1 /* 2 * Copyright (C) 2013 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <algorithm> 18 #include <memory> 19 20 #include "compiler_internals.h" 21 #include "dataflow_iterator-inl.h" 22 #include "dex_instruction.h" 23 #include "dex_instruction-inl.h" 24 #include "dex/verified_method.h" 25 #include "dex/quick/dex_file_method_inliner.h" 26 #include "dex/quick/dex_file_to_method_inliner_map.h" 27 #include "driver/compiler_options.h" 28 #include "utils/scoped_arena_containers.h" 29 30 namespace art { 31 32 // Instruction characteristics used to statically identify computation-intensive methods. 33 const uint32_t MIRGraph::analysis_attributes_[kMirOpLast] = { 34 // 00 NOP 35 AN_NONE, 36 37 // 01 MOVE vA, vB 38 AN_MOVE, 39 40 // 02 MOVE_FROM16 vAA, vBBBB 41 AN_MOVE, 42 43 // 03 MOVE_16 vAAAA, vBBBB 44 AN_MOVE, 45 46 // 04 MOVE_WIDE vA, vB 47 AN_MOVE, 48 49 // 05 MOVE_WIDE_FROM16 vAA, vBBBB 50 AN_MOVE, 51 52 // 06 MOVE_WIDE_16 vAAAA, vBBBB 53 AN_MOVE, 54 55 // 07 MOVE_OBJECT vA, vB 56 AN_MOVE, 57 58 // 08 MOVE_OBJECT_FROM16 vAA, vBBBB 59 AN_MOVE, 60 61 // 09 MOVE_OBJECT_16 vAAAA, vBBBB 62 AN_MOVE, 63 64 // 0A MOVE_RESULT vAA 65 AN_MOVE, 66 67 // 0B MOVE_RESULT_WIDE vAA 68 AN_MOVE, 69 70 // 0C MOVE_RESULT_OBJECT vAA 71 AN_MOVE, 72 73 // 0D MOVE_EXCEPTION vAA 74 AN_MOVE, 75 76 // 0E RETURN_VOID 77 AN_BRANCH, 78 79 // 0F RETURN vAA 80 AN_BRANCH, 81 82 // 10 RETURN_WIDE vAA 83 AN_BRANCH, 84 85 // 11 RETURN_OBJECT vAA 86 AN_BRANCH, 87 88 // 12 CONST_4 vA, #+B 89 AN_SIMPLECONST, 90 91 // 13 CONST_16 vAA, #+BBBB 92 AN_SIMPLECONST, 93 94 // 14 CONST vAA, #+BBBBBBBB 95 AN_SIMPLECONST, 96 97 // 15 CONST_HIGH16 VAA, #+BBBB0000 98 AN_SIMPLECONST, 99 100 // 16 CONST_WIDE_16 vAA, #+BBBB 101 AN_SIMPLECONST, 102 103 // 17 CONST_WIDE_32 vAA, #+BBBBBBBB 104 AN_SIMPLECONST, 105 106 // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB 107 AN_SIMPLECONST, 108 109 // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 110 AN_SIMPLECONST, 111 112 // 1A CONST_STRING vAA, string@BBBB 113 AN_NONE, 114 115 // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB 116 AN_NONE, 117 118 // 1C CONST_CLASS vAA, type@BBBB 119 AN_NONE, 120 121 // 1D MONITOR_ENTER vAA 122 AN_NONE, 123 124 // 1E MONITOR_EXIT vAA 125 AN_NONE, 126 127 // 1F CHK_CAST vAA, type@BBBB 128 AN_NONE, 129 130 // 20 INSTANCE_OF vA, vB, type@CCCC 131 AN_NONE, 132 133 // 21 ARRAY_LENGTH vA, vB 134 AN_ARRAYOP, 135 136 // 22 NEW_INSTANCE vAA, type@BBBB 137 AN_HEAVYWEIGHT, 138 139 // 23 NEW_ARRAY vA, vB, type@CCCC 140 AN_HEAVYWEIGHT, 141 142 // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} 143 AN_HEAVYWEIGHT, 144 145 // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB 146 AN_HEAVYWEIGHT, 147 148 // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB 149 AN_NONE, 150 151 // 27 THROW vAA 152 AN_HEAVYWEIGHT | AN_BRANCH, 153 154 // 28 GOTO 155 AN_BRANCH, 156 157 // 29 GOTO_16 158 AN_BRANCH, 159 160 // 2A GOTO_32 161 AN_BRANCH, 162 163 // 2B PACKED_SWITCH vAA, +BBBBBBBB 164 AN_SWITCH, 165 166 // 2C SPARSE_SWITCH vAA, +BBBBBBBB 167 AN_SWITCH, 168 169 // 2D CMPL_FLOAT vAA, vBB, vCC 170 AN_MATH | AN_FP | AN_SINGLE, 171 172 // 2E CMPG_FLOAT vAA, vBB, vCC 173 AN_MATH | AN_FP | AN_SINGLE, 174 175 // 2F CMPL_DOUBLE vAA, vBB, vCC 176 AN_MATH | AN_FP | AN_DOUBLE, 177 178 // 30 CMPG_DOUBLE vAA, vBB, vCC 179 AN_MATH | AN_FP | AN_DOUBLE, 180 181 // 31 CMP_LONG vAA, vBB, vCC 182 AN_MATH | AN_LONG, 183 184 // 32 IF_EQ vA, vB, +CCCC 185 AN_MATH | AN_BRANCH | AN_INT, 186 187 // 33 IF_NE vA, vB, +CCCC 188 AN_MATH | AN_BRANCH | AN_INT, 189 190 // 34 IF_LT vA, vB, +CCCC 191 AN_MATH | AN_BRANCH | AN_INT, 192 193 // 35 IF_GE vA, vB, +CCCC 194 AN_MATH | AN_BRANCH | AN_INT, 195 196 // 36 IF_GT vA, vB, +CCCC 197 AN_MATH | AN_BRANCH | AN_INT, 198 199 // 37 IF_LE vA, vB, +CCCC 200 AN_MATH | AN_BRANCH | AN_INT, 201 202 // 38 IF_EQZ vAA, +BBBB 203 AN_MATH | AN_BRANCH | AN_INT, 204 205 // 39 IF_NEZ vAA, +BBBB 206 AN_MATH | AN_BRANCH | AN_INT, 207 208 // 3A IF_LTZ vAA, +BBBB 209 AN_MATH | AN_BRANCH | AN_INT, 210 211 // 3B IF_GEZ vAA, +BBBB 212 AN_MATH | AN_BRANCH | AN_INT, 213 214 // 3C IF_GTZ vAA, +BBBB 215 AN_MATH | AN_BRANCH | AN_INT, 216 217 // 3D IF_LEZ vAA, +BBBB 218 AN_MATH | AN_BRANCH | AN_INT, 219 220 // 3E UNUSED_3E 221 AN_NONE, 222 223 // 3F UNUSED_3F 224 AN_NONE, 225 226 // 40 UNUSED_40 227 AN_NONE, 228 229 // 41 UNUSED_41 230 AN_NONE, 231 232 // 42 UNUSED_42 233 AN_NONE, 234 235 // 43 UNUSED_43 236 AN_NONE, 237 238 // 44 AGET vAA, vBB, vCC 239 AN_ARRAYOP, 240 241 // 45 AGET_WIDE vAA, vBB, vCC 242 AN_ARRAYOP, 243 244 // 46 AGET_OBJECT vAA, vBB, vCC 245 AN_ARRAYOP, 246 247 // 47 AGET_BOOLEAN vAA, vBB, vCC 248 AN_ARRAYOP, 249 250 // 48 AGET_BYTE vAA, vBB, vCC 251 AN_ARRAYOP, 252 253 // 49 AGET_CHAR vAA, vBB, vCC 254 AN_ARRAYOP, 255 256 // 4A AGET_SHORT vAA, vBB, vCC 257 AN_ARRAYOP, 258 259 // 4B APUT vAA, vBB, vCC 260 AN_ARRAYOP, 261 262 // 4C APUT_WIDE vAA, vBB, vCC 263 AN_ARRAYOP, 264 265 // 4D APUT_OBJECT vAA, vBB, vCC 266 AN_ARRAYOP, 267 268 // 4E APUT_BOOLEAN vAA, vBB, vCC 269 AN_ARRAYOP, 270 271 // 4F APUT_BYTE vAA, vBB, vCC 272 AN_ARRAYOP, 273 274 // 50 APUT_CHAR vAA, vBB, vCC 275 AN_ARRAYOP, 276 277 // 51 APUT_SHORT vAA, vBB, vCC 278 AN_ARRAYOP, 279 280 // 52 IGET vA, vB, field@CCCC 281 AN_NONE, 282 283 // 53 IGET_WIDE vA, vB, field@CCCC 284 AN_NONE, 285 286 // 54 IGET_OBJECT vA, vB, field@CCCC 287 AN_NONE, 288 289 // 55 IGET_BOOLEAN vA, vB, field@CCCC 290 AN_NONE, 291 292 // 56 IGET_BYTE vA, vB, field@CCCC 293 AN_NONE, 294 295 // 57 IGET_CHAR vA, vB, field@CCCC 296 AN_NONE, 297 298 // 58 IGET_SHORT vA, vB, field@CCCC 299 AN_NONE, 300 301 // 59 IPUT vA, vB, field@CCCC 302 AN_NONE, 303 304 // 5A IPUT_WIDE vA, vB, field@CCCC 305 AN_NONE, 306 307 // 5B IPUT_OBJECT vA, vB, field@CCCC 308 AN_NONE, 309 310 // 5C IPUT_BOOLEAN vA, vB, field@CCCC 311 AN_NONE, 312 313 // 5D IPUT_BYTE vA, vB, field@CCCC 314 AN_NONE, 315 316 // 5E IPUT_CHAR vA, vB, field@CCCC 317 AN_NONE, 318 319 // 5F IPUT_SHORT vA, vB, field@CCCC 320 AN_NONE, 321 322 // 60 SGET vAA, field@BBBB 323 AN_NONE, 324 325 // 61 SGET_WIDE vAA, field@BBBB 326 AN_NONE, 327 328 // 62 SGET_OBJECT vAA, field@BBBB 329 AN_NONE, 330 331 // 63 SGET_BOOLEAN vAA, field@BBBB 332 AN_NONE, 333 334 // 64 SGET_BYTE vAA, field@BBBB 335 AN_NONE, 336 337 // 65 SGET_CHAR vAA, field@BBBB 338 AN_NONE, 339 340 // 66 SGET_SHORT vAA, field@BBBB 341 AN_NONE, 342 343 // 67 SPUT vAA, field@BBBB 344 AN_NONE, 345 346 // 68 SPUT_WIDE vAA, field@BBBB 347 AN_NONE, 348 349 // 69 SPUT_OBJECT vAA, field@BBBB 350 AN_NONE, 351 352 // 6A SPUT_BOOLEAN vAA, field@BBBB 353 AN_NONE, 354 355 // 6B SPUT_BYTE vAA, field@BBBB 356 AN_NONE, 357 358 // 6C SPUT_CHAR vAA, field@BBBB 359 AN_NONE, 360 361 // 6D SPUT_SHORT vAA, field@BBBB 362 AN_NONE, 363 364 // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} 365 AN_INVOKE | AN_HEAVYWEIGHT, 366 367 // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} 368 AN_INVOKE | AN_HEAVYWEIGHT, 369 370 // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} 371 AN_INVOKE | AN_HEAVYWEIGHT, 372 373 // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} 374 AN_INVOKE | AN_HEAVYWEIGHT, 375 376 // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} 377 AN_INVOKE | AN_HEAVYWEIGHT, 378 379 // 73 UNUSED_73 380 AN_NONE, 381 382 // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} 383 AN_INVOKE | AN_HEAVYWEIGHT, 384 385 // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} 386 AN_INVOKE | AN_HEAVYWEIGHT, 387 388 // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} 389 AN_INVOKE | AN_HEAVYWEIGHT, 390 391 // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} 392 AN_INVOKE | AN_HEAVYWEIGHT, 393 394 // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} 395 AN_INVOKE | AN_HEAVYWEIGHT, 396 397 // 79 UNUSED_79 398 AN_NONE, 399 400 // 7A UNUSED_7A 401 AN_NONE, 402 403 // 7B NEG_INT vA, vB 404 AN_MATH | AN_INT, 405 406 // 7C NOT_INT vA, vB 407 AN_MATH | AN_INT, 408 409 // 7D NEG_LONG vA, vB 410 AN_MATH | AN_LONG, 411 412 // 7E NOT_LONG vA, vB 413 AN_MATH | AN_LONG, 414 415 // 7F NEG_FLOAT vA, vB 416 AN_MATH | AN_FP | AN_SINGLE, 417 418 // 80 NEG_DOUBLE vA, vB 419 AN_MATH | AN_FP | AN_DOUBLE, 420 421 // 81 INT_TO_LONG vA, vB 422 AN_MATH | AN_INT | AN_LONG, 423 424 // 82 INT_TO_FLOAT vA, vB 425 AN_MATH | AN_FP | AN_INT | AN_SINGLE, 426 427 // 83 INT_TO_DOUBLE vA, vB 428 AN_MATH | AN_FP | AN_INT | AN_DOUBLE, 429 430 // 84 LONG_TO_INT vA, vB 431 AN_MATH | AN_INT | AN_LONG, 432 433 // 85 LONG_TO_FLOAT vA, vB 434 AN_MATH | AN_FP | AN_LONG | AN_SINGLE, 435 436 // 86 LONG_TO_DOUBLE vA, vB 437 AN_MATH | AN_FP | AN_LONG | AN_DOUBLE, 438 439 // 87 FLOAT_TO_INT vA, vB 440 AN_MATH | AN_FP | AN_INT | AN_SINGLE, 441 442 // 88 FLOAT_TO_LONG vA, vB 443 AN_MATH | AN_FP | AN_LONG | AN_SINGLE, 444 445 // 89 FLOAT_TO_DOUBLE vA, vB 446 AN_MATH | AN_FP | AN_SINGLE | AN_DOUBLE, 447 448 // 8A DOUBLE_TO_INT vA, vB 449 AN_MATH | AN_FP | AN_INT | AN_DOUBLE, 450 451 // 8B DOUBLE_TO_LONG vA, vB 452 AN_MATH | AN_FP | AN_LONG | AN_DOUBLE, 453 454 // 8C DOUBLE_TO_FLOAT vA, vB 455 AN_MATH | AN_FP | AN_SINGLE | AN_DOUBLE, 456 457 // 8D INT_TO_BYTE vA, vB 458 AN_MATH | AN_INT, 459 460 // 8E INT_TO_CHAR vA, vB 461 AN_MATH | AN_INT, 462 463 // 8F INT_TO_SHORT vA, vB 464 AN_MATH | AN_INT, 465 466 // 90 ADD_INT vAA, vBB, vCC 467 AN_MATH | AN_INT, 468 469 // 91 SUB_INT vAA, vBB, vCC 470 AN_MATH | AN_INT, 471 472 // 92 MUL_INT vAA, vBB, vCC 473 AN_MATH | AN_INT, 474 475 // 93 DIV_INT vAA, vBB, vCC 476 AN_MATH | AN_INT, 477 478 // 94 REM_INT vAA, vBB, vCC 479 AN_MATH | AN_INT, 480 481 // 95 AND_INT vAA, vBB, vCC 482 AN_MATH | AN_INT, 483 484 // 96 OR_INT vAA, vBB, vCC 485 AN_MATH | AN_INT, 486 487 // 97 XOR_INT vAA, vBB, vCC 488 AN_MATH | AN_INT, 489 490 // 98 SHL_INT vAA, vBB, vCC 491 AN_MATH | AN_INT, 492 493 // 99 SHR_INT vAA, vBB, vCC 494 AN_MATH | AN_INT, 495 496 // 9A USHR_INT vAA, vBB, vCC 497 AN_MATH | AN_INT, 498 499 // 9B ADD_LONG vAA, vBB, vCC 500 AN_MATH | AN_LONG, 501 502 // 9C SUB_LONG vAA, vBB, vCC 503 AN_MATH | AN_LONG, 504 505 // 9D MUL_LONG vAA, vBB, vCC 506 AN_MATH | AN_LONG, 507 508 // 9E DIV_LONG vAA, vBB, vCC 509 AN_MATH | AN_LONG, 510 511 // 9F REM_LONG vAA, vBB, vCC 512 AN_MATH | AN_LONG, 513 514 // A0 AND_LONG vAA, vBB, vCC 515 AN_MATH | AN_LONG, 516 517 // A1 OR_LONG vAA, vBB, vCC 518 AN_MATH | AN_LONG, 519 520 // A2 XOR_LONG vAA, vBB, vCC 521 AN_MATH | AN_LONG, 522 523 // A3 SHL_LONG vAA, vBB, vCC 524 AN_MATH | AN_LONG, 525 526 // A4 SHR_LONG vAA, vBB, vCC 527 AN_MATH | AN_LONG, 528 529 // A5 USHR_LONG vAA, vBB, vCC 530 AN_MATH | AN_LONG, 531 532 // A6 ADD_FLOAT vAA, vBB, vCC 533 AN_MATH | AN_FP | AN_SINGLE, 534 535 // A7 SUB_FLOAT vAA, vBB, vCC 536 AN_MATH | AN_FP | AN_SINGLE, 537 538 // A8 MUL_FLOAT vAA, vBB, vCC 539 AN_MATH | AN_FP | AN_SINGLE, 540 541 // A9 DIV_FLOAT vAA, vBB, vCC 542 AN_MATH | AN_FP | AN_SINGLE, 543 544 // AA REM_FLOAT vAA, vBB, vCC 545 AN_MATH | AN_FP | AN_SINGLE, 546 547 // AB ADD_DOUBLE vAA, vBB, vCC 548 AN_MATH | AN_FP | AN_DOUBLE, 549 550 // AC SUB_DOUBLE vAA, vBB, vCC 551 AN_MATH | AN_FP | AN_DOUBLE, 552 553 // AD MUL_DOUBLE vAA, vBB, vCC 554 AN_MATH | AN_FP | AN_DOUBLE, 555 556 // AE DIV_DOUBLE vAA, vBB, vCC 557 AN_MATH | AN_FP | AN_DOUBLE, 558 559 // AF REM_DOUBLE vAA, vBB, vCC 560 AN_MATH | AN_FP | AN_DOUBLE, 561 562 // B0 ADD_INT_2ADDR vA, vB 563 AN_MATH | AN_INT, 564 565 // B1 SUB_INT_2ADDR vA, vB 566 AN_MATH | AN_INT, 567 568 // B2 MUL_INT_2ADDR vA, vB 569 AN_MATH | AN_INT, 570 571 // B3 DIV_INT_2ADDR vA, vB 572 AN_MATH | AN_INT, 573 574 // B4 REM_INT_2ADDR vA, vB 575 AN_MATH | AN_INT, 576 577 // B5 AND_INT_2ADDR vA, vB 578 AN_MATH | AN_INT, 579 580 // B6 OR_INT_2ADDR vA, vB 581 AN_MATH | AN_INT, 582 583 // B7 XOR_INT_2ADDR vA, vB 584 AN_MATH | AN_INT, 585 586 // B8 SHL_INT_2ADDR vA, vB 587 AN_MATH | AN_INT, 588 589 // B9 SHR_INT_2ADDR vA, vB 590 AN_MATH | AN_INT, 591 592 // BA USHR_INT_2ADDR vA, vB 593 AN_MATH | AN_INT, 594 595 // BB ADD_LONG_2ADDR vA, vB 596 AN_MATH | AN_LONG, 597 598 // BC SUB_LONG_2ADDR vA, vB 599 AN_MATH | AN_LONG, 600 601 // BD MUL_LONG_2ADDR vA, vB 602 AN_MATH | AN_LONG, 603 604 // BE DIV_LONG_2ADDR vA, vB 605 AN_MATH | AN_LONG, 606 607 // BF REM_LONG_2ADDR vA, vB 608 AN_MATH | AN_LONG, 609 610 // C0 AND_LONG_2ADDR vA, vB 611 AN_MATH | AN_LONG, 612 613 // C1 OR_LONG_2ADDR vA, vB 614 AN_MATH | AN_LONG, 615 616 // C2 XOR_LONG_2ADDR vA, vB 617 AN_MATH | AN_LONG, 618 619 // C3 SHL_LONG_2ADDR vA, vB 620 AN_MATH | AN_LONG, 621 622 // C4 SHR_LONG_2ADDR vA, vB 623 AN_MATH | AN_LONG, 624 625 // C5 USHR_LONG_2ADDR vA, vB 626 AN_MATH | AN_LONG, 627 628 // C6 ADD_FLOAT_2ADDR vA, vB 629 AN_MATH | AN_FP | AN_SINGLE, 630 631 // C7 SUB_FLOAT_2ADDR vA, vB 632 AN_MATH | AN_FP | AN_SINGLE, 633 634 // C8 MUL_FLOAT_2ADDR vA, vB 635 AN_MATH | AN_FP | AN_SINGLE, 636 637 // C9 DIV_FLOAT_2ADDR vA, vB 638 AN_MATH | AN_FP | AN_SINGLE, 639 640 // CA REM_FLOAT_2ADDR vA, vB 641 AN_MATH | AN_FP | AN_SINGLE, 642 643 // CB ADD_DOUBLE_2ADDR vA, vB 644 AN_MATH | AN_FP | AN_DOUBLE, 645 646 // CC SUB_DOUBLE_2ADDR vA, vB 647 AN_MATH | AN_FP | AN_DOUBLE, 648 649 // CD MUL_DOUBLE_2ADDR vA, vB 650 AN_MATH | AN_FP | AN_DOUBLE, 651 652 // CE DIV_DOUBLE_2ADDR vA, vB 653 AN_MATH | AN_FP | AN_DOUBLE, 654 655 // CF REM_DOUBLE_2ADDR vA, vB 656 AN_MATH | AN_FP | AN_DOUBLE, 657 658 // D0 ADD_INT_LIT16 vA, vB, #+CCCC 659 AN_MATH | AN_INT, 660 661 // D1 RSUB_INT vA, vB, #+CCCC 662 AN_MATH | AN_INT, 663 664 // D2 MUL_INT_LIT16 vA, vB, #+CCCC 665 AN_MATH | AN_INT, 666 667 // D3 DIV_INT_LIT16 vA, vB, #+CCCC 668 AN_MATH | AN_INT, 669 670 // D4 REM_INT_LIT16 vA, vB, #+CCCC 671 AN_MATH | AN_INT, 672 673 // D5 AND_INT_LIT16 vA, vB, #+CCCC 674 AN_MATH | AN_INT, 675 676 // D6 OR_INT_LIT16 vA, vB, #+CCCC 677 AN_MATH | AN_INT, 678 679 // D7 XOR_INT_LIT16 vA, vB, #+CCCC 680 AN_MATH | AN_INT, 681 682 // D8 ADD_INT_LIT8 vAA, vBB, #+CC 683 AN_MATH | AN_INT, 684 685 // D9 RSUB_INT_LIT8 vAA, vBB, #+CC 686 AN_MATH | AN_INT, 687 688 // DA MUL_INT_LIT8 vAA, vBB, #+CC 689 AN_MATH | AN_INT, 690 691 // DB DIV_INT_LIT8 vAA, vBB, #+CC 692 AN_MATH | AN_INT, 693 694 // DC REM_INT_LIT8 vAA, vBB, #+CC 695 AN_MATH | AN_INT, 696 697 // DD AND_INT_LIT8 vAA, vBB, #+CC 698 AN_MATH | AN_INT, 699 700 // DE OR_INT_LIT8 vAA, vBB, #+CC 701 AN_MATH | AN_INT, 702 703 // DF XOR_INT_LIT8 vAA, vBB, #+CC 704 AN_MATH | AN_INT, 705 706 // E0 SHL_INT_LIT8 vAA, vBB, #+CC 707 AN_MATH | AN_INT, 708 709 // E1 SHR_INT_LIT8 vAA, vBB, #+CC 710 AN_MATH | AN_INT, 711 712 // E2 USHR_INT_LIT8 vAA, vBB, #+CC 713 AN_MATH | AN_INT, 714 715 // E3 IGET_VOLATILE 716 AN_NONE, 717 718 // E4 IPUT_VOLATILE 719 AN_NONE, 720 721 // E5 SGET_VOLATILE 722 AN_NONE, 723 724 // E6 SPUT_VOLATILE 725 AN_NONE, 726 727 // E7 IGET_OBJECT_VOLATILE 728 AN_NONE, 729 730 // E8 IGET_WIDE_VOLATILE 731 AN_NONE, 732 733 // E9 IPUT_WIDE_VOLATILE 734 AN_NONE, 735 736 // EA SGET_WIDE_VOLATILE 737 AN_NONE, 738 739 // EB SPUT_WIDE_VOLATILE 740 AN_NONE, 741 742 // EC BREAKPOINT 743 AN_NONE, 744 745 // ED THROW_VERIFICATION_ERROR 746 AN_HEAVYWEIGHT | AN_BRANCH, 747 748 // EE EXECUTE_INLINE 749 AN_NONE, 750 751 // EF EXECUTE_INLINE_RANGE 752 AN_NONE, 753 754 // F0 INVOKE_OBJECT_INIT_RANGE 755 AN_INVOKE | AN_HEAVYWEIGHT, 756 757 // F1 RETURN_VOID_BARRIER 758 AN_BRANCH, 759 760 // F2 IGET_QUICK 761 AN_NONE, 762 763 // F3 IGET_WIDE_QUICK 764 AN_NONE, 765 766 // F4 IGET_OBJECT_QUICK 767 AN_NONE, 768 769 // F5 IPUT_QUICK 770 AN_NONE, 771 772 // F6 IPUT_WIDE_QUICK 773 AN_NONE, 774 775 // F7 IPUT_OBJECT_QUICK 776 AN_NONE, 777 778 // F8 INVOKE_VIRTUAL_QUICK 779 AN_INVOKE | AN_HEAVYWEIGHT, 780 781 // F9 INVOKE_VIRTUAL_QUICK_RANGE 782 AN_INVOKE | AN_HEAVYWEIGHT, 783 784 // FA INVOKE_SUPER_QUICK 785 AN_INVOKE | AN_HEAVYWEIGHT, 786 787 // FB INVOKE_SUPER_QUICK_RANGE 788 AN_INVOKE | AN_HEAVYWEIGHT, 789 790 // FC IPUT_OBJECT_VOLATILE 791 AN_NONE, 792 793 // FD SGET_OBJECT_VOLATILE 794 AN_NONE, 795 796 // FE SPUT_OBJECT_VOLATILE 797 AN_NONE, 798 799 // FF UNUSED_FF 800 AN_NONE, 801 802 // Beginning of extended MIR opcodes 803 // 100 MIR_PHI 804 AN_NONE, 805 806 // 101 MIR_COPY 807 AN_NONE, 808 809 // 102 MIR_FUSED_CMPL_FLOAT 810 AN_NONE, 811 812 // 103 MIR_FUSED_CMPG_FLOAT 813 AN_NONE, 814 815 // 104 MIR_FUSED_CMPL_DOUBLE 816 AN_NONE, 817 818 // 105 MIR_FUSED_CMPG_DOUBLE 819 AN_NONE, 820 821 // 106 MIR_FUSED_CMP_LONG 822 AN_NONE, 823 824 // 107 MIR_NOP 825 AN_NONE, 826 827 // 108 MIR_NULL_CHECK 828 AN_NONE, 829 830 // 109 MIR_RANGE_CHECK 831 AN_NONE, 832 833 // 110 MIR_DIV_ZERO_CHECK 834 AN_NONE, 835 836 // 111 MIR_CHECK 837 AN_NONE, 838 839 // 112 MIR_CHECKPART2 840 AN_NONE, 841 842 // 113 MIR_SELECT 843 AN_NONE, 844 }; 845 846 struct MethodStats { 847 int dex_instructions; 848 int math_ops; 849 int fp_ops; 850 int array_ops; 851 int branch_ops; 852 int heavyweight_ops; 853 bool has_computational_loop; 854 bool has_switch; 855 float math_ratio; 856 float fp_ratio; 857 float array_ratio; 858 float branch_ratio; 859 float heavyweight_ratio; 860 }; 861 862 void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) { 863 if (bb->visited || (bb->block_type != kDalvikByteCode)) { 864 return; 865 } 866 bool computational_block = true; 867 bool has_math = false; 868 /* 869 * For the purposes of this scan, we want to treat the set of basic blocks broken 870 * by an exception edge as a single basic block. We'll scan forward along the fallthrough 871 * edges until we reach an explicit branch or return. 872 */ 873 BasicBlock* ending_bb = bb; 874 if (ending_bb->last_mir_insn != NULL) { 875 uint32_t ending_flags = analysis_attributes_[ending_bb->last_mir_insn->dalvikInsn.opcode]; 876 while ((ending_flags & AN_BRANCH) == 0) { 877 ending_bb = GetBasicBlock(ending_bb->fall_through); 878 ending_flags = analysis_attributes_[ending_bb->last_mir_insn->dalvikInsn.opcode]; 879 } 880 } 881 /* 882 * Ideally, we'd weight the operations by loop nesting level, but to do so we'd 883 * first need to do some expensive loop detection - and the point of this is to make 884 * an informed guess before investing in computation. However, we can cheaply detect 885 * many simple loop forms without having to do full dataflow analysis. 886 */ 887 int loop_scale_factor = 1; 888 // Simple for and while loops 889 if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->fall_through == NullBasicBlockId)) { 890 if ((GetBasicBlock(ending_bb->taken)->taken == bb->id) || 891 (GetBasicBlock(ending_bb->taken)->fall_through == bb->id)) { 892 loop_scale_factor = 25; 893 } 894 } 895 // Simple do-while loop 896 if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->taken == bb->id)) { 897 loop_scale_factor = 25; 898 } 899 900 BasicBlock* tbb = bb; 901 bool done = false; 902 while (!done) { 903 tbb->visited = true; 904 for (MIR* mir = tbb->first_mir_insn; mir != NULL; mir = mir->next) { 905 if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) { 906 // Skip any MIR pseudo-op. 907 continue; 908 } 909 uint32_t flags = analysis_attributes_[mir->dalvikInsn.opcode]; 910 stats->dex_instructions += loop_scale_factor; 911 if ((flags & AN_BRANCH) == 0) { 912 computational_block &= ((flags & AN_COMPUTATIONAL) != 0); 913 } else { 914 stats->branch_ops += loop_scale_factor; 915 } 916 if ((flags & AN_MATH) != 0) { 917 stats->math_ops += loop_scale_factor; 918 has_math = true; 919 } 920 if ((flags & AN_FP) != 0) { 921 stats->fp_ops += loop_scale_factor; 922 } 923 if ((flags & AN_ARRAYOP) != 0) { 924 stats->array_ops += loop_scale_factor; 925 } 926 if ((flags & AN_HEAVYWEIGHT) != 0) { 927 stats->heavyweight_ops += loop_scale_factor; 928 } 929 if ((flags & AN_SWITCH) != 0) { 930 stats->has_switch = true; 931 } 932 } 933 if (tbb == ending_bb) { 934 done = true; 935 } else { 936 tbb = GetBasicBlock(tbb->fall_through); 937 } 938 } 939 if (has_math && computational_block && (loop_scale_factor > 1)) { 940 stats->has_computational_loop = true; 941 } 942 } 943 944 bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default, 945 std::string* skip_message) { 946 float count = stats->dex_instructions; 947 stats->math_ratio = stats->math_ops / count; 948 stats->fp_ratio = stats->fp_ops / count; 949 stats->branch_ratio = stats->branch_ops / count; 950 stats->array_ratio = stats->array_ops / count; 951 stats->heavyweight_ratio = stats->heavyweight_ops / count; 952 953 if (cu_->enable_debug & (1 << kDebugShowFilterStats)) { 954 LOG(INFO) << "STATS " << stats->dex_instructions << ", math:" 955 << stats->math_ratio << ", fp:" 956 << stats->fp_ratio << ", br:" 957 << stats->branch_ratio << ", hw:" 958 << stats->heavyweight_ratio << ", arr:" 959 << stats->array_ratio << ", hot:" 960 << stats->has_computational_loop << ", " 961 << PrettyMethod(cu_->method_idx, *cu_->dex_file); 962 } 963 964 // Computation intensive? 965 if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) { 966 return false; 967 } 968 969 // Complex, logic-intensive? 970 if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) && 971 stats->branch_ratio > 0.3) { 972 return false; 973 } 974 975 // Significant floating point? 976 if (stats->fp_ratio > 0.05) { 977 return false; 978 } 979 980 // Significant generic math? 981 if (stats->math_ratio > 0.3) { 982 return false; 983 } 984 985 // If array-intensive, compiling is probably worthwhile. 986 if (stats->array_ratio > 0.1) { 987 return false; 988 } 989 990 // Switch operations benefit greatly from compilation, so go ahead and spend the cycles. 991 if (stats->has_switch) { 992 return false; 993 } 994 995 // If significant in size and high proportion of expensive operations, skip. 996 if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) && 997 (stats->heavyweight_ratio > 0.3)) { 998 *skip_message = "Is a small method with heavyweight ratio " + 999 std::to_string(stats->heavyweight_ratio); 1000 return true; 1001 } 1002 1003 return skip_default; 1004 } 1005 1006 /* 1007 * Will eventually want this to be a bit more sophisticated and happen at verification time. 1008 */ 1009 bool MIRGraph::SkipCompilation(std::string* skip_message) { 1010 const CompilerOptions& compiler_options = cu_->compiler_driver->GetCompilerOptions(); 1011 CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter(); 1012 if (compiler_filter == CompilerOptions::kEverything) { 1013 return false; 1014 } 1015 1016 // Contains a pattern we don't want to compile? 1017 if (PuntToInterpreter()) { 1018 *skip_message = "Punt to interpreter set"; 1019 return true; 1020 } 1021 1022 if (!compiler_options.IsCompilationEnabled()) { 1023 *skip_message = "Compilation disabled"; 1024 return true; 1025 } 1026 1027 // Set up compilation cutoffs based on current filter mode. 1028 size_t small_cutoff = 0; 1029 size_t default_cutoff = 0; 1030 switch (compiler_filter) { 1031 case CompilerOptions::kBalanced: 1032 small_cutoff = compiler_options.GetSmallMethodThreshold(); 1033 default_cutoff = compiler_options.GetLargeMethodThreshold(); 1034 break; 1035 case CompilerOptions::kSpace: 1036 small_cutoff = compiler_options.GetTinyMethodThreshold(); 1037 default_cutoff = compiler_options.GetSmallMethodThreshold(); 1038 break; 1039 case CompilerOptions::kSpeed: 1040 small_cutoff = compiler_options.GetHugeMethodThreshold(); 1041 default_cutoff = compiler_options.GetHugeMethodThreshold(); 1042 break; 1043 default: 1044 LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter; 1045 } 1046 1047 // If size < cutoff, assume we'll compile - but allow removal. 1048 bool skip_compilation = (GetNumDalvikInsns() >= default_cutoff); 1049 if (skip_compilation) { 1050 *skip_message = "#Insns >= default_cutoff: " + std::to_string(GetNumDalvikInsns()); 1051 } 1052 1053 /* 1054 * Filter 1: Huge methods are likely to be machine generated, but some aren't. 1055 * If huge, assume we won't compile, but allow futher analysis to turn it back on. 1056 */ 1057 if (compiler_options.IsHugeMethod(GetNumDalvikInsns())) { 1058 skip_compilation = true; 1059 *skip_message = "Huge method: " + std::to_string(GetNumDalvikInsns()); 1060 // If we're got a huge number of basic blocks, don't bother with further analysis. 1061 if (static_cast<size_t>(num_blocks_) > (compiler_options.GetHugeMethodThreshold() / 2)) { 1062 return true; 1063 } 1064 } else if (compiler_options.IsLargeMethod(GetNumDalvikInsns()) && 1065 /* If it's large and contains no branches, it's likely to be machine generated initialization */ 1066 (GetBranchCount() == 0)) { 1067 *skip_message = "Large method with no branches"; 1068 return true; 1069 } else if (compiler_filter == CompilerOptions::kSpeed) { 1070 // If not huge, compile. 1071 return false; 1072 } 1073 1074 // Filter 2: Skip class initializers. 1075 if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) { 1076 *skip_message = "Class initializer"; 1077 return true; 1078 } 1079 1080 // Filter 3: if this method is a special pattern, go ahead and emit the canned pattern. 1081 if (cu_->compiler_driver->GetMethodInlinerMap() != nullptr && 1082 cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) 1083 ->IsSpecial(cu_->method_idx)) { 1084 return false; 1085 } 1086 1087 // Filter 4: if small, just compile. 1088 if (GetNumDalvikInsns() < small_cutoff) { 1089 return false; 1090 } 1091 1092 // Analyze graph for: 1093 // o floating point computation 1094 // o basic blocks contained in loop with heavy arithmetic. 1095 // o proportion of conditional branches. 1096 1097 MethodStats stats; 1098 memset(&stats, 0, sizeof(stats)); 1099 1100 ClearAllVisitedFlags(); 1101 AllNodesIterator iter(this); 1102 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { 1103 AnalyzeBlock(bb, &stats); 1104 } 1105 1106 return ComputeSkipCompilation(&stats, skip_compilation, skip_message); 1107 } 1108 1109 void MIRGraph::DoCacheFieldLoweringInfo() { 1110 // All IGET/IPUT/SGET/SPUT instructions take 2 code units and there must also be a RETURN. 1111 const uint32_t max_refs = (current_code_item_->insns_size_in_code_units_ - 1u) / 2u; 1112 ScopedArenaAllocator allocator(&cu_->arena_stack); 1113 uint16_t* field_idxs = 1114 reinterpret_cast<uint16_t*>(allocator.Alloc(max_refs * sizeof(uint16_t), kArenaAllocMisc)); 1115 1116 // Find IGET/IPUT/SGET/SPUT insns, store IGET/IPUT fields at the beginning, SGET/SPUT at the end. 1117 size_t ifield_pos = 0u; 1118 size_t sfield_pos = max_refs; 1119 AllNodesIterator iter(this); 1120 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { 1121 if (bb->block_type != kDalvikByteCode) { 1122 continue; 1123 } 1124 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { 1125 if (mir->dalvikInsn.opcode >= Instruction::IGET && 1126 mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) { 1127 const Instruction* insn = Instruction::At(current_code_item_->insns_ + mir->offset); 1128 // Get field index and try to find it among existing indexes. If found, it's usually among 1129 // the last few added, so we'll start the search from ifield_pos/sfield_pos. Though this 1130 // is a linear search, it actually performs much better than map based approach. 1131 if (mir->dalvikInsn.opcode <= Instruction::IPUT_SHORT) { 1132 uint16_t field_idx = insn->VRegC_22c(); 1133 size_t i = ifield_pos; 1134 while (i != 0u && field_idxs[i - 1] != field_idx) { 1135 --i; 1136 } 1137 if (i != 0u) { 1138 mir->meta.ifield_lowering_info = i - 1; 1139 } else { 1140 mir->meta.ifield_lowering_info = ifield_pos; 1141 field_idxs[ifield_pos++] = field_idx; 1142 } 1143 } else { 1144 uint16_t field_idx = insn->VRegB_21c(); 1145 size_t i = sfield_pos; 1146 while (i != max_refs && field_idxs[i] != field_idx) { 1147 ++i; 1148 } 1149 if (i != max_refs) { 1150 mir->meta.sfield_lowering_info = max_refs - i - 1u; 1151 } else { 1152 mir->meta.sfield_lowering_info = max_refs - sfield_pos; 1153 field_idxs[--sfield_pos] = field_idx; 1154 } 1155 } 1156 DCHECK_LE(ifield_pos, sfield_pos); 1157 } 1158 } 1159 } 1160 1161 if (ifield_pos != 0u) { 1162 // Resolve instance field infos. 1163 DCHECK_EQ(ifield_lowering_infos_.Size(), 0u); 1164 ifield_lowering_infos_.Resize(ifield_pos); 1165 for (size_t pos = 0u; pos != ifield_pos; ++pos) { 1166 ifield_lowering_infos_.Insert(MirIFieldLoweringInfo(field_idxs[pos])); 1167 } 1168 MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), 1169 ifield_lowering_infos_.GetRawStorage(), ifield_pos); 1170 } 1171 1172 if (sfield_pos != max_refs) { 1173 // Resolve static field infos. 1174 DCHECK_EQ(sfield_lowering_infos_.Size(), 0u); 1175 sfield_lowering_infos_.Resize(max_refs - sfield_pos); 1176 for (size_t pos = max_refs; pos != sfield_pos;) { 1177 --pos; 1178 sfield_lowering_infos_.Insert(MirSFieldLoweringInfo(field_idxs[pos])); 1179 } 1180 MirSFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), 1181 sfield_lowering_infos_.GetRawStorage(), max_refs - sfield_pos); 1182 } 1183 } 1184 1185 void MIRGraph::DoCacheMethodLoweringInfo() { 1186 static constexpr uint16_t invoke_types[] = { kVirtual, kSuper, kDirect, kStatic, kInterface }; 1187 1188 // Embed the map value in the entry to avoid extra padding in 64-bit builds. 1189 struct MapEntry { 1190 // Map key: target_method_idx, invoke_type, devirt_target. Ordered to avoid padding. 1191 const MethodReference* devirt_target; 1192 uint16_t target_method_idx; 1193 uint16_t invoke_type; 1194 // Map value. 1195 uint32_t lowering_info_index; 1196 }; 1197 1198 // Sort INVOKEs by method index, then by opcode, then by devirtualization target. 1199 struct MapEntryComparator { 1200 bool operator()(const MapEntry& lhs, const MapEntry& rhs) const { 1201 if (lhs.target_method_idx != rhs.target_method_idx) { 1202 return lhs.target_method_idx < rhs.target_method_idx; 1203 } 1204 if (lhs.invoke_type != rhs.invoke_type) { 1205 return lhs.invoke_type < rhs.invoke_type; 1206 } 1207 if (lhs.devirt_target != rhs.devirt_target) { 1208 if (lhs.devirt_target == nullptr) { 1209 return true; 1210 } 1211 if (rhs.devirt_target == nullptr) { 1212 return false; 1213 } 1214 return devirt_cmp(*lhs.devirt_target, *rhs.devirt_target); 1215 } 1216 return false; 1217 } 1218 MethodReferenceComparator devirt_cmp; 1219 }; 1220 1221 ScopedArenaAllocator allocator(&cu_->arena_stack); 1222 1223 // All INVOKE instructions take 3 code units and there must also be a RETURN. 1224 uint32_t max_refs = (current_code_item_->insns_size_in_code_units_ - 1u) / 3u; 1225 1226 // Map invoke key (see MapEntry) to lowering info index and vice versa. 1227 // The invoke_map and sequential entries are essentially equivalent to Boost.MultiIndex's 1228 // multi_index_container with one ordered index and one sequential index. 1229 ScopedArenaSet<MapEntry, MapEntryComparator> invoke_map(MapEntryComparator(), 1230 allocator.Adapter()); 1231 const MapEntry** sequential_entries = reinterpret_cast<const MapEntry**>( 1232 allocator.Alloc(max_refs * sizeof(sequential_entries[0]), kArenaAllocMisc)); 1233 1234 // Find INVOKE insns and their devirtualization targets. 1235 AllNodesIterator iter(this); 1236 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { 1237 if (bb->block_type != kDalvikByteCode) { 1238 continue; 1239 } 1240 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { 1241 if (mir->dalvikInsn.opcode >= Instruction::INVOKE_VIRTUAL && 1242 mir->dalvikInsn.opcode <= Instruction::INVOKE_INTERFACE_RANGE && 1243 mir->dalvikInsn.opcode != Instruction::RETURN_VOID_BARRIER) { 1244 // Decode target method index and invoke type. 1245 const Instruction* insn = Instruction::At(current_code_item_->insns_ + mir->offset); 1246 uint16_t target_method_idx; 1247 uint16_t invoke_type_idx; 1248 if (mir->dalvikInsn.opcode <= Instruction::INVOKE_INTERFACE) { 1249 target_method_idx = insn->VRegB_35c(); 1250 invoke_type_idx = mir->dalvikInsn.opcode - Instruction::INVOKE_VIRTUAL; 1251 } else { 1252 target_method_idx = insn->VRegB_3rc(); 1253 invoke_type_idx = mir->dalvikInsn.opcode - Instruction::INVOKE_VIRTUAL_RANGE; 1254 } 1255 1256 // Find devirtualization target. 1257 // TODO: The devirt map is ordered by the dex pc here. Is there a way to get INVOKEs 1258 // ordered by dex pc as well? That would allow us to keep an iterator to devirt targets 1259 // and increment it as needed instead of making O(log n) lookups. 1260 const VerifiedMethod* verified_method = GetCurrentDexCompilationUnit()->GetVerifiedMethod(); 1261 const MethodReference* devirt_target = verified_method->GetDevirtTarget(mir->offset); 1262 1263 // Try to insert a new entry. If the insertion fails, we will have found an old one. 1264 MapEntry entry = { 1265 devirt_target, 1266 target_method_idx, 1267 invoke_types[invoke_type_idx], 1268 static_cast<uint32_t>(invoke_map.size()) 1269 }; 1270 auto it = invoke_map.insert(entry).first; // Iterator to either the old or the new entry. 1271 mir->meta.method_lowering_info = it->lowering_info_index; 1272 // If we didn't actually insert, this will just overwrite an existing value with the same. 1273 sequential_entries[it->lowering_info_index] = &*it; 1274 } 1275 } 1276 } 1277 1278 if (invoke_map.empty()) { 1279 return; 1280 } 1281 1282 // Prepare unique method infos, set method info indexes for their MIRs. 1283 DCHECK_EQ(method_lowering_infos_.Size(), 0u); 1284 const size_t count = invoke_map.size(); 1285 method_lowering_infos_.Resize(count); 1286 for (size_t pos = 0u; pos != count; ++pos) { 1287 const MapEntry* entry = sequential_entries[pos]; 1288 MirMethodLoweringInfo method_info(entry->target_method_idx, 1289 static_cast<InvokeType>(entry->invoke_type)); 1290 if (entry->devirt_target != nullptr) { 1291 method_info.SetDevirtualizationTarget(*entry->devirt_target); 1292 } 1293 method_lowering_infos_.Insert(method_info); 1294 } 1295 MirMethodLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), 1296 method_lowering_infos_.GetRawStorage(), count); 1297 } 1298 1299 bool MIRGraph::SkipCompilationByName(const std::string& methodname) { 1300 return cu_->compiler_driver->SkipCompilation(methodname); 1301 } 1302 1303 } // namespace art 1304