;
   4052       if( c->result.nData!=0 ){
   4053         rc = dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
   4054         if( rc!=SQLITE_OK ) return rc;
   4055       }
   4056       break;
   4057     }
   4058   }
   4059 
   4060   return fulltextNext(pCursor);
   4061 }
   4062 
   4063 /* This is the xEof method of the virtual table.  The SQLite core
   4064 ** calls this routine to find out if it has reached the end of
   4065 ** a query's results set.
   4066 */
   4067 static int fulltextEof(sqlite3_vtab_cursor *pCursor){
   4068   fulltext_cursor *c = (fulltext_cursor *) pCursor;
   4069   return c->eof;
   4070 }
   4071 
   4072 /* This is the xColumn method of the virtual table.  The SQLite
   4073 ** core calls this method during a query when it needs the value
   4074 ** of a column from the virtual table.  This method needs to use
   4075 ** one of the sqlite3_result_*() routines to store the requested
   4076 ** value back in the pContext.
   4077 */
   4078 static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
   4079                           sqlite3_context *pContext, int idxCol){
   4080   fulltext_cursor *c = (fulltext_cursor *) pCursor;
   4081   fulltext_vtab *v = cursor_vtab(c);
   4082 
   4083   if( idxCol<v->nColumn ){
   4084     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
   4085     sqlite3_result_value(pContext, pVal);
   4086   }else if( idxCol==v->nColumn ){
   4087     /* The extra column whose name is the same as the table.
   4088     ** Return a blob which is a pointer to the cursor
   4089     */
   4090     sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
   4091   }
   4092   return SQLITE_OK;
   4093 }
   4094 
   4095 /* This is the xRowid method.  The SQLite core calls this routine to
   4096 ** retrive the rowid for the current row of the result set.  The
   4097 ** rowid should be written to *pRowid.
   4098 */
   4099 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
   4100   fulltext_cursor *c = (fulltext_cursor *) pCursor;
   4101 
   4102   *pRowid = sqlite3_column_int64(c->pStmt, 0);
   4103   return SQLITE_OK;
   4104 }
   4105 
   4106 /* Add all terms in [zText] to pendingTerms table.  If [iColumn] > 0,
   4107 ** we also store positions and offsets in the hash table using that
   4108 ** column number.
   4109 */
   4110 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
   4111                       const char *zText, int iColumn){
   4112   sqlite3_tokenizer *pTokenizer = v->pTokenizer;
   4113   sqlite3_tokenizer_cursor *pCursor;
   4114   const char *pToken;
   4115   int nTokenBytes;
   4116   int iStartOffset, iEndOffset, iPosition;
   4117   int rc;
   4118 
   4119   rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
   4120   if( rc!=SQLITE_OK ) return rc;
   4121 
   4122   pCursor->pTokenizer = pTokenizer;
   4123   while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
   4124                                                    &pToken, &nTokenBytes,
   4125                                                    &iStartOffset, &iEndOffset,
   4126                                                    &iPosition)) ){
   4127     DLCollector *p;
   4128     int nData;                   /* Size of doclist before our update. */
   4129 
   4130     /* Positions can't be negative; we use -1 as a terminator
   4131      * internally.  Token can't be NULL or empty. */
   4132     if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
   4133       rc = SQLITE_ERROR;
   4134       break;
   4135     }
   4136 
   4137     p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes);
   4138     if( p==NULL ){
   4139       nData = 0;
   4140       p = dlcNew(iDocid, DL_DEFAULT);
   4141       fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
   4142 
   4143       /* Overhead for our hash table entry, the key, and the value. */
   4144       v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes;
   4145     }else{
   4146       nData = p->b.nData;
   4147       if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
   4148     }
   4149     if( iColumn>=0 ){
   4150       dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
   4151     }
   4152 
   4153     /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
   4154     v->nPendingData += p->b.nData-nData;
   4155   }
   4156 
   4157   /* TODO(shess) Check return?  Should this be able to cause errors at
   4158   ** this point?  Actually, same question about sqlite3_finalize(),
   4159   ** though one could argue that failure there means that the data is
   4160   ** not durable.  *ponder*
   4161   */
   4162   pTokenizer->pModule->xClose(pCursor);
   4163   if( SQLITE_DONE == rc ) return SQLITE_OK;
   4164   return rc;
   4165 }
   4166 
   4167 /* Add doclists for all terms in [pValues] to pendingTerms table. */
   4168 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid,
   4169                        sqlite3_value **pValues){
   4170   int i;
   4171   for(i = 0; i < v->nColumn ; ++i){
   4172     char *zText = (char*)sqlite3_value_text(pValues[i]);
   4173     int rc = buildTerms(v, iRowid, zText, i);
   4174     if( rc!=SQLITE_OK ) return rc;
   4175   }
   4176   return SQLITE_OK;
   4177 }
   4178 
   4179 /* Add empty doclists for all terms in the given row's content to
   4180 ** pendingTerms.
   4181 */
   4182 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){
   4183   const char **pValues;
   4184   int i, rc;
   4185 
   4186   /* TODO(shess) Should we allow such tables at all? */
   4187   if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
   4188 
   4189   rc = content_select(v, iRowid, &pValues);
   4190   if( rc!=SQLITE_OK ) return rc;
   4191 
   4192   for(i = 0 ; i < v->nColumn; ++i) {
   4193     rc = buildTerms(v, iRowid, pValues[i], -1);
   4194     if( rc!=SQLITE_OK ) break;
   4195   }
   4196 
   4197   freeStringArray(v->nColumn, pValues);
   4198   return SQLITE_OK;
   4199 }
   4200 
   4201 /* TODO(shess) Refactor the code to remove this forward decl. */
   4202 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
   4203 
   4204 /* Insert a row into the %_content table; set *piRowid to be the ID of the
   4205 ** new row.  Add doclists for terms to pendingTerms.
   4206 */
   4207 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid,
   4208                         sqlite3_value **pValues, sqlite_int64 *piRowid){
   4209   int rc;
   4210 
   4211   rc = content_insert(v, pRequestRowid, pValues);  /* execute an SQL INSERT */
   4212   if( rc!=SQLITE_OK ) return rc;
   4213 
   4214   *piRowid = sqlite3_last_insert_rowid(v->db);
   4215   rc = initPendingTerms(v, *piRowid);
   4216   if( rc!=SQLITE_OK ) return rc;
   4217 
   4218   return insertTerms(v, *piRowid, pValues);
   4219 }
   4220 
   4221 /* Delete a row from the %_content table; add empty doclists for terms
   4222 ** to pendingTerms.
   4223 */
   4224 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
   4225   int rc = initPendingTerms(v, iRow);
   4226   if( rc!=SQLITE_OK ) return rc;
   4227 
   4228   rc = deleteTerms(v, iRow);
   4229   if( rc!=SQLITE_OK ) return rc;
   4230 
   4231   return content_delete(v, iRow);  /* execute an SQL DELETE */
   4232 }
   4233 
   4234 /* Update a row in the %_content table; add delete doclists to
   4235 ** pendingTerms for old terms not in the new data, add insert doclists
   4236 ** to pendingTerms for terms in the new data.
   4237 */
   4238 static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
   4239                         sqlite3_value **pValues){
   4240   int rc = initPendingTerms(v, iRow);
   4241   if( rc!=SQLITE_OK ) return rc;
   4242 
   4243   /* Generate an empty doclist for each term that previously appeared in this
   4244    * row. */
   4245   rc = deleteTerms(v, iRow);
   4246   if( rc!=SQLITE_OK ) return rc;
   4247 
   4248   rc = content_update(v, pValues, iRow);  /* execute an SQL UPDATE */
   4249   if( rc!=SQLITE_OK ) return rc;
   4250 
   4251   /* Now add positions for terms which appear in the updated row. */
   4252   return insertTerms(v, iRow, pValues);
   4253 }
   4254 
   4255 /*******************************************************************/
   4256 /* InteriorWriter is used to collect terms and block references into
   4257 ** interior nodes in %_segments.  See commentary at top of file for
   4258 ** format.
   4259 */
   4260 
   4261 /* How large interior nodes can grow. */
   4262 #define INTERIOR_MAX 2048
   4263 
   4264 /* Minimum number of terms per interior node (except the root). This
   4265 ** prevents large terms from making the tree too skinny - must be >0
   4266 ** so that the tree always makes progress.  Note that the min tree
   4267 ** fanout will be INTERIOR_MIN_TERMS+1.
   4268 */
   4269 #define INTERIOR_MIN_TERMS 7
   4270 #if INTERIOR_MIN_TERMS<1
   4271 # error INTERIOR_MIN_TERMS must be greater than 0.
   4272 #endif
   4273 
   4274 /* ROOT_MAX controls how much data is stored inline in the segment
   4275 ** directory.
   4276 */
   4277 /* TODO(shess) Push ROOT_MAX down to whoever is writing things.  It's
   4278 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
   4279 ** can both see it, but if the caller passed it in, we wouldn't even
   4280 ** need a define.
   4281 */
   4282 #define ROOT_MAX 1024
   4283 #if ROOT_MAX<VARINT_MAX*2
   4284 # error ROOT_MAX must have enough space for a header.
   4285 #endif
   4286 
   4287 /* InteriorBlock stores a linked-list of interior blocks while a lower
   4288 ** layer is being constructed.
   4289 */
   4290 typedef struct InteriorBlock {
   4291   DataBuffer term;           /* Leftmost term in block's subtree. */
   4292   DataBuffer data;           /* Accumulated data for the block. */
   4293   struct InteriorBlock *next;
   4294 } InteriorBlock;
   4295 
   4296 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
   4297                                        const char *pTerm, int nTerm){
   4298   InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
   4299   char c[VARINT_MAX+VARINT_MAX];
   4300   int n;
   4301 
   4302   if( block ){
   4303     memset(block, 0, sizeof(*block));
   4304     dataBufferInit(&block->term, 0);
   4305     dataBufferReplace(&block->term, pTerm, nTerm);
   4306 
   4307     n = putVarint(c, iHeight);
   4308     n += putVarint(c+n, iChildBlock);
   4309     dataBufferInit(&block->data, INTERIOR_MAX);
   4310     dataBufferReplace(&block->data, c, n);
   4311   }
   4312   return block;
   4313 }
   4314 
   4315 #ifndef NDEBUG
   4316 /* Verify that the data is readable as an interior node. */
   4317 static void interiorBlockValidate(InteriorBlock *pBlock){
   4318   const char *pData = pBlock->data.pData;
   4319   int nData = pBlock->data.nData;
   4320   int n, iDummy;
   4321   sqlite_int64 iBlockid;
   4322 
   4323   assert( nData>0 );
   4324   assert( pData!=0 );
   4325   assert( pData+nData>pData );
   4326 
   4327   /* Must lead with height of node as a varint(n), n>0 */
   4328   n = getVarint32(pData, &iDummy);
   4329   assert( n>0 );
   4330   assert( iDummy>0 );
   4331   assert( n<nData );
   4332   pData += n;
   4333   nData -= n;
   4334 
   4335   /* Must contain iBlockid. */
   4336   n = getVarint(pData, &iBlockid);
   4337   assert( n>0 );
   4338   assert( n<=nData );
   4339   pData += n;
   4340   nData -= n;
   4341 
   4342   /* Zero or more terms of positive length */
   4343   if( nData!=0 ){
   4344     /* First term is not delta-encoded. */
   4345     n = getVarint32(pData, &iDummy);
   4346     assert( n>0 );
   4347     assert( iDummy>0 );
   4348     assert( n+iDummy>0);
   4349     assert( n+iDummy<=nData );
   4350     pData += n+iDummy;
   4351     nData -= n+iDummy;
   4352 
   4353     /* Following terms delta-encoded. */
   4354     while( nData!=0 ){
   4355       /* Length of shared prefix. */
   4356       n = getVarint32(pData, &iDummy);
   4357       assert( n>0 );
   4358       assert( iDummy>=0 );
   4359       assert( n<nData );
   4360       pData += n;
   4361       nData -= n;
   4362 
   4363       /* Length and data of distinct suffix. */
   4364       n = getVarint32(pData, &iDummy);
   4365       assert( n>0 );
   4366       assert( iDummy>0 );
   4367       assert( n+iDummy>0);
   4368       assert( n+iDummy<=nData );
   4369       pData += n+iDummy;
   4370       nData -= n+iDummy;
   4371     }
   4372   }
   4373 }
   4374 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
   4375 #else
   4376 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
   4377 #endif
   4378 
   4379 typedef struct InteriorWriter {
   4380   int iHeight;                   /* from 0 at leaves. */
   4381   InteriorBlock *first, *last;
   4382   struct InteriorWriter *parentWriter;
   4383 
   4384   DataBuffer term;               /* Last term written to block "last". */
   4385   sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
   4386 #ifndef NDEBUG
   4387   sqlite_int64 iLastChildBlock;  /* for consistency checks. */
   4388 #endif
   4389 } InteriorWriter;
   4390 
   4391 /* Initialize an interior node where pTerm[nTerm] marks the leftmost
   4392 ** term in the tree.  iChildBlock is the leftmost child block at the
   4393 ** next level down the tree.
   4394 */
   4395 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
   4396                                sqlite_int64 iChildBlock,
   4397                                InteriorWriter *pWriter){
   4398   InteriorBlock *block;
   4399   assert( iHeight>0 );
   4400   CLEAR(pWriter);
   4401 
   4402   pWriter->iHeight = iHeight;
   4403   pWriter->iOpeningChildBlock = iChildBlock;
   4404 #ifndef NDEBUG
   4405   pWriter->iLastChildBlock = iChildBlock;
   4406 #endif
   4407   block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
   4408   pWriter->last = pWriter->first = block;
   4409   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
   4410   dataBufferInit(&pWriter->term, 0);
   4411 }
   4412 
   4413 /* Append the child node rooted at iChildBlock to the interior node,
   4414 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
   4415 */
   4416 static void interiorWriterAppend(InteriorWriter *pWriter,
   4417                                  const char *pTerm, int nTerm,
   4418                                  sqlite_int64 iChildBlock){
   4419   char c[VARINT_MAX+VARINT_MAX];
   4420   int n, nPrefix = 0;
   4421 
   4422   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
   4423 
   4424   /* The first term written into an interior node is actually
   4425   ** associated with the second child added (the first child was added
   4426   ** in interiorWriterInit, or in the if clause at the bottom of this
   4427   ** function).  That term gets encoded straight up, with nPrefix left
   4428   ** at 0.
   4429   */
   4430   if( pWriter->term.nData==0 ){
   4431     n = putVarint(c, nTerm);
   4432   }else{
   4433     while( nPrefix<pWriter->term.nData &&
   4434            pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
   4435       nPrefix++;
   4436     }
   4437 
   4438     n = putVarint(c, nPrefix);
   4439     n += putVarint(c+n, nTerm-nPrefix);
   4440   }
   4441 
   4442 #ifndef NDEBUG
   4443   pWriter->iLastChildBlock++;
   4444 #endif
   4445   assert( pWriter->iLastChildBlock==iChildBlock );
   4446 
   4447   /* Overflow to a new block if the new term makes the current block
   4448   ** too big, and the current block already has enough terms.
   4449   */
   4450   if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
   4451       iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
   4452     pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
   4453                                            pTerm, nTerm);
   4454     pWriter->last = pWriter->last->next;
   4455     pWriter->iOpeningChildBlock = iChildBlock;
   4456     dataBufferReset(&pWriter->term);
   4457   }else{
   4458     dataBufferAppend2(&pWriter->last->data, c, n,
   4459                       pTerm+nPrefix, nTerm-nPrefix);
   4460     dataBufferReplace(&pWriter->term, pTerm, nTerm);
   4461   }
   4462   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
   4463 }
   4464 
   4465 /* Free the space used by pWriter, including the linked-list of
   4466 ** InteriorBlocks, and parentWriter, if present.
   4467 */
   4468 static int interiorWriterDestroy(InteriorWriter *pWriter){
   4469   InteriorBlock *block = pWriter->first;
   4470 
   4471   while( block!=NULL ){
   4472     InteriorBlock *b = block;
   4473     block = block->next;
   4474     dataBufferDestroy(&b->term);
   4475     dataBufferDestroy(&b->data);
   4476     sqlite3_free(b);
   4477   }
   4478   if( pWriter->parentWriter!=NULL ){
   4479     interiorWriterDestroy(pWriter->parentWriter);
   4480     sqlite3_free(pWriter->parentWriter);
   4481   }
   4482   dataBufferDestroy(&pWriter->term);
   4483   SCRAMBLE(pWriter);
   4484   return SQLITE_OK;
   4485 }
   4486 
   4487 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info
   4488 ** directly, leaving *piEndBlockid unchanged.  Otherwise, flush
   4489 ** pWriter to %_segments, building a new layer of interior nodes, and
   4490 ** recursively ask for their root into.
   4491 */
   4492 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
   4493                                   char **ppRootInfo, int *pnRootInfo,
   4494                                   sqlite_int64 *piEndBlockid){
   4495   InteriorBlock *block = pWriter->first;
   4496   sqlite_int64 iBlockid = 0;
   4497   int rc;
   4498 
   4499   /* If we can fit the segment inline */
   4500   if( block==pWriter->last && block->data.nData<ROOT_MAX ){
   4501     *ppRootInfo = block->data.pData;
   4502     *pnRootInfo = block->data.nData;
   4503     return SQLITE_OK;
   4504   }
   4505 
   4506   /* Flush the first block to %_segments, and create a new level of
   4507   ** interior node.
   4508   */
   4509   ASSERT_VALID_INTERIOR_BLOCK(block);
   4510   rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
   4511   if( rc!=SQLITE_OK ) return rc;
   4512   *piEndBlockid = iBlockid;
   4513 
   4514   pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
   4515   interiorWriterInit(pWriter->iHeight+1,
   4516                      block->term.pData, block->term.nData,
   4517                      iBlockid, pWriter->parentWriter);
   4518 
   4519   /* Flush additional blocks and append to the higher interior
   4520   ** node.
   4521   */
   4522   for(block=block->next; block!=NULL; block=block->next){
   4523     ASSERT_VALID_INTERIOR_BLOCK(block);
   4524     rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
   4525     if( rc!=SQLITE_OK ) return rc;
   4526     *piEndBlockid = iBlockid;
   4527 
   4528     interiorWriterAppend(pWriter->parentWriter,
   4529                          block->term.pData, block->term.nData, iBlockid);
   4530   }
   4531 
   4532   /* Parent node gets the chance to be the root. */
   4533   return interiorWriterRootInfo(v, pWriter->parentWriter,
   4534                                 ppRootInfo, pnRootInfo, piEndBlockid);
   4535 }
   4536 
   4537 /****************************************************************/
   4538 /* InteriorReader is used to read off the data from an interior node
   4539 ** (see comment at top of file for the format).
   4540 */
   4541 typedef struct InteriorReader {
   4542   const char *pData;
   4543   int nData;
   4544 
   4545   DataBuffer term;          /* previous term, for decoding term delta. */
   4546 
   4547   sqlite_int64 iBlockid;
   4548 } InteriorReader;
   4549 
   4550 static void interiorReaderDestroy(InteriorReader *pReader){
   4551   dataBufferDestroy(&pReader->term);
   4552   SCRAMBLE(pReader);
   4553 }
   4554 
   4555 static int interiorReaderInit(const char *pData, int nData,
   4556                               InteriorReader *pReader){
   4557   int n, nTerm;
   4558 
   4559   /* These conditions are checked and met by the callers. */
   4560   assert( nData>0 );
   4561   assert( pData[0]!='\0' );
   4562 
   4563   CLEAR(pReader);
   4564 
   4565   /* Decode the base blockid, and set the cursor to the first term. */
   4566   n = getVarintSafe(pData+1, &pReader->iBlockid, nData-1);
   4567   if( !n ) return SQLITE_CORRUPT_BKPT;
   4568   pReader->pData = pData+1+n;
   4569   pReader->nData = nData-(1+n);
   4570 
   4571   /* A single-child interior node (such as when a leaf node was too
   4572   ** large for the segment directory) won't have any terms.
   4573   ** Otherwise, decode the first term.
   4574   */
   4575   if( pReader->nData==0 ){
   4576     dataBufferInit(&pReader->term, 0);
   4577   }else{
   4578     n = getVarint32Safe(pReader->pData, &nTerm, pReader->nData);
   4579     if( !n || nTerm<0 || nTerm>pReader->nData-n) return SQLITE_CORRUPT_BKPT;
   4580     dataBufferInit(&pReader->term, nTerm);
   4581     dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
   4582     pReader->pData += n+nTerm;
   4583     pReader->nData -= n+nTerm;
   4584   }
   4585   return SQLITE_OK;
   4586 }
   4587 
   4588 static int interiorReaderAtEnd(InteriorReader *pReader){
   4589   return pReader->term.nData<=0;
   4590 }
   4591 
   4592 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
   4593   return pReader->iBlockid;
   4594 }
   4595 
   4596 static int interiorReaderTermBytes(InteriorReader *pReader){
   4597   assert( !interiorReaderAtEnd(pReader) );
   4598   return pReader->term.nData;
   4599 }
   4600 static const char *interiorReaderTerm(InteriorReader *pReader){
   4601   assert( !interiorReaderAtEnd(pReader) );
   4602   return pReader->term.pData;
   4603 }
   4604 
   4605 /* Step forward to the next term in the node. */
   4606 static int interiorReaderStep(InteriorReader *pReader){
   4607   assert( !interiorReaderAtEnd(pReader) );
   4608 
   4609   /* If the last term has been read, signal eof, else construct the
   4610   ** next term.
   4611   */
   4612   if( pReader->nData==0 ){
   4613     dataBufferReset(&pReader->term);
   4614   }else{
   4615     int n, nPrefix, nSuffix;
   4616 
   4617     n = getVarint32Safe(pReader->pData, &nPrefix, pReader->nData);
   4618     if( !n ) return SQLITE_CORRUPT_BKPT;
   4619     pReader->nData -= n;
   4620     pReader->pData += n;
   4621     n = getVarint32Safe(pReader->pData, &nSuffix, pReader->nData);
   4622     if( !n ) return SQLITE_CORRUPT_BKPT;
   4623     pReader->nData -= n;
   4624     pReader->pData += n;
   4625     if( nSuffix<0 || nSuffix>pReader->nData ) return SQLITE_CORRUPT_BKPT;
   4626     if( nPrefix<0 || nPrefix>pReader->term.nData ) return SQLITE_CORRUPT_BKPT;
   4627 
   4628     /* Truncate the current term and append suffix data. */
   4629     pReader->term.nData = nPrefix;
   4630     dataBufferAppend(&pReader->term, pReader->pData, nSuffix);
   4631 
   4632     pReader->pData += nSuffix;
   4633     pReader->nData -= nSuffix;
   4634   }
   4635   pReader->iBlockid++;
   4636   return SQLITE_OK;
   4637 }
   4638 
   4639 /* Compare the current term to pTerm[nTerm], returning strcmp-style
   4640 ** results.  If isPrefix, equality means equal through nTerm bytes.
   4641 */
   4642 static int interiorReaderTermCmp(InteriorReader *pReader,
   4643                                  const char *pTerm, int nTerm, int isPrefix){
   4644   const char *pReaderTerm = interiorReaderTerm(pReader);
   4645   int nReaderTerm = interiorReaderTermBytes(pReader);
   4646   int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
   4647 
   4648   if( n==0 ){
   4649     if( nReaderTerm>0 ) return -1;
   4650     if( nTerm>0 ) return 1;
   4651     return 0;
   4652   }
   4653 
   4654   c = memcmp(pReaderTerm, pTerm, n);
   4655   if( c!=0 ) return c;
   4656   if( isPrefix && n==nTerm ) return 0;
   4657   return nReaderTerm - nTerm;
   4658 }
   4659 
   4660 /****************************************************************/
   4661 /* LeafWriter is used to collect terms and associated doclist data
   4662 ** into leaf blocks in %_segments (see top of file for format info).
   4663 ** Expected usage is:
   4664 **
   4665 ** LeafWriter writer;
   4666 ** leafWriterInit(0, 0, &writer);
   4667 ** while( sorted_terms_left_to_process ){
   4668 **   // data is doclist data for that term.
   4669 **   rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
   4670 **   if( rc!=SQLITE_OK ) goto err;
   4671 ** }
   4672 ** rc = leafWriterFinalize(v, &writer);
   4673 **err:
   4674 ** leafWriterDestroy(&writer);
   4675 ** return rc;
   4676 **
   4677 ** leafWriterStep() may write a collected leaf out to %_segments.
   4678 ** leafWriterFinalize() finishes writing any buffered data and stores
   4679 ** a root node in %_segdir.  leafWriterDestroy() frees all buffers and
   4680 ** InteriorWriters allocated as part of writing this segment.
   4681 **
   4682 ** TODO(shess) Document leafWriterStepMerge().
   4683 */
   4684 
   4685 /* Put terms with data this big in their own block. */
   4686 #define STANDALONE_MIN 1024
   4687 
   4688 /* Keep leaf blocks below this size. */
   4689 #define LEAF_MAX 2048
   4690 
   4691 typedef struct LeafWriter {
   4692   int iLevel;
   4693   int idx;
   4694   sqlite_int64 iStartBlockid;     /* needed to create the root info */
   4695   sqlite_int64 iEndBlockid;       /* when we're done writing. */
   4696 
   4697   DataBuffer term;                /* previous encoded term */
   4698   DataBuffer data;                /* encoding buffer */
   4699 
   4700   /* bytes of first term in the current node which distinguishes that
   4701   ** term from the last term of the previous node.
   4702   */
   4703   int nTermDistinct;
   4704 
   4705   InteriorWriter parentWriter;    /* if we overflow */
   4706   int has_parent;
   4707 } LeafWriter;
   4708 
   4709 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
   4710   CLEAR(pWriter);
   4711   pWriter->iLevel = iLevel;
   4712   pWriter->idx = idx;
   4713 
   4714   dataBufferInit(&pWriter->term, 32);
   4715 
   4716   /* Start out with a reasonably sized block, though it can grow. */
   4717   dataBufferInit(&pWriter->data, LEAF_MAX);
   4718 }
   4719 
   4720 #ifndef NDEBUG
   4721 /* Verify that the data is readable as a leaf node. */
   4722 static void leafNodeValidate(const char *pData, int nData){
   4723   int n, iDummy;
   4724 
   4725   if( nData==0 ) return;
   4726   assert( nData>0 );
   4727   assert( pData!=0 );
   4728   assert( pData+nData>pData );
   4729 
   4730   /* Must lead with a varint(0) */
   4731   n = getVarint32(pData, &iDummy);
   4732   assert( iDummy==0 );
   4733   assert( n>0 );
   4734   assert( n<nData );
   4735   pData += n;
   4736   nData -= n;
   4737 
   4738   /* Leading term length and data must fit in buffer. */
   4739   n = getVarint32(pData, &iDummy);
   4740   assert( n>0 );
   4741   assert( iDummy>0 );
   4742   assert( n+iDummy>0 );
   4743   assert( n+iDummy<nData );
   4744   pData += n+iDummy;
   4745   nData -= n+iDummy;
   4746 
   4747   /* Leading term's doclist length and data must fit. */
   4748   n = getVarint32(pData, &iDummy);
   4749   assert( n>0 );
   4750   assert( iDummy>0 );
   4751   assert( n+iDummy>0 );
   4752   assert( n+iDummy<=nData );
   4753   ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
   4754   pData += n+iDummy;
   4755   nData -= n+iDummy;
   4756 
   4757   /* Verify that trailing terms and doclists also are readable. */
   4758   while( nData!=0 ){
   4759     n = getVarint32(pData, &iDummy);
   4760     assert( n>0 );
   4761     assert( iDummy>=0 );
   4762     assert( n<nData );
   4763     pData += n;
   4764     nData -= n;
   4765     n = getVarint32(pData, &iDummy);
   4766     assert( n>0 );
   4767     assert( iDummy>0 );
   4768     assert( n+iDummy>0 );
   4769     assert( n+iDummy<nData );
   4770     pData += n+iDummy;
   4771     nData -= n+iDummy;
   4772 
   4773     n = getVarint32(pData, &iDummy);
   4774     assert( n>0 );
   4775     assert( iDummy>0 );
   4776     assert( n+iDummy>0 );
   4777     assert( n+iDummy<=nData );
   4778     ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
   4779     pData += n+iDummy;
   4780     nData -= n+iDummy;
   4781   }
   4782 }
   4783 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
   4784 #else
   4785 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
   4786 #endif
   4787 
   4788 /* Flush the current leaf node to %_segments, and adding the resulting
   4789 ** blockid and the starting term to the interior node which will
   4790 ** contain it.
   4791 */
   4792 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
   4793                                    int iData, int nData){
   4794   sqlite_int64 iBlockid = 0;
   4795   const char *pStartingTerm;
   4796   int nStartingTerm, rc, n;
   4797 
   4798   /* Must have the leading varint(0) flag, plus at least some
   4799   ** valid-looking data.
   4800   */
   4801   assert( nData>2 );
   4802   assert( iData>=0 );
   4803   assert( iData+nData<=pWriter->data.nData );
   4804   ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
   4805 
   4806   rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
   4807   if( rc!=SQLITE_OK ) return rc;
   4808   assert( iBlockid!=0 );
   4809 
   4810   /* Reconstruct the first term in the leaf for purposes of building
   4811   ** the interior node.
   4812   */
   4813   n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
   4814   pStartingTerm = pWriter->data.pData+iData+1+n;
   4815   assert( pWriter->data.nData>iData+1+n+nStartingTerm );
   4816   assert( pWriter->nTermDistinct>0 );
   4817   assert( pWriter->nTermDistinct<=nStartingTerm );
   4818   nStartingTerm = pWriter->nTermDistinct;
   4819 
   4820   if( pWriter->has_parent ){
   4821     interiorWriterAppend(&pWriter->parentWriter,
   4822                          pStartingTerm, nStartingTerm, iBlockid);
   4823   }else{
   4824     interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
   4825                        &pWriter->parentWriter);
   4826     pWriter->has_parent = 1;
   4827   }
   4828 
   4829   /* Track the span of this segment's leaf nodes. */
   4830   if( pWriter->iEndBlockid==0 ){
   4831     pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
   4832   }else{
   4833     pWriter->iEndBlockid++;
   4834     assert( iBlockid==pWriter->iEndBlockid );
   4835   }
   4836 
   4837   return SQLITE_OK;
   4838 }
   4839 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
   4840   int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
   4841   if( rc!=SQLITE_OK ) return rc;
   4842 
   4843   /* Re-initialize the output buffer. */
   4844   dataBufferReset(&pWriter->data);
   4845 
   4846   return SQLITE_OK;
   4847 }
   4848 
   4849 /* Fetch the root info for the segment.  If the entire leaf fits
   4850 ** within ROOT_MAX, then it will be returned directly, otherwise it
   4851 ** will be flushed and the root info will be returned from the
   4852 ** interior node.  *piEndBlockid is set to the blockid of the last
   4853 ** interior or leaf node written to disk (0 if none are written at
   4854 ** all).
   4855 */
   4856 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
   4857                               char **ppRootInfo, int *pnRootInfo,
   4858                               sqlite_int64 *piEndBlockid){
   4859   /* we can fit the segment entirely inline */
   4860   if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
   4861     *ppRootInfo = pWriter->data.pData;
   4862     *pnRootInfo = pWriter->data.nData;
   4863     *piEndBlockid = 0;
   4864     return SQLITE_OK;
   4865   }
   4866 
   4867   /* Flush remaining leaf data. */
   4868   if( pWriter->data.nData>0 ){
   4869     int rc = leafWriterFlush(v, pWriter);
   4870     if( rc!=SQLITE_OK ) return rc;
   4871   }
   4872 
   4873   /* We must have flushed a leaf at some point. */
   4874   assert( pWriter->has_parent );
   4875 
   4876   /* Tenatively set the end leaf blockid as the end blockid.  If the
   4877   ** interior node can be returned inline, this will be the final
   4878   ** blockid, otherwise it will be overwritten by
   4879   ** interiorWriterRootInfo().
   4880   */
   4881   *piEndBlockid = pWriter->iEndBlockid;
   4882 
   4883   return interiorWriterRootInfo(v, &pWriter->parentWriter,
   4884                                 ppRootInfo, pnRootInfo, piEndBlockid);
   4885 }
   4886 
   4887 /* Collect the rootInfo data and store it into the segment directory.
   4888 ** This has the effect of flushing the segment's leaf data to
   4889 ** %_segments, and also flushing any interior nodes to %_segments.
   4890 */
   4891 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
   4892   sqlite_int64 iEndBlockid;
   4893   char *pRootInfo;
   4894   int rc, nRootInfo;
   4895 
   4896   rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
   4897   if( rc!=SQLITE_OK ) return rc;
   4898 
   4899   /* Don't bother storing an entirely empty segment. */
   4900   if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
   4901 
   4902   return segdir_set(v, pWriter->iLevel, pWriter->idx,
   4903                     pWriter->iStartBlockid, pWriter->iEndBlockid,
   4904                     iEndBlockid, pRootInfo, nRootInfo);
   4905 }
   4906 
   4907 static void leafWriterDestroy(LeafWriter *pWriter){
   4908   if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
   4909   dataBufferDestroy(&pWriter->term);
   4910   dataBufferDestroy(&pWriter->data);
   4911 }
   4912 
   4913 /* Encode a term into the leafWriter, delta-encoding as appropriate.
   4914 ** Returns the length of the new term which distinguishes it from the
   4915 ** previous term, which can be used to set nTermDistinct when a node
   4916 ** boundary is crossed.
   4917 */
   4918 static int leafWriterEncodeTerm(LeafWriter *pWriter,
   4919                                 const char *pTerm, int nTerm){
   4920   char c[VARINT_MAX+VARINT_MAX];
   4921   int n, nPrefix = 0;
   4922 
   4923   assert( nTerm>0 );
   4924   while( nPrefix<pWriter->term.nData &&
   4925          pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
   4926     nPrefix++;
   4927     /* Failing this implies that the terms weren't in order. */
   4928     assert( nPrefix<nTerm );
   4929   }
   4930 
   4931   if( pWriter->data.nData==0 ){
   4932     /* Encode the node header and leading term as:
   4933     **  varint(0)
   4934     **  varint(nTerm)
   4935     **  char pTerm[nTerm]
   4936     */
   4937     n = putVarint(c, '\0');
   4938     n += putVarint(c+n, nTerm);
   4939     dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
   4940   }else{
   4941     /* Delta-encode the term as:
   4942     **  varint(nPrefix)
   4943     **  varint(nSuffix)
   4944     **  char pTermSuffix[nSuffix]
   4945     */
   4946     n = putVarint(c, nPrefix);
   4947     n += putVarint(c+n, nTerm-nPrefix);
   4948     dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
   4949   }
   4950   dataBufferReplace(&pWriter->term, pTerm, nTerm);
   4951 
   4952   return nPrefix+1;
   4953 }
   4954 
   4955 /* Used to avoid a memmove when a large amount of doclist data is in
   4956 ** the buffer.  This constructs a node and term header before
   4957 ** iDoclistData and flushes the resulting complete node using
   4958 ** leafWriterInternalFlush().
   4959 */
   4960 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
   4961                                  const char *pTerm, int nTerm,
   4962                                  int iDoclistData){
   4963   char c[VARINT_MAX+VARINT_MAX];
   4964   int iData, n = putVarint(c, 0);
   4965   n += putVarint(c+n, nTerm);
   4966 
   4967   /* There should always be room for the header.  Even if pTerm shared
   4968   ** a substantial prefix with the previous term, the entire prefix
   4969   ** could be constructed from earlier data in the doclist, so there
   4970   ** should be room.
   4971   */
   4972   assert( iDoclistData>=n+nTerm );
   4973 
   4974   iData = iDoclistData-(n+nTerm);
   4975   memcpy(pWriter->data.pData+iData, c, n);
   4976   memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
   4977 
   4978   return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
   4979 }
   4980 
   4981 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
   4982 ** %_segments.
   4983 */
   4984 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
   4985                                const char *pTerm, int nTerm,
   4986                                DLReader *pReaders, int nReaders){
   4987   char c[VARINT_MAX+VARINT_MAX];
   4988   int iTermData = pWriter->data.nData, iDoclistData;
   4989   int i, nData, n, nActualData, nActual, rc, nTermDistinct;
   4990 
   4991   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
   4992   nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
   4993 
   4994   /* Remember nTermDistinct if opening a new node. */
   4995   if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
   4996 
   4997   iDoclistData = pWriter->data.nData;
   4998 
   4999   /* Estimate the length of the merged doclist so we can leave space
   5000   ** to encode it.
   5001   */
   5002   for(i=0, nData=0; i<nReaders; i++){
   5003     nData += dlrAllDataBytes(&pReaders[i]);
   5004   }
   5005   n = putVarint(c, nData);
   5006   dataBufferAppend(&pWriter->data, c, n);
   5007 
   5008   rc = docListMerge(&pWriter->data, pReaders, nReaders);
   5009   if( rc!= SQLITE_OK ) return rc;
   5010   ASSERT_VALID_DOCLIST(DL_DEFAULT,
   5011                        pWriter->data.pData+iDoclistData+n,
   5012                        pWriter->data.nData-iDoclistData-n, NULL);
   5013 
   5014   /* The actual amount of doclist data at this point could be smaller
   5015   ** than the length we encoded.  Additionally, the space required to
   5016   ** encode this length could be smaller.  For small doclists, this is
   5017   ** not a big deal, we can just use memmove() to adjust things.
   5018   */
   5019   nActualData = pWriter->data.nData-(iDoclistData+n);
   5020   nActual = putVarint(c, nActualData);
   5021   assert( nActualData<=nData );
   5022   assert( nActual<=n );
   5023 
   5024   /* If the new doclist is big enough for force a standalone leaf
   5025   ** node, we can immediately flush it inline without doing the
   5026   ** memmove().
   5027   */
   5028   /* TODO(shess) This test matches leafWriterStep(), which does this
   5029   ** test before it knows the cost to varint-encode the term and
   5030   ** doclist lengths.  At some point, change to
   5031   ** pWriter->data.nData-iTermData>STANDALONE_MIN.
   5032   */
   5033   if( nTerm+nActualData>STANDALONE_MIN ){
   5034     /* Push leaf node from before this term. */
   5035     if( iTermData>0 ){
   5036       rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
   5037       if( rc!=SQLITE_OK ) return rc;
   5038 
   5039       pWriter->nTermDistinct = nTermDistinct;
   5040     }
   5041 
   5042     /* Fix the encoded doclist length. */
   5043     iDoclistData += n - nActual;
   5044     memcpy(pWriter->data.pData+iDoclistData, c, nActual);
   5045 
   5046     /* Push the standalone leaf node. */
   5047     rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
   5048     if( rc!=SQLITE_OK ) return rc;
   5049 
   5050     /* Leave the node empty. */
   5051     dataBufferReset(&pWriter->data);
   5052 
   5053     return rc;
   5054   }
   5055 
   5056   /* At this point, we know that the doclist was small, so do the
   5057   ** memmove if indicated.
   5058   */
   5059   if( nActual<n ){
   5060     memmove(pWriter->data.pData+iDoclistData+nActual,
   5061             pWriter->data.pData+iDoclistData+n,
   5062             pWriter->data.nData-(iDoclistData+n));
   5063     pWriter->data.nData -= n-nActual;
   5064   }
   5065 
   5066   /* Replace written length with actual length. */
   5067   memcpy(pWriter->data.pData+iDoclistData, c, nActual);
   5068 
   5069   /* If the node is too large, break things up. */
   5070   /* TODO(shess) This test matches leafWriterStep(), which does this
   5071   ** test before it knows the cost to varint-encode the term and
   5072   ** doclist lengths.  At some point, change to
   5073   ** pWriter->data.nData>LEAF_MAX.
   5074   */
   5075   if( iTermData+nTerm+nActualData>LEAF_MAX ){
   5076     /* Flush out the leading data as a node */
   5077     rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
   5078     if( rc!=SQLITE_OK ) return rc;
   5079 
   5080     pWriter->nTermDistinct = nTermDistinct;
   5081 
   5082     /* Rebuild header using the current term */
   5083     n = putVarint(pWriter->data.pData, 0);
   5084     n += putVarint(pWriter->data.pData+n, nTerm);
   5085     memcpy(pWriter->data.pData+n, pTerm, nTerm);
   5086     n += nTerm;
   5087 
   5088     /* There should always be room, because the previous encoding
   5089     ** included all data necessary to construct the term.
   5090     */
   5091     assert( n<iDoclistData );
   5092     /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
   5093     ** following memcpy() is safe (as opposed to needing a memmove).
   5094     */
   5095     assert( 2*STANDALONE_MIN<=LEAF_MAX );
   5096     assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
   5097     memcpy(pWriter->data.pData+n,
   5098            pWriter->data.pData+iDoclistData,
   5099            pWriter->data.nData-iDoclistData);
   5100     pWriter->data.nData -= iDoclistData-n;
   5101   }
   5102   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
   5103 
   5104   return SQLITE_OK;
   5105 }
   5106 
   5107 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
   5108 ** %_segments.
   5109 */
   5110 /* TODO(shess) Revise writeZeroSegment() so that doclists are
   5111 ** constructed directly in pWriter->data.
   5112 */
   5113 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
   5114                           const char *pTerm, int nTerm,
   5115                           const char *pData, int nData){
   5116   int rc;
   5117   DLReader reader;
   5118 
   5119   rc = dlrInit(&reader, DL_DEFAULT, pData, nData);
   5120   if( rc!=SQLITE_OK ) return rc;
   5121   rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
   5122   dlrDestroy(&reader);
   5123 
   5124   return rc;
   5125 }
   5126 
   5127 
   5128 /****************************************************************/
   5129 /* LeafReader is used to iterate over an individual leaf node. */
   5130 typedef struct LeafReader {
   5131   DataBuffer term;          /* copy of current term. */
   5132 
   5133   const char *pData;        /* data for current term. */
   5134   int nData;
   5135 } LeafReader;
   5136 
   5137 static void leafReaderDestroy(LeafReader *pReader){
   5138   dataBufferDestroy(&pReader->term);
   5139   SCRAMBLE(pReader);
   5140 }
   5141 
   5142 static int leafReaderAtEnd(LeafReader *pReader){
   5143   return pReader->nData<=0;
   5144 }
   5145 
   5146 /* Access the current term. */
   5147 static int leafReaderTermBytes(LeafReader *pReader){
   5148   return pReader->term.nData;
   5149 }
   5150 static const char *leafReaderTerm(LeafReader *pReader){
   5151   assert( pReader->term.nData>0 );
   5152   return pReader->term.pData;
   5153 }
   5154 
   5155 /* Access the doclist data for the current term. */
   5156 static int leafReaderDataBytes(LeafReader *pReader){
   5157   int nData;
   5158   assert( pReader->term.nData>0 );
   5159   getVarint32(pReader->pData, &nData);
   5160   return nData;
   5161 }
   5162 static const char *leafReaderData(LeafReader *pReader){
   5163   int n, nData;
   5164   assert( pReader->term.nData>0 );
   5165   n = getVarint32Safe(pReader->pData, &nData, pReader->nData);
   5166   if( !n || nData>pReader->nData-n ) return NULL;
   5167   return pReader->pData+n;
   5168 }
   5169 
   5170 static int leafReaderInit(const char *pData, int nData, LeafReader *pReader){
   5171   int nTerm, n;
   5172 
   5173   /* All callers check this precondition. */
   5174   assert( nData>0 );
   5175   assert( pData[0]=='\0' );
   5176 
   5177   CLEAR(pReader);
   5178 
   5179   /* Read the first term, skipping the header byte. */
   5180   n = getVarint32Safe(pData+1, &nTerm, nData-1);
   5181   if( !n || nTerm<0 || nTerm>nData-1-n ) return SQLITE_CORRUPT_BKPT;
   5182   dataBufferInit(&pReader->term, nTerm);
   5183   dataBufferReplace(&pReader->term, pData+1+n, nTerm);
   5184 
   5185   /* Position after the first term. */
   5186   pReader->pData = pData+1+n+nTerm;
   5187   pReader->nData = nData-1-n-nTerm;
   5188   return SQLITE_OK;
   5189 }
   5190 
   5191 /* Step the reader forward to the next term. */
   5192 static int leafReaderStep(LeafReader *pReader){
   5193   int n, nData, nPrefix, nSuffix;
   5194   assert( !leafReaderAtEnd(pReader) );
   5195 
   5196   /* Skip previous entry's data block. */
   5197   n = getVarint32Safe(pReader->pData, &nData, pReader->nData);
   5198   if( !n || nData<0 || nData>pReader->nData-n ) return SQLITE_CORRUPT_BKPT;
   5199   pReader->pData += n+nData;
   5200   pReader->nData -= n+nData;
   5201 
   5202   if( !leafReaderAtEnd(pReader) ){
   5203     /* Construct the new term using a prefix from the old term plus a
   5204     ** suffix from the leaf data.
   5205     */
   5206     n = getVarint32Safe(pReader->pData, &nPrefix, pReader->nData);
   5207     if( !n ) return SQLITE_CORRUPT_BKPT;
   5208     pReader->nData -= n;
   5209     pReader->pData += n;
   5210     n = getVarint32Safe(pReader->pData, &nSuffix, pReader->nData);
   5211     if( !n ) return SQLITE_CORRUPT_BKPT;
   5212     pReader->nData -= n;
   5213     pReader->pData += n;
   5214     if( nSuffix<0 || nSuffix>pReader->nData ) return SQLITE_CORRUPT_BKPT;
   5215     if( nPrefix<0 || nPrefix>pReader->term.nData ) return SQLITE_CORRUPT_BKPT;
   5216     pReader->term.nData = nPrefix;
   5217     dataBufferAppend(&pReader->term, pReader->pData, nSuffix);
   5218 
   5219     pReader->pData += nSuffix;
   5220     pReader->nData -= nSuffix;
   5221   }
   5222   return SQLITE_OK;
   5223 }
   5224 
   5225 /* strcmp-style comparison of pReader's current term against pTerm.
   5226 ** If isPrefix, equality means equal through nTerm bytes.
   5227 */
   5228 static int leafReaderTermCmp(LeafReader *pReader,
   5229                              const char *pTerm, int nTerm, int isPrefix){
   5230   int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
   5231   if( n==0 ){
   5232     if( pReader->term.nData>0 ) return -1;
   5233     if(nTerm>0 ) return 1;
   5234     return 0;
   5235   }
   5236 
   5237   c = memcmp(pReader->term.pData, pTerm, n);
   5238   if( c!=0 ) return c;
   5239   if( isPrefix && n==nTerm ) return 0;
   5240   return pReader->term.nData - nTerm;
   5241 }
   5242 
   5243 
   5244 /****************************************************************/
   5245 /* LeavesReader wraps LeafReader to allow iterating over the entire
   5246 ** leaf layer of the tree.
   5247 */
   5248 typedef struct LeavesReader {
   5249   int idx;                  /* Index within the segment. */
   5250 
   5251   sqlite3_stmt *pStmt;      /* Statement we're streaming leaves from. */
   5252   int eof;                  /* we've seen SQLITE_DONE from pStmt. */
   5253 
   5254   LeafReader leafReader;    /* reader for the current leaf. */
   5255   DataBuffer rootData;      /* root data for inline. */
   5256 } LeavesReader;
   5257 
   5258 /* Access the current term. */
   5259 static int leavesReaderTermBytes(LeavesReader *pReader){
   5260   assert( !pReader->eof );
   5261   return leafReaderTermBytes(&pReader->leafReader);
   5262 }
   5263 static const char *leavesReaderTerm(LeavesReader *pReader){
   5264   assert( !pReader->eof );
   5265   return leafReaderTerm(&pReader->leafReader);
   5266 }
   5267 
   5268 /* Access the doclist data for the current term. */
   5269 static int leavesReaderDataBytes(LeavesReader *pReader){
   5270   assert( !pReader->eof );
   5271   return leafReaderDataBytes(&pReader->leafReader);
   5272 }
   5273 static const char *leavesReaderData(LeavesReader *pReader){
   5274   assert( !pReader->eof );
   5275   return leafReaderData(&pReader->leafReader);
   5276 }
   5277 
   5278 static int leavesReaderAtEnd(LeavesReader *pReader){
   5279   return pReader->eof;
   5280 }
   5281 
   5282 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
   5283 ** leaving the statement handle open, which locks the table.
   5284 */
   5285 /* TODO(shess) This "solution" is not satisfactory.  Really, there
   5286 ** should be check-in function for all statement handles which
   5287 ** arranges to call sqlite3_reset().  This most likely will require
   5288 ** modification to control flow all over the place, though, so for now
   5289 ** just punt.
   5290 **
   5291 ** Note the the current system assumes that segment merges will run to
   5292 ** completion, which is why this particular probably hasn't arisen in
   5293 ** this case.  Probably a brittle assumption.
   5294 */
   5295 static int leavesReaderReset(LeavesReader *pReader){
   5296   return sqlite3_reset(pReader->pStmt);
   5297 }
   5298 
   5299 static void leavesReaderDestroy(LeavesReader *pReader){
   5300   /* If idx is -1, that means we're using a non-cached statement
   5301   ** handle in the optimize() case, so we need to release it.
   5302   */
   5303   if( pReader->pStmt!=NULL && pReader->idx==-1 ){
   5304     sqlite3_finalize(pReader->pStmt);
   5305   }
   5306   leafReaderDestroy(&pReader->leafReader);
   5307   dataBufferDestroy(&pReader->rootData);
   5308   SCRAMBLE(pReader);
   5309 }
   5310 
   5311 /* Initialize pReader with the given root data (if iStartBlockid==0
   5312 ** the leaf data was entirely contained in the root), or from the
   5313 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
   5314 */
   5315 /* TODO(shess): Figure out a means of indicating how many leaves are
   5316 ** expected, for purposes of detecting corruption.
   5317 */
   5318 static int leavesReaderInit(fulltext_vtab *v,
   5319                             int idx,
   5320                             sqlite_int64 iStartBlockid,
   5321                             sqlite_int64 iEndBlockid,
   5322                             const char *pRootData, int nRootData,
   5323                             LeavesReader *pReader){
   5324   CLEAR(pReader);
   5325   pReader->idx = idx;
   5326 
   5327   dataBufferInit(&pReader->rootData, 0);
   5328   if( iStartBlockid==0 ){
   5329     int rc;
   5330     /* Corrupt if this can't be a leaf node. */
   5331     if( pRootData==NULL || nRootData<1 || pRootData[0]!='\0' ){
   5332       return SQLITE_CORRUPT_BKPT;
   5333     }
   5334     /* Entire leaf level fit in root data. */
   5335     dataBufferReplace(&pReader->rootData, pRootData, nRootData);
   5336     rc = leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
   5337                         &pReader->leafReader);
   5338     if( rc!=SQLITE_OK ){
   5339       dataBufferDestroy(&pReader->rootData);
   5340       return rc;
   5341     }
   5342   }else{
   5343     sqlite3_stmt *s;
   5344     int rc = sql_get_leaf_statement(v, idx, &s);
   5345     if( rc!=SQLITE_OK ) return rc;
   5346 
   5347     rc = sqlite3_bind_int64(s, 1, iStartBlockid);
   5348     if( rc!=SQLITE_OK ) goto err;
   5349 
   5350     rc = sqlite3_bind_int64(s, 2, iEndBlockid);
   5351     if( rc!=SQLITE_OK ) goto err;
   5352 
   5353     rc = sqlite3_step(s);
   5354 
   5355     /* Corrupt if interior node referenced missing leaf node. */
   5356     if( rc==SQLITE_DONE ){
   5357       rc = SQLITE_CORRUPT_BKPT;
   5358       goto err;
   5359     }
   5360 
   5361     if( rc!=SQLITE_ROW ) goto err;
   5362     rc = SQLITE_OK;
   5363 
   5364     /* Corrupt if leaf data isn't a blob. */
   5365     if( sqlite3_column_type(s, 0)!=SQLITE_BLOB ){
   5366       rc = SQLITE_CORRUPT_BKPT;
   5367     }else{
   5368       const char *pLeafData = sqlite3_column_blob(s, 0);
   5369       int nLeafData = sqlite3_column_bytes(s, 0);
   5370 
   5371       /* Corrupt if this can't be a leaf node. */
   5372       if( pLeafData==NULL || nLeafData<1 || pLeafData[0]!='\0' ){
   5373         rc = SQLITE_CORRUPT_BKPT;
   5374       }else{
   5375         rc = leafReaderInit(pLeafData, nLeafData, &pReader->leafReader);
   5376       }
   5377     }
   5378 
   5379  err:
   5380     if( rc!=SQLITE_OK ){
   5381       if( idx==-1 ){
   5382         sqlite3_finalize(s);
   5383       }else{
   5384         sqlite3_reset(s);
   5385       }
   5386       return rc;
   5387     }
   5388 
   5389     pReader->pStmt = s;
   5390   }
   5391   return SQLITE_OK;
   5392 }
   5393 
   5394 /* Step the current leaf forward to the next term.  If we reach the
   5395 ** end of the current leaf, step forward to the next leaf block.
   5396 */
   5397 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
   5398   int rc;
   5399   assert( !leavesReaderAtEnd(pReader) );
   5400   rc = leafReaderStep(&pReader->leafReader);
   5401   if( rc!=SQLITE_OK ) return rc;
   5402 
   5403   if( leafReaderAtEnd(&pReader->leafReader) ){
   5404     if( pReader->rootData.pData ){
   5405       pReader->eof = 1;
   5406       return SQLITE_OK;
   5407     }
   5408     rc = sqlite3_step(pReader->pStmt);
   5409     if( rc!=SQLITE_ROW ){
   5410       pReader->eof = 1;
   5411       return rc==SQLITE_DONE ? SQLITE_OK : rc;
   5412     }
   5413 
   5414     /* Corrupt if leaf data isn't a blob. */
   5415     if( sqlite3_column_type(pReader->pStmt, 0)!=SQLITE_BLOB ){
   5416       return SQLITE_CORRUPT_BKPT;
   5417     }else{
   5418       LeafReader tmp;
   5419       const char *pLeafData = sqlite3_column_blob(pReader->pStmt, 0);
   5420       int nLeafData = sqlite3_column_bytes(pReader->pStmt, 0);
   5421 
   5422       /* Corrupt if this can't be a leaf node. */
   5423       if( pLeafData==NULL || nLeafData<1 || pLeafData[0]!='\0' ){
   5424         return SQLITE_CORRUPT_BKPT;
   5425       }
   5426 
   5427       rc = leafReaderInit(pLeafData, nLeafData, &tmp);
   5428       if( rc!=SQLITE_OK ) return rc;
   5429       leafReaderDestroy(&pReader->leafReader);
   5430       pReader->leafReader = tmp;
   5431     }
   5432   }
   5433   return SQLITE_OK;
   5434 }
   5435 
   5436 /* Order LeavesReaders by their term, ignoring idx.  Readers at eof
   5437 ** always sort to the end.
   5438 */
   5439 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
   5440   if( leavesReaderAtEnd(lr1) ){
   5441     if( leavesReaderAtEnd(lr2) ) return 0;
   5442     return 1;
   5443   }
   5444   if( leavesReaderAtEnd(lr2) ) return -1;
   5445 
   5446   return leafReaderTermCmp(&lr1->leafReader,
   5447                            leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
   5448                            0);
   5449 }
   5450 
   5451 /* Similar to leavesReaderTermCmp(), with additional ordering by idx
   5452 ** so that older segments sort before newer segments.
   5453 */
   5454 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
   5455   int c = leavesReaderTermCmp(lr1, lr2);
   5456   if( c!=0 ) return c;
   5457   return lr1->idx-lr2->idx;
   5458 }
   5459 
   5460 /* Assume that pLr[1]..pLr[nLr] are sorted.  Bubble pLr[0] into its
   5461 ** sorted position.
   5462 */
   5463 static void leavesReaderReorder(LeavesReader *pLr, int nLr){
   5464   while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
   5465     LeavesReader tmp = pLr[0];
   5466     pLr[0] = pLr[1];
   5467     pLr[1] = tmp;
   5468     nLr--;
   5469     pLr++;
   5470   }
   5471 }
   5472 
   5473 /* Initializes pReaders with the segments from level iLevel, returning
   5474 ** the number of segments in *piReaders.  Leaves pReaders in sorted
   5475 ** order.
   5476 */
   5477 static int leavesReadersInit(fulltext_vtab *v, int iLevel,
   5478                              LeavesReader *pReaders, int *piReaders){
   5479   sqlite3_stmt *s;
   5480   int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
   5481   if( rc!=SQLITE_OK ) return rc;
   5482 
   5483   rc = sqlite3_bind_int(s, 1, iLevel);
   5484   if( rc!=SQLITE_OK ) return rc;
   5485 
   5486   i = 0;
   5487   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
   5488     sqlite_int64 iStart = sqlite3_column_int64(s, 0);
   5489     sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
   5490     const char *pRootData = sqlite3_column_blob(s, 2);
   5491     int nRootData = sqlite3_column_bytes(s, 2);
   5492     sqlite_int64 iIndex = sqlite3_column_int64(s, 3);
   5493 
   5494     /* Corrupt if we get back different types than we stored. */
   5495     /* Also corrupt if the index is not sequential starting at 0. */
   5496     if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER ||
   5497         sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
   5498         sqlite3_column_type(s, 2)!=SQLITE_BLOB ||
   5499         i!=iIndex ||
   5500         i>=MERGE_COUNT ){
   5501       rc = SQLITE_CORRUPT_BKPT;
   5502       break;
   5503     }
   5504 
   5505     rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
   5506                           &pReaders[i]);
   5507     if( rc!=SQLITE_OK ) break;
   5508 
   5509     i++;
   5510   }
   5511   if( rc!=SQLITE_DONE ){
   5512     while( i-->0 ){
   5513       leavesReaderDestroy(&pReaders[i]);
   5514     }
   5515     sqlite3_reset(s);          /* So we don't leave a lock. */
   5516     return rc;
   5517   }
   5518 
   5519   *piReaders = i;
   5520 
   5521   /* Leave our results sorted by term, then age. */
   5522   while( i-- ){
   5523     leavesReaderReorder(pReaders+i, *piReaders-i);
   5524   }
   5525   return SQLITE_OK;
   5526 }
   5527 
   5528 /* Merge doclists from pReaders[nReaders] into a single doclist, which
   5529 ** is written to pWriter.  Assumes pReaders is ordered oldest to
   5530 ** newest.
   5531 */
   5532 /* TODO(shess) Consider putting this inline in segmentMerge(). */
   5533 static int leavesReadersMerge(fulltext_vtab *v,
   5534                               LeavesReader *pReaders, int nReaders,
   5535                               LeafWriter *pWriter){
   5536   DLReader dlReaders[MERGE_COUNT];
   5537   const char *pTerm = leavesReaderTerm(pReaders);
   5538   int i, nTerm = leavesReaderTermBytes(pReaders);
   5539   int rc;
   5540 
   5541   assert( nReaders<=MERGE_COUNT );
   5542 
   5543   for(i=0; i<nReaders; i++){
   5544     const char *pData = leavesReaderData(pReaders+i);
   5545     if( pData==NULL ){
   5546       rc = SQLITE_CORRUPT_BKPT;
   5547       break;
   5548     }
   5549     rc = dlrInit(&dlReaders[i], DL_DEFAULT,
   5550                  pData,
   5551                  leavesReaderDataBytes(pReaders+i));
   5552     if( rc!=SQLITE_OK ) break;
   5553   }
   5554   if( rc!=SQLITE_OK ){
   5555     while( i-->0 ){
   5556       dlrDestroy(&dlReaders[i]);
   5557     }
   5558     return rc;
   5559   }
   5560 
   5561   return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
   5562 }
   5563 
   5564 /* Forward ref due to mutual recursion with segdirNextIndex(). */
   5565 static int segmentMerge(fulltext_vtab *v, int iLevel);
   5566 
   5567 /* Put the next available index at iLevel into *pidx.  If iLevel
   5568 ** already has MERGE_COUNT segments, they are merged to a higher
   5569 ** level to make room.
   5570 */
   5571 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
   5572   int rc = segdir_max_index(v, iLevel, pidx);
   5573   if( rc==SQLITE_DONE ){              /* No segments at iLevel. */
   5574     *pidx = 0;
   5575   }else if( rc==SQLITE_ROW ){
   5576     if( *pidx==(MERGE_COUNT-1) ){
   5577       rc = segmentMerge(v, iLevel);
   5578       if( rc!=SQLITE_OK ) return rc;
   5579       *pidx = 0;
   5580     }else{
   5581       (*pidx)++;
   5582     }
   5583   }else{
   5584     return rc;
   5585   }
   5586   return SQLITE_OK;
   5587 }
   5588 
   5589 /* Merge MERGE_COUNT segments at iLevel into a new segment at
   5590 ** iLevel+1.  If iLevel+1 is already full of segments, those will be
   5591 ** merged to make room.
   5592 */
   5593 static int segmentMerge(fulltext_vtab *v, int iLevel){
   5594   LeafWriter writer;
   5595   LeavesReader lrs[MERGE_COUNT];
   5596   int i, rc, idx = 0;
   5597 
   5598   /* Determine the next available segment index at the next level,
   5599   ** merging as necessary.
   5600   */
   5601   rc = segdirNextIndex(v, iLevel+1, &idx);
   5602   if( rc!=SQLITE_OK ) return rc;
   5603 
   5604   /* TODO(shess) This assumes that we'll always see exactly
   5605   ** MERGE_COUNT segments to merge at a given level.  That will be
   5606   ** broken if we allow the developer to request preemptive or
   5607   ** deferred merging.
   5608   */
   5609   memset(&lrs, '\0', sizeof(lrs));
   5610   rc = leavesReadersInit(v, iLevel, lrs, &i);
   5611   if( rc!=SQLITE_OK ) return rc;
   5612 
   5613   leafWriterInit(iLevel+1, idx, &writer);
   5614 
   5615   if( i!=MERGE_COUNT ){
   5616     rc = SQLITE_CORRUPT_BKPT;
   5617     goto err;
   5618   }
   5619 
   5620   /* Since leavesReaderReorder() pushes readers at eof to the end,
   5621   ** when the first reader is empty, all will be empty.
   5622   */
   5623   while( !leavesReaderAtEnd(lrs) ){
   5624     /* Figure out how many readers share their next term. */
   5625     for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
   5626       if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
   5627     }
   5628 
   5629     rc = leavesReadersMerge(v, lrs, i, &writer);
   5630     if( rc!=SQLITE_OK ) goto err;
   5631 
   5632     /* Step forward those that were merged. */
   5633     while( i-->0 ){
   5634       rc = leavesReaderStep(v, lrs+i);
   5635       if( rc!=SQLITE_OK ) goto err;
   5636 
   5637       /* Reorder by term, then by age. */
   5638       leavesReaderReorder(lrs+i, MERGE_COUNT-i);
   5639     }
   5640   }
   5641 
   5642   for(i=0; i<MERGE_COUNT; i++){
   5643     leavesReaderDestroy(&lrs[i]);
   5644   }
   5645 
   5646   rc = leafWriterFinalize(v, &writer);
   5647   leafWriterDestroy(&writer);
   5648   if( rc!=SQLITE_OK ) return rc;
   5649 
   5650   /* Delete the merged segment data. */
   5651   return segdir_delete(v, iLevel);
   5652 
   5653  err:
   5654   for(i=0; i<MERGE_COUNT; i++){
   5655     leavesReaderDestroy(&lrs[i]);
   5656   }
   5657   leafWriterDestroy(&writer);
   5658   return rc;
   5659 }
   5660 
   5661 /* Accumulate the union of *acc and *pData into *acc. */
   5662 static int docListAccumulateUnion(DataBuffer *acc,
   5663                                   const char *pData, int nData) {
   5664   DataBuffer tmp = *acc;
   5665   int rc;
   5666   dataBufferInit(acc, tmp.nData+nData);
   5667   rc = docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
   5668   dataBufferDestroy(&tmp);
   5669   return rc;
   5670 }
   5671 
   5672 /* TODO(shess) It might be interesting to explore different merge
   5673 ** strategies, here.  For instance, since this is a sorted merge, we
   5674 ** could easily merge many doclists in parallel.  With some
   5675 ** comprehension of the storage format, we could merge all of the
   5676 ** doclists within a leaf node directly from the leaf node's storage.
   5677 ** It may be worthwhile to merge smaller doclists before larger
   5678 ** doclists, since they can be traversed more quickly - but the
   5679 ** results may have less overlap, making them more expensive in a
   5680 ** different way.
   5681 */
   5682 
   5683 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over
   5684 ** *out (any doclists with duplicate docids overwrite those in *out).
   5685 ** Internal function for loadSegmentLeaf().
   5686 */
   5687 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
   5688                                 const char *pTerm, int nTerm, int isPrefix,
   5689                                 DataBuffer *out){
   5690   /* doclist data is accumulated into pBuffers similar to how one does
   5691   ** increment in binary arithmetic.  If index 0 is empty, the data is
   5692   ** stored there.  If there is data there, it is merged and the
   5693   ** results carried into position 1, with further merge-and-carry
   5694   ** until an empty position is found.
   5695   */
   5696   DataBuffer *pBuffers = NULL;
   5697   int nBuffers = 0, nMaxBuffers = 0, rc;
   5698 
   5699   assert( nTerm>0 );
   5700 
   5701   for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
   5702       rc=leavesReaderStep(v, pReader)){
   5703     /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
   5704     ** already taken to compare the terms of two LeavesReaders.  Think
   5705     ** on a better name.  [Meanwhile, break encapsulation rather than
   5706     ** use a confusing name.]
   5707     */
   5708     int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
   5709     if( c>0 ) break;      /* Past any possible matches. */
   5710     if( c==0 ){
   5711       int iBuffer, nData;
   5712       const char *pData = leavesReaderData(pReader);
   5713       if( pData==NULL ){
   5714         rc = SQLITE_CORRUPT_BKPT;
   5715         break;
   5716       }
   5717       nData = leavesReaderDataBytes(pReader);
   5718 
   5719       /* Find the first empty buffer. */
   5720       for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
   5721         if( 0==pBuffers[iBuffer].nData ) break;
   5722       }
   5723 
   5724       /* Out of buffers, add an empty one. */
   5725       if( iBuffer==nBuffers ){
   5726         if( nBuffers==nMaxBuffers ){
   5727           DataBuffer *p;
   5728           nMaxBuffers += 20;
   5729 
   5730           /* Manual realloc so we can handle NULL appropriately. */
   5731           p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
   5732           if( p==NULL ){
   5733             rc = SQLITE_NOMEM;
   5734             break;
   5735           }
   5736 
   5737           if( nBuffers>0 ){
   5738             assert(pBuffers!=NULL);
   5739             memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
   5740             sqlite3_free(pBuffers);
   5741           }
   5742           pBuffers = p;
   5743         }
   5744         dataBufferInit(&(pBuffers[nBuffers]), 0);
   5745         nBuffers++;
   5746       }
   5747 
   5748       /* At this point, must have an empty at iBuffer. */
   5749       assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
   5750 
   5751       /* If empty was first buffer, no need for merge logic. */
   5752       if( iBuffer==0 ){
   5753         dataBufferReplace(&(pBuffers[0]), pData, nData);
   5754       }else{
   5755         /* pAcc is the empty buffer the merged data will end up in. */
   5756         DataBuffer *pAcc = &(pBuffers[iBuffer]);
   5757         DataBuffer *p = &(pBuffers[0]);
   5758 
   5759         /* Handle position 0 specially to avoid need to prime pAcc
   5760         ** with pData/nData.
   5761         */
   5762         dataBufferSwap(p, pAcc);
   5763         rc = docListAccumulateUnion(pAcc, pData, nData);
   5764         if( rc!=SQLITE_OK ) goto err;
   5765 
   5766         /* Accumulate remaining doclists into pAcc. */
   5767         for(++p; p<pAcc; ++p){
   5768           rc = docListAccumulateUnion(pAcc, p->pData, p->nData);
   5769           if( rc!=SQLITE_OK ) goto err;
   5770 
   5771           /* dataBufferReset() could allow a large doclist to blow up
   5772           ** our memory requirements.
   5773           */
   5774           if( p->nCapacity<1024 ){
   5775             dataBufferReset(p);
   5776           }else{
   5777             dataBufferDestroy(p);
   5778             dataBufferInit(p, 0);
   5779           }
   5780         }
   5781       }
   5782     }
   5783   }
   5784 
   5785   /* Union all the doclists together into *out. */
   5786   /* TODO(shess) What if *out is big?  Sigh. */
   5787   if( rc==SQLITE_OK && nBuffers>0 ){
   5788     int iBuffer;
   5789     for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
   5790       if( pBuffers[iBuffer].nData>0 ){
   5791         if( out->nData==0 ){
   5792           dataBufferSwap(out, &(pBuffers[iBuffer]));
   5793         }else{
   5794           rc = docListAccumulateUnion(out, pBuffers[iBuffer].pData,
   5795                                       pBuffers[iBuffer].nData);
   5796           if( rc!=SQLITE_OK ) break;
   5797         }
   5798       }
   5799     }
   5800   }
   5801 
   5802 err:
   5803   while( nBuffers-- ){
   5804     dataBufferDestroy(&(pBuffers[nBuffers]));
   5805   }
   5806   if( pBuffers!=NULL ) sqlite3_free(pBuffers);
   5807 
   5808   return rc;
   5809 }
   5810 
   5811 /* Call loadSegmentLeavesInt() with pData/nData as input. */
   5812 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
   5813                            const char *pTerm, int nTerm, int isPrefix,
   5814                            DataBuffer *out){
   5815   LeavesReader reader;
   5816   int rc;
   5817 
   5818   assert( nData>1 );
   5819   assert( *pData=='\0' );
   5820   rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
   5821   if( rc!=SQLITE_OK ) return rc;
   5822 
   5823   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
   5824   leavesReaderReset(&reader);
   5825   leavesReaderDestroy(&reader);
   5826   return rc;
   5827 }
   5828 
   5829 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
   5830 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into
   5831 ** out.
   5832 */
   5833 static int loadSegmentLeaves(fulltext_vtab *v,
   5834                              sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
   5835                              const char *pTerm, int nTerm, int isPrefix,
   5836                              DataBuffer *out){
   5837   int rc;
   5838   LeavesReader reader;
   5839 
   5840   assert( iStartLeaf<=iEndLeaf );
   5841   rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
   5842   if( rc!=SQLITE_OK ) return rc;
   5843 
   5844   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
   5845   leavesReaderReset(&reader);
   5846   leavesReaderDestroy(&reader);
   5847   return rc;
   5848 }
   5849 
   5850 /* Taking pData/nData as an interior node, find the sequence of child
   5851 ** nodes which could include pTerm/nTerm/isPrefix.  Note that the
   5852 ** interior node terms logically come between the blocks, so there is
   5853 ** one more blockid than there are terms (that block contains terms >=
   5854 ** the last interior-node term).
   5855 */
   5856 /* TODO(shess) The calling code may already know that the end child is
   5857 ** not worth calculating, because the end may be in a later sibling
   5858 ** node.  Consider whether breaking symmetry is worthwhile.  I suspect
   5859 ** it is not worthwhile.
   5860 */
   5861 static int getChildrenContaining(const char *pData, int nData,
   5862                                  const char *pTerm, int nTerm, int isPrefix,
   5863                                  sqlite_int64 *piStartChild,
   5864                                  sqlite_int64 *piEndChild){
   5865   InteriorReader reader;
   5866   int rc;
   5867 
   5868   assert( nData>1 );
   5869   assert( *pData!='\0' );
   5870   rc = interiorReaderInit(pData, nData, &reader);
   5871   if( rc!=SQLITE_OK ) return rc;
   5872 
   5873   /* Scan for the first child which could contain pTerm/nTerm. */
   5874   while( !interiorReaderAtEnd(&reader) ){
   5875     if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
   5876     rc = interiorReaderStep(&reader);
   5877     if( rc!=SQLITE_OK ){
   5878       interiorReaderDestroy(&reader);
   5879       return rc;
   5880     }
   5881   }
   5882   *piStartChild = interiorReaderCurrentBlockid(&reader);
   5883 
   5884   /* Keep scanning to find a term greater than our term, using prefix
   5885   ** comparison if indicated.  If isPrefix is false, this will be the
   5886   ** same blockid as the starting block.
   5887   */
   5888   while( !interiorReaderAtEnd(&reader) ){
   5889     if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
   5890     rc = interiorReaderStep(&reader);
   5891     if( rc!=SQLITE_OK ){
   5892       interiorReaderDestroy(&reader);
   5893       return rc;
   5894     }
   5895   }
   5896   *piEndChild = interiorReaderCurrentBlockid(&reader);
   5897 
   5898   interiorReaderDestroy(&reader);
   5899 
   5900   /* Children must ascend, and if !prefix, both must be the same. */
   5901   assert( *piEndChild>=*piStartChild );
   5902   assert( isPrefix || *piStartChild==*piEndChild );
   5903   return rc;
   5904 }
   5905 
   5906 /* Read block at iBlockid and pass it with other params to
   5907 ** getChildrenContaining().
   5908 */
   5909 static int loadAndGetChildrenContaining(
   5910   fulltext_vtab *v,
   5911   sqlite_int64 iBlockid,
   5912   const char *pTerm, int nTerm, int isPrefix,
   5913   sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
   5914 ){
   5915   sqlite3_stmt *s = NULL;
   5916   int rc;
   5917 
   5918   assert( iBlockid!=0 );
   5919   assert( pTerm!=NULL );
   5920   assert( nTerm!=0 );        /* TODO(shess) Why not allow this? */
   5921   assert( piStartChild!=NULL );
   5922   assert( piEndChild!=NULL );
   5923 
   5924   rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
   5925   if( rc!=SQLITE_OK ) return rc;
   5926 
   5927   rc = sqlite3_bind_int64(s, 1, iBlockid);
   5928   if( rc!=SQLITE_OK ) return rc;
   5929 
   5930   rc = sqlite3_step(s);
   5931   /* Corrupt if interior node references missing child node. */
   5932   if( rc==SQLITE_DONE ) return SQLITE_CORRUPT_BKPT;
   5933   if( rc!=SQLITE_ROW ) return rc;
   5934 
   5935   /* Corrupt if child node isn't a blob. */
   5936   if( sqlite3_column_type(s, 0)!=SQLITE_BLOB ){
   5937     sqlite3_reset(s);         /* So we don't leave a lock. */
   5938     return SQLITE_CORRUPT_BKPT;
   5939   }else{
   5940     const char *pData = sqlite3_column_blob(s, 0);
   5941     int nData = sqlite3_column_bytes(s, 0);
   5942 
   5943     /* Corrupt if child is not a valid interior node. */
   5944     if( pData==NULL || nData<1 || pData[0]=='\0' ){
   5945       sqlite3_reset(s);         /* So we don't leave a lock. */
   5946       return SQLITE_CORRUPT_BKPT;
   5947     }
   5948 
   5949     rc = getChildrenContaining(pData, nData, pTerm, nTerm,
   5950                                isPrefix, piStartChild, piEndChild);
   5951     if( rc!=SQLITE_OK ){
   5952       sqlite3_reset(s);
   5953       return rc;
   5954     }
   5955   }
   5956 
   5957   /* We expect only one row.  We must execute another sqlite3_step()
   5958    * to complete the iteration; otherwise the table will remain
   5959    * locked. */
   5960   rc = sqlite3_step(s);
   5961   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
   5962   if( rc!=SQLITE_DONE ) return rc;
   5963 
   5964   return SQLITE_OK;
   5965 }
   5966 
   5967 /* Traverse the tree represented by pData[nData] looking for
   5968 ** pTerm[nTerm], placing its doclist into *out.  This is internal to
   5969 ** loadSegment() to make error-handling cleaner.
   5970 */
   5971 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
   5972                           sqlite_int64 iLeavesEnd,
   5973                           const char *pTerm, int nTerm, int isPrefix,
   5974                           DataBuffer *out){
   5975   /* Special case where root is a leaf. */
   5976   if( *pData=='\0' ){
   5977     return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
   5978   }else{
   5979     int rc;
   5980     sqlite_int64 iStartChild, iEndChild;
   5981 
   5982     /* Process pData as an interior node, then loop down the tree
   5983     ** until we find the set of leaf nodes to scan for the term.
   5984     */
   5985     rc = getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
   5986                                &iStartChild, &iEndChild);
   5987     if( rc!=SQLITE_OK ) return rc;
   5988     while( iStartChild>iLeavesEnd ){
   5989       sqlite_int64 iNextStart, iNextEnd;
   5990       rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
   5991                                         &iNextStart, &iNextEnd);
   5992       if( rc!=SQLITE_OK ) return rc;
   5993 
   5994       /* If we've branched, follow the end branch, too. */
   5995       if( iStartChild!=iEndChild ){
   5996         sqlite_int64 iDummy;
   5997         rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
   5998                                           &iDummy, &iNextEnd);
   5999         if( rc!=SQLITE_OK ) return rc;
   6000       }
   6001 
   6002       assert( iNextStart<=iNextEnd );
   6003       iStartChild = iNextStart;
   6004       iEndChild = iNextEnd;
   6005     }
   6006     assert( iStartChild<=iLeavesEnd );
   6007     assert( iEndChild<=iLeavesEnd );
   6008 
   6009     /* Scan through the leaf segments for doclists. */
   6010     return loadSegmentLeaves(v, iStartChild, iEndChild,
   6011                              pTerm, nTerm, isPrefix, out);
   6012   }
   6013 }
   6014 
   6015 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
   6016 ** merge its doclist over *out (any duplicate doclists read from the
   6017 ** segment rooted at pData will overwrite those in *out).
   6018 */
   6019 /* TODO(shess) Consider changing this to determine the depth of the
   6020 ** leaves using either the first characters of interior nodes (when
   6021 ** ==1, we're one level above the leaves), or the first character of
   6022 ** the root (which will describe the height of the tree directly).
   6023 ** Either feels somewhat tricky to me.
   6024 */
   6025 /* TODO(shess) The current merge is likely to be slow for large
   6026 ** doclists (though it should process from newest/smallest to
   6027 ** oldest/largest, so it may not be that bad).  It might be useful to
   6028 ** modify things to allow for N-way merging.  This could either be
   6029 ** within a segment, with pairwise merges across segments, or across
   6030 ** all segments at once.
   6031 */
   6032 static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
   6033                        sqlite_int64 iLeavesEnd,
   6034                        const char *pTerm, int nTerm, int isPrefix,
   6035                        DataBuffer *out){
   6036   DataBuffer result;
   6037   int rc;
   6038 
   6039   /* Corrupt if segment root can't be valid. */
   6040   if( pData==NULL || nData<1 ) return SQLITE_CORRUPT_BKPT;
   6041 
   6042   /* This code should never be called with buffered updates. */
   6043   assert( v->nPendingData<0 );
   6044 
   6045   dataBufferInit(&result, 0);
   6046   rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
   6047                       pTerm, nTerm, isPrefix, &result);
   6048   if( rc==SQLITE_OK && result.nData>0 ){
   6049     if( out->nData==0 ){
   6050       DataBuffer tmp = *out;
   6051       *out = result;
   6052       result = tmp;
   6053     }else{
   6054       DataBuffer merged;
   6055       DLReader readers[2];
   6056 
   6057       rc = dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
   6058       if( rc==SQLITE_OK ){
   6059         rc = dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
   6060         if( rc==SQLITE_OK ){
   6061           dataBufferInit(&merged, out->nData+result.nData);
   6062           rc = docListMerge(&merged, readers, 2);
   6063           dataBufferDestroy(out);
   6064           *out = merged;
   6065           dlrDestroy(&readers[1]);
   6066         }
   6067         dlrDestroy(&readers[0]);
   6068       }
   6069     }
   6070   }
   6071 
   6072   dataBufferDestroy(&result);
   6073   return rc;
   6074 }
   6075 
   6076 /* Scan the database and merge together the posting lists for the term
   6077 ** into *out.
   6078 */
   6079 static int termSelect(fulltext_vtab *v, int iColumn,
   6080                       const char *pTerm, int nTerm, int isPrefix,
   6081                       DocListType iType, DataBuffer *out){
   6082   DataBuffer doclist;
   6083   sqlite3_stmt *s;
   6084   int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
   6085   if( rc!=SQLITE_OK ) return rc;
   6086 
   6087   /* This code should never be called with buffered updates. */
   6088   assert( v->nPendingData<0 );
   6089 
   6090   dataBufferInit(&doclist, 0);
   6091 
   6092   /* Traverse the segments from oldest to newest so that newer doclist
   6093   ** elements for given docids overwrite older elements.
   6094   */
   6095   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
   6096     const char *pData = sqlite3_column_blob(s, 2);
   6097     const int nData = sqlite3_column_bytes(s, 2);
   6098     const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
   6099 
   6100     /* Corrupt if we get back different types than we stored. */
   6101     if( sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
   6102         sqlite3_column_type(s, 2)!=SQLITE_BLOB ){
   6103       rc = SQLITE_CORRUPT_BKPT;
   6104       goto err;
   6105     }
   6106 
   6107     rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
   6108                      &doclist);
   6109     if( rc!=SQLITE_OK ) goto err;
   6110   }
   6111   if( rc==SQLITE_DONE ){
   6112     rc = SQLITE_OK;
   6113     if( doclist.nData!=0 ){
   6114       /* TODO(shess) The old term_select_all() code applied the column
   6115       ** restrict as we merged segments, leading to smaller buffers.
   6116       ** This is probably worthwhile to bring back, once the new storage
   6117       ** system is checked in.
   6118       */
   6119       if( iColumn==v->nColumn) iColumn = -1;
   6120       rc = docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
   6121                        iColumn, iType, out);
   6122     }
   6123   }
   6124 
   6125  err:
   6126   sqlite3_reset(s);         /* So we don't leave a lock. */
   6127   dataBufferDestroy(&doclist);
   6128   return rc;
   6129 }
   6130 
   6131 /****************************************************************/
   6132 /* Used to hold hashtable data for sorting. */
   6133 typedef struct TermData {
   6134   const char *pTerm;
   6135   int nTerm;
   6136   DLCollector *pCollector;
   6137 } TermData;
   6138 
   6139 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
   6140 ** for equal, >0 for greater-than).
   6141 */
   6142 static int termDataCmp(const void *av, const void *bv){
   6143   const TermData *a = (const TermData *)av;
   6144   const TermData *b = (const TermData *)bv;
   6145   int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
   6146   int c = memcmp(a->pTerm, b->pTerm, n);
   6147   if( c!=0 ) return c;
   6148   return a->nTerm-b->nTerm;
   6149 }
   6150 
   6151 /* Order pTerms data by term, then write a new level 0 segment using
   6152 ** LeafWriter.
   6153 */
   6154 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){
   6155   fts2HashElem *e;
   6156   int idx, rc, i, n;
   6157   TermData *pData;
   6158   LeafWriter writer;
   6159   DataBuffer dl;
   6160 
   6161   /* Determine the next index at level 0, merging as necessary. */
   6162   rc = segdirNextIndex(v, 0, &idx);
   6163   if( rc!=SQLITE_OK ) return rc;
   6164 
   6165   n = fts2HashCount(pTerms);
   6166   pData = sqlite3_malloc(n*sizeof(TermData));
   6167 
   6168   for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){
   6169     assert( i<n );
   6170     pData[i].pTerm = fts2HashKey(e);
   6171     pData[i].nTerm = fts2HashKeysize(e);
   6172     pData[i].pCollector = fts2HashData(e);
   6173   }
   6174   assert( i==n );
   6175 
   6176   /* TODO(shess) Should we allow user-defined collation sequences,
   6177   ** here?  I think we only need that once we support prefix searches.
   6178   */
   6179   if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
   6180 
   6181   /* TODO(shess) Refactor so that we can write directly to the segment
   6182   ** DataBuffer, as happens for segment merges.
   6183   */
   6184   leafWriterInit(0, idx, &writer);
   6185   dataBufferInit(&dl, 0);
   6186   for(i=0; i<n; i++){
   6187     dataBufferReset(&dl);
   6188     dlcAddDoclist(pData[i].pCollector, &dl);
   6189     rc = leafWriterStep(v, &writer,
   6190                         pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
   6191     if( rc!=SQLITE_OK ) goto err;
   6192   }
   6193   rc = leafWriterFinalize(v, &writer);
   6194 
   6195  err:
   6196   dataBufferDestroy(&dl);
   6197   sqlite3_free(pData);
   6198   leafWriterDestroy(&writer);
   6199   return rc;
   6200 }
   6201 
   6202 /* If pendingTerms has data, free it. */
   6203 static int clearPendingTerms(fulltext_vtab *v){
   6204   if( v->nPendingData>=0 ){
   6205     fts2HashElem *e;
   6206     for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){
   6207       dlcDelete(fts2HashData(e));
   6208     }
   6209     fts2HashClear(&v->pendingTerms);
   6210     v->nPendingData = -1;
   6211   }
   6212   return SQLITE_OK;
   6213 }
   6214 
   6215 /* If pendingTerms has data, flush it to a level-zero segment, and
   6216 ** free it.
   6217 */
   6218 static int flushPendingTerms(fulltext_vtab *v){
   6219   if( v->nPendingData>=0 ){
   6220     int rc = writeZeroSegment(v, &v->pendingTerms);
   6221     if( rc==SQLITE_OK ) clearPendingTerms(v);
   6222     return rc;
   6223   }
   6224   return SQLITE_OK;
   6225 }
   6226 
   6227 /* If pendingTerms is "too big", or docid is out of order, flush it.
   6228 ** Regardless, be certain that pendingTerms is initialized for use.
   6229 */
   6230 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
   6231   /* TODO(shess) Explore whether partially flushing the buffer on
   6232   ** forced-flush would provide better performance.  I suspect that if
   6233   ** we ordered the doclists by size and flushed the largest until the
   6234   ** buffer was half empty, that would let the less frequent terms
   6235   ** generate longer doclists.
   6236   */
   6237   if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
   6238     int rc = flushPendingTerms(v);
   6239     if( rc!=SQLITE_OK ) return rc;
   6240   }
   6241   if( v->nPendingData<0 ){
   6242     fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1);
   6243     v->nPendingData = 0;
   6244   }
   6245   v->iPrevDocid = iDocid;
   6246   return SQLITE_OK;
   6247 }
   6248 
   6249 /* This function implements the xUpdate callback; it is the top-level entry
   6250  * point for inserting, deleting or updating a row in a full-text table. */
   6251 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
   6252                    sqlite_int64 *pRowid){
   6253   fulltext_vtab *v = (fulltext_vtab *) pVtab;
   6254   int rc;
   6255 
   6256   TRACE(("FTS2 Update %p\n", pVtab));
   6257 
   6258   if( nArg<2 ){
   6259     rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
   6260     if( rc==SQLITE_OK ){
   6261       /* If we just deleted the last row in the table, clear out the
   6262       ** index data.
   6263       */
   6264       rc = content_exists(v);
   6265       if( rc==SQLITE_ROW ){
   6266         rc = SQLITE_OK;
   6267       }else if( rc==SQLITE_DONE ){
   6268         /* Clear the pending terms so we don't flush a useless level-0
   6269         ** segment when the transaction closes.
   6270         */
   6271         rc = clearPendingTerms(v);
   6272         if( rc==SQLITE_OK ){
   6273           rc = segdir_delete_all(v);
   6274         }
   6275       }
   6276     }
   6277   } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
   6278     /* An update:
   6279      * ppArg[0] = old rowid
   6280      * ppArg[1] = new rowid
   6281      * ppArg[2..2+v->nColumn-1] = values
   6282      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
   6283      */
   6284     sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
   6285     if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
   6286       sqlite3_value_int64(ppArg[1]) != rowid ){
   6287       rc = SQLITE_ERROR;  /* we don't allow changing the rowid */
   6288     } else {
   6289       assert( nArg==2+v->nColumn+1);
   6290       rc = index_update(v, rowid, &ppArg[2]);
   6291     }
   6292   } else {
   6293     /* An insert:
   6294      * ppArg[1] = requested rowid
   6295      * ppArg[2..2+v->nColumn-1] = values
   6296      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
   6297      */
   6298     assert( nArg==2+v->nColumn+1);
   6299     rc = index_insert(v, ppArg[1], &ppArg[2], pRowid);
   6300   }
   6301 
   6302   return rc;
   6303 }
   6304 
   6305 static int fulltextSync(sqlite3_vtab *pVtab){
   6306   TRACE(("FTS2 xSync()\n"));
   6307   return flushPendingTerms((fulltext_vtab *)pVtab);
   6308 }
   6309 
   6310 static int fulltextBegin(sqlite3_vtab *pVtab){
   6311   fulltext_vtab *v = (fulltext_vtab *) pVtab;
   6312   TRACE(("FTS2 xBegin()\n"));
   6313 
   6314   /* Any buffered updates should have been cleared by the previous
   6315   ** transaction.
   6316   */
   6317   assert( v->nPendingData<0 );
   6318   return clearPendingTerms(v);
   6319 }
   6320 
   6321 static int fulltextCommit(sqlite3_vtab *pVtab){
   6322   fulltext_vtab *v = (fulltext_vtab *) pVtab;
   6323   TRACE(("FTS2 xCommit()\n"));
   6324 
   6325   /* Buffered updates should have been cleared by fulltextSync(). */
   6326   assert( v->nPendingData<0 );
   6327   return clearPendingTerms(v);
   6328 }
   6329 
   6330 static int fulltextRollback(sqlite3_vtab *pVtab){
   6331   TRACE(("FTS2 xRollback()\n"));
   6332   return clearPendingTerms((fulltext_vtab *)pVtab);
   6333 }
   6334 
   6335 /*
   6336 ** Implementation of the snippet() function for FTS2
   6337 */
   6338 static void snippetFunc(
   6339   sqlite3_context *pContext,
   6340   int argc,
   6341   sqlite3_value **argv
   6342 ){
   6343   fulltext_cursor *pCursor;
   6344   if( argc<1 ) return;
   6345   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
   6346       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
   6347     sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
   6348   }else{
   6349     const char *zStart = "<b>";
   6350     const char *zEnd = "</b>";
   6351     const char *zEllipsis = "<b>...</b>";
   6352     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
   6353     if( argc>=2 ){
   6354       zStart = (const char*)sqlite3_value_text(argv[1]);
   6355       if( argc>=3 ){
   6356         zEnd = (const char*)sqlite3_value_text(argv[2]);
   6357         if( argc>=4 ){
   6358           zEllipsis = (const char*)sqlite3_value_text(argv[3]);
   6359         }
   6360       }
   6361     }
   6362     snippetAllOffsets(pCursor);
   6363     snippetText(pCursor, zStart, zEnd, zEllipsis);
   6364     sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
   6365                         pCursor->snippet.nSnippet, SQLITE_STATIC);
   6366   }
   6367 }
   6368 
   6369 /*
   6370 ** Implementation of the offsets() function for FTS2
   6371 */
   6372 static void snippetOffsetsFunc(
   6373   sqlite3_context *pContext,
   6374   int argc,
   6375   sqlite3_value **argv
   6376 ){
   6377   fulltext_cursor *pCursor;
   6378   if( argc<1 ) return;
   6379   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
   6380       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
   6381     sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
   6382   }else{
   6383     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
   6384     snippetAllOffsets(pCursor);
   6385     snippetOffsetText(&pCursor->snippet);
   6386     sqlite3_result_text(pContext,
   6387                         pCursor->snippet.zOffset, pCursor->snippet.nOffset,
   6388                         SQLITE_STATIC);
   6389   }
   6390 }
   6391 
   6392 /* OptLeavesReader is nearly identical to LeavesReader, except that
   6393 ** where LeavesReader is geared towards the merging of complete
   6394 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
   6395 ** is geared towards implementation of the optimize() function, and
   6396 ** can merge all segments simultaneously.  This version may be
   6397 ** somewhat less efficient than LeavesReader because it merges into an
   6398 ** accumulator rather than doing an N-way merge, but since segment
   6399 ** size grows exponentially (so segment count logrithmically) this is
   6400 ** probably not an immediate problem.
   6401 */
   6402 /* TODO(shess): Prove that assertion, or extend the merge code to
   6403 ** merge tree fashion (like the prefix-searching code does).
   6404 */
   6405 /* TODO(shess): OptLeavesReader and LeavesReader could probably be
   6406 ** merged with little or no loss of performance for LeavesReader.  The
   6407 ** merged code would need to handle >MERGE_COUNT segments, and would
   6408 ** also need to be able to optionally optimize away deletes.
   6409 */
   6410 typedef struct OptLeavesReader {
   6411   /* Segment number, to order readers by age. */
   6412   int segment;
   6413   LeavesReader reader;
   6414 } OptLeavesReader;
   6415 
   6416 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
   6417   return leavesReaderAtEnd(&pReader->reader);
   6418 }
   6419 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
   6420   return leavesReaderTermBytes(&pReader->reader);
   6421 }
   6422 static const char *optLeavesReaderData(OptLeavesReader *pReader){
   6423   return leavesReaderData(&pReader->reader);
   6424 }
   6425 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
   6426   return leavesReaderDataBytes(&pReader->reader);
   6427 }
   6428 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
   6429   return leavesReaderTerm(&pReader->reader);
   6430 }
   6431 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
   6432   return leavesReaderStep(v, &pReader->reader);
   6433 }
   6434 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
   6435   return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
   6436 }
   6437 /* Order by term ascending, segment ascending (oldest to newest), with
   6438 ** exhausted readers to the end.
   6439 */
   6440 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
   6441   int c = optLeavesReaderTermCmp(lr1, lr2);
   6442   if( c!=0 ) return c;
   6443   return lr1->segment-lr2->segment;
   6444 }
   6445 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1].  Assumes that
   6446 ** pLr[1..nLr-1] is already sorted.
   6447 */
   6448 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
   6449   while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
   6450     OptLeavesReader tmp = pLr[0];
   6451     pLr[0] = pLr[1];
   6452     pLr[1] = tmp;
   6453     nLr--;
   6454     pLr++;
   6455   }
   6456 }
   6457 
   6458 /* optimize() helper function.  Put the readers in order and iterate
   6459 ** through them, merging doclists for matching terms into pWriter.
   6460 ** Returns SQLITE_OK on success, or the SQLite error code which
   6461 ** prevented success.
   6462 */
   6463 static int optimizeInternal(fulltext_vtab *v,
   6464                             OptLeavesReader *readers, int nReaders,
   6465                             LeafWriter *pWriter){
   6466   int i, rc = SQLITE_OK;
   6467   DataBuffer doclist, merged, tmp;
   6468   const char *pData;
   6469 
   6470   /* Order the readers. */
   6471   i = nReaders;
   6472   while( i-- > 0 ){
   6473     optLeavesReaderReorder(&readers[i], nReaders-i);
   6474   }
   6475 
   6476   dataBufferInit(&doclist, LEAF_MAX);
   6477   dataBufferInit(&merged, LEAF_MAX);
   6478 
   6479   /* Exhausted readers bubble to the end, so when the first reader is
   6480   ** at eof, all are at eof.
   6481   */
   6482   while( !optLeavesReaderAtEnd(&readers[0]) ){
   6483 
   6484     /* Figure out how many readers share the next term. */
   6485     for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
   6486       if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
   6487     }
   6488 
   6489     pData = optLeavesReaderData(&readers[0]);
   6490     if( pData==NULL ){
   6491       rc = SQLITE_CORRUPT_BKPT;
   6492       break;
   6493     }
   6494 
   6495     /* Special-case for no merge. */
   6496     if( i==1 ){
   6497       /* Trim deletions from the doclist. */
   6498       dataBufferReset(&merged);
   6499       rc = docListTrim(DL_DEFAULT,
   6500                        pData,
   6501                        optLeavesReaderDataBytes(&readers[0]),
   6502                        -1, DL_DEFAULT, &merged);
   6503       if( rc!= SQLITE_OK ) break;
   6504     }else{
   6505       DLReader dlReaders[MERGE_COUNT];
   6506       int iReader, nReaders;
   6507 
   6508       /* Prime the pipeline with the first reader's doclist.  After
   6509       ** one pass index 0 will reference the accumulated doclist.
   6510       */
   6511       rc = dlrInit(&dlReaders[0], DL_DEFAULT,
   6512                    pData,
   6513                    optLeavesReaderDataBytes(&readers[0]));
   6514       if( rc!=SQLITE_OK ) break;
   6515       iReader = 1;
   6516 
   6517       assert( iReader<i );  /* Must execute the loop at least once. */
   6518       while( iReader<i ){
   6519         /* Merge 16 inputs per pass. */
   6520         for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
   6521              iReader++, nReaders++ ){
   6522           pData = optLeavesReaderData(&readers[iReader]);
   6523           if( pData == NULL ){
   6524             rc = SQLITE_CORRUPT_BKPT;
   6525             break;
   6526           }
   6527           rc = dlrInit(&dlReaders[nReaders], DL_DEFAULT,
   6528                        pData,
   6529                        optLeavesReaderDataBytes(&readers[iReader]));
   6530           if( rc != SQLITE_OK ) break;
   6531         }
   6532 
   6533         /* Merge doclists and swap result into accumulator. */
   6534         if( rc==SQLITE_OK ){
   6535           dataBufferReset(&merged);
   6536           rc = docListMerge(&merged, dlReaders, nReaders);
   6537           tmp = merged;
   6538           merged = doclist;
   6539           doclist = tmp;
   6540         }
   6541 
   6542         while( nReaders-- > 0 ){
   6543           dlrDestroy(&dlReaders[nReaders]);
   6544         }
   6545 
   6546         if( rc!=SQLITE_OK ) goto err;
   6547 
   6548         /* Accumulated doclist to reader 0 for next pass. */
   6549         rc = dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
   6550         if( rc!=SQLITE_OK ) goto err;
   6551       }
   6552 
   6553       /* Destroy reader that was left in the pipeline. */
   6554       dlrDestroy(&dlReaders[0]);
   6555 
   6556       /* Trim deletions from the doclist. */
   6557       dataBufferReset(&merged);
   6558       rc = docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
   6559                        -1, DL_DEFAULT, &merged);
   6560       if( rc!=SQLITE_OK ) goto err;
   6561     }
   6562 
   6563     /* Only pass doclists with hits (skip if all hits deleted). */
   6564     if( merged.nData>0 ){
   6565       rc = leafWriterStep(v, pWriter,
   6566                           optLeavesReaderTerm(&readers[0]),
   6567                           optLeavesReaderTermBytes(&readers[0]),
   6568                           merged.pData, merged.nData);
   6569       if( rc!=SQLITE_OK ) goto err;
   6570     }
   6571 
   6572     /* Step merged readers to next term and reorder. */
   6573     while( i-- > 0 ){
   6574       rc = optLeavesReaderStep(v, &readers[i]);
   6575       if( rc!=SQLITE_OK ) goto err;
   6576 
   6577       optLeavesReaderReorder(&readers[i], nReaders-i);
   6578     }
   6579   }
   6580 
   6581  err:
   6582   dataBufferDestroy(&doclist);
   6583   dataBufferDestroy(&merged);
   6584   return rc;
   6585 }
   6586 
   6587 /* Implement optimize() function for FTS3.  optimize(t) merges all
   6588 ** segments in the fts index into a single segment.  't' is the magic
   6589 ** table-named column.
   6590 */
   6591 static void optimizeFunc(sqlite3_context *pContext,
   6592                          int argc, sqlite3_value **argv){
   6593   fulltext_cursor *pCursor;
   6594   if( argc>1 ){
   6595     sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
   6596   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
   6597             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
   6598     sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
   6599   }else{
   6600     fulltext_vtab *v;
   6601     int i, rc, iMaxLevel;
   6602     OptLeavesReader *readers;
   6603     int nReaders;
   6604     LeafWriter writer;
   6605     sqlite3_stmt *s;
   6606 
   6607     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
   6608     v = cursor_vtab(pCursor);
   6609 
   6610     /* Flush any buffered updates before optimizing. */
   6611     rc = flushPendingTerms(v);
   6612     if( rc!=SQLITE_OK ) goto err;
   6613 
   6614     rc = segdir_count(v, &nReaders, &iMaxLevel);
   6615     if( rc!=SQLITE_OK ) goto err;
   6616     if( nReaders==0 || nReaders==1 ){
   6617       sqlite3_result_text(pContext, "Index already optimal", -1,
   6618                           SQLITE_STATIC);
   6619       return;
   6620     }
   6621 
   6622     rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
   6623     if( rc!=SQLITE_OK ) goto err;
   6624 
   6625     readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
   6626     if( readers==NULL ) goto err;
   6627 
   6628     /* Note that there will already be a segment at this position
   6629     ** until we call segdir_delete() on iMaxLevel.
   6630     */
   6631     leafWriterInit(iMaxLevel, 0, &writer);
   6632 
   6633     i = 0;
   6634     while( (rc = sqlite3_step(s))==SQLITE_ROW ){
   6635       sqlite_int64 iStart = sqlite3_column_int64(s, 0);
   6636       sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
   6637       const char *pRootData = sqlite3_column_blob(s, 2);
   6638       int nRootData = sqlite3_column_bytes(s, 2);
   6639 
   6640       /* Corrupt if we get back different types than we stored. */
   6641       if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER ||
   6642           sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
   6643           sqlite3_column_type(s, 2)!=SQLITE_BLOB ){
   6644         rc = SQLITE_CORRUPT_BKPT;
   6645         break;
   6646       }
   6647 
   6648       assert( i<nReaders );
   6649       rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
   6650                             &readers[i].reader);
   6651       if( rc!=SQLITE_OK ) break;
   6652 
   6653       readers[i].segment = i;
   6654       i++;
   6655     }
   6656 
   6657     /* If we managed to successfully read them all, optimize them. */
   6658     if( rc==SQLITE_DONE ){
   6659       assert( i==nReaders );
   6660       rc = optimizeInternal(v, readers, nReaders, &writer);
   6661     }else{
   6662       sqlite3_reset(s);      /* So we don't leave a lock. */
   6663     }
   6664 
   6665     while( i-- > 0 ){
   6666       leavesReaderDestroy(&readers[i].reader);
   6667     }
   6668     sqlite3_free(readers);
   6669 
   6670     /* If we've successfully gotten to here, delete the old segments
   6671     ** and flush the interior structure of the new segment.
   6672     */
   6673     if( rc==SQLITE_OK ){
   6674       for( i=0; i<=iMaxLevel; i++ ){
   6675         rc = segdir_delete(v, i);
   6676         if( rc!=SQLITE_OK ) break;
   6677       }
   6678 
   6679       if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
   6680     }
   6681 
   6682     leafWriterDestroy(&writer);
   6683 
   6684     if( rc!=SQLITE_OK ) goto err;
   6685 
   6686     sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
   6687     return;
   6688 
   6689     /* TODO(shess): Error-handling needs to be improved along the
   6690     ** lines of the dump_ functions.
   6691     */
   6692  err:
   6693     {
   6694       char buf[512];
   6695       sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
   6696                        sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
   6697       sqlite3_result_error(pContext, buf, -1);
   6698     }
   6699   }
   6700 }
   6701 
   6702 #ifdef SQLITE_TEST
   6703 /* Generate an error of the form "<prefix>: <msg>".  If msg is NULL,
   6704 ** pull the error from the context's db handle.
   6705 */
   6706 static void generateError(sqlite3_context *pContext,
   6707                           const char *prefix, const char *msg){
   6708   char buf[512];
   6709   if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
   6710   sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
   6711   sqlite3_result_error(pContext, buf, -1);
   6712 }
   6713 
   6714 /* Helper function to collect the set of terms in the segment into
   6715 ** pTerms.  The segment is defined by the leaf nodes between
   6716 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of
   6717 ** pRootData if iStartBlockid is 0 (in which case the entire segment
   6718 ** fit in a leaf).
   6719 */
   6720 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
   6721                                fts2Hash *pTerms){
   6722   const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
   6723   const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
   6724   const char *pRootData = sqlite3_column_blob(s, 2);
   6725   const int nRootData = sqlite3_column_bytes(s, 2);
   6726   int rc;
   6727   LeavesReader reader;
   6728 
   6729   /* Corrupt if we get back different types than we stored. */
   6730   if( sqlite3_column_type(s, 0)!=SQLITE_INTEGER ||
   6731       sqlite3_column_type(s, 1)!=SQLITE_INTEGER ||
   6732       sqlite3_column_type(s, 2)!=SQLITE_BLOB ){
   6733     return SQLITE_CORRUPT_BKPT;
   6734   }
   6735 
   6736   rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
   6737                         pRootData, nRootData, &reader);
   6738   if( rc!=SQLITE_OK ) return rc;
   6739 
   6740   while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
   6741     const char *pTerm = leavesReaderTerm(&reader);
   6742     const int nTerm = leavesReaderTermBytes(&reader);
   6743     void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm);
   6744     void *newValue = (void *)((char *)oldValue+1);
   6745 
   6746     /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c,
   6747     ** the data value passed is returned in case of malloc failure.
   6748     */
   6749     if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){
   6750       rc = SQLITE_NOMEM;
   6751     }else{
   6752       rc = leavesReaderStep(v, &reader);
   6753     }
   6754   }
   6755 
   6756   leavesReaderDestroy(&reader);
   6757   return rc;
   6758 }
   6759 
   6760 /* Helper function to build the result string for dump_terms(). */
   6761 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){
   6762   int iTerm, nTerms, nResultBytes, iByte;
   6763   char *result;
   6764   TermData *pData;
   6765   fts2HashElem *e;
   6766 
   6767   /* Iterate pTerms to generate an array of terms in pData for
   6768   ** sorting.
   6769   */
   6770   nTerms = fts2HashCount(pTerms);
   6771   assert( nTerms>0 );
   6772   pData = sqlite3_malloc(nTerms*sizeof(TermData));
   6773   if( pData==NULL ) return SQLITE_NOMEM;
   6774 
   6775   nResultBytes = 0;
   6776   for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){
   6777     nResultBytes += fts2HashKeysize(e)+1;   /* Term plus trailing space */
   6778     assert( iTerm<nTerms );
   6779     pData[iTerm].pTerm = fts2HashKey(e);
   6780     pData[iTerm].nTerm = fts2HashKeysize(e);
   6781     pData[iTerm].pCollector = fts2HashData(e);  /* unused */
   6782   }
   6783   assert( iTerm==nTerms );
   6784 
   6785   assert( nResultBytes>0 );   /* nTerms>0, nResultsBytes must be, too. */
   6786   result = sqlite3_malloc(nResultBytes);
   6787   if( result==NULL ){
   6788     sqlite3_free(pData);
   6789     return SQLITE_NOMEM;
   6790   }
   6791 
   6792   if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
   6793 
   6794   /* Read the terms in order to build the result. */
   6795   iByte = 0;
   6796   for(iTerm=0; iTerm<nTerms; ++iTerm){
   6797     memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
   6798     iByte += pData[iTerm].nTerm;
   6799     result[iByte++] = ' ';
   6800   }
   6801   assert( iByte==nResultBytes );
   6802   assert( result[nResultBytes-1]==' ' );
   6803   result[nResultBytes-1] = '\0';
   6804 
   6805   /* Passes away ownership of result. */
   6806   sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
   6807   sqlite3_free(pData);
   6808   return SQLITE_OK;
   6809 }
   6810 
   6811 /* Implements dump_terms() for use in inspecting the fts2 index from
   6812 ** tests.  TEXT result containing the ordered list of terms joined by
   6813 ** spaces.  dump_terms(t, level, idx) dumps the terms for the segment
   6814 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps
   6815 ** all terms in the index.  In both cases t is the fts table's magic
   6816 ** table-named column.
   6817 */
   6818 static void dumpTermsFunc(
   6819   sqlite3_context *pContext,
   6820   int argc, sqlite3_value **argv
   6821 ){
   6822   fulltext_cursor *pCursor;
   6823   if( argc!=3 && argc!=1 ){
   6824     generateError(pContext, "dump_terms", "incorrect arguments");
   6825   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
   6826             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
   6827     generateError(pContext, "dump_terms", "illegal first argument");
   6828   }else{
   6829     fulltext_vtab *v;
   6830     fts2Hash terms;
   6831     sqlite3_stmt *s = NULL;
   6832     int rc;
   6833 
   6834     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
   6835     v = cursor_vtab(pCursor);
   6836 
   6837     /* If passed only the cursor column, get all segments.  Otherwise
   6838     ** get the segment described by the following two arguments.
   6839     */
   6840     if( argc==1 ){
   6841       rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
   6842     }else{
   6843       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
   6844       if( rc==SQLITE_OK ){
   6845         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
   6846         if( rc==SQLITE_OK ){
   6847           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
   6848         }
   6849       }
   6850     }
   6851 
   6852     if( rc!=SQLITE_OK ){
   6853       generateError(pContext, "dump_terms", NULL);
   6854       return;
   6855     }
   6856 
   6857     /* Collect the terms for each segment. */
   6858     sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1);
   6859     while( (rc = sqlite3_step(s))==SQLITE_ROW ){
   6860       rc = collectSegmentTerms(v, s, &terms);
   6861       if( rc!=SQLITE_OK ) break;
   6862     }
   6863 
   6864     if( rc!=SQLITE_DONE ){
   6865       sqlite3_reset(s);
   6866       generateError(pContext, "dump_terms", NULL);
   6867     }else{
   6868       const int nTerms = fts2HashCount(&terms);
   6869       if( nTerms>0 ){
   6870         rc = generateTermsResult(pContext, &terms);
   6871         if( rc==SQLITE_NOMEM ){
   6872           generateError(pContext, "dump_terms", "out of memory");
   6873         }else{
   6874           assert( rc==SQLITE_OK );
   6875         }
   6876       }else if( argc==3 ){
   6877         /* The specific segment asked for could not be found. */
   6878         generateError(pContext, "dump_terms", "segment not found");
   6879       }else{
   6880         /* No segments found. */
   6881         /* TODO(shess): It should be impossible to reach this.  This
   6882         ** case can only happen for an empty table, in which case
   6883         ** SQLite has no rows to call this function on.
   6884         */
   6885         sqlite3_result_null(pContext);
   6886       }
   6887     }
   6888     sqlite3Fts2HashClear(&terms);
   6889   }
   6890 }
   6891 
   6892 /* Expand the DL_DEFAULT doclist in pData into a text result in
   6893 ** pContext.
   6894 */
   6895 static void createDoclistResult(sqlite3_context *pContext,
   6896                                 const char *pData, int nData){
   6897   DataBuffer dump;
   6898   DLReader dlReader;
   6899   int rc;
   6900 
   6901   assert( pData!=NULL && nData>0 );
   6902 
   6903   rc = dlrInit(&dlReader, DL_DEFAULT, pData, nData);
   6904   if( rc!=SQLITE_OK ) return rc;
   6905   dataBufferInit(&dump, 0);
   6906   for( ; rc==SQLITE_OK && !dlrAtEnd(&dlReader); rc = dlrStep(&dlReader) ){
   6907     char buf[256];
   6908     PLReader plReader;
   6909 
   6910     rc = plrInit(&plReader, &dlReader);
   6911     if( rc!=SQLITE_OK ) break;
   6912     if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
   6913       sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
   6914       dataBufferAppend(&dump, buf, strlen(buf));
   6915     }else{
   6916       int iColumn = plrColumn(&plReader);
   6917 
   6918       sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
   6919                        dlrDocid(&dlReader), iColumn);
   6920       dataBufferAppend(&dump, buf, strlen(buf));
   6921 
   6922       for( ; !plrAtEnd(&plReader); rc = plrStep(&plReader) ){
   6923         if( rc!=SQLITE_OK ) break;
   6924         if( plrColumn(&plReader)!=iColumn ){
   6925           iColumn = plrColumn(&plReader);
   6926           sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
   6927           assert( dump.nData>0 );
   6928           dump.nData--;                     /* Overwrite trailing space. */
   6929           assert( dump.pData[dump.nData]==' ');
   6930           dataBufferAppend(&dump, buf, strlen(buf));
   6931         }
   6932         if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
   6933           sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
   6934                            plrPosition(&plReader),
   6935                            plrStartOffset(&plReader), plrEndOffset(&plReader));
   6936         }else if( DL_DEFAULT==DL_POSITIONS ){
   6937           sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
   6938         }else{
   6939           assert( NULL=="Unhandled DL_DEFAULT value");
   6940         }
   6941         dataBufferAppend(&dump, buf, strlen(buf));
   6942       }
   6943       plrDestroy(&plReader);
   6944       if( rc!= SQLITE_OK ) break;
   6945 
   6946       assert( dump.nData>0 );
   6947       dump.nData--;                     /* Overwrite trailing space. */
   6948       assert( dump.pData[dump.nData]==' ');
   6949       dataBufferAppend(&dump, "]] ", 3);
   6950     }
   6951   }
   6952   dlrDestroy(&dlReader);
   6953   if( rc!=SQLITE_OK ){
   6954     dataBufferDestroy(&dump);
   6955     return rc;
   6956   }
   6957 
   6958   assert( dump.nData>0 );
   6959   dump.nData--;                     /* Overwrite trailing space. */
   6960   assert( dump.pData[dump.nData]==' ');
   6961   dump.pData[dump.nData] = '\0';
   6962   assert( dump.nData>0 );
   6963 
   6964   /* Passes ownership of dump's buffer to pContext. */
   6965   sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
   6966   dump.pData = NULL;
   6967   dump.nData = dump.nCapacity = 0;
   6968   return SQLITE_OK;
   6969 }
   6970 
   6971 /* Implements dump_doclist() for use in inspecting the fts2 index from
   6972 ** tests.  TEXT result containing a string representation of the
   6973 ** doclist for the indicated term.  dump_doclist(t, term, level, idx)
   6974 ** dumps the doclist for term from the segment specified by level, idx
   6975 ** (in %_segdir), while dump_doclist(t, term) dumps the logical
   6976 ** doclist for the term across all segments.  The per-segment doclist
   6977 ** can contain deletions, while the full-index doclist will not
   6978 ** (deletions are omitted).
   6979 **
   6980 ** Result formats differ with the setting of DL_DEFAULTS.  Examples:
   6981 **
   6982 ** DL_DOCIDS: [1] [3] [7]
   6983 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
   6984 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
   6985 **
   6986 ** In each case the number after the outer '[' is the docid.  In the
   6987 ** latter two cases, the number before the inner '[' is the column
   6988 ** associated with the values within.  For DL_POSITIONS the numbers
   6989 ** within are the positions, for DL_POSITIONS_OFFSETS they are the
   6990 ** position, the start offset, and the end offset.
   6991 */
   6992 static void dumpDoclistFunc(
   6993   sqlite3_context *pContext,
   6994   int argc, sqlite3_value **argv
   6995 ){
   6996   fulltext_cursor *pCursor;
   6997   if( argc!=2 && argc!=4 ){
   6998     generateError(pContext, "dump_doclist", "incorrect arguments");
   6999   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
   7000             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
   7001     generateError(pContext, "dump_doclist", "illegal first argument");
   7002   }else if( sqlite3_value_text(argv[1])==NULL ||
   7003             sqlite3_value_text(argv[1])[0]=='\0' ){
   7004     generateError(pContext, "dump_doclist", "empty second argument");
   7005   }else{
   7006     const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
   7007     const int nTerm = strlen(pTerm);
   7008     fulltext_vtab *v;
   7009     int rc;
   7010     DataBuffer doclist;
   7011 
   7012     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
   7013     v = cursor_vtab(pCursor);
   7014 
   7015     dataBufferInit(&doclist, 0);
   7016 
   7017     /* termSelect() yields the same logical doclist that queries are
   7018     ** run against.
   7019     */
   7020     if( argc==2 ){
   7021       rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
   7022     }else{
   7023       sqlite3_stmt *s = NULL;
   7024 
   7025       /* Get our specific segment's information. */
   7026       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
   7027       if( rc==SQLITE_OK ){
   7028         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
   7029         if( rc==SQLITE_OK ){
   7030           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
   7031         }
   7032       }
   7033 
   7034       if( rc==SQLITE_OK ){
   7035         rc = sqlite3_step(s);
   7036 
   7037         if( rc==SQLITE_DONE ){
   7038           dataBufferDestroy(&doclist);
   7039           generateError(pContext, "dump_doclist", "segment not found");
   7040           return;
   7041         }
   7042 
   7043         /* Found a segment, load it into doclist. */
   7044         if( rc==SQLITE_ROW ){
   7045           const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
   7046           const char *pData = sqlite3_column_blob(s, 2);
   7047           const int nData = sqlite3_column_bytes(s, 2);
   7048 
   7049           /* loadSegment() is used by termSelect() to load each
   7050           ** segment's data.
   7051           */
   7052           rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
   7053                            &doclist);
   7054           if( rc==SQLITE_OK ){
   7055             rc = sqlite3_step(s);
   7056 
   7057             /* Should not have more than one matching segment. */
   7058             if( rc!=SQLITE_DONE ){
   7059               sqlite3_reset(s);
   7060               dataBufferDestroy(&doclist);
   7061               generateError(pContext, "dump_doclist", "invalid segdir");
   7062               return;
   7063             }
   7064             rc = SQLITE_OK;
   7065           }
   7066         }
   7067       }
   7068 
   7069       sqlite3_reset(s);
   7070     }
   7071 
   7072     if( rc==SQLITE_OK ){
   7073       if( doclist.nData>0 ){
   7074         createDoclistResult(pContext, doclist.pData, doclist.nData);
   7075       }else{
   7076         /* TODO(shess): This can happen if the term is not present, or
   7077         ** if all instances of the term have been deleted and this is
   7078         ** an all-index dump.  It may be interesting to distinguish
   7079         ** these cases.
   7080         */
   7081         sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
   7082       }
   7083     }else if( rc==SQLITE_NOMEM ){
   7084       /* Handle out-of-memory cases specially because if they are
   7085       ** generated in fts2 code they may not be reflected in the db
   7086       ** handle.
   7087       */
   7088       /* TODO(shess): Handle this more comprehensively.
   7089       ** sqlite3ErrStr() has what I need, but is internal.
   7090       */
   7091       generateError(pContext, "dump_doclist", "out of memory");
   7092     }else{
   7093       generateError(pContext, "dump_doclist", NULL);
   7094     }
   7095 
   7096     dataBufferDestroy(&doclist);
   7097   }
   7098 }
   7099 #endif
   7100 
   7101 /*
   7102 ** This routine implements the xFindFunction method for the FTS2
   7103 ** virtual table.
   7104 */
   7105 static int fulltextFindFunction(
   7106   sqlite3_vtab *pVtab,
   7107   int nArg,
   7108   const char *zName,
   7109   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
   7110   void **ppArg
   7111 ){
   7112   if( strcmp(zName,"snippet")==0 ){
   7113     *pxFunc = snippetFunc;
   7114     return 1;
   7115   }else if( strcmp(zName,"offsets")==0 ){
   7116     *pxFunc = snippetOffsetsFunc;
   7117     return 1;
   7118   }else if( strcmp(zName,"optimize")==0 ){
   7119     *pxFunc = optimizeFunc;
   7120     return 1;
   7121 #ifdef SQLITE_TEST
   7122     /* NOTE(shess): These functions are present only for testing
   7123     ** purposes.  No particular effort is made to optimize their
   7124     ** execution or how they build their results.
   7125     */
   7126   }else if( strcmp(zName,"dump_terms")==0 ){
   7127     /* fprintf(stderr, "Found dump_terms\n"); */
   7128     *pxFunc = dumpTermsFunc;
   7129     return 1;
   7130   }else if( strcmp(zName,"dump_doclist")==0 ){
   7131     /* fprintf(stderr, "Found dump_doclist\n"); */
   7132     *pxFunc = dumpDoclistFunc;
   7133     return 1;
   7134 #endif
   7135   }
   7136   return 0;
   7137 }
   7138 
   7139 /*
   7140 ** Rename an fts2 table.
   7141 */
   7142 static int fulltextRename(
   7143   sqlite3_vtab *pVtab,
   7144   const char *zName
   7145 ){
   7146   fulltext_vtab *p = (fulltext_vtab *)pVtab;
   7147   int rc = SQLITE_NOMEM;
   7148   char *zSql = sqlite3_mprintf(
   7149     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';"
   7150     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
   7151     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';"
   7152     , p->zDb, p->zName, zName
   7153     , p->zDb, p->zName, zName
   7154     , p->zDb, p->zName, zName
   7155   );
   7156   if( zSql ){
   7157     rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
   7158     sqlite3_free(zSql);
   7159   }
   7160   return rc;
   7161 }
   7162 
   7163 static const sqlite3_module fts2Module = {
   7164   /* iVersion      */ 0,
   7165   /* xCreate       */ fulltextCreate,
   7166   /* xConnect      */ fulltextConnect,
   7167   /* xBestIndex    */ fulltextBestIndex,
   7168   /* xDisconnect   */ fulltextDisconnect,
   7169   /* xDestroy      */ fulltextDestroy,
   7170   /* xOpen         */ fulltextOpen,
   7171   /* xClose        */ fulltextClose,
   7172   /* xFilter       */ fulltextFilter,
   7173   /* xNext         */ fulltextNext,
   7174   /* xEof          */ fulltextEof,
   7175   /* xColumn       */ fulltextColumn,
   7176   /* xRowid        */ fulltextRowid,
   7177   /* xUpdate       */ fulltextUpdate,
   7178   /* xBegin        */ fulltextBegin,
   7179   /* xSync         */ fulltextSync,
   7180   /* xCommit       */ fulltextCommit,
   7181   /* xRollback     */ fulltextRollback,
   7182   /* xFindFunction */ fulltextFindFunction,
   7183   /* xRename */       fulltextRename,
   7184 };
   7185 
   7186 static void hashDestroy(void *p){
   7187   fts2Hash *pHash = (fts2Hash *)p;
   7188   sqlite3Fts2HashClear(pHash);
   7189   sqlite3_free(pHash);
   7190 }
   7191 
   7192 /*
   7193 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented
   7194 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following
   7195 ** two forward declarations are for functions declared in these files
   7196 ** used to retrieve the respective implementations.
   7197 **
   7198 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed
   7199 ** to by the argument to point a the "simple" tokenizer implementation.
   7200 ** Function ...PorterTokenizerModule() sets *pModule to point to the
   7201 ** porter tokenizer/stemmer implementation.
   7202 */
   7203 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
   7204 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
   7205 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
   7206 
   7207 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *);
   7208 
   7209 /*
   7210 ** Initialise the fts2 extension. If this extension is built as part
   7211 ** of the sqlite library, then this function is called directly by
   7212 ** SQLite. If fts2 is built as a dynamically loadable extension, this
   7213 ** function is called by the sqlite3_extension_init() entry point.
   7214 */
   7215 int sqlite3Fts2Init(sqlite3 *db){
   7216   int rc = SQLITE_OK;
   7217   fts2Hash *pHash = 0;
   7218   const sqlite3_tokenizer_module *pSimple = 0;
   7219   const sqlite3_tokenizer_module *pPorter = 0;
   7220   const sqlite3_tokenizer_module *pIcu = 0;
   7221 
   7222   sqlite3Fts2SimpleTokenizerModule(&pSimple);
   7223   sqlite3Fts2PorterTokenizerModule(&pPorter);
   7224 #ifdef SQLITE_ENABLE_ICU
   7225   sqlite3Fts2IcuTokenizerModule(&pIcu);
   7226 #endif
   7227 
   7228   /* Allocate and initialise the hash-table used to store tokenizers. */
   7229   pHash = sqlite3_malloc(sizeof(fts2Hash));
   7230   if( !pHash ){
   7231     rc = SQLITE_NOMEM;
   7232   }else{
   7233     sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1);
   7234   }
   7235 
   7236   /* Load the built-in tokenizers into the hash table */
   7237   if( rc==SQLITE_OK ){
   7238     if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple)
   7239      || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter)
   7240      || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu))
   7241     ){
   7242       rc = SQLITE_NOMEM;
   7243     }
   7244   }
   7245 
   7246   /* Create the virtual table wrapper around the hash-table and overload
   7247   ** the two scalar functions. If this is successful, register the
   7248   ** module with sqlite.
   7249   */
   7250   if( SQLITE_OK==rc
   7251 #if GEARS_FTS2_CHANGES && !SQLITE_TEST
   7252       /* fts2_tokenizer() disabled for security reasons. */
   7253 #else
   7254    && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer"))
   7255 #endif
   7256    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
   7257    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
   7258    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
   7259 #ifdef SQLITE_TEST
   7260    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
   7261    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
   7262 #endif
   7263   ){
   7264     return sqlite3_create_module_v2(
   7265         db, "fts2", &fts2Module, (void *)pHash, hashDestroy
   7266     );
   7267   }
   7268 
   7269   /* An error has occurred. Delete the hash table and return the error code. */
   7270   assert( rc!=SQLITE_OK );
   7271   if( pHash ){
   7272     sqlite3Fts2HashClear(pHash);
   7273     sqlite3_free(pHash);
   7274   }
   7275   return rc;
   7276 }
   7277 
   7278 #if !SQLITE_CORE
   7279 int sqlite3_extension_init(
   7280   sqlite3 *db,
   7281   char **pzErrMsg,
   7282   const sqlite3_api_routines *pApi
   7283 ){
   7284   SQLITE_EXTENSION_INIT2(pApi)
   7285   return sqlite3Fts2Init(db);
   7286 }
   7287 #endif
   7288 
   7289 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
   7290