Home | History | Annotate | Download | only in asm
      1 #!/usr/bin/env perl
      2 
      3 # ====================================================================
      4 # [Re]written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
      5 # project. The module is, however, dual licensed under OpenSSL and
      6 # CRYPTOGAMS licenses depending on where you obtain it. For further
      7 # details see http://www.openssl.org/~appro/cryptogams/.
      8 # ====================================================================
      9 
     10 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
     11 # functions were re-implemented to address P4 performance issue [see
     12 # commentary below], and in 2006 the rest was rewritten in order to
     13 # gain freedom to liberate licensing terms.
     14 
     15 # January, September 2004.
     16 #
     17 # It was noted that Intel IA-32 C compiler generates code which
     18 # performs ~30% *faster* on P4 CPU than original *hand-coded*
     19 # SHA1 assembler implementation. To address this problem (and
     20 # prove that humans are still better than machines:-), the
     21 # original code was overhauled, which resulted in following
     22 # performance changes:
     23 #
     24 #		compared with original	compared with Intel cc
     25 #		assembler impl.		generated code
     26 # Pentium	-16%			+48%
     27 # PIII/AMD	+8%			+16%
     28 # P4		+85%(!)			+45%
     29 #
     30 # As you can see Pentium came out as looser:-( Yet I reckoned that
     31 # improvement on P4 outweights the loss and incorporate this
     32 # re-tuned code to 0.9.7 and later.
     33 # ----------------------------------------------------------------
     34 #					<appro (at] fy.chalmers.se>
     35 
     36 # August 2009.
     37 #
     38 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
     39 # '(c&d) + (b&(c^d))', which allows to accumulate partial results
     40 # and lighten "pressure" on scratch registers. This resulted in
     41 # >12% performance improvement on contemporary AMD cores (with no
     42 # degradation on other CPUs:-). Also, the code was revised to maximize
     43 # "distance" between instructions producing input to 'lea' instruction
     44 # and the 'lea' instruction itself, which is essential for Intel Atom
     45 # core and resulted in ~15% improvement.
     46 
     47 # October 2010.
     48 #
     49 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
     50 # is to offload message schedule denoted by Wt in NIST specification,
     51 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
     52 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
     53 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
     54 # have changed that made it interesting again:
     55 #
     56 # a) XMM units became faster and wider;
     57 # b) instruction set became more versatile;
     58 # c) an important observation was made by Max Locktykhin, which made
     59 #    it possible to reduce amount of instructions required to perform
     60 #    the operation in question, for further details see
     61 #    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
     62 
     63 # April 2011.
     64 #
     65 # Add AVX code path, probably most controversial... The thing is that
     66 # switch to AVX alone improves performance by as little as 4% in
     67 # comparison to SSSE3 code path. But below result doesn't look like
     68 # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
     69 # pair of -ops, and it's the additional -ops, two per round, that
     70 # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
     71 # as single -op by Sandy Bridge and it's replacing 'ro[rl]' with
     72 # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
     73 # cycles per processed byte. But 'sh[rl]d' is not something that used
     74 # to be fast, nor does it appear to be fast in upcoming Bulldozer
     75 # [according to its optimization manual]. Which is why AVX code path
     76 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
     77 # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
     78 # makes no sense to keep the AVX code path. If somebody feels that
     79 # strongly, it's probably more appropriate to discuss possibility of
     80 # using vector rotate XOP on AMD...
     81 
     82 # March 2014.
     83 #
     84 # Add support for Intel SHA Extensions.
     85 
     86 ######################################################################
     87 # Current performance is summarized in following table. Numbers are
     88 # CPU clock cycles spent to process single byte (less is better).
     89 #
     90 #		x86		SSSE3		AVX
     91 # Pentium	15.7		-
     92 # PIII		11.5		-
     93 # P4		10.6		-
     94 # AMD K8	7.1		-
     95 # Core2		7.3		6.0/+22%	-
     96 # Atom		12.5		9.3(*)/+35%	-
     97 # Westmere	7.3		5.5/+33%	-
     98 # Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73%
     99 # Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53%
    100 # Haswell	6.5		4.3/+51%	4.1(**)/+58%
    101 # Bulldozer	11.6		6.0/+92%
    102 # VIA Nano	10.6		7.5/+41%
    103 #
    104 # (*)	Loop is 1056 instructions long and expected result is ~8.25.
    105 #	It remains mystery [to me] why ILP is limited to 1.7.
    106 #
    107 # (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
    108 
    109 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    110 push(@INC,"${dir}","${dir}../../perlasm");
    111 require "x86asm.pl";
    112 
    113 &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
    114 
    115 $xmm=$ymm=0;
    116 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
    117 
    118 $ymm=1 if ($xmm &&
    119 		`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
    120 			=~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
    121 		$1>=2.19);	# first version supporting AVX
    122 
    123 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" && 
    124 		`nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
    125 		$1>=2.03);	# first version supporting AVX
    126 
    127 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32" &&
    128 		`ml 2>&1` =~ /Version ([0-9]+)\./ &&
    129 		$1>=10);	# first version supporting AVX
    130 
    131 $ymm=1 if ($xmm && !$ymm && `$ENV{CC} -v 2>&1` =~ /(^clang version|based on LLVM) ([3-9]\.[0-9]+)/ &&
    132 		$2>=3.0);	# first version supporting AVX
    133 
    134 $shaext=$xmm;	### set to zero if compiling for 1.0.1
    135 
    136 &external_label("OPENSSL_ia32cap_P") if ($xmm);
    137 
    138 
    139 $A="eax";
    140 $B="ebx";
    141 $C="ecx";
    142 $D="edx";
    143 $E="edi";
    144 $T="esi";
    145 $tmp1="ebp";
    146 
    147 @V=($A,$B,$C,$D,$E,$T);
    148 
    149 $alt=0;	# 1 denotes alternative IALU implementation, which performs
    150 	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
    151 	# Sandy Bridge...
    152 
    153 sub BODY_00_15
    154 	{
    155 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    156 
    157 	&comment("00_15 $n");
    158 
    159 	&mov($f,$c);			# f to hold F_00_19(b,c,d)
    160 	 if ($n==0)  { &mov($tmp1,$a); }
    161 	 else        { &mov($a,$tmp1); }
    162 	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
    163 	 &xor($f,$d);
    164 	&add($tmp1,$e);			# tmp1+=e;
    165 	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
    166 	 				# with xi, also note that e becomes
    167 					# f in next round...
    168 	&and($f,$b);
    169 	&rotr($b,2);			# b=ROTATE(b,30)
    170 	 &xor($f,$d);			# f holds F_00_19(b,c,d)
    171 	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
    172 
    173 	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
    174 		      &add($f,$tmp1); }	# f+=tmp1
    175 	else        { &add($tmp1,$f); }	# f becomes a in next round
    176 	&mov($tmp1,$a)			if ($alt && $n==15);
    177 	}
    178 
    179 sub BODY_16_19
    180 	{
    181 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    182 
    183 	&comment("16_19 $n");
    184 
    185 if ($alt) {
    186 	&xor($c,$d);
    187 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    188 	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
    189 	 &xor($f,&swtmp(($n+8)%16));
    190 	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
    191 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    192 	&rotl($f,1);			# f=ROTATE(f,1)
    193 	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
    194 	&xor($c,$d);			# restore $c
    195 	 &mov($tmp1,$a);		# b in next round
    196 	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
    197 	 &mov(&swtmp($n%16),$f);	# xi=f
    198 	&rotl($a,5);			# ROTATE(a,5)
    199 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
    200 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    201 	 &add($f,$a);			# f+=ROTATE(a,5)
    202 } else {
    203 	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
    204 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    205 	&xor($tmp1,$d);
    206 	 &xor($f,&swtmp(($n+8)%16));
    207 	&and($tmp1,$b);
    208 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    209 	&rotl($f,1);			# f=ROTATE(f,1)
    210 	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
    211 	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
    212 	 &mov($tmp1,$a);
    213 	&rotr($b,2);			# b=ROTATE(b,30)
    214 	 &mov(&swtmp($n%16),$f);	# xi=f
    215 	&rotl($tmp1,5);			# ROTATE(a,5)
    216 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
    217 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    218 	 &add($f,$tmp1);		# f+=ROTATE(a,5)
    219 }
    220 	}
    221 
    222 sub BODY_20_39
    223 	{
    224 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    225 	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
    226 
    227 	&comment("20_39 $n");
    228 
    229 if ($alt) {
    230 	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
    231 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    232 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
    233 	 &xor($f,&swtmp(($n+8)%16));
    234 	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
    235 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    236 	&rotl($f,1);			# f=ROTATE(f,1)
    237 	 &mov($tmp1,$a);		# b in next round
    238 	&rotr($b,7);			# b=ROTATE(b,30)
    239 	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
    240 	&rotl($a,5);			# ROTATE(a,5)
    241 	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
    242 	&and($tmp1,$b)			if($n==39);
    243 	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
    244 	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
    245 	 &add($f,$a);			# f+=ROTATE(a,5)
    246 	&rotr($a,5)			if ($n==79);
    247 } else {
    248 	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
    249 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    250 	&xor($tmp1,$c);
    251 	 &xor($f,&swtmp(($n+8)%16));
    252 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
    253 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    254 	&rotl($f,1);			# f=ROTATE(f,1)
    255 	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
    256 	&rotr($b,2);			# b=ROTATE(b,30)
    257 	 &mov($tmp1,$a);
    258 	&rotl($tmp1,5);			# ROTATE(a,5)
    259 	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
    260 	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
    261 	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
    262 	&add($f,$tmp1);			# f+=ROTATE(a,5)
    263 }
    264 	}
    265 
    266 sub BODY_40_59
    267 	{
    268 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    269 
    270 	&comment("40_59 $n");
    271 
    272 if ($alt) {
    273 	&add($e,$tmp1);			# e+=b&(c^d)
    274 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    275 	&mov($tmp1,$d);
    276 	 &xor($f,&swtmp(($n+8)%16));
    277 	&xor($c,$d);			# restore $c
    278 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    279 	&rotl($f,1);			# f=ROTATE(f,1)
    280 	 &and($tmp1,$c);
    281 	&rotr($b,7);			# b=ROTATE(b,30)
    282 	 &add($e,$tmp1);		# e+=c&d
    283 	&mov($tmp1,$a);			# b in next round
    284 	 &mov(&swtmp($n%16),$f);	# xi=f
    285 	&rotl($a,5);			# ROTATE(a,5)
    286 	 &xor($b,$c)			if ($n<59);
    287 	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
    288 	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
    289 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    290 	 &add($f,$a);			# f+=ROTATE(a,5)
    291 } else {
    292 	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
    293 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    294 	&xor($tmp1,$d);
    295 	 &xor($f,&swtmp(($n+8)%16));
    296 	&and($tmp1,$b);
    297 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    298 	&rotl($f,1);			# f=ROTATE(f,1)
    299 	 &add($tmp1,$e);		# b&(c^d)+=e
    300 	&rotr($b,2);			# b=ROTATE(b,30)
    301 	 &mov($e,$a);			# e becomes volatile
    302 	&rotl($e,5);			# ROTATE(a,5)
    303 	 &mov(&swtmp($n%16),$f);	# xi=f
    304 	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
    305 	 &mov($tmp1,$c);
    306 	&add($f,$e);			# f+=ROTATE(a,5)
    307 	 &and($tmp1,$d);
    308 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    309 	 &add($f,$tmp1);		# f+=c&d
    310 }
    311 	}
    312 
    313 &function_begin("sha1_block_data_order");
    314 if ($xmm) {
    315   &static_label("shaext_shortcut")	if ($shaext);
    316   &static_label("ssse3_shortcut");
    317   &static_label("avx_shortcut")		if ($ymm);
    318   &static_label("K_XX_XX");
    319 
    320 	&call	(&label("pic_point"));	# make it PIC!
    321   &set_label("pic_point");
    322 	&blindpop($tmp1);
    323 	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
    324 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    325 
    326 	&mov	($A,&DWP(0,$T));
    327 	&mov	($D,&DWP(4,$T));
    328 	&test	($D,1<<9);		# check SSSE3 bit
    329 	&jz	(&label("x86"));
    330 	&mov	($C,&DWP(8,$T));
    331 	&test	($A,1<<24);		# check FXSR bit
    332 	&jz	(&label("x86"));
    333 	if ($shaext) {
    334 		&test	($C,1<<29);		# check SHA bit
    335 		&jnz	(&label("shaext_shortcut"));
    336 	}
    337 	if ($ymm) {
    338 		&and	($D,1<<28);		# mask AVX bit
    339 		&and	($A,1<<30);		# mask "Intel CPU" bit
    340 		&or	($A,$D);
    341 		&cmp	($A,1<<28|1<<30);
    342 		&je	(&label("avx_shortcut"));
    343 	}
    344 	&jmp	(&label("ssse3_shortcut"));
    345   &set_label("x86",16);
    346 }
    347 	&mov($tmp1,&wparam(0));	# SHA_CTX *c
    348 	&mov($T,&wparam(1));	# const void *input
    349 	&mov($A,&wparam(2));	# size_t num
    350 	&stack_push(16+3);	# allocate X[16]
    351 	&shl($A,6);
    352 	&add($A,$T);
    353 	&mov(&wparam(2),$A);	# pointer beyond the end of input
    354 	&mov($E,&DWP(16,$tmp1));# pre-load E
    355 	&jmp(&label("loop"));
    356 
    357 &set_label("loop",16);
    358 
    359 	# copy input chunk to X, but reversing byte order!
    360 	for ($i=0; $i<16; $i+=4)
    361 		{
    362 		&mov($A,&DWP(4*($i+0),$T));
    363 		&mov($B,&DWP(4*($i+1),$T));
    364 		&mov($C,&DWP(4*($i+2),$T));
    365 		&mov($D,&DWP(4*($i+3),$T));
    366 		&bswap($A);
    367 		&bswap($B);
    368 		&bswap($C);
    369 		&bswap($D);
    370 		&mov(&swtmp($i+0),$A);
    371 		&mov(&swtmp($i+1),$B);
    372 		&mov(&swtmp($i+2),$C);
    373 		&mov(&swtmp($i+3),$D);
    374 		}
    375 	&mov(&wparam(1),$T);	# redundant in 1st spin
    376 
    377 	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
    378 	&mov($B,&DWP(4,$tmp1));
    379 	&mov($C,&DWP(8,$tmp1));
    380 	&mov($D,&DWP(12,$tmp1));
    381 	# E is pre-loaded
    382 
    383 	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
    384 	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
    385 	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
    386 	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
    387 	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
    388 
    389 	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
    390 
    391 	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
    392 	&mov($D,&wparam(1));	# D is last "T" and is discarded
    393 
    394 	&add($E,&DWP(0,$tmp1));	# E is last "A"...
    395 	&add($T,&DWP(4,$tmp1));
    396 	&add($A,&DWP(8,$tmp1));
    397 	&add($B,&DWP(12,$tmp1));
    398 	&add($C,&DWP(16,$tmp1));
    399 
    400 	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
    401 	 &add($D,64);		# advance input pointer
    402 	&mov(&DWP(4,$tmp1),$T);
    403 	 &cmp($D,&wparam(2));	# have we reached the end yet?
    404 	&mov(&DWP(8,$tmp1),$A);
    405 	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
    406 	&mov(&DWP(12,$tmp1),$B);
    407 	 &mov($T,$D);		# input pointer
    408 	&mov(&DWP(16,$tmp1),$C);
    409 	&jb(&label("loop"));
    410 
    411 	&stack_pop(16+3);
    412 &function_end("sha1_block_data_order");
    413 
    414 if ($xmm) {
    415 if ($shaext) {
    416 ######################################################################
    417 # Intel SHA Extensions implementation of SHA1 update function.
    418 #
    419 my ($ctx,$inp,$num)=("edi","esi","ecx");
    420 my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
    421 my @MSG=map("xmm$_",(4..7));
    422 
    423 sub sha1rnds4 {
    424  my ($dst,$src,$imm)=@_;
    425     if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
    426     {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	}
    427 }
    428 sub sha1op38 {
    429  my ($opcodelet,$dst,$src)=@_;
    430     if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
    431     {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	}
    432 }
    433 sub sha1nexte	{ sha1op38(0xc8,@_); }
    434 sub sha1msg1	{ sha1op38(0xc9,@_); }
    435 sub sha1msg2	{ sha1op38(0xca,@_); }
    436 
    437 &function_begin("_sha1_block_data_order_shaext");
    438 	&call	(&label("pic_point"));	# make it PIC!
    439 	&set_label("pic_point");
    440 	&blindpop($tmp1);
    441 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    442 &set_label("shaext_shortcut");
    443 	&mov	($ctx,&wparam(0));
    444 	&mov	("ebx","esp");
    445 	&mov	($inp,&wparam(1));
    446 	&mov	($num,&wparam(2));
    447 	&sub	("esp",32);
    448 
    449 	&movdqu	($ABCD,&QWP(0,$ctx));
    450 	&movd	($E,&QWP(16,$ctx));
    451 	&and	("esp",-32);
    452 	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap
    453 
    454 	&movdqu	(@MSG[0],&QWP(0,$inp));
    455 	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order
    456 	&movdqu	(@MSG[1],&QWP(0x10,$inp));
    457 	&pshufd	($E,$E,0b00011011);		# flip word order
    458 	&movdqu	(@MSG[2],&QWP(0x20,$inp));
    459 	&pshufb	(@MSG[0],$BSWAP);
    460 	&movdqu	(@MSG[3],&QWP(0x30,$inp));
    461 	&pshufb	(@MSG[1],$BSWAP);
    462 	&pshufb	(@MSG[2],$BSWAP);
    463 	&pshufb	(@MSG[3],$BSWAP);
    464 	&jmp	(&label("loop_shaext"));
    465 
    466 &set_label("loop_shaext",16);
    467 	&dec		($num);
    468 	&lea		("eax",&DWP(0x40,$inp));
    469 	&movdqa		(&QWP(0,"esp"),$E);	# offload $E
    470 	&paddd		($E,@MSG[0]);
    471 	&cmovne		($inp,"eax");
    472 	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD
    473 
    474 for($i=0;$i<20-4;$i+=2) {
    475 	&sha1msg1	(@MSG[0],@MSG[1]);
    476 	&movdqa		($E_,$ABCD);
    477 	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3...
    478 	&sha1nexte	($E_,@MSG[1]);
    479 	&pxor		(@MSG[0],@MSG[2]);
    480 	&sha1msg1	(@MSG[1],@MSG[2]);
    481 	&sha1msg2	(@MSG[0],@MSG[3]);
    482 
    483 	&movdqa		($E,$ABCD);
    484 	&sha1rnds4	($ABCD,$E_,int(($i+1)/5));
    485 	&sha1nexte	($E,@MSG[2]);
    486 	&pxor		(@MSG[1],@MSG[3]);
    487 	&sha1msg2	(@MSG[1],@MSG[0]);
    488 
    489 	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG));
    490 }
    491 	&movdqu		(@MSG[0],&QWP(0,$inp));
    492 	&movdqa		($E_,$ABCD);
    493 	&sha1rnds4	($ABCD,$E,3);		# 64-67
    494 	&sha1nexte	($E_,@MSG[1]);
    495 	&movdqu		(@MSG[1],&QWP(0x10,$inp));
    496 	&pshufb		(@MSG[0],$BSWAP);
    497 
    498 	&movdqa		($E,$ABCD);
    499 	&sha1rnds4	($ABCD,$E_,3);		# 68-71
    500 	&sha1nexte	($E,@MSG[2]);
    501 	&movdqu		(@MSG[2],&QWP(0x20,$inp));
    502 	&pshufb		(@MSG[1],$BSWAP);
    503 
    504 	&movdqa		($E_,$ABCD);
    505 	&sha1rnds4	($ABCD,$E,3);		# 72-75
    506 	&sha1nexte	($E_,@MSG[3]);
    507 	&movdqu		(@MSG[3],&QWP(0x30,$inp));
    508 	&pshufb		(@MSG[2],$BSWAP);
    509 
    510 	&movdqa		($E,$ABCD);
    511 	&sha1rnds4	($ABCD,$E_,3);		# 76-79
    512 	&movdqa		($E_,&QWP(0,"esp"));
    513 	&pshufb		(@MSG[3],$BSWAP);
    514 	&sha1nexte	($E,$E_);
    515 	&paddd		($ABCD,&QWP(16,"esp"));
    516 
    517 	&jnz		(&label("loop_shaext"));
    518 
    519 	&pshufd	($ABCD,$ABCD,0b00011011);
    520 	&pshufd	($E,$E,0b00011011);
    521 	&movdqu	(&QWP(0,$ctx),$ABCD)
    522 	&movd	(&DWP(16,$ctx),$E);
    523 	&mov	("esp","ebx");
    524 &function_end("_sha1_block_data_order_shaext");
    525 }
    526 ######################################################################
    527 # The SSSE3 implementation.
    528 #
    529 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
    530 # 32 elements of the message schedule or Xupdate outputs. First 4
    531 # quadruples are simply byte-swapped input, next 4 are calculated
    532 # according to method originally suggested by Dean Gaudet (modulo
    533 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
    534 # collected, it switches to routine proposed by Max Locktyukhin.
    535 #
    536 # Calculations inevitably require temporary reqisters, and there are
    537 # no %xmm registers left to spare. For this reason part of the ring
    538 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
    539 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
    540 # X[-5], and X[4] - X[-4]...
    541 #
    542 # Another notable optimization is aggressive stack frame compression
    543 # aiming to minimize amount of 9-byte instructions...
    544 #
    545 # Yet another notable optimization is "jumping" $B variable. It means
    546 # that there is no register permanently allocated for $B value. This
    547 # allowed to eliminate one instruction from body_20_39...
    548 #
    549 my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
    550 my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
    551 my @V=($A,$B,$C,$D,$E);
    552 my $j=0;			# hash round
    553 my $rx=0;
    554 my @T=($T,$tmp1);
    555 my $inp;
    556 
    557 my $_rol=sub { &rol(@_) };
    558 my $_ror=sub { &ror(@_) };
    559 
    560 &function_begin("_sha1_block_data_order_ssse3");
    561 	&call	(&label("pic_point"));	# make it PIC!
    562 	&set_label("pic_point");
    563 	&blindpop($tmp1);
    564 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    565 &set_label("ssse3_shortcut");
    566 
    567 	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
    568 	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
    569 	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
    570 	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
    571 	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
    572 
    573 	&mov	($E,&wparam(0));		# load argument block
    574 	&mov	($inp=@T[1],&wparam(1));
    575 	&mov	($D,&wparam(2));
    576 	&mov	(@T[0],"esp");
    577 
    578 	# stack frame layout
    579 	#
    580 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
    581 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
    582 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
    583 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
    584 	#
    585 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
    586 	#	X[4]	X[5]	X[6]	X[7]
    587 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
    588 	#
    589 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
    590 	#	K_40_59	K_40_59	K_40_59	K_40_59
    591 	#	K_60_79	K_60_79	K_60_79	K_60_79
    592 	#	K_00_19	K_00_19	K_00_19	K_00_19
    593 	#	pbswap mask
    594 	#
    595 	# +192	ctx				# argument block
    596 	# +196	inp
    597 	# +200	end
    598 	# +204	esp
    599 	&sub	("esp",208);
    600 	&and	("esp",-64);
    601 
    602 	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
    603 	&movdqa	(&QWP(112+16,"esp"),@X[5]);
    604 	&movdqa	(&QWP(112+32,"esp"),@X[6]);
    605 	&shl	($D,6);				# len*64
    606 	&movdqa	(&QWP(112+48,"esp"),@X[3]);
    607 	&add	($D,$inp);			# end of input
    608 	&movdqa	(&QWP(112+64,"esp"),@X[2]);
    609 	&add	($inp,64);
    610 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
    611 	&mov	(&DWP(192+4,"esp"),$inp);
    612 	&mov	(&DWP(192+8,"esp"),$D);
    613 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
    614 
    615 	&mov	($A,&DWP(0,$E));		# load context
    616 	&mov	($B,&DWP(4,$E));
    617 	&mov	($C,&DWP(8,$E));
    618 	&mov	($D,&DWP(12,$E));
    619 	&mov	($E,&DWP(16,$E));
    620 	&mov	(@T[0],$B);			# magic seed
    621 
    622 	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
    623 	&movdqu	(@X[-3&7],&QWP(-48,$inp));
    624 	&movdqu	(@X[-2&7],&QWP(-32,$inp));
    625 	&movdqu	(@X[-1&7],&QWP(-16,$inp));
    626 	&pshufb	(@X[-4&7],@X[2]);		# byte swap
    627 	&pshufb	(@X[-3&7],@X[2]);
    628 	&pshufb	(@X[-2&7],@X[2]);
    629 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    630 	&pshufb	(@X[-1&7],@X[2]);
    631 	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
    632 	&paddd	(@X[-3&7],@X[3]);
    633 	&paddd	(@X[-2&7],@X[3]);
    634 	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
    635 	&psubd	(@X[-4&7],@X[3]);		# restore X[]
    636 	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
    637 	&psubd	(@X[-3&7],@X[3]);
    638 	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
    639 	&mov	(@T[1],$C);
    640 	&psubd	(@X[-2&7],@X[3]);
    641 	&xor	(@T[1],$D);
    642 	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
    643 	&and	(@T[0],@T[1]);
    644 	&jmp	(&label("loop"));
    645 
    646 ######################################################################
    647 # SSE instruction sequence is first broken to groups of indepentent
    648 # instructions, independent in respect to their inputs and shifter
    649 # (not all architectures have more than one). Then IALU instructions
    650 # are "knitted in" between the SSE groups. Distance is maintained for
    651 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
    652 # [which allegedly also implements SSSE3]...
    653 #
    654 # Temporary registers usage. X[2] is volatile at the entry and at the
    655 # end is restored from backtrace ring buffer. X[3] is expected to
    656 # contain current K_XX_XX constant and is used to caclulate X[-1]+K
    657 # from previous round, it becomes volatile the moment the value is
    658 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
    659 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
    660 # end it is loaded with next K_XX_XX [which becomes X[3] in next
    661 # round]...
    662 #
    663 sub Xupdate_ssse3_16_31()		# recall that $Xi starts wtih 4
    664 { use integer;
    665   my $body = shift;
    666   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
    667   my ($a,$b,$c,$d,$e);
    668 
    669 	 eval(shift(@insns));		# ror
    670 	 eval(shift(@insns));
    671 	 eval(shift(@insns));
    672 	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
    673 	&movdqa	(@X[2],@X[-1&7]);
    674 	 eval(shift(@insns));
    675 	 eval(shift(@insns));
    676 
    677 	  &paddd	(@X[3],@X[-1&7]);
    678 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
    679 	 eval(shift(@insns));		# rol
    680 	 eval(shift(@insns));
    681 	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
    682 	 eval(shift(@insns));
    683 	 eval(shift(@insns));
    684 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
    685 	 eval(shift(@insns));
    686 	 eval(shift(@insns));		# ror
    687 
    688 	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
    689 	 eval(shift(@insns));
    690 	 eval(shift(@insns));
    691 	 eval(shift(@insns));
    692 
    693 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
    694 	 eval(shift(@insns));
    695 	 eval(shift(@insns));		# rol
    696 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    697 	 eval(shift(@insns));
    698 	 eval(shift(@insns));
    699 
    700 	&movdqa	(@X[4],@X[0]);
    701 	 eval(shift(@insns));
    702 	 eval(shift(@insns));
    703 	 eval(shift(@insns));		# ror
    704 	&movdqa (@X[2],@X[0]);
    705 	 eval(shift(@insns));
    706 
    707 	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
    708 	&paddd	(@X[0],@X[0]);
    709 	 eval(shift(@insns));
    710 	 eval(shift(@insns));
    711 
    712 	&psrld	(@X[2],31);
    713 	 eval(shift(@insns));
    714 	 eval(shift(@insns));		# rol
    715 	&movdqa	(@X[3],@X[4]);
    716 	 eval(shift(@insns));
    717 	 eval(shift(@insns));
    718 	 eval(shift(@insns));
    719 
    720 	&psrld	(@X[4],30);
    721 	 eval(shift(@insns));
    722 	 eval(shift(@insns));		# ror
    723 	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
    724 	 eval(shift(@insns));
    725 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
    726 	 eval(shift(@insns));
    727 	 eval(shift(@insns));
    728 
    729 	&pslld	(@X[3],2);
    730 	 eval(shift(@insns));
    731 	 eval(shift(@insns));		# rol
    732 	&pxor   (@X[0],@X[4]);
    733 	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
    734 	 eval(shift(@insns));
    735 	 eval(shift(@insns));
    736 
    737 	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
    738 	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7])
    739 	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7);
    740 	 eval(shift(@insns));
    741 	 eval(shift(@insns));
    742 
    743 	 foreach (@insns) { eval; }	# remaining instructions [if any]
    744 
    745   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
    746 }
    747 
    748 sub Xupdate_ssse3_32_79()
    749 { use integer;
    750   my $body = shift;
    751   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
    752   my ($a,$b,$c,$d,$e);
    753 
    754 	 eval(shift(@insns));		# body_20_39
    755 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
    756 	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
    757 	 eval(shift(@insns));
    758 	 eval(shift(@insns));
    759 	 eval(shift(@insns));		# rol
    760 
    761 	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
    762 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
    763 	 eval(shift(@insns));
    764 	 eval(shift(@insns));
    765 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
    766 	 if ($Xi%5) {
    767 	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
    768 	 } else {			# ... or load next one
    769 	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
    770 	 }
    771 	 eval(shift(@insns));		# ror
    772 	  &paddd	(@X[3],@X[-1&7]);
    773 	 eval(shift(@insns));
    774 
    775 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
    776 	 eval(shift(@insns));		# body_20_39
    777 	 eval(shift(@insns));
    778 	 eval(shift(@insns));
    779 	 eval(shift(@insns));		# rol
    780 
    781 	&movdqa	(@X[2],@X[0]);
    782 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    783 	 eval(shift(@insns));
    784 	 eval(shift(@insns));
    785 	 eval(shift(@insns));		# ror
    786 	 eval(shift(@insns));
    787 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
    788 
    789 	&pslld	(@X[0],2);
    790 	 eval(shift(@insns));		# body_20_39
    791 	 eval(shift(@insns));
    792 	&psrld	(@X[2],30);
    793 	 eval(shift(@insns));
    794 	 eval(shift(@insns));		# rol
    795 	 eval(shift(@insns));
    796 	 eval(shift(@insns));
    797 	 eval(shift(@insns));		# ror
    798 	 eval(shift(@insns));
    799 	 eval(shift(@insns))		if (@insns[1] =~ /_rol/);
    800 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
    801 
    802 	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
    803 	 eval(shift(@insns));		# body_20_39
    804 	 eval(shift(@insns));
    805 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
    806 	 eval(shift(@insns));
    807 	 eval(shift(@insns));		# rol
    808 	 eval(shift(@insns));
    809 	 eval(shift(@insns));
    810 	 eval(shift(@insns));		# ror
    811 	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0])
    812 	 eval(shift(@insns));
    813 
    814 	 foreach (@insns) { eval; }	# remaining instructions
    815 
    816   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
    817 }
    818 
    819 sub Xuplast_ssse3_80()
    820 { use integer;
    821   my $body = shift;
    822   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    823   my ($a,$b,$c,$d,$e);
    824 
    825 	 eval(shift(@insns));
    826 	 eval(shift(@insns));
    827 	 eval(shift(@insns));
    828 	 eval(shift(@insns));
    829 	 eval(shift(@insns));
    830 	 eval(shift(@insns));
    831 	 eval(shift(@insns));
    832 	  &paddd	(@X[3],@X[-1&7]);
    833 	 eval(shift(@insns));
    834 	 eval(shift(@insns));
    835 	 eval(shift(@insns));
    836 	 eval(shift(@insns));
    837 
    838 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
    839 
    840 	 foreach (@insns) { eval; }		# remaining instructions
    841 
    842 	&mov	($inp=@T[1],&DWP(192+4,"esp"));
    843 	&cmp	($inp,&DWP(192+8,"esp"));
    844 	&je	(&label("done"));
    845 
    846 	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
    847 	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
    848 	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
    849 	&movdqu	(@X[-3&7],&QWP(16,$inp));
    850 	&movdqu	(@X[-2&7],&QWP(32,$inp));
    851 	&movdqu	(@X[-1&7],&QWP(48,$inp));
    852 	&add	($inp,64);
    853 	&pshufb	(@X[-4&7],@X[2]);		# byte swap
    854 	&mov	(&DWP(192+4,"esp"),$inp);
    855 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    856 
    857   $Xi=0;
    858 }
    859 
    860 sub Xloop_ssse3()
    861 { use integer;
    862   my $body = shift;
    863   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    864   my ($a,$b,$c,$d,$e);
    865 
    866 	 eval(shift(@insns));
    867 	 eval(shift(@insns));
    868 	 eval(shift(@insns));
    869 	 eval(shift(@insns));
    870 	 eval(shift(@insns));
    871 	 eval(shift(@insns));
    872 	 eval(shift(@insns));
    873 	&pshufb	(@X[($Xi-3)&7],@X[2]);
    874 	 eval(shift(@insns));
    875 	 eval(shift(@insns));
    876 	 eval(shift(@insns));
    877 	 eval(shift(@insns));
    878 	&paddd	(@X[($Xi-4)&7],@X[3]);
    879 	 eval(shift(@insns));
    880 	 eval(shift(@insns));
    881 	 eval(shift(@insns));
    882 	 eval(shift(@insns));
    883 	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
    884 	 eval(shift(@insns));
    885 	 eval(shift(@insns));
    886 	 eval(shift(@insns));
    887 	 eval(shift(@insns));
    888 	&psubd	(@X[($Xi-4)&7],@X[3]);
    889 
    890 	foreach (@insns) { eval; }
    891   $Xi++;
    892 }
    893 
    894 sub Xtail_ssse3()
    895 { use integer;
    896   my $body = shift;
    897   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    898   my ($a,$b,$c,$d,$e);
    899 
    900 	foreach (@insns) { eval; }
    901 }
    902 
    903 sub body_00_19 () {	# ((c^d)&b)^d
    904 	# on start @T[0]=(c^d)&b
    905 	return &body_20_39()	if ($rx==19);	$rx++;
    906 	(
    907 	'($a,$b,$c,$d,$e)=@V;'.
    908 	'&$_ror	($b,$j?7:2);',	# $b>>>2
    909 	'&xor	(@T[0],$d);',
    910 	'&mov	(@T[1],$a);',	# $b in next round
    911 
    912 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    913 	'&xor	($b,$c);',	# $c^$d for next round
    914 
    915 	'&$_rol	($a,5);',
    916 	'&add	($e,@T[0]);',
    917 	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round
    918 
    919 	'&xor	($b,$c);',	# restore $b
    920 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    921 	);
    922 }
    923 
    924 sub body_20_39 () {	# b^d^c
    925 	# on entry @T[0]=b^d
    926 	return &body_40_59()	if ($rx==39);	$rx++;
    927 	(
    928 	'($a,$b,$c,$d,$e)=@V;'.
    929 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    930 	'&xor	(@T[0],$d)	if($j==19);'.
    931 	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c)
    932 	'&mov	(@T[1],$a);',	# $b in next round
    933 
    934 	'&$_rol	($a,5);',
    935 	'&add	($e,@T[0]);',
    936 	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round
    937 
    938 	'&$_ror	($b,7);',	# $b>>>2
    939 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    940 	);
    941 }
    942 
    943 sub body_40_59 () {	# ((b^c)&(c^d))^c
    944 	# on entry @T[0]=(b^c), (c^=d)
    945 	$rx++;
    946 	(
    947 	'($a,$b,$c,$d,$e)=@V;'.
    948 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    949 	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d)
    950 	'&xor	($c,$d)		if ($j>=40);',	# restore $c
    951 
    952 	'&$_ror	($b,7);',	# $b>>>2
    953 	'&mov	(@T[1],$a);',	# $b for next round
    954 	'&xor	(@T[0],$c);',
    955 
    956 	'&$_rol	($a,5);',
    957 	'&add	($e,@T[0]);',
    958 	'&xor	(@T[1],$c)	if ($j==59);'.
    959 	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round
    960 
    961 	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round
    962 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    963 	);
    964 }
    965 ######
    966 sub bodyx_00_19 () {	# ((c^d)&b)^d
    967 	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
    968 	return &bodyx_20_39()	if ($rx==19);	$rx++;
    969 	(
    970 	'($a,$b,$c,$d,$e)=@V;'.
    971 
    972 	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2
    973 	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2
    974 	'&lea	($e,&DWP(0,$e,@T[0]));',
    975 	'&rorx	(@T[0],$a,5);',
    976 
    977 	'&andn	(@T[1],$a,$c);',
    978 	'&and	($a,$b)',
    979 	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer
    980 
    981 	'&xor	(@T[1],$a)',
    982 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    983 	);
    984 }
    985 
    986 sub bodyx_20_39 () {	# b^d^c
    987 	# on start $b=b^c^d
    988 	return &bodyx_40_59()	if ($rx==39);	$rx++;
    989 	(
    990 	'($a,$b,$c,$d,$e)=@V;'.
    991 
    992 	'&add	($e,($j==19?@T[0]:$b))',
    993 	'&rorx	($b,@T[1],7);',	# $b>>>2
    994 	'&rorx	(@T[0],$a,5);',
    995 
    996 	'&xor	($a,$b)				if ($j<79);',
    997 	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer
    998 	'&xor	($a,$c)				if ($j<79);',
    999 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
   1000 	);
   1001 }
   1002 
   1003 sub bodyx_40_59 () {	# ((b^c)&(c^d))^c
   1004 	# on start $b=((b^c)&(c^d))^c
   1005 	return &bodyx_20_39()	if ($rx==59);	$rx++;
   1006 	(
   1007 	'($a,$b,$c,$d,$e)=@V;'.
   1008 
   1009 	'&rorx	(@T[0],$a,5)',
   1010 	'&lea	($e,&DWP(0,$e,$b))',
   1011 	'&rorx	($b,@T[1],7)',	# $b>>>2
   1012 	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer
   1013 
   1014 	'&mov	(@T[1],$c)',
   1015 	'&xor	($a,$b)',	# b^c for next round
   1016 	'&xor	(@T[1],$b)',	# c^d for next round
   1017 
   1018 	'&and	($a,@T[1])',
   1019 	'&add	($e,@T[0])',
   1020 	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
   1021 	);
   1022 }
   1023 
   1024 &set_label("loop",16);
   1025 	&Xupdate_ssse3_16_31(\&body_00_19);
   1026 	&Xupdate_ssse3_16_31(\&body_00_19);
   1027 	&Xupdate_ssse3_16_31(\&body_00_19);
   1028 	&Xupdate_ssse3_16_31(\&body_00_19);
   1029 	&Xupdate_ssse3_32_79(\&body_00_19);
   1030 	&Xupdate_ssse3_32_79(\&body_20_39);
   1031 	&Xupdate_ssse3_32_79(\&body_20_39);
   1032 	&Xupdate_ssse3_32_79(\&body_20_39);
   1033 	&Xupdate_ssse3_32_79(\&body_20_39);
   1034 	&Xupdate_ssse3_32_79(\&body_20_39);
   1035 	&Xupdate_ssse3_32_79(\&body_40_59);
   1036 	&Xupdate_ssse3_32_79(\&body_40_59);
   1037 	&Xupdate_ssse3_32_79(\&body_40_59);
   1038 	&Xupdate_ssse3_32_79(\&body_40_59);
   1039 	&Xupdate_ssse3_32_79(\&body_40_59);
   1040 	&Xupdate_ssse3_32_79(\&body_20_39);
   1041 	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
   1042 
   1043 				$saved_j=$j; @saved_V=@V;
   1044 
   1045 	&Xloop_ssse3(\&body_20_39);
   1046 	&Xloop_ssse3(\&body_20_39);
   1047 	&Xloop_ssse3(\&body_20_39);
   1048 
   1049 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1050 	&add	($A,&DWP(0,@T[1]));
   1051 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1052 	&add	($C,&DWP(8,@T[1]));
   1053 	&mov	(&DWP(0,@T[1]),$A);
   1054 	&add	($D,&DWP(12,@T[1]));
   1055 	&mov	(&DWP(4,@T[1]),@T[0]);
   1056 	&add	($E,&DWP(16,@T[1]));
   1057 	&mov	(&DWP(8,@T[1]),$C);
   1058 	&mov	($B,$C);
   1059 	&mov	(&DWP(12,@T[1]),$D);
   1060 	&xor	($B,$D);
   1061 	&mov	(&DWP(16,@T[1]),$E);
   1062 	&mov	(@T[1],@T[0]);
   1063 	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
   1064 	&and	(@T[0],$B);
   1065 	&mov	($B,$T[1]);
   1066 
   1067 	&jmp	(&label("loop"));
   1068 
   1069 &set_label("done",16);		$j=$saved_j; @V=@saved_V;
   1070 
   1071 	&Xtail_ssse3(\&body_20_39);
   1072 	&Xtail_ssse3(\&body_20_39);
   1073 	&Xtail_ssse3(\&body_20_39);
   1074 
   1075 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1076 	&add	($A,&DWP(0,@T[1]));
   1077 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
   1078 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1079 	&add	($C,&DWP(8,@T[1]));
   1080 	&mov	(&DWP(0,@T[1]),$A);
   1081 	&add	($D,&DWP(12,@T[1]));
   1082 	&mov	(&DWP(4,@T[1]),@T[0]);
   1083 	&add	($E,&DWP(16,@T[1]));
   1084 	&mov	(&DWP(8,@T[1]),$C);
   1085 	&mov	(&DWP(12,@T[1]),$D);
   1086 	&mov	(&DWP(16,@T[1]),$E);
   1087 
   1088 &function_end("_sha1_block_data_order_ssse3");
   1089 
   1090 $rx=0;	# reset
   1091 
   1092 if ($ymm) {
   1093 my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
   1094 my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
   1095 my @V=($A,$B,$C,$D,$E);
   1096 my $j=0;			# hash round
   1097 my @T=($T,$tmp1);
   1098 my $inp;
   1099 
   1100 my $_rol=sub { &shld(@_[0],@_) };
   1101 my $_ror=sub { &shrd(@_[0],@_) };
   1102 
   1103 &function_begin("_sha1_block_data_order_avx");
   1104 	&call	(&label("pic_point"));	# make it PIC!
   1105 	&set_label("pic_point");
   1106 	&blindpop($tmp1);
   1107 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
   1108 &set_label("avx_shortcut");
   1109 	&vzeroall();
   1110 
   1111 	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
   1112 	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
   1113 	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
   1114 	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
   1115 	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
   1116 
   1117 	&mov	($E,&wparam(0));		# load argument block
   1118 	&mov	($inp=@T[1],&wparam(1));
   1119 	&mov	($D,&wparam(2));
   1120 	&mov	(@T[0],"esp");
   1121 
   1122 	# stack frame layout
   1123 	#
   1124 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
   1125 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
   1126 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
   1127 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
   1128 	#
   1129 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
   1130 	#	X[4]	X[5]	X[6]	X[7]
   1131 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
   1132 	#
   1133 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
   1134 	#	K_40_59	K_40_59	K_40_59	K_40_59
   1135 	#	K_60_79	K_60_79	K_60_79	K_60_79
   1136 	#	K_00_19	K_00_19	K_00_19	K_00_19
   1137 	#	pbswap mask
   1138 	#
   1139 	# +192	ctx				# argument block
   1140 	# +196	inp
   1141 	# +200	end
   1142 	# +204	esp
   1143 	&sub	("esp",208);
   1144 	&and	("esp",-64);
   1145 
   1146 	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
   1147 	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
   1148 	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
   1149 	&shl	($D,6);				# len*64
   1150 	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
   1151 	&add	($D,$inp);			# end of input
   1152 	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
   1153 	&add	($inp,64);
   1154 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
   1155 	&mov	(&DWP(192+4,"esp"),$inp);
   1156 	&mov	(&DWP(192+8,"esp"),$D);
   1157 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
   1158 
   1159 	&mov	($A,&DWP(0,$E));		# load context
   1160 	&mov	($B,&DWP(4,$E));
   1161 	&mov	($C,&DWP(8,$E));
   1162 	&mov	($D,&DWP(12,$E));
   1163 	&mov	($E,&DWP(16,$E));
   1164 	&mov	(@T[0],$B);			# magic seed
   1165 
   1166 	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
   1167 	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
   1168 	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
   1169 	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
   1170 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
   1171 	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
   1172 	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
   1173 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
   1174 	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
   1175 	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
   1176 	&vpaddd	(@X[1],@X[-3&7],@X[3]);
   1177 	&vpaddd	(@X[2],@X[-2&7],@X[3]);
   1178 	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
   1179 	&mov	(@T[1],$C);
   1180 	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
   1181 	&xor	(@T[1],$D);
   1182 	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
   1183 	&and	(@T[0],@T[1]);
   1184 	&jmp	(&label("loop"));
   1185 
   1186 sub Xupdate_avx_16_31()		# recall that $Xi starts wtih 4
   1187 { use integer;
   1188   my $body = shift;
   1189   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
   1190   my ($a,$b,$c,$d,$e);
   1191 
   1192 	 eval(shift(@insns));
   1193 	 eval(shift(@insns));
   1194 	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
   1195 	 eval(shift(@insns));
   1196 	 eval(shift(@insns));
   1197 
   1198 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1199 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
   1200 	 eval(shift(@insns));
   1201 	 eval(shift(@insns));
   1202 	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
   1203 	 eval(shift(@insns));
   1204 	 eval(shift(@insns));
   1205 	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
   1206 	 eval(shift(@insns));
   1207 	 eval(shift(@insns));
   1208 
   1209 	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
   1210 	 eval(shift(@insns));
   1211 	 eval(shift(@insns));
   1212 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
   1213 	 eval(shift(@insns));
   1214 	 eval(shift(@insns));
   1215 
   1216 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
   1217 	 eval(shift(@insns));
   1218 	 eval(shift(@insns));
   1219 	 eval(shift(@insns));
   1220 	 eval(shift(@insns));
   1221 
   1222 	&vpsrld	(@X[2],@X[0],31);
   1223 	 eval(shift(@insns));
   1224 	 eval(shift(@insns));
   1225 	 eval(shift(@insns));
   1226 	 eval(shift(@insns));
   1227 
   1228 	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
   1229 	&vpaddd	(@X[0],@X[0],@X[0]);
   1230 	 eval(shift(@insns));
   1231 	 eval(shift(@insns));
   1232 	 eval(shift(@insns));
   1233 	 eval(shift(@insns));
   1234 
   1235 	&vpsrld	(@X[3],@X[4],30);
   1236 	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
   1237 	 eval(shift(@insns));
   1238 	 eval(shift(@insns));
   1239 	 eval(shift(@insns));
   1240 	 eval(shift(@insns));
   1241 
   1242 	&vpslld	(@X[4],@X[4],2);
   1243 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
   1244 	 eval(shift(@insns));
   1245 	 eval(shift(@insns));
   1246 	&vpxor	(@X[0],@X[0],@X[3]);
   1247 	 eval(shift(@insns));
   1248 	 eval(shift(@insns));
   1249 	 eval(shift(@insns));
   1250 	 eval(shift(@insns));
   1251 
   1252 	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
   1253 	 eval(shift(@insns));
   1254 	 eval(shift(@insns));
   1255 	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
   1256 	 eval(shift(@insns));
   1257 	 eval(shift(@insns));
   1258 
   1259 	 foreach (@insns) { eval; }	# remaining instructions [if any]
   1260 
   1261   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
   1262 }
   1263 
   1264 sub Xupdate_avx_32_79()
   1265 { use integer;
   1266   my $body = shift;
   1267   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
   1268   my ($a,$b,$c,$d,$e);
   1269 
   1270 	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
   1271 	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
   1272 	 eval(shift(@insns));		# body_20_39
   1273 	 eval(shift(@insns));
   1274 	 eval(shift(@insns));
   1275 	 eval(shift(@insns));		# rol
   1276 
   1277 	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
   1278 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
   1279 	 eval(shift(@insns));
   1280 	 eval(shift(@insns));
   1281 	 if ($Xi%5) {
   1282 	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
   1283 	 } else {			# ... or load next one
   1284 	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
   1285 	 }
   1286 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1287 	 eval(shift(@insns));		# ror
   1288 	 eval(shift(@insns));
   1289 
   1290 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
   1291 	 eval(shift(@insns));		# body_20_39
   1292 	 eval(shift(@insns));
   1293 	 eval(shift(@insns));
   1294 	 eval(shift(@insns));		# rol
   1295 
   1296 	&vpsrld	(@X[2],@X[0],30);
   1297 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
   1298 	 eval(shift(@insns));
   1299 	 eval(shift(@insns));
   1300 	 eval(shift(@insns));		# ror
   1301 	 eval(shift(@insns));
   1302 
   1303 	&vpslld	(@X[0],@X[0],2);
   1304 	 eval(shift(@insns));		# body_20_39
   1305 	 eval(shift(@insns));
   1306 	 eval(shift(@insns));
   1307 	 eval(shift(@insns));		# rol
   1308 	 eval(shift(@insns));
   1309 	 eval(shift(@insns));
   1310 	 eval(shift(@insns));		# ror
   1311 	 eval(shift(@insns));
   1312 
   1313 	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
   1314 	 eval(shift(@insns));		# body_20_39
   1315 	 eval(shift(@insns));
   1316 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
   1317 	 eval(shift(@insns));
   1318 	 eval(shift(@insns));		# rol
   1319 	 eval(shift(@insns));
   1320 	 eval(shift(@insns));
   1321 	 eval(shift(@insns));		# ror
   1322 	 eval(shift(@insns));
   1323 
   1324 	 foreach (@insns) { eval; }	# remaining instructions
   1325 
   1326   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
   1327 }
   1328 
   1329 sub Xuplast_avx_80()
   1330 { use integer;
   1331   my $body = shift;
   1332   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1333   my ($a,$b,$c,$d,$e);
   1334 
   1335 	 eval(shift(@insns));
   1336 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1337 	 eval(shift(@insns));
   1338 	 eval(shift(@insns));
   1339 	 eval(shift(@insns));
   1340 	 eval(shift(@insns));
   1341 
   1342 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
   1343 
   1344 	 foreach (@insns) { eval; }		# remaining instructions
   1345 
   1346 	&mov	($inp=@T[1],&DWP(192+4,"esp"));
   1347 	&cmp	($inp,&DWP(192+8,"esp"));
   1348 	&je	(&label("done"));
   1349 
   1350 	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
   1351 	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
   1352 	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
   1353 	&vmovdqu(@X[-3&7],&QWP(16,$inp));
   1354 	&vmovdqu(@X[-2&7],&QWP(32,$inp));
   1355 	&vmovdqu(@X[-1&7],&QWP(48,$inp));
   1356 	&add	($inp,64);
   1357 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
   1358 	&mov	(&DWP(192+4,"esp"),$inp);
   1359 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
   1360 
   1361   $Xi=0;
   1362 }
   1363 
   1364 sub Xloop_avx()
   1365 { use integer;
   1366   my $body = shift;
   1367   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1368   my ($a,$b,$c,$d,$e);
   1369 
   1370 	 eval(shift(@insns));
   1371 	 eval(shift(@insns));
   1372 	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
   1373 	 eval(shift(@insns));
   1374 	 eval(shift(@insns));
   1375 	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
   1376 	 eval(shift(@insns));
   1377 	 eval(shift(@insns));
   1378 	 eval(shift(@insns));
   1379 	 eval(shift(@insns));
   1380 	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
   1381 	 eval(shift(@insns));
   1382 	 eval(shift(@insns));
   1383 
   1384 	foreach (@insns) { eval; }
   1385   $Xi++;
   1386 }
   1387 
   1388 sub Xtail_avx()
   1389 { use integer;
   1390   my $body = shift;
   1391   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1392   my ($a,$b,$c,$d,$e);
   1393 
   1394 	foreach (@insns) { eval; }
   1395 }
   1396 
   1397 &set_label("loop",16);
   1398 	&Xupdate_avx_16_31(\&body_00_19);
   1399 	&Xupdate_avx_16_31(\&body_00_19);
   1400 	&Xupdate_avx_16_31(\&body_00_19);
   1401 	&Xupdate_avx_16_31(\&body_00_19);
   1402 	&Xupdate_avx_32_79(\&body_00_19);
   1403 	&Xupdate_avx_32_79(\&body_20_39);
   1404 	&Xupdate_avx_32_79(\&body_20_39);
   1405 	&Xupdate_avx_32_79(\&body_20_39);
   1406 	&Xupdate_avx_32_79(\&body_20_39);
   1407 	&Xupdate_avx_32_79(\&body_20_39);
   1408 	&Xupdate_avx_32_79(\&body_40_59);
   1409 	&Xupdate_avx_32_79(\&body_40_59);
   1410 	&Xupdate_avx_32_79(\&body_40_59);
   1411 	&Xupdate_avx_32_79(\&body_40_59);
   1412 	&Xupdate_avx_32_79(\&body_40_59);
   1413 	&Xupdate_avx_32_79(\&body_20_39);
   1414 	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
   1415 
   1416 				$saved_j=$j; @saved_V=@V;
   1417 
   1418 	&Xloop_avx(\&body_20_39);
   1419 	&Xloop_avx(\&body_20_39);
   1420 	&Xloop_avx(\&body_20_39);
   1421 
   1422 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1423 	&add	($A,&DWP(0,@T[1]));
   1424 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1425 	&add	($C,&DWP(8,@T[1]));
   1426 	&mov	(&DWP(0,@T[1]),$A);
   1427 	&add	($D,&DWP(12,@T[1]));
   1428 	&mov	(&DWP(4,@T[1]),@T[0]);
   1429 	&add	($E,&DWP(16,@T[1]));
   1430 	&mov	($B,$C);
   1431 	&mov	(&DWP(8,@T[1]),$C);
   1432 	&xor	($B,$D);
   1433 	&mov	(&DWP(12,@T[1]),$D);
   1434 	&mov	(&DWP(16,@T[1]),$E);
   1435 	&mov	(@T[1],@T[0]);
   1436 	&and	(@T[0],$B);
   1437 	&mov	($B,@T[1]);
   1438 
   1439 	&jmp	(&label("loop"));
   1440 
   1441 &set_label("done",16);		$j=$saved_j; @V=@saved_V;
   1442 
   1443 	&Xtail_avx(\&body_20_39);
   1444 	&Xtail_avx(\&body_20_39);
   1445 	&Xtail_avx(\&body_20_39);
   1446 
   1447 	&vzeroall();
   1448 
   1449 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1450 	&add	($A,&DWP(0,@T[1]));
   1451 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
   1452 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1453 	&add	($C,&DWP(8,@T[1]));
   1454 	&mov	(&DWP(0,@T[1]),$A);
   1455 	&add	($D,&DWP(12,@T[1]));
   1456 	&mov	(&DWP(4,@T[1]),@T[0]);
   1457 	&add	($E,&DWP(16,@T[1]));
   1458 	&mov	(&DWP(8,@T[1]),$C);
   1459 	&mov	(&DWP(12,@T[1]),$D);
   1460 	&mov	(&DWP(16,@T[1]),$E);
   1461 &function_end("_sha1_block_data_order_avx");
   1462 }
   1463 &set_label("K_XX_XX",64);
   1464 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
   1465 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
   1466 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
   1467 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
   1468 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
   1469 &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
   1470 }
   1471 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
   1472 
   1473 &asm_finish();
   1474