1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H 11 #define EIGEN_SELFADJOINT_MATRIX_MATRIX_H 12 13 namespace Eigen { 14 15 namespace internal { 16 17 // pack a selfadjoint block diagonal for use with the gebp_kernel 18 template<typename Scalar, typename Index, int Pack1, int Pack2, int StorageOrder> 19 struct symm_pack_lhs 20 { 21 template<int BlockRows> inline 22 void pack(Scalar* blockA, const const_blas_data_mapper<Scalar,Index,StorageOrder>& lhs, Index cols, Index i, Index& count) 23 { 24 // normal copy 25 for(Index k=0; k<i; k++) 26 for(Index w=0; w<BlockRows; w++) 27 blockA[count++] = lhs(i+w,k); // normal 28 // symmetric copy 29 Index h = 0; 30 for(Index k=i; k<i+BlockRows; k++) 31 { 32 for(Index w=0; w<h; w++) 33 blockA[count++] = numext::conj(lhs(k, i+w)); // transposed 34 35 blockA[count++] = numext::real(lhs(k,k)); // real (diagonal) 36 37 for(Index w=h+1; w<BlockRows; w++) 38 blockA[count++] = lhs(i+w, k); // normal 39 ++h; 40 } 41 // transposed copy 42 for(Index k=i+BlockRows; k<cols; k++) 43 for(Index w=0; w<BlockRows; w++) 44 blockA[count++] = numext::conj(lhs(k, i+w)); // transposed 45 } 46 void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows) 47 { 48 const_blas_data_mapper<Scalar,Index,StorageOrder> lhs(_lhs,lhsStride); 49 Index count = 0; 50 Index peeled_mc = (rows/Pack1)*Pack1; 51 for(Index i=0; i<peeled_mc; i+=Pack1) 52 { 53 pack<Pack1>(blockA, lhs, cols, i, count); 54 } 55 56 if(rows-peeled_mc>=Pack2) 57 { 58 pack<Pack2>(blockA, lhs, cols, peeled_mc, count); 59 peeled_mc += Pack2; 60 } 61 62 // do the same with mr==1 63 for(Index i=peeled_mc; i<rows; i++) 64 { 65 for(Index k=0; k<i; k++) 66 blockA[count++] = lhs(i, k); // normal 67 68 blockA[count++] = numext::real(lhs(i, i)); // real (diagonal) 69 70 for(Index k=i+1; k<cols; k++) 71 blockA[count++] = numext::conj(lhs(k, i)); // transposed 72 } 73 } 74 }; 75 76 template<typename Scalar, typename Index, int nr, int StorageOrder> 77 struct symm_pack_rhs 78 { 79 enum { PacketSize = packet_traits<Scalar>::size }; 80 void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2) 81 { 82 Index end_k = k2 + rows; 83 Index count = 0; 84 const_blas_data_mapper<Scalar,Index,StorageOrder> rhs(_rhs,rhsStride); 85 Index packet_cols = (cols/nr)*nr; 86 87 // first part: normal case 88 for(Index j2=0; j2<k2; j2+=nr) 89 { 90 for(Index k=k2; k<end_k; k++) 91 { 92 blockB[count+0] = rhs(k,j2+0); 93 blockB[count+1] = rhs(k,j2+1); 94 if (nr==4) 95 { 96 blockB[count+2] = rhs(k,j2+2); 97 blockB[count+3] = rhs(k,j2+3); 98 } 99 count += nr; 100 } 101 } 102 103 // second part: diagonal block 104 for(Index j2=k2; j2<(std::min)(k2+rows,packet_cols); j2+=nr) 105 { 106 // again we can split vertically in three different parts (transpose, symmetric, normal) 107 // transpose 108 for(Index k=k2; k<j2; k++) 109 { 110 blockB[count+0] = numext::conj(rhs(j2+0,k)); 111 blockB[count+1] = numext::conj(rhs(j2+1,k)); 112 if (nr==4) 113 { 114 blockB[count+2] = numext::conj(rhs(j2+2,k)); 115 blockB[count+3] = numext::conj(rhs(j2+3,k)); 116 } 117 count += nr; 118 } 119 // symmetric 120 Index h = 0; 121 for(Index k=j2; k<j2+nr; k++) 122 { 123 // normal 124 for (Index w=0 ; w<h; ++w) 125 blockB[count+w] = rhs(k,j2+w); 126 127 blockB[count+h] = numext::real(rhs(k,k)); 128 129 // transpose 130 for (Index w=h+1 ; w<nr; ++w) 131 blockB[count+w] = numext::conj(rhs(j2+w,k)); 132 count += nr; 133 ++h; 134 } 135 // normal 136 for(Index k=j2+nr; k<end_k; k++) 137 { 138 blockB[count+0] = rhs(k,j2+0); 139 blockB[count+1] = rhs(k,j2+1); 140 if (nr==4) 141 { 142 blockB[count+2] = rhs(k,j2+2); 143 blockB[count+3] = rhs(k,j2+3); 144 } 145 count += nr; 146 } 147 } 148 149 // third part: transposed 150 for(Index j2=k2+rows; j2<packet_cols; j2+=nr) 151 { 152 for(Index k=k2; k<end_k; k++) 153 { 154 blockB[count+0] = numext::conj(rhs(j2+0,k)); 155 blockB[count+1] = numext::conj(rhs(j2+1,k)); 156 if (nr==4) 157 { 158 blockB[count+2] = numext::conj(rhs(j2+2,k)); 159 blockB[count+3] = numext::conj(rhs(j2+3,k)); 160 } 161 count += nr; 162 } 163 } 164 165 // copy the remaining columns one at a time (=> the same with nr==1) 166 for(Index j2=packet_cols; j2<cols; ++j2) 167 { 168 // transpose 169 Index half = (std::min)(end_k,j2); 170 for(Index k=k2; k<half; k++) 171 { 172 blockB[count] = numext::conj(rhs(j2,k)); 173 count += 1; 174 } 175 176 if(half==j2 && half<k2+rows) 177 { 178 blockB[count] = numext::real(rhs(j2,j2)); 179 count += 1; 180 } 181 else 182 half--; 183 184 // normal 185 for(Index k=half+1; k<k2+rows; k++) 186 { 187 blockB[count] = rhs(k,j2); 188 count += 1; 189 } 190 } 191 } 192 }; 193 194 /* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of 195 * the general matrix matrix product. 196 */ 197 template <typename Scalar, typename Index, 198 int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs, 199 int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs, 200 int ResStorageOrder> 201 struct product_selfadjoint_matrix; 202 203 template <typename Scalar, typename Index, 204 int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs, 205 int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs> 206 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor> 207 { 208 209 static EIGEN_STRONG_INLINE void run( 210 Index rows, Index cols, 211 const Scalar* lhs, Index lhsStride, 212 const Scalar* rhs, Index rhsStride, 213 Scalar* res, Index resStride, 214 const Scalar& alpha) 215 { 216 product_selfadjoint_matrix<Scalar, Index, 217 EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor, 218 RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs), 219 EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor, 220 LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs), 221 ColMajor> 222 ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resStride, alpha); 223 } 224 }; 225 226 template <typename Scalar, typename Index, 227 int LhsStorageOrder, bool ConjugateLhs, 228 int RhsStorageOrder, bool ConjugateRhs> 229 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor> 230 { 231 232 static EIGEN_DONT_INLINE void run( 233 Index rows, Index cols, 234 const Scalar* _lhs, Index lhsStride, 235 const Scalar* _rhs, Index rhsStride, 236 Scalar* res, Index resStride, 237 const Scalar& alpha); 238 }; 239 240 template <typename Scalar, typename Index, 241 int LhsStorageOrder, bool ConjugateLhs, 242 int RhsStorageOrder, bool ConjugateRhs> 243 EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor>::run( 244 Index rows, Index cols, 245 const Scalar* _lhs, Index lhsStride, 246 const Scalar* _rhs, Index rhsStride, 247 Scalar* res, Index resStride, 248 const Scalar& alpha) 249 { 250 Index size = rows; 251 252 const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride); 253 const_blas_data_mapper<Scalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride); 254 255 typedef gebp_traits<Scalar,Scalar> Traits; 256 257 Index kc = size; // cache block size along the K direction 258 Index mc = rows; // cache block size along the M direction 259 Index nc = cols; // cache block size along the N direction 260 computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); 261 // kc must smaller than mc 262 kc = (std::min)(kc,mc); 263 264 std::size_t sizeW = kc*Traits::WorkSpaceFactor; 265 std::size_t sizeB = sizeW + kc*cols; 266 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0); 267 ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0); 268 Scalar* blockB = allocatedBlockB + sizeW; 269 270 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel; 271 symm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs; 272 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs; 273 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder==RowMajor?ColMajor:RowMajor, true> pack_lhs_transposed; 274 275 for(Index k2=0; k2<size; k2+=kc) 276 { 277 const Index actual_kc = (std::min)(k2+kc,size)-k2; 278 279 // we have selected one row panel of rhs and one column panel of lhs 280 // pack rhs's panel into a sequential chunk of memory 281 // and expand each coeff to a constant packet for further reuse 282 pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols); 283 284 // the select lhs's panel has to be split in three different parts: 285 // 1 - the transposed panel above the diagonal block => transposed packed copy 286 // 2 - the diagonal block => special packed copy 287 // 3 - the panel below the diagonal block => generic packed copy 288 for(Index i2=0; i2<k2; i2+=mc) 289 { 290 const Index actual_mc = (std::min)(i2+mc,k2)-i2; 291 // transposed packed copy 292 pack_lhs_transposed(blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc); 293 294 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 295 } 296 // the block diagonal 297 { 298 const Index actual_mc = (std::min)(k2+kc,size)-k2; 299 // symmetric packed copy 300 pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc); 301 302 gebp_kernel(res+k2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 303 } 304 305 for(Index i2=k2+kc; i2<size; i2+=mc) 306 { 307 const Index actual_mc = (std::min)(i2+mc,size)-i2; 308 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder,false>() 309 (blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc); 310 311 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 312 } 313 } 314 } 315 316 // matrix * selfadjoint product 317 template <typename Scalar, typename Index, 318 int LhsStorageOrder, bool ConjugateLhs, 319 int RhsStorageOrder, bool ConjugateRhs> 320 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor> 321 { 322 323 static EIGEN_DONT_INLINE void run( 324 Index rows, Index cols, 325 const Scalar* _lhs, Index lhsStride, 326 const Scalar* _rhs, Index rhsStride, 327 Scalar* res, Index resStride, 328 const Scalar& alpha); 329 }; 330 331 template <typename Scalar, typename Index, 332 int LhsStorageOrder, bool ConjugateLhs, 333 int RhsStorageOrder, bool ConjugateRhs> 334 EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor>::run( 335 Index rows, Index cols, 336 const Scalar* _lhs, Index lhsStride, 337 const Scalar* _rhs, Index rhsStride, 338 Scalar* res, Index resStride, 339 const Scalar& alpha) 340 { 341 Index size = cols; 342 343 const_blas_data_mapper<Scalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride); 344 345 typedef gebp_traits<Scalar,Scalar> Traits; 346 347 Index kc = size; // cache block size along the K direction 348 Index mc = rows; // cache block size along the M direction 349 Index nc = cols; // cache block size along the N direction 350 computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); 351 std::size_t sizeW = kc*Traits::WorkSpaceFactor; 352 std::size_t sizeB = sizeW + kc*cols; 353 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, kc*mc, 0); 354 ei_declare_aligned_stack_constructed_variable(Scalar, allocatedBlockB, sizeB, 0); 355 Scalar* blockB = allocatedBlockB + sizeW; 356 357 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp_kernel; 358 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs; 359 symm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs; 360 361 for(Index k2=0; k2<size; k2+=kc) 362 { 363 const Index actual_kc = (std::min)(k2+kc,size)-k2; 364 365 pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2); 366 367 // => GEPP 368 for(Index i2=0; i2<rows; i2+=mc) 369 { 370 const Index actual_mc = (std::min)(i2+mc,rows)-i2; 371 pack_lhs(blockA, &lhs(i2, k2), lhsStride, actual_kc, actual_mc); 372 373 gebp_kernel(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha); 374 } 375 } 376 } 377 378 } // end namespace internal 379 380 /*************************************************************************** 381 * Wrapper to product_selfadjoint_matrix 382 ***************************************************************************/ 383 384 namespace internal { 385 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode> 386 struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> > 387 : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> > 388 {}; 389 } 390 391 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode> 392 struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> 393 : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs > 394 { 395 EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix) 396 397 SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {} 398 399 enum { 400 LhsIsUpper = (LhsMode&(Upper|Lower))==Upper, 401 LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint, 402 RhsIsUpper = (RhsMode&(Upper|Lower))==Upper, 403 RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint 404 }; 405 406 template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const 407 { 408 eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols()); 409 410 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs); 411 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs); 412 413 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs) 414 * RhsBlasTraits::extractScalarFactor(m_rhs); 415 416 internal::product_selfadjoint_matrix<Scalar, Index, 417 EIGEN_LOGICAL_XOR(LhsIsUpper, 418 internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint, 419 NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)), 420 EIGEN_LOGICAL_XOR(RhsIsUpper, 421 internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint, 422 NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)), 423 internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor> 424 ::run( 425 lhs.rows(), rhs.cols(), // sizes 426 &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info 427 &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info 428 &dst.coeffRef(0,0), dst.outerStride(), // result info 429 actualAlpha // alpha 430 ); 431 } 432 }; 433 434 } // end namespace Eigen 435 436 #endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H 437