1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 30 31 #include "wtf/dtoa/utils.h" 32 33 namespace WTF { 34 35 namespace double_conversion { 36 37 class DoubleToStringConverter { 38 public: 39 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint 40 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the 41 // function returns false. 42 static const int kMaxFixedDigitsBeforePoint = 60; 43 static const int kMaxFixedDigitsAfterPoint = 60; 44 45 // When calling ToExponential with a requested_digits 46 // parameter > kMaxExponentialDigits then the function returns false. 47 static const int kMaxExponentialDigits = 120; 48 49 // When calling ToPrecision with a requested_digits 50 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits 51 // then the function returns false. 52 static const int kMinPrecisionDigits = 1; 53 static const int kMaxPrecisionDigits = 120; 54 55 enum Flags { 56 NO_FLAGS = 0, 57 EMIT_POSITIVE_EXPONENT_SIGN = 1, 58 EMIT_TRAILING_DECIMAL_POINT = 2, 59 EMIT_TRAILING_ZERO_AFTER_POINT = 4, 60 UNIQUE_ZERO = 8 61 }; 62 63 // Flags should be a bit-or combination of the possible Flags-enum. 64 // - NO_FLAGS: no special flags. 65 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent 66 // form, emits a '+' for positive exponents. Example: 1.2e+2. 67 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is 68 // converted into decimal format then a trailing decimal point is appended. 69 // Example: 2345.0 is converted to "2345.". 70 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point 71 // emits a trailing '0'-character. This flag requires the 72 // EXMIT_TRAILING_DECIMAL_POINT flag. 73 // Example: 2345.0 is converted to "2345.0". 74 // - UNIQUE_ZERO: "-0.0" is converted to "0.0". 75 // 76 // Infinity symbol and nan_symbol provide the string representation for these 77 // special values. If the string is NULL and the special value is encountered 78 // then the conversion functions return false. 79 // 80 // The exponent_character is used in exponential representations. It is 81 // usually 'e' or 'E'. 82 // 83 // When converting to the shortest representation the converter will 84 // represent input numbers in decimal format if they are in the interval 85 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ 86 // (lower boundary included, greater boundary excluded). 87 // Example: with decimal_in_shortest_low = -6 and 88 // decimal_in_shortest_high = 21: 89 // ToShortest(0.000001) -> "0.000001" 90 // ToShortest(0.0000001) -> "1e-7" 91 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 92 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 93 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 94 // 95 // When converting to precision mode the converter may add 96 // max_leading_padding_zeroes before returning the number in exponential 97 // format. 98 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 99 // ToPrecision(0.0000012345, 2) -> "0.0000012" 100 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 101 // Similarily the converter may add up to 102 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 103 // returning an exponential representation. A zero added by the 104 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 105 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 106 // ToPrecision(230.0, 2) -> "230" 107 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 108 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 109 DoubleToStringConverter(int flags, 110 const char* infinity_symbol, 111 const char* nan_symbol, 112 char exponent_character, 113 int decimal_in_shortest_low, 114 int decimal_in_shortest_high, 115 int max_leading_padding_zeroes_in_precision_mode, 116 int max_trailing_padding_zeroes_in_precision_mode) 117 : flags_(flags), 118 infinity_symbol_(infinity_symbol), 119 nan_symbol_(nan_symbol), 120 exponent_character_(exponent_character), 121 decimal_in_shortest_low_(decimal_in_shortest_low), 122 decimal_in_shortest_high_(decimal_in_shortest_high), 123 max_leading_padding_zeroes_in_precision_mode_( 124 max_leading_padding_zeroes_in_precision_mode), 125 max_trailing_padding_zeroes_in_precision_mode_( 126 max_trailing_padding_zeroes_in_precision_mode) { 127 // When 'trailing zero after the point' is set, then 'trailing point' 128 // must be set too. 129 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || 130 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); 131 } 132 133 // Returns a converter following the EcmaScript specification. 134 static const DoubleToStringConverter& EcmaScriptConverter(); 135 136 // Computes the shortest string of digits that correctly represent the input 137 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high 138 // (see constructor) it then either returns a decimal representation, or an 139 // exponential representation. 140 // Example with decimal_in_shortest_low = -6, 141 // decimal_in_shortest_high = 21, 142 // EMIT_POSITIVE_EXPONENT_SIGN activated, and 143 // EMIT_TRAILING_DECIMAL_POINT deactived: 144 // ToShortest(0.000001) -> "0.000001" 145 // ToShortest(0.0000001) -> "1e-7" 146 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 147 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 148 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 149 // 150 // Note: the conversion may round the output if the returned string 151 // is accurate enough to uniquely identify the input-number. 152 // For example the most precise representation of the double 9e59 equals 153 // "899999999999999918767229449717619953810131273674690656206848", but 154 // the converter will return the shorter (but still correct) "9e59". 155 // 156 // Returns true if the conversion succeeds. The conversion always succeeds 157 // except when the input value is special and no infinity_symbol or 158 // nan_symbol has been given to the constructor. 159 bool ToShortest(double value, StringBuilder* result_builder) const; 160 161 162 // Computes a decimal representation with a fixed number of digits after the 163 // decimal point. The last emitted digit is rounded. 164 // 165 // Examples: 166 // ToFixed(3.12, 1) -> "3.1" 167 // ToFixed(3.1415, 3) -> "3.142" 168 // ToFixed(1234.56789, 4) -> "1234.5679" 169 // ToFixed(1.23, 5) -> "1.23000" 170 // ToFixed(0.1, 4) -> "0.1000" 171 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" 172 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" 173 // ToFixed(0.1, 17) -> "0.10000000000000001" 174 // 175 // If requested_digits equals 0, then the tail of the result depends on 176 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. 177 // Examples, for requested_digits == 0, 178 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be 179 // - false and false: then 123.45 -> 123 180 // 0.678 -> 1 181 // - true and false: then 123.45 -> 123. 182 // 0.678 -> 1. 183 // - true and true: then 123.45 -> 123.0 184 // 0.678 -> 1.0 185 // 186 // Returns true if the conversion succeeds. The conversion always succeeds 187 // except for the following cases: 188 // - the input value is special and no infinity_symbol or nan_symbol has 189 // been provided to the constructor, 190 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or 191 // - 'requested_digits' > kMaxFixedDigitsAfterPoint. 192 // The last two conditions imply that the result will never contain more than 193 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters 194 // (one additional character for the sign, and one for the decimal point). 195 bool ToFixed(double value, 196 int requested_digits, 197 StringBuilder* result_builder) const; 198 199 // Computes a representation in exponential format with requested_digits 200 // after the decimal point. The last emitted digit is rounded. 201 // If requested_digits equals -1, then the shortest exponential representation 202 // is computed. 203 // 204 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and 205 // exponent_character set to 'e'. 206 // ToExponential(3.12, 1) -> "3.1e0" 207 // ToExponential(5.0, 3) -> "5.000e0" 208 // ToExponential(0.001, 2) -> "1.00e-3" 209 // ToExponential(3.1415, -1) -> "3.1415e0" 210 // ToExponential(3.1415, 4) -> "3.1415e0" 211 // ToExponential(3.1415, 3) -> "3.142e0" 212 // ToExponential(123456789000000, 3) -> "1.235e14" 213 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" 214 // ToExponential(1000000000000000019884624838656.0, 32) -> 215 // "1.00000000000000001988462483865600e30" 216 // ToExponential(1234, 0) -> "1e3" 217 // 218 // Returns true if the conversion succeeds. The conversion always succeeds 219 // except for the following cases: 220 // - the input value is special and no infinity_symbol or nan_symbol has 221 // been provided to the constructor, 222 // - 'requested_digits' > kMaxExponentialDigits. 223 // The last condition implies that the result will never contain more than 224 // kMaxExponentialDigits + 8 characters (the sign, the digit before the 225 // decimal point, the decimal point, the exponent character, the 226 // exponent's sign, and at most 3 exponent digits). 227 bool ToExponential(double value, 228 int requested_digits, 229 StringBuilder* result_builder) const; 230 231 // Computes 'precision' leading digits of the given 'value' and returns them 232 // either in exponential or decimal format, depending on 233 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the 234 // constructor). 235 // The last computed digit is rounded. 236 // 237 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 238 // ToPrecision(0.0000012345, 2) -> "0.0000012" 239 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 240 // Similarily the converter may add up to 241 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 242 // returning an exponential representation. A zero added by the 243 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 244 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 245 // ToPrecision(230.0, 2) -> "230" 246 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 247 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 248 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no 249 // EMIT_TRAILING_ZERO_AFTER_POINT: 250 // ToPrecision(123450.0, 6) -> "123450" 251 // ToPrecision(123450.0, 5) -> "123450" 252 // ToPrecision(123450.0, 4) -> "123500" 253 // ToPrecision(123450.0, 3) -> "123000" 254 // ToPrecision(123450.0, 2) -> "1.2e5" 255 // 256 // Returns true if the conversion succeeds. The conversion always succeeds 257 // except for the following cases: 258 // - the input value is special and no infinity_symbol or nan_symbol has 259 // been provided to the constructor, 260 // - precision < kMinPericisionDigits 261 // - precision > kMaxPrecisionDigits 262 // The last condition implies that the result will never contain more than 263 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the 264 // exponent character, the exponent's sign, and at most 3 exponent digits). 265 bool ToPrecision(double value, 266 int precision, 267 StringBuilder* result_builder) const; 268 269 enum DtoaMode { 270 // Produce the shortest correct representation. 271 // For example the output of 0.299999999999999988897 is (the less accurate 272 // but correct) 0.3. 273 SHORTEST, 274 // Produce a fixed number of digits after the decimal point. 275 // For instance fixed(0.1, 4) becomes 0.1000 276 // If the input number is big, the output will be big. 277 FIXED, 278 // Fixed number of digits (independent of the decimal point). 279 PRECISION 280 }; 281 282 // The maximal number of digits that are needed to emit a double in base 10. 283 // A higher precision can be achieved by using more digits, but the shortest 284 // accurate representation of any double will never use more digits than 285 // kBase10MaximalLength. 286 // Note that DoubleToAscii null-terminates its input. So the given buffer 287 // should be at least kBase10MaximalLength + 1 characters long. 288 static const int kBase10MaximalLength = 17; 289 290 // Converts the given double 'v' to ascii. 291 // The result should be interpreted as buffer * 10^(point-length). 292 // 293 // The output depends on the given mode: 294 // - SHORTEST: produce the least amount of digits for which the internal 295 // identity requirement is still satisfied. If the digits are printed 296 // (together with the correct exponent) then reading this number will give 297 // 'v' again. The buffer will choose the representation that is closest to 298 // 'v'. If there are two at the same distance, than the one farther away 299 // from 0 is chosen (halfway cases - ending with 5 - are rounded up). 300 // In this mode the 'requested_digits' parameter is ignored. 301 // - FIXED: produces digits necessary to print a given number with 302 // 'requested_digits' digits after the decimal point. The produced digits 303 // might be too short in which case the caller has to fill the remainder 304 // with '0's. 305 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. 306 // Halfway cases are rounded towards +/-Infinity (away from 0). The call 307 // toFixed(0.15, 2) thus returns buffer="2", point=0. 308 // The returned buffer may contain digits that would be truncated from the 309 // shortest representation of the input. 310 // - PRECISION: produces 'requested_digits' where the first digit is not '0'. 311 // Even though the length of produced digits usually equals 312 // 'requested_digits', the function is allowed to return fewer digits, in 313 // which case the caller has to fill the missing digits with '0's. 314 // Halfway cases are again rounded away from 0. 315 // DoubleToAscii expects the given buffer to be big enough to hold all 316 // digits and a terminating null-character. In SHORTEST-mode it expects a 317 // buffer of at least kBase10MaximalLength + 1. In all other modes the 318 // requested_digits parameter (+ 1 for the null-character) limits the size of 319 // the output. The given length is only used in debug mode to ensure the 320 // buffer is big enough. 321 static void DoubleToAscii(double v, 322 DtoaMode mode, 323 int requested_digits, 324 char* buffer, 325 int buffer_length, 326 bool* sign, 327 int* length, 328 int* point); 329 330 private: 331 // If the value is a special value (NaN or Infinity) constructs the 332 // corresponding string using the configured infinity/nan-symbol. 333 // If either of them is NULL or the value is not special then the 334 // function returns false. 335 bool HandleSpecialValues(double value, StringBuilder* result_builder) const; 336 // Constructs an exponential representation (i.e. 1.234e56). 337 // The given exponent assumes a decimal point after the first decimal digit. 338 void CreateExponentialRepresentation(const char* decimal_digits, 339 int length, 340 int exponent, 341 StringBuilder* result_builder) const; 342 // Creates a decimal representation (i.e 1234.5678). 343 void CreateDecimalRepresentation(const char* decimal_digits, 344 int length, 345 int decimal_point, 346 int digits_after_point, 347 StringBuilder* result_builder) const; 348 349 const int flags_; 350 const char* const infinity_symbol_; 351 const char* const nan_symbol_; 352 const char exponent_character_; 353 const int decimal_in_shortest_low_; 354 const int decimal_in_shortest_high_; 355 const int max_leading_padding_zeroes_in_precision_mode_; 356 const int max_trailing_padding_zeroes_in_precision_mode_; 357 358 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); 359 }; 360 361 362 class StringToDoubleConverter { 363 public: 364 // Performs the conversion. 365 // The output parameter 'processed_characters_count' is set to the number 366 // of characters that have been processed to read the number. 367 static double StringToDouble(const char* buffer, size_t length, size_t* processed_characters_count); 368 369 private: 370 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); 371 }; 372 373 } // namespace double_conversion 374 375 } // namespace WTF 376 377 #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 378