Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_UTILS_H_
     18 #define ART_RUNTIME_UTILS_H_
     19 
     20 #include <pthread.h>
     21 
     22 #include <limits>
     23 #include <memory>
     24 #include <string>
     25 #include <vector>
     26 
     27 #include "base/logging.h"
     28 #include "base/mutex.h"
     29 #include "globals.h"
     30 #include "instruction_set.h"
     31 #include "primitive.h"
     32 
     33 #ifdef HAVE_ANDROID_OS
     34 #include "cutils/properties.h"
     35 #endif
     36 
     37 namespace art {
     38 
     39 class DexFile;
     40 
     41 namespace mirror {
     42 class ArtField;
     43 class ArtMethod;
     44 class Class;
     45 class Object;
     46 class String;
     47 }  // namespace mirror
     48 
     49 enum TimeUnit {
     50   kTimeUnitNanosecond,
     51   kTimeUnitMicrosecond,
     52   kTimeUnitMillisecond,
     53   kTimeUnitSecond,
     54 };
     55 
     56 template <typename T>
     57 bool ParseUint(const char *in, T* out) {
     58   char* end;
     59   unsigned long long int result = strtoull(in, &end, 0);  // NOLINT(runtime/int)
     60   if (in == end || *end != '\0') {
     61     return false;
     62   }
     63   if (std::numeric_limits<T>::max() < result) {
     64     return false;
     65   }
     66   *out = static_cast<T>(result);
     67   return true;
     68 }
     69 
     70 template <typename T>
     71 bool ParseInt(const char* in, T* out) {
     72   char* end;
     73   long long int result = strtoll(in, &end, 0);  // NOLINT(runtime/int)
     74   if (in == end || *end != '\0') {
     75     return false;
     76   }
     77   if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) {
     78     return false;
     79   }
     80   *out = static_cast<T>(result);
     81   return true;
     82 }
     83 
     84 template<typename T>
     85 static constexpr bool IsPowerOfTwo(T x) {
     86   return (x & (x - 1)) == 0;
     87 }
     88 
     89 template<int n, typename T>
     90 static inline bool IsAligned(T x) {
     91   COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two);
     92   return (x & (n - 1)) == 0;
     93 }
     94 
     95 template<int n, typename T>
     96 static inline bool IsAligned(T* x) {
     97   return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
     98 }
     99 
    100 template<typename T>
    101 static inline bool IsAlignedParam(T x, int n) {
    102   return (x & (n - 1)) == 0;
    103 }
    104 
    105 #define CHECK_ALIGNED(value, alignment) \
    106   CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
    107 
    108 #define DCHECK_ALIGNED(value, alignment) \
    109   DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
    110 
    111 #define DCHECK_ALIGNED_PARAM(value, alignment) \
    112   DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
    113 
    114 // Check whether an N-bit two's-complement representation can hold value.
    115 static inline bool IsInt(int N, word value) {
    116   CHECK_LT(0, N);
    117   CHECK_LT(N, kBitsPerWord);
    118   word limit = static_cast<word>(1) << (N - 1);
    119   return (-limit <= value) && (value < limit);
    120 }
    121 
    122 static inline bool IsUint(int N, word value) {
    123   CHECK_LT(0, N);
    124   CHECK_LT(N, kBitsPerWord);
    125   word limit = static_cast<word>(1) << N;
    126   return (0 <= value) && (value < limit);
    127 }
    128 
    129 static inline bool IsAbsoluteUint(int N, word value) {
    130   CHECK_LT(0, N);
    131   CHECK_LT(N, kBitsPerWord);
    132   if (value < 0) value = -value;
    133   return IsUint(N, value);
    134 }
    135 
    136 static inline uint16_t Low16Bits(uint32_t value) {
    137   return static_cast<uint16_t>(value);
    138 }
    139 
    140 static inline uint16_t High16Bits(uint32_t value) {
    141   return static_cast<uint16_t>(value >> 16);
    142 }
    143 
    144 static inline uint32_t Low32Bits(uint64_t value) {
    145   return static_cast<uint32_t>(value);
    146 }
    147 
    148 static inline uint32_t High32Bits(uint64_t value) {
    149   return static_cast<uint32_t>(value >> 32);
    150 }
    151 
    152 // A static if which determines whether to return type A or B based on the condition boolean.
    153 template <bool condition, typename A, typename B>
    154 struct TypeStaticIf {
    155   typedef A type;
    156 };
    157 
    158 // Specialization to handle the false case.
    159 template <typename A, typename B>
    160 struct TypeStaticIf<false, A,  B> {
    161   typedef B type;
    162 };
    163 
    164 // Type identity.
    165 template <typename T>
    166 struct TypeIdentity {
    167   typedef T type;
    168 };
    169 
    170 // Like sizeof, but count how many bits a type takes. Pass type explicitly.
    171 template <typename T>
    172 static constexpr size_t BitSizeOf() {
    173   return sizeof(T) * CHAR_BIT;
    174 }
    175 
    176 // Like sizeof, but count how many bits a type takes. Infers type from parameter.
    177 template <typename T>
    178 static constexpr size_t BitSizeOf(T x) {
    179   return sizeof(T) * CHAR_BIT;
    180 }
    181 
    182 // For rounding integers.
    183 template<typename T>
    184 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
    185 
    186 template<typename T>
    187 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) {
    188   return
    189       DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
    190       (x & -n);
    191 }
    192 
    193 template<typename T>
    194 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
    195 
    196 template<typename T>
    197 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) {
    198   return RoundDown(x + n - 1, n);
    199 }
    200 
    201 // For aligning pointers.
    202 template<typename T>
    203 static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
    204 
    205 template<typename T>
    206 static inline T* AlignDown(T* x, uintptr_t n) {
    207   return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
    208 }
    209 
    210 template<typename T>
    211 static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
    212 
    213 template<typename T>
    214 static inline T* AlignUp(T* x, uintptr_t n) {
    215   return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
    216 }
    217 
    218 namespace utils {
    219 namespace detail {  // Private, implementation-specific namespace. Do not poke outside of this file.
    220 template <typename T>
    221 static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) {
    222   return bit == (BitSizeOf<T>()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1);
    223 }
    224 }  // namespace detail
    225 }  // namespace utils
    226 
    227 // Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
    228 // figure 3-3, page 48, where the function is called clp2.
    229 template <typename T>
    230 static constexpr inline T RoundUpToPowerOfTwo(T x) {
    231   return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1;
    232 }
    233 
    234 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
    235 // figure 3-3, page 48, where the function is called clp2.
    236 static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) {
    237   x = x - 1;
    238   x = x | (x >> 1);
    239   x = x | (x >> 2);
    240   x = x | (x >> 4);
    241   x = x | (x >> 8);
    242   x = x | (x >> 16);
    243   return x + 1;
    244 }
    245 
    246 // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
    247 template <typename T>
    248 static constexpr ssize_t MostSignificantBit(T value) {
    249   return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1);
    250 }
    251 
    252 // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
    253 template <typename T>
    254 static constexpr size_t MinimumBitsToStore(T value) {
    255   return static_cast<size_t>(MostSignificantBit(value) + 1);
    256 }
    257 
    258 template<typename T>
    259 static constexpr int CLZ(T x) {
    260   static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long");  // NOLINT [runtime/int] [4]
    261   return (sizeof(T) == sizeof(uint32_t))
    262       ? __builtin_clz(x)  // TODO: __builtin_clz[ll] has undefined behavior for x=0
    263       : __builtin_clzll(x);
    264 }
    265 
    266 template<typename T>
    267 static constexpr int CTZ(T x) {
    268   return (sizeof(T) == sizeof(uint32_t))
    269       ? __builtin_ctz(x)
    270       : __builtin_ctzll(x);
    271 }
    272 
    273 template<typename T>
    274 static constexpr int POPCOUNT(T x) {
    275   return (sizeof(T) == sizeof(uint32_t))
    276       ? __builtin_popcount(x)
    277       : __builtin_popcountll(x);
    278 }
    279 
    280 static inline uint32_t PointerToLowMemUInt32(const void* p) {
    281   uintptr_t intp = reinterpret_cast<uintptr_t>(p);
    282   DCHECK_LE(intp, 0xFFFFFFFFU);
    283   return intp & 0xFFFFFFFFU;
    284 }
    285 
    286 static inline bool NeedsEscaping(uint16_t ch) {
    287   return (ch < ' ' || ch > '~');
    288 }
    289 
    290 // Interpret the bit pattern of input (type U) as type V. Requires the size
    291 // of V >= size of U (compile-time checked).
    292 template<typename U, typename V>
    293 static inline V bit_cast(U in) {
    294   COMPILE_ASSERT(sizeof(U) <= sizeof(V), size_of_u_not_le_size_of_v);
    295   union {
    296     U u;
    297     V v;
    298   } tmp;
    299   tmp.u = in;
    300   return tmp.v;
    301 }
    302 
    303 std::string PrintableChar(uint16_t ch);
    304 
    305 // Returns an ASCII string corresponding to the given UTF-8 string.
    306 // Java escapes are used for non-ASCII characters.
    307 std::string PrintableString(const char* utf8);
    308 
    309 // Tests whether 's' starts with 'prefix'.
    310 bool StartsWith(const std::string& s, const char* prefix);
    311 
    312 // Tests whether 's' starts with 'suffix'.
    313 bool EndsWith(const std::string& s, const char* suffix);
    314 
    315 // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf,
    316 // one of which is probably more useful to you.
    317 // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int",
    318 // "[[I" would be "int[][]", "[Ljava/lang/String;" would be
    319 // "java.lang.String[]", and so forth.
    320 std::string PrettyDescriptor(mirror::String* descriptor)
    321     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    322 std::string PrettyDescriptor(const char* descriptor);
    323 std::string PrettyDescriptor(mirror::Class* klass)
    324     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    325 std::string PrettyDescriptor(Primitive::Type type);
    326 
    327 // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or
    328 // "int a.b.C.f" (depending on the value of 'with_type').
    329 std::string PrettyField(mirror::ArtField* f, bool with_type = true)
    330     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    331 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true);
    332 
    333 // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
    334 // "a.b.C.m(II)V" (depending on the value of 'with_signature').
    335 std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true)
    336     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    337 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true);
    338 
    339 // Returns a human-readable form of the name of the *class* of the given object.
    340 // So given an instance of java.lang.String, the output would
    341 // be "java.lang.String". Given an array of int, the output would be "int[]".
    342 // Given String.class, the output would be "java.lang.Class<java.lang.String>".
    343 std::string PrettyTypeOf(mirror::Object* obj)
    344     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    345 
    346 // Returns a human-readable form of the type at an index in the specified dex file.
    347 // Example outputs: char[], java.lang.String.
    348 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file);
    349 
    350 // Returns a human-readable form of the name of the given class.
    351 // Given String.class, the output would be "java.lang.Class<java.lang.String>".
    352 std::string PrettyClass(mirror::Class* c)
    353     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    354 
    355 // Returns a human-readable form of the name of the given class with its class loader.
    356 std::string PrettyClassAndClassLoader(mirror::Class* c)
    357     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    358 
    359 // Returns a human-readable size string such as "1MB".
    360 std::string PrettySize(int64_t size_in_bytes);
    361 
    362 // Returns a human-readable time string which prints every nanosecond while trying to limit the
    363 // number of trailing zeros. Prints using the largest human readable unit up to a second.
    364 // e.g. "1ms", "1.000000001s", "1.001us"
    365 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3);
    366 
    367 // Format a nanosecond time to specified units.
    368 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
    369                            size_t max_fraction_digits);
    370 
    371 // Get the appropriate unit for a nanosecond duration.
    372 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration);
    373 
    374 // Get the divisor to convert from a nanoseconds to a time unit.
    375 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit);
    376 
    377 // Performs JNI name mangling as described in section 11.3 "Linking Native Methods"
    378 // of the JNI spec.
    379 std::string MangleForJni(const std::string& s);
    380 
    381 // Turn "java.lang.String" into "Ljava/lang/String;".
    382 std::string DotToDescriptor(const char* class_name);
    383 
    384 // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of
    385 // java.lang.Class.getName().
    386 std::string DescriptorToDot(const char* descriptor);
    387 
    388 // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of
    389 // java.lang.Class.getName().
    390 std::string DescriptorToName(const char* descriptor);
    391 
    392 // Tests for whether 's' is a valid class name in the three common forms:
    393 bool IsValidBinaryClassName(const char* s);  // "java.lang.String"
    394 bool IsValidJniClassName(const char* s);     // "java/lang/String"
    395 bool IsValidDescriptor(const char* s);       // "Ljava/lang/String;"
    396 
    397 // Returns whether the given string is a valid field or method name,
    398 // additionally allowing names that begin with '<' and end with '>'.
    399 bool IsValidMemberName(const char* s);
    400 
    401 // Returns the JNI native function name for the non-overloaded method 'm'.
    402 std::string JniShortName(mirror::ArtMethod* m)
    403     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    404 // Returns the JNI native function name for the overloaded method 'm'.
    405 std::string JniLongName(mirror::ArtMethod* m)
    406     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    407 
    408 bool ReadFileToString(const std::string& file_name, std::string* result);
    409 
    410 // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format.
    411 std::string GetIsoDate();
    412 
    413 // Returns the monotonic time since some unspecified starting point in milliseconds.
    414 uint64_t MilliTime();
    415 
    416 // Returns the monotonic time since some unspecified starting point in microseconds.
    417 uint64_t MicroTime();
    418 
    419 // Returns the monotonic time since some unspecified starting point in nanoseconds.
    420 uint64_t NanoTime();
    421 
    422 // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable.
    423 uint64_t ThreadCpuNanoTime();
    424 
    425 // Converts the given number of nanoseconds to milliseconds.
    426 static constexpr inline uint64_t NsToMs(uint64_t ns) {
    427   return ns / 1000 / 1000;
    428 }
    429 
    430 // Converts the given number of milliseconds to nanoseconds
    431 static constexpr inline uint64_t MsToNs(uint64_t ns) {
    432   return ns * 1000 * 1000;
    433 }
    434 
    435 #if defined(__APPLE__)
    436 // No clocks to specify on OS/X, fake value to pass to routines that require a clock.
    437 #define CLOCK_REALTIME 0xebadf00d
    438 #endif
    439 
    440 // Sleep for the given number of nanoseconds, a bad way to handle contention.
    441 void NanoSleep(uint64_t ns);
    442 
    443 // Initialize a timespec to either a relative time (ms,ns), or to the absolute
    444 // time corresponding to the indicated clock value plus the supplied offset.
    445 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts);
    446 
    447 // Splits a string using the given separator character into a vector of
    448 // strings. Empty strings will be omitted.
    449 void Split(const std::string& s, char separator, std::vector<std::string>& result);
    450 
    451 // Trims whitespace off both ends of the given string.
    452 std::string Trim(std::string s);
    453 
    454 // Joins a vector of strings into a single string, using the given separator.
    455 template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator);
    456 
    457 // Returns the calling thread's tid. (The C libraries don't expose this.)
    458 pid_t GetTid();
    459 
    460 // Returns the given thread's name.
    461 std::string GetThreadName(pid_t tid);
    462 
    463 // Returns details of the given thread's stack.
    464 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size);
    465 
    466 // Reads data from "/proc/self/task/${tid}/stat".
    467 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu);
    468 
    469 // Returns the name of the scheduler group for the given thread the current process, or the empty string.
    470 std::string GetSchedulerGroupName(pid_t tid);
    471 
    472 // Sets the name of the current thread. The name may be truncated to an
    473 // implementation-defined limit.
    474 void SetThreadName(const char* thread_name);
    475 
    476 // Dumps the native stack for thread 'tid' to 'os'.
    477 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "",
    478     mirror::ArtMethod* current_method = nullptr)
    479     NO_THREAD_SAFETY_ANALYSIS;
    480 
    481 // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86.
    482 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true);
    483 
    484 // Find $ANDROID_ROOT, /system, or abort.
    485 const char* GetAndroidRoot();
    486 
    487 // Find $ANDROID_DATA, /data, or abort.
    488 const char* GetAndroidData();
    489 // Find $ANDROID_DATA, /data, or return nullptr.
    490 const char* GetAndroidDataSafe(std::string* error_msg);
    491 
    492 // Returns the dalvik-cache location, or dies trying. subdir will be
    493 // appended to the cache location.
    494 std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true);
    495 // Return true if we found the dalvik cache and stored it in the dalvik_cache argument.
    496 // have_android_data will be set to true if we have an ANDROID_DATA that exists,
    497 // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present.
    498 // The flag is_global_cache tells whether this cache is /data/dalvik-cache.
    499 void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache,
    500                     bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache);
    501 
    502 // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be
    503 // rooted at cache_location.
    504 bool GetDalvikCacheFilename(const char* file_location, const char* cache_location,
    505                             std::string* filename, std::string* error_msg);
    506 // Returns the absolute dalvik-cache path for a DexFile or OatFile, or
    507 // dies trying. The path returned will be rooted at cache_location.
    508 std::string GetDalvikCacheFilenameOrDie(const char* file_location,
    509                                         const char* cache_location);
    510 
    511 // Returns the system location for an image
    512 std::string GetSystemImageFilename(const char* location, InstructionSet isa);
    513 
    514 // Returns an .odex file name next adjacent to the dex location.
    515 // For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex".
    516 // Note: does not support multidex location strings.
    517 std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa);
    518 
    519 // Check whether the given magic matches a known file type.
    520 bool IsZipMagic(uint32_t magic);
    521 bool IsDexMagic(uint32_t magic);
    522 bool IsOatMagic(uint32_t magic);
    523 
    524 // Wrapper on fork/execv to run a command in a subprocess.
    525 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg);
    526 
    527 class VoidFunctor {
    528  public:
    529   template <typename A>
    530   inline void operator() (A a) const {
    531     UNUSED(a);
    532   }
    533 
    534   template <typename A, typename B>
    535   inline void operator() (A a, B b) const {
    536     UNUSED(a);
    537     UNUSED(b);
    538   }
    539 
    540   template <typename A, typename B, typename C>
    541   inline void operator() (A a, B b, C c) const {
    542     UNUSED(a);
    543     UNUSED(b);
    544     UNUSED(c);
    545   }
    546 };
    547 
    548 // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
    549 struct FreeDelete {
    550   // NOTE: Deleting a const object is valid but free() takes a non-const pointer.
    551   void operator()(const void* ptr) const {
    552     free(const_cast<void*>(ptr));
    553   }
    554 };
    555 
    556 // Alias for std::unique_ptr<> that uses the C function free() to delete objects.
    557 template <typename T>
    558 using UniqueCPtr = std::unique_ptr<T, FreeDelete>;
    559 
    560 }  // namespace art
    561 
    562 #endif  // ART_RUNTIME_UTILS_H_
    563