Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jcarith.c
      3  *
      4  * Developed 1997-2009 by Guido Vollbeding.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains portable arithmetic entropy encoding routines for JPEG
      9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
     10  *
     11  * Both sequential and progressive modes are supported in this single module.
     12  *
     13  * Suspension is not currently supported in this module.
     14  */
     15 
     16 #define JPEG_INTERNALS
     17 #include "jinclude.h"
     18 #include "jpeglib.h"
     19 
     20 
     21 /* Expanded entropy encoder object for arithmetic encoding. */
     22 
     23 typedef struct {
     24   struct jpeg_entropy_encoder pub; /* public fields */
     25 
     26   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
     27   INT32 a;               /* A register, normalized size of coding interval */
     28   INT32 sc;        /* counter for stacked 0xFF values which might overflow */
     29   INT32 zc;          /* counter for pending 0x00 output values which might *
     30                           * be discarded at the end ("Pacman" termination) */
     31   int ct;  /* bit shift counter, determines when next byte will be written */
     32   int buffer;                /* buffer for most recent output byte != 0xFF */
     33 
     34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
     36 
     37   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     38   int next_restart_num;		/* next restart number to write (0-7) */
     39 
     40   /* Pointers to statistics areas (these workspaces have image lifespan) */
     41   unsigned char * dc_stats[NUM_ARITH_TBLS];
     42   unsigned char * ac_stats[NUM_ARITH_TBLS];
     43 
     44   /* Statistics bin for coding with fixed probability 0.5 */
     45   unsigned char fixed_bin[4];
     46 } arith_entropy_encoder;
     47 
     48 typedef arith_entropy_encoder * arith_entropy_ptr;
     49 
     50 /* The following two definitions specify the allocation chunk size
     51  * for the statistics area.
     52  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
     53  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
     54  *
     55  * We use a compact representation with 1 byte per statistics bin,
     56  * thus the numbers directly represent byte sizes.
     57  * This 1 byte per statistics bin contains the meaning of the MPS
     58  * (more probable symbol) in the highest bit (mask 0x80), and the
     59  * index into the probability estimation state machine table
     60  * in the lower bits (mask 0x7F).
     61  */
     62 
     63 #define DC_STAT_BINS 64
     64 #define AC_STAT_BINS 256
     65 
     66 /* NOTE: Uncomment the following #define if you want to use the
     67  * given formula for calculating the AC conditioning parameter Kx
     68  * for spectral selection progressive coding in section G.1.3.2
     69  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
     70  * Although the spec and P&M authors claim that this "has proven
     71  * to give good results for 8 bit precision samples", I'm not
     72  * convinced yet that this is really beneficial.
     73  * Early tests gave only very marginal compression enhancements
     74  * (a few - around 5 or so - bytes even for very large files),
     75  * which would turn out rather negative if we'd suppress the
     76  * DAC (Define Arithmetic Conditioning) marker segments for
     77  * the default parameters in the future.
     78  * Note that currently the marker writing module emits 12-byte
     79  * DAC segments for a full-component scan in a color image.
     80  * This is not worth worrying about IMHO. However, since the
     81  * spec defines the default values to be used if the tables
     82  * are omitted (unlike Huffman tables, which are required
     83  * anyway), one might optimize this behaviour in the future,
     84  * and then it would be disadvantageous to use custom tables if
     85  * they don't provide sufficient gain to exceed the DAC size.
     86  *
     87  * On the other hand, I'd consider it as a reasonable result
     88  * that the conditioning has no significant influence on the
     89  * compression performance. This means that the basic
     90  * statistical model is already rather stable.
     91  *
     92  * Thus, at the moment, we use the default conditioning values
     93  * anyway, and do not use the custom formula.
     94  *
     95 #define CALCULATE_SPECTRAL_CONDITIONING
     96  */
     97 
     98 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
     99  * We assume that int right shift is unsigned if INT32 right shift is,
    100  * which should be safe.
    101  */
    102 
    103 #ifdef RIGHT_SHIFT_IS_UNSIGNED
    104 #define ISHIFT_TEMPS	int ishift_temp;
    105 #define IRIGHT_SHIFT(x,shft)  \
    106 	((ishift_temp = (x)) < 0 ? \
    107 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
    108 	 (ishift_temp >> (shft)))
    109 #else
    110 #define ISHIFT_TEMPS
    111 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
    112 #endif
    113 
    114 
    115 LOCAL(void)
    116 emit_byte (int val, j_compress_ptr cinfo)
    117 /* Write next output byte; we do not support suspension in this module. */
    118 {
    119   struct jpeg_destination_mgr * dest = cinfo->dest;
    120 
    121   *dest->next_output_byte++ = (JOCTET) val;
    122   if (--dest->free_in_buffer == 0)
    123     if (! (*dest->empty_output_buffer) (cinfo))
    124       ERREXIT(cinfo, JERR_CANT_SUSPEND);
    125 }
    126 
    127 
    128 /*
    129  * Finish up at the end of an arithmetic-compressed scan.
    130  */
    131 
    132 METHODDEF(void)
    133 finish_pass (j_compress_ptr cinfo)
    134 {
    135   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    136   INT32 temp;
    137 
    138   /* Section D.1.8: Termination of encoding */
    139 
    140   /* Find the e->c in the coding interval with the largest
    141    * number of trailing zero bits */
    142   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
    143     e->c = temp + 0x8000L;
    144   else
    145     e->c = temp;
    146   /* Send remaining bytes to output */
    147   e->c <<= e->ct;
    148   if (e->c & 0xF8000000L) {
    149     /* One final overflow has to be handled */
    150     if (e->buffer >= 0) {
    151       if (e->zc)
    152 	do emit_byte(0x00, cinfo);
    153 	while (--e->zc);
    154       emit_byte(e->buffer + 1, cinfo);
    155       if (e->buffer + 1 == 0xFF)
    156 	emit_byte(0x00, cinfo);
    157     }
    158     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
    159     e->sc = 0;
    160   } else {
    161     if (e->buffer == 0)
    162       ++e->zc;
    163     else if (e->buffer >= 0) {
    164       if (e->zc)
    165 	do emit_byte(0x00, cinfo);
    166 	while (--e->zc);
    167       emit_byte(e->buffer, cinfo);
    168     }
    169     if (e->sc) {
    170       if (e->zc)
    171 	do emit_byte(0x00, cinfo);
    172 	while (--e->zc);
    173       do {
    174 	emit_byte(0xFF, cinfo);
    175 	emit_byte(0x00, cinfo);
    176       } while (--e->sc);
    177     }
    178   }
    179   /* Output final bytes only if they are not 0x00 */
    180   if (e->c & 0x7FFF800L) {
    181     if (e->zc)  /* output final pending zero bytes */
    182       do emit_byte(0x00, cinfo);
    183       while (--e->zc);
    184     emit_byte((e->c >> 19) & 0xFF, cinfo);
    185     if (((e->c >> 19) & 0xFF) == 0xFF)
    186       emit_byte(0x00, cinfo);
    187     if (e->c & 0x7F800L) {
    188       emit_byte((e->c >> 11) & 0xFF, cinfo);
    189       if (((e->c >> 11) & 0xFF) == 0xFF)
    190 	emit_byte(0x00, cinfo);
    191     }
    192   }
    193 }
    194 
    195 
    196 /*
    197  * The core arithmetic encoding routine (common in JPEG and JBIG).
    198  * This needs to go as fast as possible.
    199  * Machine-dependent optimization facilities
    200  * are not utilized in this portable implementation.
    201  * However, this code should be fairly efficient and
    202  * may be a good base for further optimizations anyway.
    203  *
    204  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
    205  *
    206  * Note: I've added full "Pacman" termination support to the
    207  * byte output routines, which is equivalent to the optional
    208  * Discard_final_zeros procedure (Figure D.15) in the spec.
    209  * Thus, we always produce the shortest possible output
    210  * stream compliant to the spec (no trailing zero bytes,
    211  * except for FF stuffing).
    212  *
    213  * I've also introduced a new scheme for accessing
    214  * the probability estimation state machine table,
    215  * derived from Markus Kuhn's JBIG implementation.
    216  */
    217 
    218 LOCAL(void)
    219 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
    220 {
    221   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    222   register unsigned char nl, nm;
    223   register INT32 qe, temp;
    224   register int sv;
    225 
    226   /* Fetch values from our compact representation of Table D.2:
    227    * Qe values and probability estimation state machine
    228    */
    229   sv = *st;
    230   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
    231   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
    232   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
    233 
    234   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
    235   e->a -= qe;
    236   if (val != (sv >> 7)) {
    237     /* Encode the less probable symbol */
    238     if (e->a >= qe) {
    239       /* If the interval size (qe) for the less probable symbol (LPS)
    240        * is larger than the interval size for the MPS, then exchange
    241        * the two symbols for coding efficiency, otherwise code the LPS
    242        * as usual: */
    243       e->c += e->a;
    244       e->a = qe;
    245     }
    246     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
    247   } else {
    248     /* Encode the more probable symbol */
    249     if (e->a >= 0x8000L)
    250       return;  /* A >= 0x8000 -> ready, no renormalization required */
    251     if (e->a < qe) {
    252       /* If the interval size (qe) for the less probable symbol (LPS)
    253        * is larger than the interval size for the MPS, then exchange
    254        * the two symbols for coding efficiency: */
    255       e->c += e->a;
    256       e->a = qe;
    257     }
    258     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
    259   }
    260 
    261   /* Renormalization & data output per section D.1.6 */
    262   do {
    263     e->a <<= 1;
    264     e->c <<= 1;
    265     if (--e->ct == 0) {
    266       /* Another byte is ready for output */
    267       temp = e->c >> 19;
    268       if (temp > 0xFF) {
    269 	/* Handle overflow over all stacked 0xFF bytes */
    270 	if (e->buffer >= 0) {
    271 	  if (e->zc)
    272 	    do emit_byte(0x00, cinfo);
    273 	    while (--e->zc);
    274 	  emit_byte(e->buffer + 1, cinfo);
    275 	  if (e->buffer + 1 == 0xFF)
    276 	    emit_byte(0x00, cinfo);
    277 	}
    278 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
    279 	e->sc = 0;
    280 	/* Note: The 3 spacer bits in the C register guarantee
    281 	 * that the new buffer byte can't be 0xFF here
    282 	 * (see page 160 in the P&M JPEG book). */
    283 	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
    284       } else if (temp == 0xFF) {
    285 	++e->sc;  /* stack 0xFF byte (which might overflow later) */
    286       } else {
    287 	/* Output all stacked 0xFF bytes, they will not overflow any more */
    288 	if (e->buffer == 0)
    289 	  ++e->zc;
    290 	else if (e->buffer >= 0) {
    291 	  if (e->zc)
    292 	    do emit_byte(0x00, cinfo);
    293 	    while (--e->zc);
    294 	  emit_byte(e->buffer, cinfo);
    295 	}
    296 	if (e->sc) {
    297 	  if (e->zc)
    298 	    do emit_byte(0x00, cinfo);
    299 	    while (--e->zc);
    300 	  do {
    301 	    emit_byte(0xFF, cinfo);
    302 	    emit_byte(0x00, cinfo);
    303 	  } while (--e->sc);
    304 	}
    305 	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
    306       }
    307       e->c &= 0x7FFFFL;
    308       e->ct += 8;
    309     }
    310   } while (e->a < 0x8000L);
    311 }
    312 
    313 
    314 /*
    315  * Emit a restart marker & resynchronize predictions.
    316  */
    317 
    318 LOCAL(void)
    319 emit_restart (j_compress_ptr cinfo, int restart_num)
    320 {
    321   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    322   int ci;
    323   jpeg_component_info * compptr;
    324 
    325   finish_pass(cinfo);
    326 
    327   emit_byte(0xFF, cinfo);
    328   emit_byte(JPEG_RST0 + restart_num, cinfo);
    329 
    330   /* Re-initialize statistics areas */
    331   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    332     compptr = cinfo->cur_comp_info[ci];
    333     /* DC needs no table for refinement scan */
    334     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    335       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
    336       /* Reset DC predictions to 0 */
    337       entropy->last_dc_val[ci] = 0;
    338       entropy->dc_context[ci] = 0;
    339     }
    340     /* AC needs no table when not present */
    341     if (cinfo->progressive_mode == 0 || cinfo->Se) {
    342       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    343     }
    344   }
    345 
    346   /* Reset arithmetic encoding variables */
    347   entropy->c = 0;
    348   entropy->a = 0x10000L;
    349   entropy->sc = 0;
    350   entropy->zc = 0;
    351   entropy->ct = 11;
    352   entropy->buffer = -1;  /* empty */
    353 }
    354 
    355 
    356 /*
    357  * MCU encoding for DC initial scan (either spectral selection,
    358  * or first pass of successive approximation).
    359  */
    360 
    361 METHODDEF(boolean)
    362 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    363 {
    364   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    365   JBLOCKROW block;
    366   unsigned char *st;
    367   int blkn, ci, tbl;
    368   int v, v2, m;
    369   ISHIFT_TEMPS
    370 
    371   /* Emit restart marker if needed */
    372   if (cinfo->restart_interval) {
    373     if (entropy->restarts_to_go == 0) {
    374       emit_restart(cinfo, entropy->next_restart_num);
    375       entropy->restarts_to_go = cinfo->restart_interval;
    376       entropy->next_restart_num++;
    377       entropy->next_restart_num &= 7;
    378     }
    379     entropy->restarts_to_go--;
    380   }
    381 
    382   /* Encode the MCU data blocks */
    383   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    384     block = MCU_data[blkn];
    385     ci = cinfo->MCU_membership[blkn];
    386     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
    387 
    388     /* Compute the DC value after the required point transform by Al.
    389      * This is simply an arithmetic right shift.
    390      */
    391     m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
    392 
    393     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
    394 
    395     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    396     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    397 
    398     /* Figure F.4: Encode_DC_DIFF */
    399     if ((v = m - entropy->last_dc_val[ci]) == 0) {
    400       arith_encode(cinfo, st, 0);
    401       entropy->dc_context[ci] = 0;	/* zero diff category */
    402     } else {
    403       entropy->last_dc_val[ci] = m;
    404       arith_encode(cinfo, st, 1);
    405       /* Figure F.6: Encoding nonzero value v */
    406       /* Figure F.7: Encoding the sign of v */
    407       if (v > 0) {
    408 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
    409 	st += 2;			/* Table F.4: SP = S0 + 2 */
    410 	entropy->dc_context[ci] = 4;	/* small positive diff category */
    411       } else {
    412 	v = -v;
    413 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
    414 	st += 3;			/* Table F.4: SN = S0 + 3 */
    415 	entropy->dc_context[ci] = 8;	/* small negative diff category */
    416       }
    417       /* Figure F.8: Encoding the magnitude category of v */
    418       m = 0;
    419       if (v -= 1) {
    420 	arith_encode(cinfo, st, 1);
    421 	m = 1;
    422 	v2 = v;
    423 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
    424 	while (v2 >>= 1) {
    425 	  arith_encode(cinfo, st, 1);
    426 	  m <<= 1;
    427 	  st += 1;
    428 	}
    429       }
    430       arith_encode(cinfo, st, 0);
    431       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    432       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    433 	entropy->dc_context[ci] = 0;	/* zero diff category */
    434       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    435 	entropy->dc_context[ci] += 8;	/* large diff category */
    436       /* Figure F.9: Encoding the magnitude bit pattern of v */
    437       st += 14;
    438       while (m >>= 1)
    439 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
    440     }
    441   }
    442 
    443   return TRUE;
    444 }
    445 
    446 
    447 /*
    448  * MCU encoding for AC initial scan (either spectral selection,
    449  * or first pass of successive approximation).
    450  */
    451 
    452 METHODDEF(boolean)
    453 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    454 {
    455   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    456   JBLOCKROW block;
    457   unsigned char *st;
    458   int tbl, k, ke;
    459   int v, v2, m;
    460 
    461   /* Emit restart marker if needed */
    462   if (cinfo->restart_interval) {
    463     if (entropy->restarts_to_go == 0) {
    464       emit_restart(cinfo, entropy->next_restart_num);
    465       entropy->restarts_to_go = cinfo->restart_interval;
    466       entropy->next_restart_num++;
    467       entropy->next_restart_num &= 7;
    468     }
    469     entropy->restarts_to_go--;
    470   }
    471 
    472   /* Encode the MCU data block */
    473   block = MCU_data[0];
    474   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    475 
    476   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
    477 
    478   /* Establish EOB (end-of-block) index */
    479   for (ke = cinfo->Se; ke > 0; ke--)
    480     /* We must apply the point transform by Al.  For AC coefficients this
    481      * is an integer division with rounding towards 0.  To do this portably
    482      * in C, we shift after obtaining the absolute value.
    483      */
    484     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
    485       if (v >>= cinfo->Al) break;
    486     } else {
    487       v = -v;
    488       if (v >>= cinfo->Al) break;
    489     }
    490 
    491   /* Figure F.5: Encode_AC_Coefficients */
    492   for (k = cinfo->Ss; k <= ke; k++) {
    493     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    494     arith_encode(cinfo, st, 0);		/* EOB decision */
    495     for (;;) {
    496       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
    497 	if (v >>= cinfo->Al) {
    498 	  arith_encode(cinfo, st + 1, 1);
    499 	  arith_encode(cinfo, entropy->fixed_bin, 0);
    500 	  break;
    501 	}
    502       } else {
    503 	v = -v;
    504 	if (v >>= cinfo->Al) {
    505 	  arith_encode(cinfo, st + 1, 1);
    506 	  arith_encode(cinfo, entropy->fixed_bin, 1);
    507 	  break;
    508 	}
    509       }
    510       arith_encode(cinfo, st + 1, 0); st += 3; k++;
    511     }
    512     st += 2;
    513     /* Figure F.8: Encoding the magnitude category of v */
    514     m = 0;
    515     if (v -= 1) {
    516       arith_encode(cinfo, st, 1);
    517       m = 1;
    518       v2 = v;
    519       if (v2 >>= 1) {
    520 	arith_encode(cinfo, st, 1);
    521 	m <<= 1;
    522 	st = entropy->ac_stats[tbl] +
    523 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    524 	while (v2 >>= 1) {
    525 	  arith_encode(cinfo, st, 1);
    526 	  m <<= 1;
    527 	  st += 1;
    528 	}
    529       }
    530     }
    531     arith_encode(cinfo, st, 0);
    532     /* Figure F.9: Encoding the magnitude bit pattern of v */
    533     st += 14;
    534     while (m >>= 1)
    535       arith_encode(cinfo, st, (m & v) ? 1 : 0);
    536   }
    537   /* Encode EOB decision only if k <= cinfo->Se */
    538   if (k <= cinfo->Se) {
    539     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    540     arith_encode(cinfo, st, 1);
    541   }
    542 
    543   return TRUE;
    544 }
    545 
    546 
    547 /*
    548  * MCU encoding for DC successive approximation refinement scan.
    549  */
    550 
    551 METHODDEF(boolean)
    552 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    553 {
    554   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    555   unsigned char *st;
    556   int Al, blkn;
    557 
    558   /* Emit restart marker if needed */
    559   if (cinfo->restart_interval) {
    560     if (entropy->restarts_to_go == 0) {
    561       emit_restart(cinfo, entropy->next_restart_num);
    562       entropy->restarts_to_go = cinfo->restart_interval;
    563       entropy->next_restart_num++;
    564       entropy->next_restart_num &= 7;
    565     }
    566     entropy->restarts_to_go--;
    567   }
    568 
    569   st = entropy->fixed_bin;	/* use fixed probability estimation */
    570   Al = cinfo->Al;
    571 
    572   /* Encode the MCU data blocks */
    573   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    574     /* We simply emit the Al'th bit of the DC coefficient value. */
    575     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
    576   }
    577 
    578   return TRUE;
    579 }
    580 
    581 
    582 /*
    583  * MCU encoding for AC successive approximation refinement scan.
    584  */
    585 
    586 METHODDEF(boolean)
    587 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    588 {
    589   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    590   JBLOCKROW block;
    591   unsigned char *st;
    592   int tbl, k, ke, kex;
    593   int v;
    594 
    595   /* Emit restart marker if needed */
    596   if (cinfo->restart_interval) {
    597     if (entropy->restarts_to_go == 0) {
    598       emit_restart(cinfo, entropy->next_restart_num);
    599       entropy->restarts_to_go = cinfo->restart_interval;
    600       entropy->next_restart_num++;
    601       entropy->next_restart_num &= 7;
    602     }
    603     entropy->restarts_to_go--;
    604   }
    605 
    606   /* Encode the MCU data block */
    607   block = MCU_data[0];
    608   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    609 
    610   /* Section G.1.3.3: Encoding of AC coefficients */
    611 
    612   /* Establish EOB (end-of-block) index */
    613   for (ke = cinfo->Se; ke > 0; ke--)
    614     /* We must apply the point transform by Al.  For AC coefficients this
    615      * is an integer division with rounding towards 0.  To do this portably
    616      * in C, we shift after obtaining the absolute value.
    617      */
    618     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
    619       if (v >>= cinfo->Al) break;
    620     } else {
    621       v = -v;
    622       if (v >>= cinfo->Al) break;
    623     }
    624 
    625   /* Establish EOBx (previous stage end-of-block) index */
    626   for (kex = ke; kex > 0; kex--)
    627     if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
    628       if (v >>= cinfo->Ah) break;
    629     } else {
    630       v = -v;
    631       if (v >>= cinfo->Ah) break;
    632     }
    633 
    634   /* Figure G.10: Encode_AC_Coefficients_SA */
    635   for (k = cinfo->Ss; k <= ke; k++) {
    636     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    637     if (k > kex)
    638       arith_encode(cinfo, st, 0);	/* EOB decision */
    639     for (;;) {
    640       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
    641 	if (v >>= cinfo->Al) {
    642 	  if (v >> 1)			/* previously nonzero coef */
    643 	    arith_encode(cinfo, st + 2, (v & 1));
    644 	  else {			/* newly nonzero coef */
    645 	    arith_encode(cinfo, st + 1, 1);
    646 	    arith_encode(cinfo, entropy->fixed_bin, 0);
    647 	  }
    648 	  break;
    649 	}
    650       } else {
    651 	v = -v;
    652 	if (v >>= cinfo->Al) {
    653 	  if (v >> 1)			/* previously nonzero coef */
    654 	    arith_encode(cinfo, st + 2, (v & 1));
    655 	  else {			/* newly nonzero coef */
    656 	    arith_encode(cinfo, st + 1, 1);
    657 	    arith_encode(cinfo, entropy->fixed_bin, 1);
    658 	  }
    659 	  break;
    660 	}
    661       }
    662       arith_encode(cinfo, st + 1, 0); st += 3; k++;
    663     }
    664   }
    665   /* Encode EOB decision only if k <= cinfo->Se */
    666   if (k <= cinfo->Se) {
    667     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    668     arith_encode(cinfo, st, 1);
    669   }
    670 
    671   return TRUE;
    672 }
    673 
    674 
    675 /*
    676  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
    677  */
    678 
    679 METHODDEF(boolean)
    680 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    681 {
    682   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    683   jpeg_component_info * compptr;
    684   JBLOCKROW block;
    685   unsigned char *st;
    686   int blkn, ci, tbl, k, ke;
    687   int v, v2, m;
    688 
    689   /* Emit restart marker if needed */
    690   if (cinfo->restart_interval) {
    691     if (entropy->restarts_to_go == 0) {
    692       emit_restart(cinfo, entropy->next_restart_num);
    693       entropy->restarts_to_go = cinfo->restart_interval;
    694       entropy->next_restart_num++;
    695       entropy->next_restart_num &= 7;
    696     }
    697     entropy->restarts_to_go--;
    698   }
    699 
    700   /* Encode the MCU data blocks */
    701   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    702     block = MCU_data[blkn];
    703     ci = cinfo->MCU_membership[blkn];
    704     compptr = cinfo->cur_comp_info[ci];
    705 
    706     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
    707 
    708     tbl = compptr->dc_tbl_no;
    709 
    710     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    711     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    712 
    713     /* Figure F.4: Encode_DC_DIFF */
    714     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
    715       arith_encode(cinfo, st, 0);
    716       entropy->dc_context[ci] = 0;	/* zero diff category */
    717     } else {
    718       entropy->last_dc_val[ci] = (*block)[0];
    719       arith_encode(cinfo, st, 1);
    720       /* Figure F.6: Encoding nonzero value v */
    721       /* Figure F.7: Encoding the sign of v */
    722       if (v > 0) {
    723 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
    724 	st += 2;			/* Table F.4: SP = S0 + 2 */
    725 	entropy->dc_context[ci] = 4;	/* small positive diff category */
    726       } else {
    727 	v = -v;
    728 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
    729 	st += 3;			/* Table F.4: SN = S0 + 3 */
    730 	entropy->dc_context[ci] = 8;	/* small negative diff category */
    731       }
    732       /* Figure F.8: Encoding the magnitude category of v */
    733       m = 0;
    734       if (v -= 1) {
    735 	arith_encode(cinfo, st, 1);
    736 	m = 1;
    737 	v2 = v;
    738 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
    739 	while (v2 >>= 1) {
    740 	  arith_encode(cinfo, st, 1);
    741 	  m <<= 1;
    742 	  st += 1;
    743 	}
    744       }
    745       arith_encode(cinfo, st, 0);
    746       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    747       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    748 	entropy->dc_context[ci] = 0;	/* zero diff category */
    749       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    750 	entropy->dc_context[ci] += 8;	/* large diff category */
    751       /* Figure F.9: Encoding the magnitude bit pattern of v */
    752       st += 14;
    753       while (m >>= 1)
    754 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
    755     }
    756 
    757     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
    758 
    759     tbl = compptr->ac_tbl_no;
    760 
    761     /* Establish EOB (end-of-block) index */
    762     for (ke = DCTSIZE2 - 1; ke > 0; ke--)
    763       if ((*block)[jpeg_natural_order[ke]]) break;
    764 
    765     /* Figure F.5: Encode_AC_Coefficients */
    766     for (k = 1; k <= ke; k++) {
    767       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    768       arith_encode(cinfo, st, 0);	/* EOB decision */
    769       while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
    770 	arith_encode(cinfo, st + 1, 0); st += 3; k++;
    771       }
    772       arith_encode(cinfo, st + 1, 1);
    773       /* Figure F.6: Encoding nonzero value v */
    774       /* Figure F.7: Encoding the sign of v */
    775       if (v > 0) {
    776 	arith_encode(cinfo, entropy->fixed_bin, 0);
    777       } else {
    778 	v = -v;
    779 	arith_encode(cinfo, entropy->fixed_bin, 1);
    780       }
    781       st += 2;
    782       /* Figure F.8: Encoding the magnitude category of v */
    783       m = 0;
    784       if (v -= 1) {
    785 	arith_encode(cinfo, st, 1);
    786 	m = 1;
    787 	v2 = v;
    788 	if (v2 >>= 1) {
    789 	  arith_encode(cinfo, st, 1);
    790 	  m <<= 1;
    791 	  st = entropy->ac_stats[tbl] +
    792 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    793 	  while (v2 >>= 1) {
    794 	    arith_encode(cinfo, st, 1);
    795 	    m <<= 1;
    796 	    st += 1;
    797 	  }
    798 	}
    799       }
    800       arith_encode(cinfo, st, 0);
    801       /* Figure F.9: Encoding the magnitude bit pattern of v */
    802       st += 14;
    803       while (m >>= 1)
    804 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
    805     }
    806     /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
    807     if (k <= DCTSIZE2 - 1) {
    808       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    809       arith_encode(cinfo, st, 1);
    810     }
    811   }
    812 
    813   return TRUE;
    814 }
    815 
    816 
    817 /*
    818  * Initialize for an arithmetic-compressed scan.
    819  */
    820 
    821 METHODDEF(void)
    822 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
    823 {
    824   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    825   int ci, tbl;
    826   jpeg_component_info * compptr;
    827 
    828   if (gather_statistics)
    829     /* Make sure to avoid that in the master control logic!
    830      * We are fully adaptive here and need no extra
    831      * statistics gathering pass!
    832      */
    833     ERREXIT(cinfo, JERR_NOT_COMPILED);
    834 
    835   /* We assume jcmaster.c already validated the progressive scan parameters. */
    836 
    837   /* Select execution routines */
    838   if (cinfo->progressive_mode) {
    839     if (cinfo->Ah == 0) {
    840       if (cinfo->Ss == 0)
    841 	entropy->pub.encode_mcu = encode_mcu_DC_first;
    842       else
    843 	entropy->pub.encode_mcu = encode_mcu_AC_first;
    844     } else {
    845       if (cinfo->Ss == 0)
    846 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
    847       else
    848 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
    849     }
    850   } else
    851     entropy->pub.encode_mcu = encode_mcu;
    852 
    853   /* Allocate & initialize requested statistics areas */
    854   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    855     compptr = cinfo->cur_comp_info[ci];
    856     /* DC needs no table for refinement scan */
    857     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    858       tbl = compptr->dc_tbl_no;
    859       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    860 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    861       if (entropy->dc_stats[tbl] == NULL)
    862 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    863 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
    864       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
    865       /* Initialize DC predictions to 0 */
    866       entropy->last_dc_val[ci] = 0;
    867       entropy->dc_context[ci] = 0;
    868     }
    869     /* AC needs no table when not present */
    870     if (cinfo->progressive_mode == 0 || cinfo->Se) {
    871       tbl = compptr->ac_tbl_no;
    872       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    873 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    874       if (entropy->ac_stats[tbl] == NULL)
    875 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    876 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
    877       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    878 #ifdef CALCULATE_SPECTRAL_CONDITIONING
    879       if (cinfo->progressive_mode)
    880 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
    881 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
    882 #endif
    883     }
    884   }
    885 
    886   /* Initialize arithmetic encoding variables */
    887   entropy->c = 0;
    888   entropy->a = 0x10000L;
    889   entropy->sc = 0;
    890   entropy->zc = 0;
    891   entropy->ct = 11;
    892   entropy->buffer = -1;  /* empty */
    893 
    894   /* Initialize restart stuff */
    895   entropy->restarts_to_go = cinfo->restart_interval;
    896   entropy->next_restart_num = 0;
    897 }
    898 
    899 
    900 /*
    901  * Module initialization routine for arithmetic entropy encoding.
    902  */
    903 
    904 GLOBAL(void)
    905 jinit_arith_encoder (j_compress_ptr cinfo)
    906 {
    907   arith_entropy_ptr entropy;
    908   int i;
    909 
    910   entropy = (arith_entropy_ptr)
    911     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    912 				SIZEOF(arith_entropy_encoder));
    913   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    914   entropy->pub.start_pass = start_pass;
    915   entropy->pub.finish_pass = finish_pass;
    916 
    917   /* Mark tables unallocated */
    918   for (i = 0; i < NUM_ARITH_TBLS; i++) {
    919     entropy->dc_stats[i] = NULL;
    920     entropy->ac_stats[i] = NULL;
    921   }
    922 
    923   /* Initialize index for fixed probability estimation */
    924   entropy->fixed_bin[0] = 113;
    925 }
    926