Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 
     31 #ifndef CERES_INTERNAL_PROGRAM_H_
     32 #define CERES_INTERNAL_PROGRAM_H_
     33 
     34 #include <set>
     35 #include <string>
     36 #include <vector>
     37 #include "ceres/internal/port.h"
     38 
     39 namespace ceres {
     40 namespace internal {
     41 
     42 class ParameterBlock;
     43 class ProblemImpl;
     44 class ResidualBlock;
     45 class TripletSparseMatrix;
     46 
     47 // A nonlinear least squares optimization problem. This is different from the
     48 // similarly-named "Problem" object, which offers a mutation interface for
     49 // adding and modifying parameters and residuals. The Program contains the core
     50 // part of the Problem, which is the parameters and the residuals, stored in a
     51 // particular ordering. The ordering is critical, since it defines the mapping
     52 // between (residual, parameter) pairs and a position in the jacobian of the
     53 // objective function. Various parts of Ceres transform one Program into
     54 // another; for example, the first stage of solving involves stripping all
     55 // constant parameters and residuals. This is in contrast with Problem, which is
     56 // not built for transformation.
     57 class Program {
     58  public:
     59   Program();
     60   explicit Program(const Program& program);
     61 
     62   // The ordered parameter and residual blocks for the program.
     63   const vector<ParameterBlock*>& parameter_blocks() const;
     64   const vector<ResidualBlock*>& residual_blocks() const;
     65   vector<ParameterBlock*>* mutable_parameter_blocks();
     66   vector<ResidualBlock*>* mutable_residual_blocks();
     67 
     68   // Serialize to/from the program and update states.
     69   //
     70   // NOTE: Setting the state of a parameter block can trigger the
     71   // computation of the Jacobian of its local parameterization. If
     72   // this computation fails for some reason, then this method returns
     73   // false and the state of the parameter blocks cannot be trusted.
     74   bool StateVectorToParameterBlocks(const double *state);
     75   void ParameterBlocksToStateVector(double *state) const;
     76 
     77   // Copy internal state to the user's parameters.
     78   void CopyParameterBlockStateToUserState();
     79 
     80   // Set the parameter block pointers to the user pointers. Since this
     81   // runs parameter block set state internally, which may call local
     82   // parameterizations, this can fail. False is returned on failure.
     83   bool SetParameterBlockStatePtrsToUserStatePtrs();
     84 
     85   // Update a state vector for the program given a delta.
     86   bool Plus(const double* state,
     87             const double* delta,
     88             double* state_plus_delta) const;
     89 
     90   // Set the parameter indices and offsets. This permits mapping backward
     91   // from a ParameterBlock* to an index in the parameter_blocks() vector. For
     92   // any parameter block p, after calling SetParameterOffsetsAndIndex(), it
     93   // is true that
     94   //
     95   //   parameter_blocks()[p->index()] == p
     96   //
     97   // If a parameter appears in a residual but not in the parameter block, then
     98   // it will have an index of -1.
     99   //
    100   // This also updates p->state_offset() and p->delta_offset(), which are the
    101   // position of the parameter in the state and delta vector respectively.
    102   void SetParameterOffsetsAndIndex();
    103 
    104   // Check if the internal state of the program (the indexing and the
    105   // offsets) are correct.
    106   bool IsValid() const;
    107 
    108   bool ParameterBlocksAreFinite(string* message) const;
    109 
    110   // Returns true if the program has any non-constant parameter blocks
    111   // which have non-trivial bounds constraints.
    112   bool IsBoundsConstrained() const;
    113 
    114   // Returns false, if the program has any constant parameter blocks
    115   // which are not feasible, or any variable parameter blocks which
    116   // have a lower bound greater than or equal to the upper bound.
    117   bool IsFeasible(string* message) const;
    118 
    119   // Loop over each residual block and ensure that no two parameter
    120   // blocks in the same residual block are part of
    121   // parameter_blocks as that would violate the assumption that it
    122   // is an independent set in the Hessian matrix.
    123   bool IsParameterBlockSetIndependent(const set<double*>& independent_set) const;
    124 
    125   // Create a TripletSparseMatrix which contains the zero-one
    126   // structure corresponding to the block sparsity of the transpose of
    127   // the Jacobian matrix.
    128   //
    129   // Caller owns the result.
    130   TripletSparseMatrix* CreateJacobianBlockSparsityTranspose() const;
    131 
    132   // Create a copy of this program and removes constant parameter
    133   // blocks and residual blocks with no varying parameter blocks while
    134   // preserving their relative order.
    135   //
    136   // removed_parameter_blocks on exit will contain the list of
    137   // parameter blocks that were removed.
    138   //
    139   // fixed_cost will be equal to the sum of the costs of the residual
    140   // blocks that were removed.
    141   //
    142   // If there was a problem, then the function will return a NULL
    143   // pointer and error will contain a human readable description of
    144   // the problem.
    145   Program* CreateReducedProgram(vector<double*>* removed_parameter_blocks,
    146                                 double* fixed_cost,
    147                                 string* error) const;
    148 
    149   // See problem.h for what these do.
    150   int NumParameterBlocks() const;
    151   int NumParameters() const;
    152   int NumEffectiveParameters() const;
    153   int NumResidualBlocks() const;
    154   int NumResiduals() const;
    155 
    156   int MaxScratchDoublesNeededForEvaluate() const;
    157   int MaxDerivativesPerResidualBlock() const;
    158   int MaxParametersPerResidualBlock() const;
    159   int MaxResidualsPerResidualBlock() const;
    160 
    161   // A human-readable dump of the parameter blocks for debugging.
    162   // TODO(keir): If necessary, also dump the residual blocks.
    163   string ToString() const;
    164 
    165  private:
    166   // Remove constant parameter blocks and residual blocks with no
    167   // varying parameter blocks while preserving their relative order.
    168   //
    169   // removed_parameter_blocks on exit will contain the list of
    170   // parameter blocks that were removed.
    171   //
    172   // fixed_cost will be equal to the sum of the costs of the residual
    173   // blocks that were removed.
    174   //
    175   // If there was a problem, then the function will return false and
    176   // error will contain a human readable description of the problem.
    177   bool RemoveFixedBlocks(vector<double*>* removed_parameter_blocks,
    178                          double* fixed_cost,
    179                          string* message);
    180 
    181   // The Program does not own the ParameterBlock or ResidualBlock objects.
    182   vector<ParameterBlock*> parameter_blocks_;
    183   vector<ResidualBlock*> residual_blocks_;
    184 
    185   friend class ProblemImpl;
    186 };
    187 
    188 }  // namespace internal
    189 }  // namespace ceres
    190 
    191 #endif  // CERES_INTERNAL_PROGRAM_H_
    192