Home | History | Annotate | Download | only in smooth
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftgrays.c                                                              */
      4 /*                                                                         */
      5 /*    A new `perfect' anti-aliasing renderer (body).                       */
      6 /*                                                                         */
      7 /*  Copyright 2000-2003, 2005-2013 by                                      */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18   /*************************************************************************/
     19   /*                                                                       */
     20   /* This file can be compiled without the rest of the FreeType engine, by */
     21   /* defining the _STANDALONE_ macro when compiling it.  You also need to  */
     22   /* put the files `ftgrays.h' and `ftimage.h' into the current            */
     23   /* compilation directory.  Typically, you could do something like        */
     24   /*                                                                       */
     25   /* - copy `src/smooth/ftgrays.c' (this file) to your current directory   */
     26   /*                                                                       */
     27   /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
     28   /*   same directory                                                      */
     29   /*                                                                       */
     30   /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in        */
     31   /*                                                                       */
     32   /*     cc -c -D_STANDALONE_ ftgrays.c                                    */
     33   /*                                                                       */
     34   /* The renderer can be initialized with a call to                        */
     35   /* `ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated  */
     36   /* with a call to `ft_gray_raster.raster_render'.                        */
     37   /*                                                                       */
     38   /* See the comments and documentation in the file `ftimage.h' for more   */
     39   /* details on how the raster works.                                      */
     40   /*                                                                       */
     41   /*************************************************************************/
     42 
     43   /*************************************************************************/
     44   /*                                                                       */
     45   /* This is a new anti-aliasing scan-converter for FreeType 2.  The       */
     46   /* algorithm used here is _very_ different from the one in the standard  */
     47   /* `ftraster' module.  Actually, `ftgrays' computes the _exact_          */
     48   /* coverage of the outline on each pixel cell.                           */
     49   /*                                                                       */
     50   /* It is based on ideas that I initially found in Raph Levien's          */
     51   /* excellent LibArt graphics library (see http://www.levien.com/libart   */
     52   /* for more information, though the web pages do not tell anything       */
     53   /* about the renderer; you'll have to dive into the source code to       */
     54   /* understand how it works).                                             */
     55   /*                                                                       */
     56   /* Note, however, that this is a _very_ different implementation         */
     57   /* compared to Raph's.  Coverage information is stored in a very         */
     58   /* different way, and I don't use sorted vector paths.  Also, it doesn't */
     59   /* use floating point values.                                            */
     60   /*                                                                       */
     61   /* This renderer has the following advantages:                           */
     62   /*                                                                       */
     63   /* - It doesn't need an intermediate bitmap.  Instead, one can supply a  */
     64   /*   callback function that will be called by the renderer to draw gray  */
     65   /*   spans on any target surface.  You can thus do direct composition on */
     66   /*   any kind of bitmap, provided that you give the renderer the right   */
     67   /*   callback.                                                           */
     68   /*                                                                       */
     69   /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on   */
     70   /*   each pixel cell.                                                    */
     71   /*                                                                       */
     72   /* - It performs a single pass on the outline (the `standard' FT2        */
     73   /*   renderer makes two passes).                                         */
     74   /*                                                                       */
     75   /* - It can easily be modified to render to _any_ number of gray levels  */
     76   /*   cheaply.                                                            */
     77   /*                                                                       */
     78   /* - For small (< 20) pixel sizes, it is faster than the standard        */
     79   /*   renderer.                                                           */
     80   /*                                                                       */
     81   /*************************************************************************/
     82 
     83 
     84   /*************************************************************************/
     85   /*                                                                       */
     86   /* The macro FT_COMPONENT is used in trace mode.  It is an implicit      */
     87   /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log  */
     88   /* messages during execution.                                            */
     89   /*                                                                       */
     90 #undef  FT_COMPONENT
     91 #define FT_COMPONENT  trace_smooth
     92 
     93 
     94 #ifdef _STANDALONE_
     95 
     96 
     97   /* Auxiliary macros for token concatenation. */
     98 #define FT_ERR_XCAT( x, y )  x ## y
     99 #define FT_ERR_CAT( x, y )   FT_ERR_XCAT( x, y )
    100 
    101 
    102   /* define this to dump debugging information */
    103 /* #define FT_DEBUG_LEVEL_TRACE */
    104 
    105 
    106 #ifdef FT_DEBUG_LEVEL_TRACE
    107 #include <stdio.h>
    108 #include <stdarg.h>
    109 #endif
    110 
    111 #include <stddef.h>
    112 #include <string.h>
    113 #include <setjmp.h>
    114 #include <limits.h>
    115 #define FT_UINT_MAX  UINT_MAX
    116 #define FT_INT_MAX   INT_MAX
    117 
    118 #define ft_memset   memset
    119 
    120 #define ft_setjmp   setjmp
    121 #define ft_longjmp  longjmp
    122 #define ft_jmp_buf  jmp_buf
    123 
    124 typedef ptrdiff_t  FT_PtrDist;
    125 
    126 
    127 #define ErrRaster_Invalid_Mode      -2
    128 #define ErrRaster_Invalid_Outline   -1
    129 #define ErrRaster_Invalid_Argument  -3
    130 #define ErrRaster_Memory_Overflow   -4
    131 
    132 #define FT_BEGIN_HEADER
    133 #define FT_END_HEADER
    134 
    135 #include "ftimage.h"
    136 #include "ftgrays.h"
    137 
    138 
    139   /* This macro is used to indicate that a function parameter is unused. */
    140   /* Its purpose is simply to reduce compiler warnings.  Note also that  */
    141   /* simply defining it as `(void)x' doesn't avoid warnings with certain */
    142   /* ANSI compilers (e.g. LCC).                                          */
    143 #define FT_UNUSED( x )  (x) = (x)
    144 
    145 
    146   /* we only use level 5 & 7 tracing messages; cf. ftdebug.h */
    147 
    148 #ifdef FT_DEBUG_LEVEL_TRACE
    149 
    150   void
    151   FT_Message( const char*  fmt,
    152               ... )
    153   {
    154     va_list  ap;
    155 
    156 
    157     va_start( ap, fmt );
    158     vfprintf( stderr, fmt, ap );
    159     va_end( ap );
    160   }
    161 
    162 
    163   /* empty function useful for setting a breakpoint to catch errors */
    164   int
    165   FT_Throw( int          error,
    166             int          line,
    167             const char*  file )
    168   {
    169     FT_UNUSED( error );
    170     FT_UNUSED( line );
    171     FT_UNUSED( file );
    172 
    173     return 0;
    174   }
    175 
    176 
    177   /* we don't handle tracing levels in stand-alone mode; */
    178 #ifndef FT_TRACE5
    179 #define FT_TRACE5( varformat )  FT_Message varformat
    180 #endif
    181 #ifndef FT_TRACE7
    182 #define FT_TRACE7( varformat )  FT_Message varformat
    183 #endif
    184 #ifndef FT_ERROR
    185 #define FT_ERROR( varformat )   FT_Message varformat
    186 #endif
    187 
    188 #define FT_THROW( e )                               \
    189           ( FT_Throw( FT_ERR_CAT( ErrRaster, e ),   \
    190                       __LINE__,                     \
    191                       __FILE__ )                  | \
    192             FT_ERR_CAT( ErrRaster, e )            )
    193 
    194 #else /* !FT_DEBUG_LEVEL_TRACE */
    195 
    196 #define FT_TRACE5( x )  do { } while ( 0 )     /* nothing */
    197 #define FT_TRACE7( x )  do { } while ( 0 )     /* nothing */
    198 #define FT_ERROR( x )   do { } while ( 0 )     /* nothing */
    199 #define FT_THROW( e )   FT_ERR_CAT( ErrRaster_, e )
    200 
    201 
    202 #endif /* !FT_DEBUG_LEVEL_TRACE */
    203 
    204 
    205 #define FT_DEFINE_OUTLINE_FUNCS( class_,               \
    206                                  move_to_, line_to_,   \
    207                                  conic_to_, cubic_to_, \
    208                                  shift_, delta_ )      \
    209           static const FT_Outline_Funcs class_ =       \
    210           {                                            \
    211             move_to_,                                  \
    212             line_to_,                                  \
    213             conic_to_,                                 \
    214             cubic_to_,                                 \
    215             shift_,                                    \
    216             delta_                                     \
    217          };
    218 
    219 #define FT_DEFINE_RASTER_FUNCS( class_, glyph_format_,            \
    220                                 raster_new_, raster_reset_,       \
    221                                 raster_set_mode_, raster_render_, \
    222                                 raster_done_ )                    \
    223           const FT_Raster_Funcs class_ =                          \
    224           {                                                       \
    225             glyph_format_,                                        \
    226             raster_new_,                                          \
    227             raster_reset_,                                        \
    228             raster_set_mode_,                                     \
    229             raster_render_,                                       \
    230             raster_done_                                          \
    231          };
    232 
    233 
    234 #else /* !_STANDALONE_ */
    235 
    236 
    237 #include <ft2build.h>
    238 #include "ftgrays.h"
    239 #include FT_INTERNAL_OBJECTS_H
    240 #include FT_INTERNAL_DEBUG_H
    241 #include FT_OUTLINE_H
    242 
    243 #include "ftsmerrs.h"
    244 
    245 #include "ftspic.h"
    246 
    247 #define Smooth_Err_Invalid_Mode     Smooth_Err_Cannot_Render_Glyph
    248 #define Smooth_Err_Memory_Overflow  Smooth_Err_Out_Of_Memory
    249 #define ErrRaster_Memory_Overflow   Smooth_Err_Out_Of_Memory
    250 
    251 
    252 #endif /* !_STANDALONE_ */
    253 
    254 
    255 #ifndef FT_MEM_SET
    256 #define FT_MEM_SET( d, s, c )  ft_memset( d, s, c )
    257 #endif
    258 
    259 #ifndef FT_MEM_ZERO
    260 #define FT_MEM_ZERO( dest, count )  FT_MEM_SET( dest, 0, count )
    261 #endif
    262 
    263   /* as usual, for the speed hungry :-) */
    264 
    265 #undef RAS_ARG
    266 #undef RAS_ARG_
    267 #undef RAS_VAR
    268 #undef RAS_VAR_
    269 
    270 #ifndef FT_STATIC_RASTER
    271 
    272 #define RAS_ARG   gray_PWorker  worker
    273 #define RAS_ARG_  gray_PWorker  worker,
    274 
    275 #define RAS_VAR   worker
    276 #define RAS_VAR_  worker,
    277 
    278 #else /* FT_STATIC_RASTER */
    279 
    280 #define RAS_ARG   /* empty */
    281 #define RAS_ARG_  /* empty */
    282 #define RAS_VAR   /* empty */
    283 #define RAS_VAR_  /* empty */
    284 
    285 #endif /* FT_STATIC_RASTER */
    286 
    287 
    288   /* must be at least 6 bits! */
    289 #define PIXEL_BITS  8
    290 
    291 #undef FLOOR
    292 #undef CEILING
    293 #undef TRUNC
    294 #undef SCALED
    295 
    296 #define ONE_PIXEL       ( 1L << PIXEL_BITS )
    297 #define PIXEL_MASK      ( -1L << PIXEL_BITS )
    298 #define TRUNC( x )      ( (TCoord)( (x) >> PIXEL_BITS ) )
    299 #define SUBPIXELS( x )  ( (TPos)(x) << PIXEL_BITS )
    300 #define FLOOR( x )      ( (x) & -ONE_PIXEL )
    301 #define CEILING( x )    ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
    302 #define ROUND( x )      ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
    303 
    304 #if PIXEL_BITS >= 6
    305 #define UPSCALE( x )    ( (x) << ( PIXEL_BITS - 6 ) )
    306 #define DOWNSCALE( x )  ( (x) >> ( PIXEL_BITS - 6 ) )
    307 #else
    308 #define UPSCALE( x )    ( (x) >> ( 6 - PIXEL_BITS ) )
    309 #define DOWNSCALE( x )  ( (x) << ( 6 - PIXEL_BITS ) )
    310 #endif
    311 
    312 
    313   /*************************************************************************/
    314   /*                                                                       */
    315   /*   TYPE DEFINITIONS                                                    */
    316   /*                                                                       */
    317 
    318   /* don't change the following types to FT_Int or FT_Pos, since we might */
    319   /* need to define them to "float" or "double" when experimenting with   */
    320   /* new algorithms                                                       */
    321 
    322   typedef long  TCoord;   /* integer scanline/pixel coordinate */
    323   typedef long  TPos;     /* sub-pixel coordinate              */
    324 
    325   /* determine the type used to store cell areas.  This normally takes at */
    326   /* least PIXEL_BITS*2 + 1 bits.  On 16-bit systems, we need to use      */
    327   /* `long' instead of `int', otherwise bad things happen                 */
    328 
    329 #if PIXEL_BITS <= 7
    330 
    331   typedef int  TArea;
    332 
    333 #else /* PIXEL_BITS >= 8 */
    334 
    335   /* approximately determine the size of integers using an ANSI-C header */
    336 #if FT_UINT_MAX == 0xFFFFU
    337   typedef long  TArea;
    338 #else
    339   typedef int   TArea;
    340 #endif
    341 
    342 #endif /* PIXEL_BITS >= 8 */
    343 
    344 
    345   /* maximum number of gray spans in a call to the span callback */
    346 #define FT_MAX_GRAY_SPANS  32
    347 
    348 
    349   typedef struct TCell_*  PCell;
    350 
    351   typedef struct  TCell_
    352   {
    353     TPos    x;     /* same with gray_TWorker.ex    */
    354     TCoord  cover; /* same with gray_TWorker.cover */
    355     TArea   area;
    356     PCell   next;
    357 
    358   } TCell;
    359 
    360 
    361   typedef struct  gray_TWorker_
    362   {
    363     TCoord  ex, ey;
    364     TPos    min_ex, max_ex;
    365     TPos    min_ey, max_ey;
    366     TPos    count_ex, count_ey;
    367 
    368     TArea   area;
    369     TCoord  cover;
    370     int     invalid;
    371 
    372     PCell       cells;
    373     FT_PtrDist  max_cells;
    374     FT_PtrDist  num_cells;
    375 
    376     TCoord  cx, cy;
    377     TPos    x,  y;
    378 
    379     TPos    last_ey;
    380 
    381     FT_Vector   bez_stack[32 * 3 + 1];
    382     int         lev_stack[32];
    383 
    384     FT_Outline  outline;
    385     FT_Bitmap   target;
    386     FT_BBox     clip_box;
    387 
    388     FT_Span     gray_spans[FT_MAX_GRAY_SPANS];
    389     int         num_gray_spans;
    390 
    391     FT_Raster_Span_Func  render_span;
    392     void*                render_span_data;
    393     int                  span_y;
    394 
    395     int  band_size;
    396     int  band_shoot;
    397 
    398     ft_jmp_buf  jump_buffer;
    399 
    400     void*       buffer;
    401     long        buffer_size;
    402 
    403     PCell*     ycells;
    404     TPos       ycount;
    405 
    406   } gray_TWorker, *gray_PWorker;
    407 
    408 
    409 #ifndef FT_STATIC_RASTER
    410 #define ras  (*worker)
    411 #else
    412   static gray_TWorker  ras;
    413 #endif
    414 
    415 
    416   typedef struct gray_TRaster_
    417   {
    418     void*         buffer;
    419     long          buffer_size;
    420     int           band_size;
    421     void*         memory;
    422     gray_PWorker  worker;
    423 
    424   } gray_TRaster, *gray_PRaster;
    425 
    426 
    427 
    428   /*************************************************************************/
    429   /*                                                                       */
    430   /* Initialize the cells table.                                           */
    431   /*                                                                       */
    432   static void
    433   gray_init_cells( RAS_ARG_ void*  buffer,
    434                    long            byte_size )
    435   {
    436     ras.buffer      = buffer;
    437     ras.buffer_size = byte_size;
    438 
    439     ras.ycells      = (PCell*) buffer;
    440     ras.cells       = NULL;
    441     ras.max_cells   = 0;
    442     ras.num_cells   = 0;
    443     ras.area        = 0;
    444     ras.cover       = 0;
    445     ras.invalid     = 1;
    446   }
    447 
    448 
    449   /*************************************************************************/
    450   /*                                                                       */
    451   /* Compute the outline bounding box.                                     */
    452   /*                                                                       */
    453   static void
    454   gray_compute_cbox( RAS_ARG )
    455   {
    456     FT_Outline*  outline = &ras.outline;
    457     FT_Vector*   vec     = outline->points;
    458     FT_Vector*   limit   = vec + outline->n_points;
    459 
    460 
    461     if ( outline->n_points <= 0 )
    462     {
    463       ras.min_ex = ras.max_ex = 0;
    464       ras.min_ey = ras.max_ey = 0;
    465       return;
    466     }
    467 
    468     ras.min_ex = ras.max_ex = vec->x;
    469     ras.min_ey = ras.max_ey = vec->y;
    470 
    471     vec++;
    472 
    473     for ( ; vec < limit; vec++ )
    474     {
    475       TPos  x = vec->x;
    476       TPos  y = vec->y;
    477 
    478 
    479       if ( x < ras.min_ex ) ras.min_ex = x;
    480       if ( x > ras.max_ex ) ras.max_ex = x;
    481       if ( y < ras.min_ey ) ras.min_ey = y;
    482       if ( y > ras.max_ey ) ras.max_ey = y;
    483     }
    484 
    485     /* truncate the bounding box to integer pixels */
    486     ras.min_ex = ras.min_ex >> 6;
    487     ras.min_ey = ras.min_ey >> 6;
    488     ras.max_ex = ( ras.max_ex + 63 ) >> 6;
    489     ras.max_ey = ( ras.max_ey + 63 ) >> 6;
    490   }
    491 
    492 
    493   /*************************************************************************/
    494   /*                                                                       */
    495   /* Record the current cell in the table.                                 */
    496   /*                                                                       */
    497   static PCell
    498   gray_find_cell( RAS_ARG )
    499   {
    500     PCell  *pcell, cell;
    501     TPos    x = ras.ex;
    502 
    503 
    504     if ( x > ras.count_ex )
    505       x = ras.count_ex;
    506 
    507     pcell = &ras.ycells[ras.ey];
    508     for (;;)
    509     {
    510       cell = *pcell;
    511       if ( cell == NULL || cell->x > x )
    512         break;
    513 
    514       if ( cell->x == x )
    515         goto Exit;
    516 
    517       pcell = &cell->next;
    518     }
    519 
    520     if ( ras.num_cells >= ras.max_cells )
    521       ft_longjmp( ras.jump_buffer, 1 );
    522 
    523     cell        = ras.cells + ras.num_cells++;
    524     cell->x     = x;
    525     cell->area  = 0;
    526     cell->cover = 0;
    527 
    528     cell->next  = *pcell;
    529     *pcell      = cell;
    530 
    531   Exit:
    532     return cell;
    533   }
    534 
    535 
    536   static void
    537   gray_record_cell( RAS_ARG )
    538   {
    539     if ( !ras.invalid && ( ras.area | ras.cover ) )
    540     {
    541       PCell  cell = gray_find_cell( RAS_VAR );
    542 
    543 
    544       cell->area  += ras.area;
    545       cell->cover += ras.cover;
    546     }
    547   }
    548 
    549 
    550   /*************************************************************************/
    551   /*                                                                       */
    552   /* Set the current cell to a new position.                               */
    553   /*                                                                       */
    554   static void
    555   gray_set_cell( RAS_ARG_ TCoord  ex,
    556                           TCoord  ey )
    557   {
    558     /* Move the cell pointer to a new position.  We set the `invalid'      */
    559     /* flag to indicate that the cell isn't part of those we're interested */
    560     /* in during the render phase.  This means that:                       */
    561     /*                                                                     */
    562     /* . the new vertical position must be within min_ey..max_ey-1.        */
    563     /* . the new horizontal position must be strictly less than max_ex     */
    564     /*                                                                     */
    565     /* Note that if a cell is to the left of the clipping region, it is    */
    566     /* actually set to the (min_ex-1) horizontal position.                 */
    567 
    568     /* All cells that are on the left of the clipping region go to the */
    569     /* min_ex - 1 horizontal position.                                 */
    570     ey -= ras.min_ey;
    571 
    572     if ( ex > ras.max_ex )
    573       ex = ras.max_ex;
    574 
    575     ex -= ras.min_ex;
    576     if ( ex < 0 )
    577       ex = -1;
    578 
    579     /* are we moving to a different cell ? */
    580     if ( ex != ras.ex || ey != ras.ey )
    581     {
    582       /* record the current one if it is valid */
    583       if ( !ras.invalid )
    584         gray_record_cell( RAS_VAR );
    585 
    586       ras.area  = 0;
    587       ras.cover = 0;
    588     }
    589 
    590     ras.ex      = ex;
    591     ras.ey      = ey;
    592     ras.invalid = ( (unsigned)ey >= (unsigned)ras.count_ey ||
    593                               ex >= ras.count_ex           );
    594   }
    595 
    596 
    597   /*************************************************************************/
    598   /*                                                                       */
    599   /* Start a new contour at a given cell.                                  */
    600   /*                                                                       */
    601   static void
    602   gray_start_cell( RAS_ARG_ TCoord  ex,
    603                             TCoord  ey )
    604   {
    605     if ( ex > ras.max_ex )
    606       ex = (TCoord)( ras.max_ex );
    607 
    608     if ( ex < ras.min_ex )
    609       ex = (TCoord)( ras.min_ex - 1 );
    610 
    611     ras.area    = 0;
    612     ras.cover   = 0;
    613     ras.ex      = ex - ras.min_ex;
    614     ras.ey      = ey - ras.min_ey;
    615     ras.last_ey = SUBPIXELS( ey );
    616     ras.invalid = 0;
    617 
    618     gray_set_cell( RAS_VAR_ ex, ey );
    619   }
    620 
    621 
    622   /*************************************************************************/
    623   /*                                                                       */
    624   /* Render a scanline as one or more cells.                               */
    625   /*                                                                       */
    626   static void
    627   gray_render_scanline( RAS_ARG_ TCoord  ey,
    628                                  TPos    x1,
    629                                  TCoord  y1,
    630                                  TPos    x2,
    631                                  TCoord  y2 )
    632   {
    633     TCoord  ex1, ex2, fx1, fx2, delta, mod;
    634     long    p, first, dx;
    635     int     incr;
    636 
    637 
    638     dx = x2 - x1;
    639 
    640     ex1 = TRUNC( x1 );
    641     ex2 = TRUNC( x2 );
    642     fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
    643     fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
    644 
    645     /* trivial case.  Happens often */
    646     if ( y1 == y2 )
    647     {
    648       gray_set_cell( RAS_VAR_ ex2, ey );
    649       return;
    650     }
    651 
    652     /* everything is located in a single cell.  That is easy! */
    653     /*                                                        */
    654     if ( ex1 == ex2 )
    655     {
    656       delta      = y2 - y1;
    657       ras.area  += (TArea)(( fx1 + fx2 ) * delta);
    658       ras.cover += delta;
    659       return;
    660     }
    661 
    662     /* ok, we'll have to render a run of adjacent cells on the same */
    663     /* scanline...                                                  */
    664     /*                                                              */
    665     p     = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
    666     first = ONE_PIXEL;
    667     incr  = 1;
    668 
    669     if ( dx < 0 )
    670     {
    671       p     = fx1 * ( y2 - y1 );
    672       first = 0;
    673       incr  = -1;
    674       dx    = -dx;
    675     }
    676 
    677     delta = (TCoord)( p / dx );
    678     mod   = (TCoord)( p % dx );
    679     if ( mod < 0 )
    680     {
    681       delta--;
    682       mod += (TCoord)dx;
    683     }
    684 
    685     ras.area  += (TArea)(( fx1 + first ) * delta);
    686     ras.cover += delta;
    687 
    688     ex1 += incr;
    689     gray_set_cell( RAS_VAR_ ex1, ey );
    690     y1  += delta;
    691 
    692     if ( ex1 != ex2 )
    693     {
    694       TCoord  lift, rem;
    695 
    696 
    697       p    = ONE_PIXEL * ( y2 - y1 + delta );
    698       lift = (TCoord)( p / dx );
    699       rem  = (TCoord)( p % dx );
    700       if ( rem < 0 )
    701       {
    702         lift--;
    703         rem += (TCoord)dx;
    704       }
    705 
    706       mod -= (int)dx;
    707 
    708       while ( ex1 != ex2 )
    709       {
    710         delta = lift;
    711         mod  += rem;
    712         if ( mod >= 0 )
    713         {
    714           mod -= (TCoord)dx;
    715           delta++;
    716         }
    717 
    718         ras.area  += (TArea)(ONE_PIXEL * delta);
    719         ras.cover += delta;
    720         y1        += delta;
    721         ex1       += incr;
    722         gray_set_cell( RAS_VAR_ ex1, ey );
    723       }
    724     }
    725 
    726     delta      = y2 - y1;
    727     ras.area  += (TArea)(( fx2 + ONE_PIXEL - first ) * delta);
    728     ras.cover += delta;
    729   }
    730 
    731 
    732   /*************************************************************************/
    733   /*                                                                       */
    734   /* Render a given line as a series of scanlines.                         */
    735   /*                                                                       */
    736   static void
    737   gray_render_line( RAS_ARG_ TPos  to_x,
    738                              TPos  to_y )
    739   {
    740     TCoord  ey1, ey2, fy1, fy2, mod;
    741     TPos    dx, dy, x, x2;
    742     long    p, first;
    743     int     delta, rem, lift, incr;
    744 
    745 
    746     ey1 = TRUNC( ras.last_ey );
    747     ey2 = TRUNC( to_y );     /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
    748     fy1 = (TCoord)( ras.y - ras.last_ey );
    749     fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
    750 
    751     dx = to_x - ras.x;
    752     dy = to_y - ras.y;
    753 
    754     /* XXX: we should do something about the trivial case where dx == 0, */
    755     /*      as it happens very often!                                    */
    756 
    757     /* perform vertical clipping */
    758     {
    759       TCoord  min, max;
    760 
    761 
    762       min = ey1;
    763       max = ey2;
    764       if ( ey1 > ey2 )
    765       {
    766         min = ey2;
    767         max = ey1;
    768       }
    769       if ( min >= ras.max_ey || max < ras.min_ey )
    770         goto End;
    771     }
    772 
    773     /* everything is on a single scanline */
    774     if ( ey1 == ey2 )
    775     {
    776       gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
    777       goto End;
    778     }
    779 
    780     /* vertical line - avoid calling gray_render_scanline */
    781     incr = 1;
    782 
    783     if ( dx == 0 )
    784     {
    785       TCoord  ex     = TRUNC( ras.x );
    786       TCoord  two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
    787       TArea   area;
    788 
    789 
    790       first = ONE_PIXEL;
    791       if ( dy < 0 )
    792       {
    793         first = 0;
    794         incr  = -1;
    795       }
    796 
    797       delta      = (int)( first - fy1 );
    798       ras.area  += (TArea)two_fx * delta;
    799       ras.cover += delta;
    800       ey1       += incr;
    801 
    802       gray_set_cell( RAS_VAR_ ex, ey1 );
    803 
    804       delta = (int)( first + first - ONE_PIXEL );
    805       area  = (TArea)two_fx * delta;
    806       while ( ey1 != ey2 )
    807       {
    808         ras.area  += area;
    809         ras.cover += delta;
    810         ey1       += incr;
    811 
    812         gray_set_cell( RAS_VAR_ ex, ey1 );
    813       }
    814 
    815       delta      = (int)( fy2 - ONE_PIXEL + first );
    816       ras.area  += (TArea)two_fx * delta;
    817       ras.cover += delta;
    818 
    819       goto End;
    820     }
    821 
    822     /* ok, we have to render several scanlines */
    823     p     = ( ONE_PIXEL - fy1 ) * dx;
    824     first = ONE_PIXEL;
    825     incr  = 1;
    826 
    827     if ( dy < 0 )
    828     {
    829       p     = fy1 * dx;
    830       first = 0;
    831       incr  = -1;
    832       dy    = -dy;
    833     }
    834 
    835     delta = (int)( p / dy );
    836     mod   = (int)( p % dy );
    837     if ( mod < 0 )
    838     {
    839       delta--;
    840       mod += (TCoord)dy;
    841     }
    842 
    843     x = ras.x + delta;
    844     gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
    845 
    846     ey1 += incr;
    847     gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    848 
    849     if ( ey1 != ey2 )
    850     {
    851       p     = ONE_PIXEL * dx;
    852       lift  = (int)( p / dy );
    853       rem   = (int)( p % dy );
    854       if ( rem < 0 )
    855       {
    856         lift--;
    857         rem += (int)dy;
    858       }
    859       mod -= (int)dy;
    860 
    861       while ( ey1 != ey2 )
    862       {
    863         delta = lift;
    864         mod  += rem;
    865         if ( mod >= 0 )
    866         {
    867           mod -= (int)dy;
    868           delta++;
    869         }
    870 
    871         x2 = x + delta;
    872         gray_render_scanline( RAS_VAR_ ey1, x,
    873                                        (TCoord)( ONE_PIXEL - first ), x2,
    874                                        (TCoord)first );
    875         x = x2;
    876 
    877         ey1 += incr;
    878         gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
    879       }
    880     }
    881 
    882     gray_render_scanline( RAS_VAR_ ey1, x,
    883                                    (TCoord)( ONE_PIXEL - first ), to_x,
    884                                    fy2 );
    885 
    886   End:
    887     ras.x       = to_x;
    888     ras.y       = to_y;
    889     ras.last_ey = SUBPIXELS( ey2 );
    890   }
    891 
    892 
    893   static void
    894   gray_split_conic( FT_Vector*  base )
    895   {
    896     TPos  a, b;
    897 
    898 
    899     base[4].x = base[2].x;
    900     b = base[1].x;
    901     a = base[3].x = ( base[2].x + b ) / 2;
    902     b = base[1].x = ( base[0].x + b ) / 2;
    903     base[2].x = ( a + b ) / 2;
    904 
    905     base[4].y = base[2].y;
    906     b = base[1].y;
    907     a = base[3].y = ( base[2].y + b ) / 2;
    908     b = base[1].y = ( base[0].y + b ) / 2;
    909     base[2].y = ( a + b ) / 2;
    910   }
    911 
    912 
    913   static void
    914   gray_render_conic( RAS_ARG_ const FT_Vector*  control,
    915                               const FT_Vector*  to )
    916   {
    917     TPos        dx, dy;
    918     TPos        min, max, y;
    919     int         top, level;
    920     int*        levels;
    921     FT_Vector*  arc;
    922 
    923 
    924     levels = ras.lev_stack;
    925 
    926     arc      = ras.bez_stack;
    927     arc[0].x = UPSCALE( to->x );
    928     arc[0].y = UPSCALE( to->y );
    929     arc[1].x = UPSCALE( control->x );
    930     arc[1].y = UPSCALE( control->y );
    931     arc[2].x = ras.x;
    932     arc[2].y = ras.y;
    933     top      = 0;
    934 
    935     dx = FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
    936     dy = FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
    937     if ( dx < dy )
    938       dx = dy;
    939 
    940     if ( dx < ONE_PIXEL / 4 )
    941       goto Draw;
    942 
    943     /* short-cut the arc that crosses the current band */
    944     min = max = arc[0].y;
    945 
    946     y = arc[1].y;
    947     if ( y < min ) min = y;
    948     if ( y > max ) max = y;
    949 
    950     y = arc[2].y;
    951     if ( y < min ) min = y;
    952     if ( y > max ) max = y;
    953 
    954     if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
    955       goto Draw;
    956 
    957     level = 0;
    958     do
    959     {
    960       dx >>= 2;
    961       level++;
    962     } while ( dx > ONE_PIXEL / 4 );
    963 
    964     levels[0] = level;
    965 
    966     do
    967     {
    968       level = levels[top];
    969       if ( level > 0 )
    970       {
    971         gray_split_conic( arc );
    972         arc += 2;
    973         top++;
    974         levels[top] = levels[top - 1] = level - 1;
    975         continue;
    976       }
    977 
    978     Draw:
    979       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
    980       top--;
    981       arc -= 2;
    982 
    983     } while ( top >= 0 );
    984   }
    985 
    986 
    987   static void
    988   gray_split_cubic( FT_Vector*  base )
    989   {
    990     TPos  a, b, c, d;
    991 
    992 
    993     base[6].x = base[3].x;
    994     c = base[1].x;
    995     d = base[2].x;
    996     base[1].x = a = ( base[0].x + c ) / 2;
    997     base[5].x = b = ( base[3].x + d ) / 2;
    998     c = ( c + d ) / 2;
    999     base[2].x = a = ( a + c ) / 2;
   1000     base[4].x = b = ( b + c ) / 2;
   1001     base[3].x = ( a + b ) / 2;
   1002 
   1003     base[6].y = base[3].y;
   1004     c = base[1].y;
   1005     d = base[2].y;
   1006     base[1].y = a = ( base[0].y + c ) / 2;
   1007     base[5].y = b = ( base[3].y + d ) / 2;
   1008     c = ( c + d ) / 2;
   1009     base[2].y = a = ( a + c ) / 2;
   1010     base[4].y = b = ( b + c ) / 2;
   1011     base[3].y = ( a + b ) / 2;
   1012   }
   1013 
   1014 
   1015   static void
   1016   gray_render_cubic( RAS_ARG_ const FT_Vector*  control1,
   1017                               const FT_Vector*  control2,
   1018                               const FT_Vector*  to )
   1019   {
   1020     FT_Vector*  arc;
   1021     TPos        min, max, y;
   1022 
   1023 
   1024     arc      = ras.bez_stack;
   1025     arc[0].x = UPSCALE( to->x );
   1026     arc[0].y = UPSCALE( to->y );
   1027     arc[1].x = UPSCALE( control2->x );
   1028     arc[1].y = UPSCALE( control2->y );
   1029     arc[2].x = UPSCALE( control1->x );
   1030     arc[2].y = UPSCALE( control1->y );
   1031     arc[3].x = ras.x;
   1032     arc[3].y = ras.y;
   1033 
   1034     /* Short-cut the arc that crosses the current band. */
   1035     min = max = arc[0].y;
   1036 
   1037     y = arc[1].y;
   1038     if ( y < min )
   1039       min = y;
   1040     if ( y > max )
   1041       max = y;
   1042 
   1043     y = arc[2].y;
   1044     if ( y < min )
   1045       min = y;
   1046     if ( y > max )
   1047       max = y;
   1048 
   1049     y = arc[3].y;
   1050     if ( y < min )
   1051       min = y;
   1052     if ( y > max )
   1053       max = y;
   1054 
   1055     if ( TRUNC( min ) >= ras.max_ey || TRUNC( max ) < ras.min_ey )
   1056       goto Draw;
   1057 
   1058     for (;;)
   1059     {
   1060       /* Decide whether to split or draw. See `Rapid Termination          */
   1061       /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
   1062       /* F. Hain, at                                                      */
   1063       /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
   1064 
   1065       {
   1066         TPos  dx, dy, dx_, dy_;
   1067         TPos  dx1, dy1, dx2, dy2;
   1068         TPos  L, s, s_limit;
   1069 
   1070 
   1071         /* dx and dy are x and y components of the P0-P3 chord vector. */
   1072         dx = arc[3].x - arc[0].x;
   1073         dy = arc[3].y - arc[0].y;
   1074 
   1075         /* L is an (under)estimate of the Euclidean distance P0-P3.       */
   1076         /*                                                                */
   1077         /* If dx >= dy, then r = sqrt(dx^2 + dy^2) can be overestimated   */
   1078         /* with least maximum error by                                    */
   1079         /*                                                                */
   1080         /*   r_upperbound = dx + (sqrt(2) - 1) * dy  ,                    */
   1081         /*                                                                */
   1082         /* where sqrt(2) - 1 can be (over)estimated by 107/256, giving an */
   1083         /* error of no more than 8.4%.                                    */
   1084         /*                                                                */
   1085         /* Similarly, some elementary calculus shows that r can be        */
   1086         /* underestimated with least maximum error by                     */
   1087         /*                                                                */
   1088         /*   r_lowerbound = sqrt(2 + sqrt(2)) / 2 * dx                    */
   1089         /*                  + sqrt(2 - sqrt(2)) / 2 * dy  .               */
   1090         /*                                                                */
   1091         /* 236/256 and 97/256 are (under)estimates of the two algebraic   */
   1092         /* numbers, giving an error of no more than 8.1%.                 */
   1093 
   1094         dx_ = FT_ABS( dx );
   1095         dy_ = FT_ABS( dy );
   1096 
   1097         /* This is the same as                     */
   1098         /*                                         */
   1099         /*   L = ( 236 * FT_MAX( dx_, dy_ )        */
   1100         /*       + 97 * FT_MIN( dx_, dy_ ) ) >> 8; */
   1101         L = ( dx_ > dy_ ? 236 * dx_ +  97 * dy_
   1102                         :  97 * dx_ + 236 * dy_ ) >> 8;
   1103 
   1104         /* Avoid possible arithmetic overflow below by splitting. */
   1105         if ( L > 32767 )
   1106           goto Split;
   1107 
   1108         /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
   1109         s_limit = L * (TPos)( ONE_PIXEL / 6 );
   1110 
   1111         /* s is L * the perpendicular distance from P1 to the line P0-P3. */
   1112         dx1 = arc[1].x - arc[0].x;
   1113         dy1 = arc[1].y - arc[0].y;
   1114         s = FT_ABS( dy * dx1 - dx * dy1 );
   1115 
   1116         if ( s > s_limit )
   1117           goto Split;
   1118 
   1119         /* s is L * the perpendicular distance from P2 to the line P0-P3. */
   1120         dx2 = arc[2].x - arc[0].x;
   1121         dy2 = arc[2].y - arc[0].y;
   1122         s = FT_ABS( dy * dx2 - dx * dy2 );
   1123 
   1124         if ( s > s_limit )
   1125           goto Split;
   1126 
   1127         /* Split super curvy segments where the off points are so far
   1128            from the chord that the angles P0-P1-P3 or P0-P2-P3 become
   1129            acute as detected by appropriate dot products. */
   1130         if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
   1131              dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
   1132           goto Split;
   1133 
   1134         /* No reason to split. */
   1135         goto Draw;
   1136       }
   1137 
   1138     Split:
   1139       gray_split_cubic( arc );
   1140       arc += 3;
   1141       continue;
   1142 
   1143     Draw:
   1144       gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
   1145 
   1146       if ( arc == ras.bez_stack )
   1147         return;
   1148 
   1149       arc -= 3;
   1150     }
   1151   }
   1152 
   1153 
   1154   static int
   1155   gray_move_to( const FT_Vector*  to,
   1156                 gray_PWorker      worker )
   1157   {
   1158     TPos  x, y;
   1159 
   1160 
   1161     /* record current cell, if any */
   1162     gray_record_cell( RAS_VAR );
   1163 
   1164     /* start to a new position */
   1165     x = UPSCALE( to->x );
   1166     y = UPSCALE( to->y );
   1167 
   1168     gray_start_cell( RAS_VAR_ TRUNC( x ), TRUNC( y ) );
   1169 
   1170     worker->x = x;
   1171     worker->y = y;
   1172     return 0;
   1173   }
   1174 
   1175 
   1176   static int
   1177   gray_line_to( const FT_Vector*  to,
   1178                 gray_PWorker      worker )
   1179   {
   1180     gray_render_line( RAS_VAR_ UPSCALE( to->x ), UPSCALE( to->y ) );
   1181     return 0;
   1182   }
   1183 
   1184 
   1185   static int
   1186   gray_conic_to( const FT_Vector*  control,
   1187                  const FT_Vector*  to,
   1188                  gray_PWorker      worker )
   1189   {
   1190     gray_render_conic( RAS_VAR_ control, to );
   1191     return 0;
   1192   }
   1193 
   1194 
   1195   static int
   1196   gray_cubic_to( const FT_Vector*  control1,
   1197                  const FT_Vector*  control2,
   1198                  const FT_Vector*  to,
   1199                  gray_PWorker      worker )
   1200   {
   1201     gray_render_cubic( RAS_VAR_ control1, control2, to );
   1202     return 0;
   1203   }
   1204 
   1205 
   1206   static void
   1207   gray_render_span( int             y,
   1208                     int             count,
   1209                     const FT_Span*  spans,
   1210                     gray_PWorker    worker )
   1211   {
   1212     unsigned char*  p;
   1213     FT_Bitmap*      map = &worker->target;
   1214 
   1215 
   1216     /* first of all, compute the scanline offset */
   1217     p = (unsigned char*)map->buffer - y * map->pitch;
   1218     if ( map->pitch >= 0 )
   1219       p += (unsigned)( ( map->rows - 1 ) * map->pitch );
   1220 
   1221     for ( ; count > 0; count--, spans++ )
   1222     {
   1223       unsigned char  coverage = spans->coverage;
   1224 
   1225 
   1226       if ( coverage )
   1227       {
   1228         /* For small-spans it is faster to do it by ourselves than
   1229          * calling `memset'.  This is mainly due to the cost of the
   1230          * function call.
   1231          */
   1232         if ( spans->len >= 8 )
   1233           FT_MEM_SET( p + spans->x, (unsigned char)coverage, spans->len );
   1234         else
   1235         {
   1236           unsigned char*  q = p + spans->x;
   1237 
   1238 
   1239           switch ( spans->len )
   1240           {
   1241           case 7: *q++ = (unsigned char)coverage;
   1242           case 6: *q++ = (unsigned char)coverage;
   1243           case 5: *q++ = (unsigned char)coverage;
   1244           case 4: *q++ = (unsigned char)coverage;
   1245           case 3: *q++ = (unsigned char)coverage;
   1246           case 2: *q++ = (unsigned char)coverage;
   1247           case 1: *q   = (unsigned char)coverage;
   1248           default:
   1249             ;
   1250           }
   1251         }
   1252       }
   1253     }
   1254   }
   1255 
   1256 
   1257   static void
   1258   gray_hline( RAS_ARG_ TCoord  x,
   1259                        TCoord  y,
   1260                        TPos    area,
   1261                        TCoord  acount )
   1262   {
   1263     int  coverage;
   1264 
   1265 
   1266     /* compute the coverage line's coverage, depending on the    */
   1267     /* outline fill rule                                         */
   1268     /*                                                           */
   1269     /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
   1270     /*                                                           */
   1271     coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
   1272                                                     /* use range 0..256 */
   1273     if ( coverage < 0 )
   1274       coverage = -coverage;
   1275 
   1276     if ( ras.outline.flags & FT_OUTLINE_EVEN_ODD_FILL )
   1277     {
   1278       coverage &= 511;
   1279 
   1280       if ( coverage > 256 )
   1281         coverage = 512 - coverage;
   1282       else if ( coverage == 256 )
   1283         coverage = 255;
   1284     }
   1285     else
   1286     {
   1287       /* normal non-zero winding rule */
   1288       if ( coverage >= 256 )
   1289         coverage = 255;
   1290     }
   1291 
   1292     y += (TCoord)ras.min_ey;
   1293     x += (TCoord)ras.min_ex;
   1294 
   1295     /* FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
   1296     if ( x >= 32767 )
   1297       x = 32767;
   1298 
   1299     /* FT_Span.y is an integer, so limit our coordinates appropriately */
   1300     if ( y >= FT_INT_MAX )
   1301       y = FT_INT_MAX;
   1302 
   1303     if ( coverage )
   1304     {
   1305       FT_Span*  span;
   1306       int       count;
   1307 
   1308 
   1309       /* see whether we can add this span to the current list */
   1310       count = ras.num_gray_spans;
   1311       span  = ras.gray_spans + count - 1;
   1312       if ( count > 0                          &&
   1313            ras.span_y == y                    &&
   1314            (int)span->x + span->len == (int)x &&
   1315            span->coverage == coverage         )
   1316       {
   1317         span->len = (unsigned short)( span->len + acount );
   1318         return;
   1319       }
   1320 
   1321       if ( ras.span_y != y || count >= FT_MAX_GRAY_SPANS )
   1322       {
   1323         if ( ras.render_span && count > 0 )
   1324           ras.render_span( ras.span_y, count, ras.gray_spans,
   1325                            ras.render_span_data );
   1326 
   1327 #ifdef FT_DEBUG_LEVEL_TRACE
   1328 
   1329         if ( count > 0 )
   1330         {
   1331           int  n;
   1332 
   1333 
   1334           FT_TRACE7(( "y = %3d ", ras.span_y ));
   1335           span = ras.gray_spans;
   1336           for ( n = 0; n < count; n++, span++ )
   1337             FT_TRACE7(( "[%d..%d]:%02x ",
   1338                         span->x, span->x + span->len - 1, span->coverage ));
   1339           FT_TRACE7(( "\n" ));
   1340         }
   1341 
   1342 #endif /* FT_DEBUG_LEVEL_TRACE */
   1343 
   1344         ras.num_gray_spans = 0;
   1345         ras.span_y         = (int)y;
   1346 
   1347         count = 0;
   1348         span  = ras.gray_spans;
   1349       }
   1350       else
   1351         span++;
   1352 
   1353       /* add a gray span to the current list */
   1354       span->x        = (short)x;
   1355       span->len      = (unsigned short)acount;
   1356       span->coverage = (unsigned char)coverage;
   1357 
   1358       ras.num_gray_spans++;
   1359     }
   1360   }
   1361 
   1362 
   1363 #ifdef FT_DEBUG_LEVEL_TRACE
   1364 
   1365   /* to be called while in the debugger --                                */
   1366   /* this function causes a compiler warning since it is unused otherwise */
   1367   static void
   1368   gray_dump_cells( RAS_ARG )
   1369   {
   1370     int  yindex;
   1371 
   1372 
   1373     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1374     {
   1375       PCell  cell;
   1376 
   1377 
   1378       printf( "%3d:", yindex );
   1379 
   1380       for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
   1381         printf( " (%3ld, c:%4ld, a:%6d)", cell->x, cell->cover, cell->area );
   1382       printf( "\n" );
   1383     }
   1384   }
   1385 
   1386 #endif /* FT_DEBUG_LEVEL_TRACE */
   1387 
   1388 
   1389   static void
   1390   gray_sweep( RAS_ARG_ const FT_Bitmap*  target )
   1391   {
   1392     int  yindex;
   1393 
   1394     FT_UNUSED( target );
   1395 
   1396 
   1397     if ( ras.num_cells == 0 )
   1398       return;
   1399 
   1400     ras.num_gray_spans = 0;
   1401 
   1402     FT_TRACE7(( "gray_sweep: start\n" ));
   1403 
   1404     for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1405     {
   1406       PCell   cell  = ras.ycells[yindex];
   1407       TCoord  cover = 0;
   1408       TCoord  x     = 0;
   1409 
   1410 
   1411       for ( ; cell != NULL; cell = cell->next )
   1412       {
   1413         TPos  area;
   1414 
   1415 
   1416         if ( cell->x > x && cover != 0 )
   1417           gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1418                       cell->x - x );
   1419 
   1420         cover += cell->cover;
   1421         area   = cover * ( ONE_PIXEL * 2 ) - cell->area;
   1422 
   1423         if ( area != 0 && cell->x >= 0 )
   1424           gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
   1425 
   1426         x = cell->x + 1;
   1427       }
   1428 
   1429       if ( cover != 0 )
   1430         gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
   1431                     ras.count_ex - x );
   1432     }
   1433 
   1434     if ( ras.render_span && ras.num_gray_spans > 0 )
   1435       ras.render_span( ras.span_y, ras.num_gray_spans,
   1436                        ras.gray_spans, ras.render_span_data );
   1437 
   1438 #ifdef FT_DEBUG_LEVEL_TRACE
   1439 
   1440     if ( ras.num_gray_spans > 0 )
   1441     {
   1442       FT_Span*  span;
   1443       int       n;
   1444 
   1445 
   1446       FT_TRACE7(( "y = %3d ", ras.span_y ));
   1447       span = ras.gray_spans;
   1448       for ( n = 0; n < ras.num_gray_spans; n++, span++ )
   1449         FT_TRACE7(( "[%d..%d]:%02x ",
   1450                     span->x, span->x + span->len - 1, span->coverage ));
   1451       FT_TRACE7(( "\n" ));
   1452     }
   1453 
   1454     FT_TRACE7(( "gray_sweep: end\n" ));
   1455 
   1456 #endif /* FT_DEBUG_LEVEL_TRACE */
   1457 
   1458   }
   1459 
   1460 
   1461 #ifdef _STANDALONE_
   1462 
   1463   /*************************************************************************/
   1464   /*                                                                       */
   1465   /*  The following function should only compile in stand-alone mode,      */
   1466   /*  i.e., when building this component without the rest of FreeType.     */
   1467   /*                                                                       */
   1468   /*************************************************************************/
   1469 
   1470   /*************************************************************************/
   1471   /*                                                                       */
   1472   /* <Function>                                                            */
   1473   /*    FT_Outline_Decompose                                               */
   1474   /*                                                                       */
   1475   /* <Description>                                                         */
   1476   /*    Walk over an outline's structure to decompose it into individual   */
   1477   /*    segments and Bzier arcs.  This function is also able to emit      */
   1478   /*    `move to' and `close to' operations to indicate the start and end  */
   1479   /*    of new contours in the outline.                                    */
   1480   /*                                                                       */
   1481   /* <Input>                                                               */
   1482   /*    outline        :: A pointer to the source target.                  */
   1483   /*                                                                       */
   1484   /*    func_interface :: A table of `emitters', i.e., function pointers   */
   1485   /*                      called during decomposition to indicate path     */
   1486   /*                      operations.                                      */
   1487   /*                                                                       */
   1488   /* <InOut>                                                               */
   1489   /*    user           :: A typeless pointer which is passed to each       */
   1490   /*                      emitter during the decomposition.  It can be     */
   1491   /*                      used to store the state during the               */
   1492   /*                      decomposition.                                   */
   1493   /*                                                                       */
   1494   /* <Return>                                                              */
   1495   /*    Error code.  0 means success.                                      */
   1496   /*                                                                       */
   1497   static int
   1498   FT_Outline_Decompose( const FT_Outline*        outline,
   1499                         const FT_Outline_Funcs*  func_interface,
   1500                         void*                    user )
   1501   {
   1502 #undef SCALED
   1503 #define SCALED( x )  ( ( (x) << shift ) - delta )
   1504 
   1505     FT_Vector   v_last;
   1506     FT_Vector   v_control;
   1507     FT_Vector   v_start;
   1508 
   1509     FT_Vector*  point;
   1510     FT_Vector*  limit;
   1511     char*       tags;
   1512 
   1513     int         error;
   1514 
   1515     int   n;         /* index of contour in outline     */
   1516     int   first;     /* index of first point in contour */
   1517     char  tag;       /* current point's state           */
   1518 
   1519     int   shift;
   1520     TPos  delta;
   1521 
   1522 
   1523     if ( !outline || !func_interface )
   1524       return FT_THROW( Invalid_Argument );
   1525 
   1526     shift = func_interface->shift;
   1527     delta = func_interface->delta;
   1528     first = 0;
   1529 
   1530     for ( n = 0; n < outline->n_contours; n++ )
   1531     {
   1532       int  last;  /* index of last point in contour */
   1533 
   1534 
   1535       FT_TRACE5(( "FT_Outline_Decompose: Outline %d\n", n ));
   1536 
   1537       last  = outline->contours[n];
   1538       if ( last < 0 )
   1539         goto Invalid_Outline;
   1540       limit = outline->points + last;
   1541 
   1542       v_start   = outline->points[first];
   1543       v_start.x = SCALED( v_start.x );
   1544       v_start.y = SCALED( v_start.y );
   1545 
   1546       v_last   = outline->points[last];
   1547       v_last.x = SCALED( v_last.x );
   1548       v_last.y = SCALED( v_last.y );
   1549 
   1550       v_control = v_start;
   1551 
   1552       point = outline->points + first;
   1553       tags  = outline->tags   + first;
   1554       tag   = FT_CURVE_TAG( tags[0] );
   1555 
   1556       /* A contour cannot start with a cubic control point! */
   1557       if ( tag == FT_CURVE_TAG_CUBIC )
   1558         goto Invalid_Outline;
   1559 
   1560       /* check first point to determine origin */
   1561       if ( tag == FT_CURVE_TAG_CONIC )
   1562       {
   1563         /* first point is conic control.  Yes, this happens. */
   1564         if ( FT_CURVE_TAG( outline->tags[last] ) == FT_CURVE_TAG_ON )
   1565         {
   1566           /* start at last point if it is on the curve */
   1567           v_start = v_last;
   1568           limit--;
   1569         }
   1570         else
   1571         {
   1572           /* if both first and last points are conic,         */
   1573           /* start at their middle and record its position    */
   1574           /* for closure                                      */
   1575           v_start.x = ( v_start.x + v_last.x ) / 2;
   1576           v_start.y = ( v_start.y + v_last.y ) / 2;
   1577 
   1578           v_last = v_start;
   1579         }
   1580         point--;
   1581         tags--;
   1582       }
   1583 
   1584       FT_TRACE5(( "  move to (%.2f, %.2f)\n",
   1585                   v_start.x / 64.0, v_start.y / 64.0 ));
   1586       error = func_interface->move_to( &v_start, user );
   1587       if ( error )
   1588         goto Exit;
   1589 
   1590       while ( point < limit )
   1591       {
   1592         point++;
   1593         tags++;
   1594 
   1595         tag = FT_CURVE_TAG( tags[0] );
   1596         switch ( tag )
   1597         {
   1598         case FT_CURVE_TAG_ON:  /* emit a single line_to */
   1599           {
   1600             FT_Vector  vec;
   1601 
   1602 
   1603             vec.x = SCALED( point->x );
   1604             vec.y = SCALED( point->y );
   1605 
   1606             FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1607                         vec.x / 64.0, vec.y / 64.0 ));
   1608             error = func_interface->line_to( &vec, user );
   1609             if ( error )
   1610               goto Exit;
   1611             continue;
   1612           }
   1613 
   1614         case FT_CURVE_TAG_CONIC:  /* consume conic arcs */
   1615           v_control.x = SCALED( point->x );
   1616           v_control.y = SCALED( point->y );
   1617 
   1618         Do_Conic:
   1619           if ( point < limit )
   1620           {
   1621             FT_Vector  vec;
   1622             FT_Vector  v_middle;
   1623 
   1624 
   1625             point++;
   1626             tags++;
   1627             tag = FT_CURVE_TAG( tags[0] );
   1628 
   1629             vec.x = SCALED( point->x );
   1630             vec.y = SCALED( point->y );
   1631 
   1632             if ( tag == FT_CURVE_TAG_ON )
   1633             {
   1634               FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1635                           " with control (%.2f, %.2f)\n",
   1636                           vec.x / 64.0, vec.y / 64.0,
   1637                           v_control.x / 64.0, v_control.y / 64.0 ));
   1638               error = func_interface->conic_to( &v_control, &vec, user );
   1639               if ( error )
   1640                 goto Exit;
   1641               continue;
   1642             }
   1643 
   1644             if ( tag != FT_CURVE_TAG_CONIC )
   1645               goto Invalid_Outline;
   1646 
   1647             v_middle.x = ( v_control.x + vec.x ) / 2;
   1648             v_middle.y = ( v_control.y + vec.y ) / 2;
   1649 
   1650             FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1651                         " with control (%.2f, %.2f)\n",
   1652                         v_middle.x / 64.0, v_middle.y / 64.0,
   1653                         v_control.x / 64.0, v_control.y / 64.0 ));
   1654             error = func_interface->conic_to( &v_control, &v_middle, user );
   1655             if ( error )
   1656               goto Exit;
   1657 
   1658             v_control = vec;
   1659             goto Do_Conic;
   1660           }
   1661 
   1662           FT_TRACE5(( "  conic to (%.2f, %.2f)"
   1663                       " with control (%.2f, %.2f)\n",
   1664                       v_start.x / 64.0, v_start.y / 64.0,
   1665                       v_control.x / 64.0, v_control.y / 64.0 ));
   1666           error = func_interface->conic_to( &v_control, &v_start, user );
   1667           goto Close;
   1668 
   1669         default:  /* FT_CURVE_TAG_CUBIC */
   1670           {
   1671             FT_Vector  vec1, vec2;
   1672 
   1673 
   1674             if ( point + 1 > limit                             ||
   1675                  FT_CURVE_TAG( tags[1] ) != FT_CURVE_TAG_CUBIC )
   1676               goto Invalid_Outline;
   1677 
   1678             point += 2;
   1679             tags  += 2;
   1680 
   1681             vec1.x = SCALED( point[-2].x );
   1682             vec1.y = SCALED( point[-2].y );
   1683 
   1684             vec2.x = SCALED( point[-1].x );
   1685             vec2.y = SCALED( point[-1].y );
   1686 
   1687             if ( point <= limit )
   1688             {
   1689               FT_Vector  vec;
   1690 
   1691 
   1692               vec.x = SCALED( point->x );
   1693               vec.y = SCALED( point->y );
   1694 
   1695               FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1696                           " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1697                           vec.x / 64.0, vec.y / 64.0,
   1698                           vec1.x / 64.0, vec1.y / 64.0,
   1699                           vec2.x / 64.0, vec2.y / 64.0 ));
   1700               error = func_interface->cubic_to( &vec1, &vec2, &vec, user );
   1701               if ( error )
   1702                 goto Exit;
   1703               continue;
   1704             }
   1705 
   1706             FT_TRACE5(( "  cubic to (%.2f, %.2f)"
   1707                         " with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
   1708                         v_start.x / 64.0, v_start.y / 64.0,
   1709                         vec1.x / 64.0, vec1.y / 64.0,
   1710                         vec2.x / 64.0, vec2.y / 64.0 ));
   1711             error = func_interface->cubic_to( &vec1, &vec2, &v_start, user );
   1712             goto Close;
   1713           }
   1714         }
   1715       }
   1716 
   1717       /* close the contour with a line segment */
   1718       FT_TRACE5(( "  line to (%.2f, %.2f)\n",
   1719                   v_start.x / 64.0, v_start.y / 64.0 ));
   1720       error = func_interface->line_to( &v_start, user );
   1721 
   1722    Close:
   1723       if ( error )
   1724         goto Exit;
   1725 
   1726       first = last + 1;
   1727     }
   1728 
   1729     FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
   1730     return 0;
   1731 
   1732   Exit:
   1733     FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
   1734     return error;
   1735 
   1736   Invalid_Outline:
   1737     return FT_THROW( Invalid_Outline );
   1738   }
   1739 
   1740 #endif /* _STANDALONE_ */
   1741 
   1742 
   1743   typedef struct  gray_TBand_
   1744   {
   1745     TPos  min, max;
   1746 
   1747   } gray_TBand;
   1748 
   1749     FT_DEFINE_OUTLINE_FUNCS(func_interface,
   1750       (FT_Outline_MoveTo_Func) gray_move_to,
   1751       (FT_Outline_LineTo_Func) gray_line_to,
   1752       (FT_Outline_ConicTo_Func)gray_conic_to,
   1753       (FT_Outline_CubicTo_Func)gray_cubic_to,
   1754       0,
   1755       0
   1756     )
   1757 
   1758   static int
   1759   gray_convert_glyph_inner( RAS_ARG )
   1760   {
   1761 
   1762     volatile int  error = 0;
   1763 
   1764 #ifdef FT_CONFIG_OPTION_PIC
   1765       FT_Outline_Funcs func_interface;
   1766       Init_Class_func_interface(&func_interface);
   1767 #endif
   1768 
   1769     if ( ft_setjmp( ras.jump_buffer ) == 0 )
   1770     {
   1771       error = FT_Outline_Decompose( &ras.outline, &func_interface, &ras );
   1772       gray_record_cell( RAS_VAR );
   1773     }
   1774     else
   1775       error = FT_THROW( Memory_Overflow );
   1776 
   1777     return error;
   1778   }
   1779 
   1780 
   1781   static int
   1782   gray_convert_glyph( RAS_ARG )
   1783   {
   1784     gray_TBand            bands[40];
   1785     gray_TBand* volatile  band;
   1786     int volatile          n, num_bands;
   1787     TPos volatile         min, max, max_y;
   1788     FT_BBox*              clip;
   1789 
   1790 
   1791     /* Set up state in the raster object */
   1792     gray_compute_cbox( RAS_VAR );
   1793 
   1794     /* clip to target bitmap, exit if nothing to do */
   1795     clip = &ras.clip_box;
   1796 
   1797     if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
   1798          ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
   1799       return 0;
   1800 
   1801     if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
   1802     if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
   1803 
   1804     if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
   1805     if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
   1806 
   1807     ras.count_ex = ras.max_ex - ras.min_ex;
   1808     ras.count_ey = ras.max_ey - ras.min_ey;
   1809 
   1810     /* set up vertical bands */
   1811     num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
   1812     if ( num_bands == 0 )
   1813       num_bands = 1;
   1814     if ( num_bands >= 39 )
   1815       num_bands = 39;
   1816 
   1817     ras.band_shoot = 0;
   1818 
   1819     min   = ras.min_ey;
   1820     max_y = ras.max_ey;
   1821 
   1822     for ( n = 0; n < num_bands; n++, min = max )
   1823     {
   1824       max = min + ras.band_size;
   1825       if ( n == num_bands - 1 || max > max_y )
   1826         max = max_y;
   1827 
   1828       bands[0].min = min;
   1829       bands[0].max = max;
   1830       band         = bands;
   1831 
   1832       while ( band >= bands )
   1833       {
   1834         TPos  bottom, top, middle;
   1835         int   error;
   1836 
   1837         {
   1838           PCell  cells_max;
   1839           int    yindex;
   1840           long   cell_start, cell_end, cell_mod;
   1841 
   1842 
   1843           ras.ycells = (PCell*)ras.buffer;
   1844           ras.ycount = band->max - band->min;
   1845 
   1846           cell_start = sizeof ( PCell ) * ras.ycount;
   1847           cell_mod   = cell_start % sizeof ( TCell );
   1848           if ( cell_mod > 0 )
   1849             cell_start += sizeof ( TCell ) - cell_mod;
   1850 
   1851           cell_end  = ras.buffer_size;
   1852           cell_end -= cell_end % sizeof ( TCell );
   1853 
   1854           cells_max = (PCell)( (char*)ras.buffer + cell_end );
   1855           ras.cells = (PCell)( (char*)ras.buffer + cell_start );
   1856           if ( ras.cells >= cells_max )
   1857             goto ReduceBands;
   1858 
   1859           ras.max_cells = cells_max - ras.cells;
   1860           if ( ras.max_cells < 2 )
   1861             goto ReduceBands;
   1862 
   1863           for ( yindex = 0; yindex < ras.ycount; yindex++ )
   1864             ras.ycells[yindex] = NULL;
   1865         }
   1866 
   1867         ras.num_cells = 0;
   1868         ras.invalid   = 1;
   1869         ras.min_ey    = band->min;
   1870         ras.max_ey    = band->max;
   1871         ras.count_ey  = band->max - band->min;
   1872 
   1873         error = gray_convert_glyph_inner( RAS_VAR );
   1874 
   1875         if ( !error )
   1876         {
   1877           gray_sweep( RAS_VAR_ &ras.target );
   1878           band--;
   1879           continue;
   1880         }
   1881         else if ( error != ErrRaster_Memory_Overflow )
   1882           return 1;
   1883 
   1884       ReduceBands:
   1885         /* render pool overflow; we will reduce the render band by half */
   1886         bottom = band->min;
   1887         top    = band->max;
   1888         middle = bottom + ( ( top - bottom ) >> 1 );
   1889 
   1890         /* This is too complex for a single scanline; there must */
   1891         /* be some problems.                                     */
   1892         if ( middle == bottom )
   1893         {
   1894 #ifdef FT_DEBUG_LEVEL_TRACE
   1895           FT_TRACE7(( "gray_convert_glyph: rotten glyph\n" ));
   1896 #endif
   1897           return 1;
   1898         }
   1899 
   1900         if ( bottom-top >= ras.band_size )
   1901           ras.band_shoot++;
   1902 
   1903         band[1].min = bottom;
   1904         band[1].max = middle;
   1905         band[0].min = middle;
   1906         band[0].max = top;
   1907         band++;
   1908       }
   1909     }
   1910 
   1911     if ( ras.band_shoot > 8 && ras.band_size > 16 )
   1912       ras.band_size = ras.band_size / 2;
   1913 
   1914     return 0;
   1915   }
   1916 
   1917 
   1918   static int
   1919   gray_raster_render( gray_PRaster             raster,
   1920                       const FT_Raster_Params*  params )
   1921   {
   1922     const FT_Outline*  outline    = (const FT_Outline*)params->source;
   1923     const FT_Bitmap*   target_map = params->target;
   1924     gray_PWorker       worker;
   1925 
   1926 
   1927     if ( !raster || !raster->buffer || !raster->buffer_size )
   1928       return FT_THROW( Invalid_Argument );
   1929 
   1930     if ( !outline )
   1931       return FT_THROW( Invalid_Outline );
   1932 
   1933     /* return immediately if the outline is empty */
   1934     if ( outline->n_points == 0 || outline->n_contours <= 0 )
   1935       return 0;
   1936 
   1937     if ( !outline->contours || !outline->points )
   1938       return FT_THROW( Invalid_Outline );
   1939 
   1940     if ( outline->n_points !=
   1941            outline->contours[outline->n_contours - 1] + 1 )
   1942       return FT_THROW( Invalid_Outline );
   1943 
   1944     worker = raster->worker;
   1945 
   1946     /* if direct mode is not set, we must have a target bitmap */
   1947     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1948     {
   1949       if ( !target_map )
   1950         return FT_THROW( Invalid_Argument );
   1951 
   1952       /* nothing to do */
   1953       if ( !target_map->width || !target_map->rows )
   1954         return 0;
   1955 
   1956       if ( !target_map->buffer )
   1957         return FT_THROW( Invalid_Argument );
   1958     }
   1959 
   1960     /* this version does not support monochrome rendering */
   1961     if ( !( params->flags & FT_RASTER_FLAG_AA ) )
   1962       return FT_THROW( Invalid_Mode );
   1963 
   1964     /* compute clipping box */
   1965     if ( !( params->flags & FT_RASTER_FLAG_DIRECT ) )
   1966     {
   1967       /* compute clip box from target pixmap */
   1968       ras.clip_box.xMin = 0;
   1969       ras.clip_box.yMin = 0;
   1970       ras.clip_box.xMax = target_map->width;
   1971       ras.clip_box.yMax = target_map->rows;
   1972     }
   1973     else if ( params->flags & FT_RASTER_FLAG_CLIP )
   1974       ras.clip_box = params->clip_box;
   1975     else
   1976     {
   1977       ras.clip_box.xMin = -32768L;
   1978       ras.clip_box.yMin = -32768L;
   1979       ras.clip_box.xMax =  32767L;
   1980       ras.clip_box.yMax =  32767L;
   1981     }
   1982 
   1983     gray_init_cells( RAS_VAR_ raster->buffer, raster->buffer_size );
   1984 
   1985     ras.outline        = *outline;
   1986     ras.num_cells      = 0;
   1987     ras.invalid        = 1;
   1988     ras.band_size      = raster->band_size;
   1989     ras.num_gray_spans = 0;
   1990 
   1991     if ( params->flags & FT_RASTER_FLAG_DIRECT )
   1992     {
   1993       ras.render_span      = (FT_Raster_Span_Func)params->gray_spans;
   1994       ras.render_span_data = params->user;
   1995     }
   1996     else
   1997     {
   1998       ras.target           = *target_map;
   1999       ras.render_span      = (FT_Raster_Span_Func)gray_render_span;
   2000       ras.render_span_data = &ras;
   2001     }
   2002 
   2003     return gray_convert_glyph( RAS_VAR );
   2004   }
   2005 
   2006 
   2007   /**** RASTER OBJECT CREATION: In stand-alone mode, we simply use *****/
   2008   /****                         a static object.                   *****/
   2009 
   2010 #ifdef _STANDALONE_
   2011 
   2012   static int
   2013   gray_raster_new( void*       memory,
   2014                    FT_Raster*  araster )
   2015   {
   2016     static gray_TRaster  the_raster;
   2017 
   2018     FT_UNUSED( memory );
   2019 
   2020 
   2021     *araster = (FT_Raster)&the_raster;
   2022     FT_MEM_ZERO( &the_raster, sizeof ( the_raster ) );
   2023 
   2024     return 0;
   2025   }
   2026 
   2027 
   2028   static void
   2029   gray_raster_done( FT_Raster  raster )
   2030   {
   2031     /* nothing */
   2032     FT_UNUSED( raster );
   2033   }
   2034 
   2035 #else /* !_STANDALONE_ */
   2036 
   2037   static int
   2038   gray_raster_new( FT_Memory   memory,
   2039                    FT_Raster*  araster )
   2040   {
   2041     FT_Error      error;
   2042     gray_PRaster  raster = NULL;
   2043 
   2044 
   2045     *araster = 0;
   2046     if ( !FT_ALLOC( raster, sizeof ( gray_TRaster ) ) )
   2047     {
   2048       raster->memory = memory;
   2049       *araster       = (FT_Raster)raster;
   2050     }
   2051 
   2052     return error;
   2053   }
   2054 
   2055 
   2056   static void
   2057   gray_raster_done( FT_Raster  raster )
   2058   {
   2059     FT_Memory  memory = (FT_Memory)((gray_PRaster)raster)->memory;
   2060 
   2061 
   2062     FT_FREE( raster );
   2063   }
   2064 
   2065 #endif /* !_STANDALONE_ */
   2066 
   2067 
   2068   static void
   2069   gray_raster_reset( FT_Raster  raster,
   2070                      char*      pool_base,
   2071                      long       pool_size )
   2072   {
   2073     gray_PRaster  rast = (gray_PRaster)raster;
   2074 
   2075 
   2076     if ( raster )
   2077     {
   2078       if ( pool_base && pool_size >= (long)sizeof ( gray_TWorker ) + 2048 )
   2079       {
   2080         gray_PWorker  worker = (gray_PWorker)pool_base;
   2081 
   2082 
   2083         rast->worker      = worker;
   2084         rast->buffer      = pool_base +
   2085                               ( ( sizeof ( gray_TWorker ) +
   2086                                   sizeof ( TCell ) - 1 )  &
   2087                                 ~( sizeof ( TCell ) - 1 ) );
   2088         rast->buffer_size = (long)( ( pool_base + pool_size ) -
   2089                                     (char*)rast->buffer ) &
   2090                                       ~( sizeof ( TCell ) - 1 );
   2091         rast->band_size   = (int)( rast->buffer_size /
   2092                                      ( sizeof ( TCell ) * 8 ) );
   2093       }
   2094       else
   2095       {
   2096         rast->buffer      = NULL;
   2097         rast->buffer_size = 0;
   2098         rast->worker      = NULL;
   2099       }
   2100     }
   2101   }
   2102 
   2103 
   2104   FT_DEFINE_RASTER_FUNCS(ft_grays_raster,
   2105     FT_GLYPH_FORMAT_OUTLINE,
   2106 
   2107     (FT_Raster_New_Func)     gray_raster_new,
   2108     (FT_Raster_Reset_Func)   gray_raster_reset,
   2109     (FT_Raster_Set_Mode_Func)0,
   2110     (FT_Raster_Render_Func)  gray_raster_render,
   2111     (FT_Raster_Done_Func)    gray_raster_done
   2112   )
   2113 
   2114 
   2115 /* END */
   2116 
   2117 
   2118 /* Local Variables: */
   2119 /* coding: utf-8    */
   2120 /* End:             */
   2121