Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.] */
     56 
     57 #include <openssl/bn.h>
     58 
     59 #include <limits.h>
     60 #include <openssl/err.h>
     61 
     62 #include "internal.h"
     63 
     64 
     65 #define asm __asm__
     66 
     67 #if !defined(OPENSSL_NO_ASM)
     68 # if defined(__GNUC__) && __GNUC__>=2
     69 #  if defined(OPENSSL_X86)
     70    /*
     71     * There were two reasons for implementing this template:
     72     * - GNU C generates a call to a function (__udivdi3 to be exact)
     73     *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
     74     *   understand why...);
     75     * - divl doesn't only calculate quotient, but also leaves
     76     *   remainder in %edx which we can definitely use here:-)
     77     *
     78     *					<appro (at) fy.chalmers.se>
     79     */
     80 #undef div_asm
     81 #  define div_asm(n0,n1,d0)		\
     82 	({  asm volatile (			\
     83 		"divl	%4"			\
     84 		: "=a"(q), "=d"(rem)		\
     85 		: "a"(n1), "d"(n0), "g"(d0)	\
     86 		: "cc");			\
     87 	    q;					\
     88 	})
     89 #  define REMAINDER_IS_ALREADY_CALCULATED
     90 #  elif defined(OPENSSL_X86_64)
     91    /*
     92     * Same story here, but it's 128-bit by 64-bit division. Wow!
     93     *					<appro (at) fy.chalmers.se>
     94     */
     95 #  undef div_asm
     96 #  define div_asm(n0,n1,d0)		\
     97 	({  asm volatile (			\
     98 		"divq	%4"			\
     99 		: "=a"(q), "=d"(rem)		\
    100 		: "a"(n1), "d"(n0), "g"(d0)	\
    101 		: "cc");			\
    102 	    q;					\
    103 	})
    104 #  define REMAINDER_IS_ALREADY_CALCULATED
    105 #  endif /* __<cpu> */
    106 # endif /* __GNUC__ */
    107 #endif /* OPENSSL_NO_ASM */
    108 
    109 /* BN_div computes  dv := num / divisor,  rounding towards
    110  * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
    111  * Thus:
    112  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
    113  *     rm->neg == num->neg                 (unless the remainder is zero)
    114  * If 'dv' or 'rm' is NULL, the respective value is not returned. */
    115 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
    116            BN_CTX *ctx) {
    117   int norm_shift, i, loop;
    118   BIGNUM *tmp, wnum, *snum, *sdiv, *res;
    119   BN_ULONG *resp, *wnump;
    120   BN_ULONG d0, d1;
    121   int num_n, div_n;
    122   int no_branch = 0;
    123 
    124   /* Invalid zero-padding would have particularly bad consequences
    125    * so don't just rely on bn_check_top() here */
    126   if ((num->top > 0 && num->d[num->top - 1] == 0) ||
    127       (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
    128     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
    129     return 0;
    130   }
    131 
    132   if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
    133       (divisor->flags & BN_FLG_CONSTTIME) != 0) {
    134     no_branch = 1;
    135   }
    136 
    137   if (BN_is_zero(divisor)) {
    138     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
    139     return 0;
    140   }
    141 
    142   if (!no_branch && BN_ucmp(num, divisor) < 0) {
    143     if (rm != NULL) {
    144       if (BN_copy(rm, num) == NULL) {
    145         return 0;
    146       }
    147     }
    148     if (dv != NULL) {
    149       BN_zero(dv);
    150     }
    151     return 1;
    152   }
    153 
    154   BN_CTX_start(ctx);
    155   tmp = BN_CTX_get(ctx);
    156   snum = BN_CTX_get(ctx);
    157   sdiv = BN_CTX_get(ctx);
    158   if (dv == NULL) {
    159     res = BN_CTX_get(ctx);
    160   } else {
    161     res = dv;
    162   }
    163   if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
    164     goto err;
    165   }
    166 
    167   /* First we normalise the numbers */
    168   norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
    169   if (!(BN_lshift(sdiv, divisor, norm_shift))) {
    170     goto err;
    171   }
    172   sdiv->neg = 0;
    173   norm_shift += BN_BITS2;
    174   if (!(BN_lshift(snum, num, norm_shift))) {
    175     goto err;
    176   }
    177   snum->neg = 0;
    178 
    179   if (no_branch) {
    180     /* Since we don't know whether snum is larger than sdiv,
    181      * we pad snum with enough zeroes without changing its
    182      * value.
    183      */
    184     if (snum->top <= sdiv->top + 1) {
    185       if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
    186         goto err;
    187       }
    188       for (i = snum->top; i < sdiv->top + 2; i++) {
    189         snum->d[i] = 0;
    190       }
    191       snum->top = sdiv->top + 2;
    192     } else {
    193       if (bn_wexpand(snum, snum->top + 1) == NULL) {
    194         goto err;
    195       }
    196       snum->d[snum->top] = 0;
    197       snum->top++;
    198     }
    199   }
    200 
    201   div_n = sdiv->top;
    202   num_n = snum->top;
    203   loop = num_n - div_n;
    204   /* Lets setup a 'window' into snum
    205    * This is the part that corresponds to the current
    206    * 'area' being divided */
    207   wnum.neg = 0;
    208   wnum.d = &(snum->d[loop]);
    209   wnum.top = div_n;
    210   /* only needed when BN_ucmp messes up the values between top and max */
    211   wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
    212 
    213   /* Get the top 2 words of sdiv */
    214   /* div_n=sdiv->top; */
    215   d0 = sdiv->d[div_n - 1];
    216   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
    217 
    218   /* pointer to the 'top' of snum */
    219   wnump = &(snum->d[num_n - 1]);
    220 
    221   /* Setup to 'res' */
    222   res->neg = (num->neg ^ divisor->neg);
    223   if (!bn_wexpand(res, (loop + 1))) {
    224     goto err;
    225   }
    226   res->top = loop - no_branch;
    227   resp = &(res->d[loop - 1]);
    228 
    229   /* space for temp */
    230   if (!bn_wexpand(tmp, (div_n + 1))) {
    231     goto err;
    232   }
    233 
    234   if (!no_branch) {
    235     if (BN_ucmp(&wnum, sdiv) >= 0) {
    236       bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
    237       *resp = 1;
    238     } else {
    239       res->top--;
    240     }
    241   }
    242 
    243   /* if res->top == 0 then clear the neg value otherwise decrease
    244    * the resp pointer */
    245   if (res->top == 0) {
    246     res->neg = 0;
    247   } else {
    248     resp--;
    249   }
    250 
    251   for (i = 0; i < loop - 1; i++, wnump--, resp--) {
    252     BN_ULONG q, l0;
    253     /* the first part of the loop uses the top two words of snum and sdiv to
    254      * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
    255     BN_ULONG n0, n1, rem = 0;
    256 
    257     n0 = wnump[0];
    258     n1 = wnump[-1];
    259     if (n0 == d0) {
    260       q = BN_MASK2;
    261     } else {
    262       /* n0 < d0 */
    263 #ifdef BN_LLONG
    264       BN_ULLONG t2;
    265 
    266 #if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(div_asm)
    267       q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
    268 #else
    269       q = div_asm(n0, n1, d0);
    270 #endif
    271 
    272 #ifndef REMAINDER_IS_ALREADY_CALCULATED
    273       /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
    274        * isn't it? */
    275       rem = (n1 - q * d0) & BN_MASK2;
    276 #endif
    277 
    278       t2 = (BN_ULLONG)d1 * q;
    279 
    280       for (;;) {
    281         if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2]))
    282           break;
    283         q--;
    284         rem += d0;
    285         if (rem < d0)
    286           break; /* don't let rem overflow */
    287         t2 -= d1;
    288       }
    289 #else /* !BN_LLONG */
    290       BN_ULONG t2l, t2h;
    291 
    292 #if defined(div_asm)
    293       q = div_asm(n0, n1, d0);
    294 #else
    295       q = bn_div_words(n0, n1, d0);
    296 #endif
    297 
    298 #ifndef REMAINDER_IS_ALREADY_CALCULATED
    299       rem = (n1 - q * d0) & BN_MASK2;
    300 #endif
    301 
    302 #if defined(BN_UMULT_LOHI)
    303       BN_UMULT_LOHI(t2l, t2h, d1, q);
    304 #elif defined(BN_UMULT_HIGH)
    305       t2l = d1 * q;
    306       t2h = BN_UMULT_HIGH(d1, q);
    307 #else
    308       {
    309         BN_ULONG ql, qh;
    310         t2l = LBITS(d1);
    311         t2h = HBITS(d1);
    312         ql = LBITS(q);
    313         qh = HBITS(q);
    314         mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
    315       }
    316 #endif
    317 
    318       for (;;) {
    319         if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2])))
    320           break;
    321         q--;
    322         rem += d0;
    323         if (rem < d0)
    324           break; /* don't let rem overflow */
    325         if (t2l < d1)
    326           t2h--;
    327         t2l -= d1;
    328       }
    329 #endif /* !BN_LLONG */
    330     }
    331 
    332     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
    333     tmp->d[div_n] = l0;
    334     wnum.d--;
    335     /* ingore top values of the bignums just sub the two
    336      * BN_ULONG arrays with bn_sub_words */
    337     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
    338       /* Note: As we have considered only the leading
    339        * two BN_ULONGs in the calculation of q, sdiv * q
    340        * might be greater than wnum (but then (q-1) * sdiv
    341        * is less or equal than wnum)
    342        */
    343       q--;
    344       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
    345         /* we can't have an overflow here (assuming
    346          * that q != 0, but if q == 0 then tmp is
    347          * zero anyway) */
    348         (*wnump)++;
    349       }
    350     }
    351     /* store part of the result */
    352     *resp = q;
    353   }
    354   bn_correct_top(snum);
    355   if (rm != NULL) {
    356     /* Keep a copy of the neg flag in num because if rm==num
    357      * BN_rshift() will overwrite it.
    358      */
    359     int neg = num->neg;
    360     BN_rshift(rm, snum, norm_shift);
    361     if (!BN_is_zero(rm)) {
    362       rm->neg = neg;
    363     }
    364   }
    365   if (no_branch) {
    366     bn_correct_top(res);
    367   }
    368   BN_CTX_end(ctx);
    369   return 1;
    370 
    371 err:
    372   BN_CTX_end(ctx);
    373   return 0;
    374 }
    375 
    376 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
    377   if (!(BN_mod(r, m, d, ctx))) {
    378     return 0;
    379   }
    380   if (!r->neg) {
    381     return 1;
    382   }
    383 
    384   /* now -|d| < r < 0, so we have to set r := r + |d|. */
    385   return (d->neg ? BN_sub : BN_add)(r, r, d);
    386 }
    387 
    388 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    389                BN_CTX *ctx) {
    390   if (!BN_add(r, a, b)) {
    391     return 0;
    392   }
    393   return BN_nnmod(r, r, m, ctx);
    394 }
    395 
    396 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    397                      const BIGNUM *m) {
    398   if (!BN_uadd(r, a, b)) {
    399     return 0;
    400   }
    401   if (BN_ucmp(r, m) >= 0) {
    402     return BN_usub(r, r, m);
    403   }
    404   return 1;
    405 }
    406 
    407 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    408                BN_CTX *ctx) {
    409   if (!BN_sub(r, a, b)) {
    410     return 0;
    411   }
    412   return BN_nnmod(r, r, m, ctx);
    413 }
    414 
    415 /* BN_mod_sub variant that may be used if both  a  and  b  are non-negative
    416  * and less than  m */
    417 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    418                      const BIGNUM *m) {
    419   if (!BN_sub(r, a, b)) {
    420     return 0;
    421   }
    422   if (r->neg) {
    423     return BN_add(r, r, m);
    424   }
    425   return 1;
    426 }
    427 
    428 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
    429                BN_CTX *ctx) {
    430   BIGNUM *t;
    431   int ret = 0;
    432 
    433   BN_CTX_start(ctx);
    434   t = BN_CTX_get(ctx);
    435   if (t == NULL) {
    436     goto err;
    437   }
    438 
    439   if (a == b) {
    440     if (!BN_sqr(t, a, ctx)) {
    441       goto err;
    442     }
    443   } else {
    444     if (!BN_mul(t, a, b, ctx)) {
    445       goto err;
    446     }
    447   }
    448 
    449   if (!BN_nnmod(r, t, m, ctx)) {
    450     goto err;
    451   }
    452 
    453   ret = 1;
    454 
    455 err:
    456   BN_CTX_end(ctx);
    457   return ret;
    458 }
    459 
    460 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
    461   if (!BN_sqr(r, a, ctx)) {
    462     return 0;
    463   }
    464 
    465   /* r->neg == 0,  thus we don't need BN_nnmod */
    466   return BN_mod(r, r, m, ctx);
    467 }
    468 
    469 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
    470                   BN_CTX *ctx) {
    471   BIGNUM *abs_m = NULL;
    472   int ret;
    473 
    474   if (!BN_nnmod(r, a, m, ctx)) {
    475     return 0;
    476   }
    477 
    478   if (m->neg) {
    479     abs_m = BN_dup(m);
    480     if (abs_m == NULL) {
    481       return 0;
    482     }
    483     abs_m->neg = 0;
    484   }
    485 
    486   ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
    487 
    488   if (abs_m) {
    489     BN_free(abs_m);
    490   }
    491   return ret;
    492 }
    493 
    494 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
    495   if (r != a) {
    496     if (BN_copy(r, a) == NULL) {
    497       return 0;
    498     }
    499   }
    500 
    501   while (n > 0) {
    502     int max_shift;
    503 
    504     /* 0 < r < m */
    505     max_shift = BN_num_bits(m) - BN_num_bits(r);
    506     /* max_shift >= 0 */
    507 
    508     if (max_shift < 0) {
    509       OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
    510       return 0;
    511     }
    512 
    513     if (max_shift > n) {
    514       max_shift = n;
    515     }
    516 
    517     if (max_shift) {
    518       if (!BN_lshift(r, r, max_shift)) {
    519         return 0;
    520       }
    521       n -= max_shift;
    522     } else {
    523       if (!BN_lshift1(r, r)) {
    524         return 0;
    525       }
    526       --n;
    527     }
    528 
    529     /* BN_num_bits(r) <= BN_num_bits(m) */
    530     if (BN_cmp(r, m) >= 0) {
    531       if (!BN_sub(r, r, m)) {
    532         return 0;
    533       }
    534     }
    535   }
    536 
    537   return 1;
    538 }
    539 
    540 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
    541   if (!BN_lshift1(r, a)) {
    542     return 0;
    543   }
    544 
    545   return BN_nnmod(r, r, m, ctx);
    546 }
    547 
    548 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
    549   if (!BN_lshift1(r, a)) {
    550     return 0;
    551   }
    552   if (BN_cmp(r, m) >= 0) {
    553     return BN_sub(r, r, m);
    554   }
    555 
    556   return 1;
    557 }
    558 
    559 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
    560   BN_ULONG ret = 0;
    561   int i, j;
    562 
    563   w &= BN_MASK2;
    564 
    565   if (!w) {
    566     /* actually this an error (division by zero) */
    567     return (BN_ULONG) - 1;
    568   }
    569 
    570   if (a->top == 0) {
    571     return 0;
    572   }
    573 
    574   /* normalize input (so bn_div_words doesn't complain) */
    575   j = BN_BITS2 - BN_num_bits_word(w);
    576   w <<= j;
    577   if (!BN_lshift(a, a, j)) {
    578     return (BN_ULONG) - 1;
    579   }
    580 
    581   for (i = a->top - 1; i >= 0; i--) {
    582     BN_ULONG l, d;
    583 
    584     l = a->d[i];
    585     d = bn_div_words(ret, l, w);
    586     ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
    587     a->d[i] = d;
    588   }
    589 
    590   if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
    591     a->top--;
    592   }
    593 
    594   ret >>= j;
    595   return ret;
    596 }
    597 
    598 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
    599 #ifndef BN_LLONG
    600   BN_ULONG ret = 0;
    601 #else
    602   BN_ULLONG ret = 0;
    603 #endif
    604   int i;
    605 
    606   if (w == 0) {
    607     return (BN_ULONG) -1;
    608   }
    609 
    610   w &= BN_MASK2;
    611   for (i = a->top - 1; i >= 0; i--) {
    612 #ifndef BN_LLONG
    613     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
    614     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
    615 #else
    616     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
    617 #endif
    618   }
    619   return (BN_ULONG)ret;
    620 }
    621