Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/implicit_schur_complement.h"
     32 
     33 #include "Eigen/Dense"
     34 #include "ceres/block_sparse_matrix.h"
     35 #include "ceres/block_structure.h"
     36 #include "ceres/internal/eigen.h"
     37 #include "ceres/internal/scoped_ptr.h"
     38 #include "ceres/linear_solver.h"
     39 #include "ceres/types.h"
     40 #include "glog/logging.h"
     41 
     42 namespace ceres {
     43 namespace internal {
     44 
     45 ImplicitSchurComplement::ImplicitSchurComplement(
     46     const LinearSolver::Options& options)
     47     : options_(options),
     48       D_(NULL),
     49       b_(NULL) {
     50 }
     51 
     52 ImplicitSchurComplement::~ImplicitSchurComplement() {
     53 }
     54 
     55 void ImplicitSchurComplement::Init(const BlockSparseMatrix& A,
     56                                    const double* D,
     57                                    const double* b) {
     58   // Since initialization is reasonably heavy, perhaps we can save on
     59   // constructing a new object everytime.
     60   if (A_ == NULL) {
     61     A_.reset(PartitionedMatrixViewBase::Create(options_, A));
     62   }
     63 
     64   D_ = D;
     65   b_ = b;
     66 
     67   // Initialize temporary storage and compute the block diagonals of
     68   // E'E and F'E.
     69   if (block_diagonal_EtE_inverse_ == NULL) {
     70     block_diagonal_EtE_inverse_.reset(A_->CreateBlockDiagonalEtE());
     71     if (options_.preconditioner_type == JACOBI) {
     72       block_diagonal_FtF_inverse_.reset(A_->CreateBlockDiagonalFtF());
     73     }
     74     rhs_.resize(A_->num_cols_f());
     75     rhs_.setZero();
     76     tmp_rows_.resize(A_->num_rows());
     77     tmp_e_cols_.resize(A_->num_cols_e());
     78     tmp_e_cols_2_.resize(A_->num_cols_e());
     79     tmp_f_cols_.resize(A_->num_cols_f());
     80   } else {
     81     A_->UpdateBlockDiagonalEtE(block_diagonal_EtE_inverse_.get());
     82     if (options_.preconditioner_type == JACOBI) {
     83       A_->UpdateBlockDiagonalFtF(block_diagonal_FtF_inverse_.get());
     84     }
     85   }
     86 
     87   // The block diagonals of the augmented linear system contain
     88   // contributions from the diagonal D if it is non-null. Add that to
     89   // the block diagonals and invert them.
     90   AddDiagonalAndInvert(D_, block_diagonal_EtE_inverse_.get());
     91   if (options_.preconditioner_type == JACOBI) {
     92     AddDiagonalAndInvert((D_ ==  NULL) ? NULL : D_ + A_->num_cols_e(),
     93                          block_diagonal_FtF_inverse_.get());
     94   }
     95 
     96   // Compute the RHS of the Schur complement system.
     97   UpdateRhs();
     98 }
     99 
    100 // Evaluate the product
    101 //
    102 //   Sx = [F'F - F'E (E'E)^-1 E'F]x
    103 //
    104 // By breaking it down into individual matrix vector products
    105 // involving the matrices E and F. This is implemented using a
    106 // PartitionedMatrixView of the input matrix A.
    107 void ImplicitSchurComplement::RightMultiply(const double* x, double* y) const {
    108   // y1 = F x
    109   tmp_rows_.setZero();
    110   A_->RightMultiplyF(x, tmp_rows_.data());
    111 
    112   // y2 = E' y1
    113   tmp_e_cols_.setZero();
    114   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
    115 
    116   // y3 = -(E'E)^-1 y2
    117   tmp_e_cols_2_.setZero();
    118   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(),
    119                                              tmp_e_cols_2_.data());
    120   tmp_e_cols_2_ *= -1.0;
    121 
    122   // y1 = y1 + E y3
    123   A_->RightMultiplyE(tmp_e_cols_2_.data(), tmp_rows_.data());
    124 
    125   // y5 = D * x
    126   if (D_ != NULL) {
    127     ConstVectorRef Dref(D_ + A_->num_cols_e(), num_cols());
    128     VectorRef(y, num_cols()) =
    129         (Dref.array().square() *
    130          ConstVectorRef(x, num_cols()).array()).matrix();
    131   } else {
    132     VectorRef(y, num_cols()).setZero();
    133   }
    134 
    135   // y = y5 + F' y1
    136   A_->LeftMultiplyF(tmp_rows_.data(), y);
    137 }
    138 
    139 // Given a block diagonal matrix and an optional array of diagonal
    140 // entries D, add them to the diagonal of the matrix and compute the
    141 // inverse of each diagonal block.
    142 void ImplicitSchurComplement::AddDiagonalAndInvert(
    143     const double* D,
    144     BlockSparseMatrix* block_diagonal) {
    145   const CompressedRowBlockStructure* block_diagonal_structure =
    146       block_diagonal->block_structure();
    147   for (int r = 0; r < block_diagonal_structure->rows.size(); ++r) {
    148     const int row_block_pos = block_diagonal_structure->rows[r].block.position;
    149     const int row_block_size = block_diagonal_structure->rows[r].block.size;
    150     const Cell& cell = block_diagonal_structure->rows[r].cells[0];
    151     MatrixRef m(block_diagonal->mutable_values() + cell.position,
    152                 row_block_size, row_block_size);
    153 
    154     if (D != NULL) {
    155       ConstVectorRef d(D + row_block_pos, row_block_size);
    156       m += d.array().square().matrix().asDiagonal();
    157     }
    158 
    159     m = m
    160         .selfadjointView<Eigen::Upper>()
    161         .llt()
    162         .solve(Matrix::Identity(row_block_size, row_block_size));
    163   }
    164 }
    165 
    166 // Similar to RightMultiply, use the block structure of the matrix A
    167 // to compute y = (E'E)^-1 (E'b - E'F x).
    168 void ImplicitSchurComplement::BackSubstitute(const double* x, double* y) {
    169   const int num_cols_e = A_->num_cols_e();
    170   const int num_cols_f = A_->num_cols_f();
    171   const int num_cols =  A_->num_cols();
    172   const int num_rows = A_->num_rows();
    173 
    174   // y1 = F x
    175   tmp_rows_.setZero();
    176   A_->RightMultiplyF(x, tmp_rows_.data());
    177 
    178   // y2 = b - y1
    179   tmp_rows_ = ConstVectorRef(b_, num_rows) - tmp_rows_;
    180 
    181   // y3 = E' y2
    182   tmp_e_cols_.setZero();
    183   A_->LeftMultiplyE(tmp_rows_.data(), tmp_e_cols_.data());
    184 
    185   // y = (E'E)^-1 y3
    186   VectorRef(y, num_cols).setZero();
    187   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y);
    188 
    189   // The full solution vector y has two blocks. The first block of
    190   // variables corresponds to the eliminated variables, which we just
    191   // computed via back substitution. The second block of variables
    192   // corresponds to the Schur complement system, so we just copy those
    193   // values from the solution to the Schur complement.
    194   VectorRef(y + num_cols_e, num_cols_f) =  ConstVectorRef(x, num_cols_f);
    195 }
    196 
    197 // Compute the RHS of the Schur complement system.
    198 //
    199 // rhs = F'b - F'E (E'E)^-1 E'b
    200 //
    201 // Like BackSubstitute, we use the block structure of A to implement
    202 // this using a series of matrix vector products.
    203 void ImplicitSchurComplement::UpdateRhs() {
    204   // y1 = E'b
    205   tmp_e_cols_.setZero();
    206   A_->LeftMultiplyE(b_, tmp_e_cols_.data());
    207 
    208   // y2 = (E'E)^-1 y1
    209   Vector y2 = Vector::Zero(A_->num_cols_e());
    210   block_diagonal_EtE_inverse_->RightMultiply(tmp_e_cols_.data(), y2.data());
    211 
    212   // y3 = E y2
    213   tmp_rows_.setZero();
    214   A_->RightMultiplyE(y2.data(), tmp_rows_.data());
    215 
    216   // y3 = b - y3
    217   tmp_rows_ = ConstVectorRef(b_, A_->num_rows()) - tmp_rows_;
    218 
    219   // rhs = F' y3
    220   rhs_.setZero();
    221   A_->LeftMultiplyF(tmp_rows_.data(), rhs_.data());
    222 }
    223 
    224 }  // namespace internal
    225 }  // namespace ceres
    226