Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <ctype.h>
     60 #include <stdio.h>
     61 
     62 #include <openssl/bio.h>
     63 #include <openssl/err.h>
     64 #include <openssl/mem.h>
     65 
     66 #include "internal.h"
     67 
     68 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
     69   unsigned num_words, m;
     70   BN_ULONG word = 0;
     71   BIGNUM *bn = NULL;
     72 
     73   if (ret == NULL) {
     74     ret = bn = BN_new();
     75   }
     76 
     77   if (ret == NULL) {
     78     return NULL;
     79   }
     80 
     81   if (len == 0) {
     82     ret->top = 0;
     83     return ret;
     84   }
     85 
     86   num_words = ((len - 1) / BN_BYTES) + 1;
     87   m = (len - 1) % BN_BYTES;
     88   if (bn_wexpand(ret, num_words) == NULL) {
     89     if (bn) {
     90       BN_free(bn);
     91     }
     92     return NULL;
     93   }
     94 
     95   ret->top = num_words;
     96   ret->neg = 0;
     97 
     98   while (len--) {
     99     word = (word << 8) | *(in++);
    100     if (m-- == 0) {
    101       ret->d[--num_words] = word;
    102       word = 0;
    103       m = BN_BYTES - 1;
    104     }
    105   }
    106 
    107   /* need to call this due to clear byte at top if avoiding having the top bit
    108    * set (-ve number) */
    109   bn_correct_top(ret);
    110   return ret;
    111 }
    112 
    113 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
    114   size_t n, i;
    115   BN_ULONG l;
    116 
    117   n = i = BN_num_bytes(in);
    118   while (i--) {
    119     l = in->d[i / BN_BYTES];
    120     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
    121   }
    122   return n;
    123 }
    124 
    125 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
    126  * behavior is undefined if |v| takes any other value. */
    127 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
    128   BN_ULONG mask = v;
    129   mask--;
    130 
    131   return (~mask & x) | (mask & y);
    132 }
    133 
    134 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
    135  * must not have their MSBs set. */
    136 static int constant_time_le_size_t(size_t x, size_t y) {
    137   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
    138 }
    139 
    140 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
    141  * bounds. Otherwise, it returns 0. It does so without branches on the size of
    142  * |in|, however it necessarily does not have the same memory access pattern. If
    143  * the access would be out of bounds, it reads the last word of |in|. |in| must
    144  * not be zero. */
    145 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
    146   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
    147   BN_ULONG l = in->d[constant_time_select_ulong(
    148       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
    149 
    150   /* Clamp to zero if above |d->top|. */
    151   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
    152 }
    153 
    154 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
    155   size_t i;
    156   BN_ULONG l;
    157 
    158   /* Special case for |in| = 0. Just branch as the probability is negligible. */
    159   if (BN_is_zero(in)) {
    160     memset(out, 0, len);
    161     return 1;
    162   }
    163 
    164   /* Check if the integer is too big. This case can exit early in non-constant
    165    * time. */
    166   if (in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
    167     return 0;
    168   }
    169   if ((len % BN_BYTES) != 0) {
    170     l = read_word_padded(in, len / BN_BYTES);
    171     if (l >> (8 * (len % BN_BYTES)) != 0) {
    172       return 0;
    173     }
    174   }
    175 
    176   /* Write the bytes out one by one. Serialization is done without branching on
    177    * the bits of |in| or on |in->top|, but if the routine would otherwise read
    178    * out of bounds, the memory access pattern can't be fixed. However, for an
    179    * RSA key of size a multiple of the word size, the probability of BN_BYTES
    180    * leading zero octets is low.
    181    *
    182    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
    183   i = len;
    184   while (i--) {
    185     l = read_word_padded(in, i / BN_BYTES);
    186     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
    187   }
    188   return 1;
    189 }
    190 
    191 static const char hextable[] = "0123456789abcdef";
    192 
    193 char *BN_bn2hex(const BIGNUM *bn) {
    194   int i, j, v, z = 0;
    195   char *buf;
    196   char *p;
    197 
    198   buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
    199   if (buf == NULL) {
    200     OPENSSL_PUT_ERROR(BN, BN_bn2hex, ERR_R_MALLOC_FAILURE);
    201     return NULL;
    202   }
    203 
    204   p = buf;
    205   if (bn->neg) {
    206     *(p++) = '-';
    207   }
    208 
    209   if (BN_is_zero(bn)) {
    210     *(p++) = '0';
    211   }
    212 
    213   for (i = bn->top - 1; i >= 0; i--) {
    214     for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
    215       /* strip leading zeros */
    216       v = ((int)(bn->d[i] >> (long)j)) & 0xff;
    217       if (z || v != 0) {
    218         *(p++) = hextable[v >> 4];
    219         *(p++) = hextable[v & 0x0f];
    220         z = 1;
    221       }
    222     }
    223   }
    224   *p = '\0';
    225 
    226   return buf;
    227 }
    228 
    229 /* decode_hex decodes |i| bytes of hex data from |in| and updates |bn|. */
    230 static void decode_hex(BIGNUM *bn, const char *in, int i) {
    231   int h, m, j, k, c;
    232   BN_ULONG l=0;
    233 
    234   j = i; /* least significant 'hex' */
    235   h = 0;
    236   while (j > 0) {
    237     m = ((BN_BYTES * 2) <= j) ? (BN_BYTES * 2) : j;
    238     l = 0;
    239     for (;;) {
    240       c = in[j - m];
    241       if ((c >= '0') && (c <= '9')) {
    242         k = c - '0';
    243       } else if ((c >= 'a') && (c <= 'f')) {
    244         k = c - 'a' + 10;
    245       } else if ((c >= 'A') && (c <= 'F')) {
    246         k = c - 'A' + 10;
    247       } else {
    248         k = 0; /* paranoia */
    249       }
    250 
    251       l = (l << 4) | k;
    252 
    253       if (--m <= 0) {
    254         bn->d[h++] = l;
    255         break;
    256       }
    257     }
    258 
    259     j -= (BN_BYTES * 2);
    260   }
    261 
    262   bn->top = h;
    263 }
    264 
    265 /* decode_dec decodes |i| bytes of decimal data from |in| and updates |bn|. */
    266 static void decode_dec(BIGNUM *bn, const char *in, int i) {
    267   int j;
    268   BN_ULONG l = 0;
    269 
    270   j = BN_DEC_NUM - (i % BN_DEC_NUM);
    271   if (j == BN_DEC_NUM) {
    272     j = 0;
    273   }
    274   l = 0;
    275   while (*in) {
    276     l *= 10;
    277     l += *in - '0';
    278     in++;
    279     if (++j == BN_DEC_NUM) {
    280       BN_mul_word(bn, BN_DEC_CONV);
    281       BN_add_word(bn, l);
    282       l = 0;
    283       j = 0;
    284     }
    285   }
    286 }
    287 
    288 typedef void (*decode_func) (BIGNUM *bn, const char *in, int i);
    289 typedef int (*char_test_func) (int c);
    290 
    291 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
    292   BIGNUM *ret = NULL;
    293   int neg = 0, i;
    294   int num;
    295 
    296   if (in == NULL || *in == 0) {
    297     return 0;
    298   }
    299 
    300   if (*in == '-') {
    301     neg = 1;
    302     in++;
    303   }
    304 
    305   for (i = 0; want_char((unsigned char)in[i]); i++) {}
    306 
    307   num = i + neg;
    308   if (outp == NULL) {
    309     return num;
    310   }
    311 
    312   /* in is the start of the hex digits, and it is 'i' long */
    313   if (*outp == NULL) {
    314     ret = BN_new();
    315     if (ret == NULL) {
    316       return 0;
    317     }
    318   } else {
    319     ret = *outp;
    320     BN_zero(ret);
    321   }
    322   ret->neg = neg;
    323 
    324   /* i is the number of hex digests; */
    325   if (bn_expand(ret, i * 4) == NULL) {
    326     goto err;
    327   }
    328 
    329   decode(ret, in, i);
    330 
    331   bn_correct_top(ret);
    332 
    333   *outp = ret;
    334   return num;
    335 
    336 err:
    337   if (*outp == NULL) {
    338     BN_free(ret);
    339   }
    340 
    341   return 0;
    342 }
    343 
    344 int BN_hex2bn(BIGNUM **outp, const char *in) {
    345   return bn_x2bn(outp, in, decode_hex, isxdigit);
    346 }
    347 
    348 char *BN_bn2dec(const BIGNUM *a) {
    349   int i = 0, num, ok = 0;
    350   char *buf = NULL;
    351   char *p;
    352   BIGNUM *t = NULL;
    353   BN_ULONG *bn_data = NULL, *lp;
    354 
    355   /* get an upper bound for the length of the decimal integer
    356    * num <= (BN_num_bits(a) + 1) * log(2)
    357    *     <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1     (rounding error)
    358    *     <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
    359    */
    360   i = BN_num_bits(a) * 3;
    361   num = i / 10 + i / 1000 + 1 + 1;
    362   bn_data =
    363       (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG));
    364   buf = (char *)OPENSSL_malloc(num + 3);
    365   if ((buf == NULL) || (bn_data == NULL)) {
    366     OPENSSL_PUT_ERROR(BN, BN_bn2dec, ERR_R_MALLOC_FAILURE);
    367     goto err;
    368   }
    369   t = BN_dup(a);
    370   if (t == NULL) {
    371     goto err;
    372   }
    373 
    374 #define BUF_REMAIN (num + 3 - (size_t)(p - buf))
    375   p = buf;
    376   lp = bn_data;
    377   if (BN_is_zero(t)) {
    378     *(p++) = '0';
    379     *(p++) = '\0';
    380   } else {
    381     if (BN_is_negative(t)) {
    382       *p++ = '-';
    383     }
    384 
    385     while (!BN_is_zero(t)) {
    386       *lp = BN_div_word(t, BN_DEC_CONV);
    387       lp++;
    388     }
    389     lp--;
    390     /* We now have a series of blocks, BN_DEC_NUM chars
    391      * in length, where the last one needs truncation.
    392      * The blocks need to be reversed in order. */
    393     BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp);
    394     while (*p) {
    395       p++;
    396     }
    397     while (lp != bn_data) {
    398       lp--;
    399       BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp);
    400       while (*p) {
    401         p++;
    402       }
    403     }
    404   }
    405   ok = 1;
    406 
    407 err:
    408   if (bn_data != NULL) {
    409     OPENSSL_free(bn_data);
    410   }
    411   if (t != NULL) {
    412     BN_free(t);
    413   }
    414   if (!ok && buf) {
    415     OPENSSL_free(buf);
    416     buf = NULL;
    417   }
    418 
    419   return buf;
    420 }
    421 
    422 int BN_dec2bn(BIGNUM **outp, const char *in) {
    423   return bn_x2bn(outp, in, decode_dec, isdigit);
    424 }
    425 
    426 int BN_asc2bn(BIGNUM **outp, const char *in) {
    427   const char *const orig_in = in;
    428   if (*in == '-') {
    429     in++;
    430   }
    431 
    432   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
    433     if (!BN_hex2bn(outp, in+2)) {
    434       return 0;
    435     }
    436   } else {
    437     if (!BN_dec2bn(outp, in)) {
    438       return 0;
    439     }
    440   }
    441 
    442   if (*orig_in == '-') {
    443     (*outp)->neg = 1;
    444   }
    445 
    446   return 1;
    447 }
    448 
    449 int BN_print(BIO *bp, const BIGNUM *a) {
    450   int i, j, v, z = 0;
    451   int ret = 0;
    452 
    453   if (a->neg && BIO_write(bp, "-", 1) != 1) {
    454     goto end;
    455   }
    456 
    457   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
    458     goto end;
    459   }
    460 
    461   for (i = a->top - 1; i >= 0; i--) {
    462     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
    463       /* strip leading zeros */
    464       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
    465       if (z || v != 0) {
    466         if (BIO_write(bp, &hextable[v], 1) != 1) {
    467           goto end;
    468         }
    469         z = 1;
    470       }
    471     }
    472   }
    473   ret = 1;
    474 
    475 end:
    476   return ret;
    477 }
    478 
    479 int BN_print_fp(FILE *fp, const BIGNUM *a) {
    480   BIO *b;
    481   int ret;
    482 
    483   b = BIO_new(BIO_s_file());
    484   if (b == NULL) {
    485     return 0;
    486   }
    487   BIO_set_fp(b, fp, BIO_NOCLOSE);
    488   ret = BN_print(b, a);
    489   BIO_free(b);
    490 
    491   return ret;
    492 }
    493 
    494 BN_ULONG BN_get_word(const BIGNUM *bn) {
    495   switch (bn->top) {
    496     case 0:
    497       return 0;
    498     case 1:
    499       return bn->d[0];
    500     default:
    501       return BN_MASK2;
    502   }
    503 }
    504