Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jchuff.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009-2011, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains Huffman entropy encoding routines.
     11  *
     12  * Much of the complexity here has to do with supporting output suspension.
     13  * If the data destination module demands suspension, we want to be able to
     14  * back up to the start of the current MCU.  To do this, we copy state
     15  * variables into local working storage, and update them back to the
     16  * permanent JPEG objects only upon successful completion of an MCU.
     17  */
     18 
     19 #define JPEG_INTERNALS
     20 #include "jinclude.h"
     21 #include "jpeglib.h"
     22 #include "jchuff.h"		/* Declarations shared with jcphuff.c */
     23 #include <limits.h>
     24 
     25 /*
     26  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
     27  * used for bit counting rather than the lookup table.  This will reduce the
     28  * memory footprint by 64k, which is important for some mobile applications
     29  * that create many isolated instances of libjpeg-turbo (web browsers, for
     30  * instance.)  This may improve performance on some mobile platforms as well.
     31  * This feature is enabled by default only on ARM processors, because some x86
     32  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
     33  * shown to have a significant performance impact even on the x86 chips that
     34  * have a fast implementation of it.  When building for ARMv6, you can
     35  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
     36  * flags (this defines __thumb__).
     37  */
     38 
     39 /* NOTE: Both GCC and Clang define __GNUC__ */
     40 #if defined __GNUC__ && defined __arm__
     41 #if !defined __thumb__ || defined __thumb2__
     42 #define USE_CLZ_INTRINSIC
     43 #endif
     44 #endif
     45 
     46 #ifdef USE_CLZ_INTRINSIC
     47 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
     48 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
     49 #else
     50 static unsigned char jpeg_nbits_table[65536];
     51 static int jpeg_nbits_table_init = 0;
     52 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
     53 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
     54 #endif
     55 
     56 #ifndef min
     57  #define min(a,b) ((a)<(b)?(a):(b))
     58 #endif
     59 
     60 
     61 /* Expanded entropy encoder object for Huffman encoding.
     62  *
     63  * The savable_state subrecord contains fields that change within an MCU,
     64  * but must not be updated permanently until we complete the MCU.
     65  */
     66 
     67 typedef struct {
     68   size_t put_buffer;		/* current bit-accumulation buffer */
     69   int put_bits;			/* # of bits now in it */
     70   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     71 } savable_state;
     72 
     73 /* This macro is to work around compilers with missing or broken
     74  * structure assignment.  You'll need to fix this code if you have
     75  * such a compiler and you change MAX_COMPS_IN_SCAN.
     76  */
     77 
     78 #ifndef NO_STRUCT_ASSIGN
     79 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     80 #else
     81 #if MAX_COMPS_IN_SCAN == 4
     82 #define ASSIGN_STATE(dest,src)  \
     83 	((dest).put_buffer = (src).put_buffer, \
     84 	 (dest).put_bits = (src).put_bits, \
     85 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
     86 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     87 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     88 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     89 #endif
     90 #endif
     91 
     92 
     93 typedef struct {
     94   struct jpeg_entropy_encoder pub; /* public fields */
     95 
     96   savable_state saved;		/* Bit buffer & DC state at start of MCU */
     97 
     98   /* These fields are NOT loaded into local working state. */
     99   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
    100   int next_restart_num;		/* next restart number to write (0-7) */
    101 
    102   /* Pointers to derived tables (these workspaces have image lifespan) */
    103   c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
    104   c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
    105 
    106 #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
    107   long * dc_count_ptrs[NUM_HUFF_TBLS];
    108   long * ac_count_ptrs[NUM_HUFF_TBLS];
    109 #endif
    110 } huff_entropy_encoder;
    111 
    112 typedef huff_entropy_encoder * huff_entropy_ptr;
    113 
    114 /* Working state while writing an MCU.
    115  * This struct contains all the fields that are needed by subroutines.
    116  */
    117 
    118 typedef struct {
    119   JOCTET * next_output_byte;	/* => next byte to write in buffer */
    120   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
    121   savable_state cur;		/* Current bit buffer & DC state */
    122   j_compress_ptr cinfo;		/* dump_buffer needs access to this */
    123 } working_state;
    124 
    125 
    126 /* Forward declarations */
    127 METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
    128 					JBLOCKROW *MCU_data));
    129 METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
    130 #ifdef ENTROPY_OPT_SUPPORTED
    131 METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
    132 					  JBLOCKROW *MCU_data));
    133 METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
    134 #endif
    135 
    136 
    137 /*
    138  * Initialize for a Huffman-compressed scan.
    139  * If gather_statistics is TRUE, we do not output anything during the scan,
    140  * just count the Huffman symbols used and generate Huffman code tables.
    141  */
    142 
    143 METHODDEF(void)
    144 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
    145 {
    146   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    147   int ci, dctbl, actbl;
    148   jpeg_component_info * compptr;
    149 
    150   if (gather_statistics) {
    151 #ifdef ENTROPY_OPT_SUPPORTED
    152     entropy->pub.encode_mcu = encode_mcu_gather;
    153     entropy->pub.finish_pass = finish_pass_gather;
    154 #else
    155     ERREXIT(cinfo, JERR_NOT_COMPILED);
    156 #endif
    157   } else {
    158     entropy->pub.encode_mcu = encode_mcu_huff;
    159     entropy->pub.finish_pass = finish_pass_huff;
    160   }
    161 
    162   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    163     compptr = cinfo->cur_comp_info[ci];
    164     dctbl = compptr->dc_tbl_no;
    165     actbl = compptr->ac_tbl_no;
    166     if (gather_statistics) {
    167 #ifdef ENTROPY_OPT_SUPPORTED
    168       /* Check for invalid table indexes */
    169       /* (make_c_derived_tbl does this in the other path) */
    170       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
    171 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
    172       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
    173 	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
    174       /* Allocate and zero the statistics tables */
    175       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    176       if (entropy->dc_count_ptrs[dctbl] == NULL)
    177 	entropy->dc_count_ptrs[dctbl] = (long *)
    178 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    179 				      257 * SIZEOF(long));
    180       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
    181       if (entropy->ac_count_ptrs[actbl] == NULL)
    182 	entropy->ac_count_ptrs[actbl] = (long *)
    183 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    184 				      257 * SIZEOF(long));
    185       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
    186 #endif
    187     } else {
    188       /* Compute derived values for Huffman tables */
    189       /* We may do this more than once for a table, but it's not expensive */
    190       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
    191 			      & entropy->dc_derived_tbls[dctbl]);
    192       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
    193 			      & entropy->ac_derived_tbls[actbl]);
    194     }
    195     /* Initialize DC predictions to 0 */
    196     entropy->saved.last_dc_val[ci] = 0;
    197   }
    198 
    199   /* Initialize bit buffer to empty */
    200   entropy->saved.put_buffer = 0;
    201   entropy->saved.put_bits = 0;
    202 
    203   /* Initialize restart stuff */
    204   entropy->restarts_to_go = cinfo->restart_interval;
    205   entropy->next_restart_num = 0;
    206 }
    207 
    208 
    209 /*
    210  * Compute the derived values for a Huffman table.
    211  * This routine also performs some validation checks on the table.
    212  *
    213  * Note this is also used by jcphuff.c.
    214  */
    215 
    216 GLOBAL(void)
    217 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    218 			 c_derived_tbl ** pdtbl)
    219 {
    220   JHUFF_TBL *htbl;
    221   c_derived_tbl *dtbl;
    222   int p, i, l, lastp, si, maxsymbol;
    223   char huffsize[257];
    224   unsigned int huffcode[257];
    225   unsigned int code;
    226 
    227   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    228    * paralleling the order of the symbols themselves in htbl->huffval[].
    229    */
    230 
    231   /* Find the input Huffman table */
    232   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    233     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    234   htbl =
    235     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    236   if (htbl == NULL)
    237     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    238 
    239   /* Allocate a workspace if we haven't already done so. */
    240   if (*pdtbl == NULL)
    241     *pdtbl = (c_derived_tbl *)
    242       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    243 				  SIZEOF(c_derived_tbl));
    244   dtbl = *pdtbl;
    245 
    246   /* Figure C.1: make table of Huffman code length for each symbol */
    247 
    248   p = 0;
    249   for (l = 1; l <= 16; l++) {
    250     i = (int) htbl->bits[l];
    251     if (i < 0 || p + i > 256)	/* protect against table overrun */
    252       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    253     while (i--)
    254       huffsize[p++] = (char) l;
    255   }
    256   huffsize[p] = 0;
    257   lastp = p;
    258 
    259   /* Figure C.2: generate the codes themselves */
    260   /* We also validate that the counts represent a legal Huffman code tree. */
    261 
    262   code = 0;
    263   si = huffsize[0];
    264   p = 0;
    265   while (huffsize[p]) {
    266     while (((int) huffsize[p]) == si) {
    267       huffcode[p++] = code;
    268       code++;
    269     }
    270     /* code is now 1 more than the last code used for codelength si; but
    271      * it must still fit in si bits, since no code is allowed to be all ones.
    272      */
    273     if (((INT32) code) >= (((INT32) 1) << si))
    274       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    275     code <<= 1;
    276     si++;
    277   }
    278 
    279   /* Figure C.3: generate encoding tables */
    280   /* These are code and size indexed by symbol value */
    281 
    282   /* Set all codeless symbols to have code length 0;
    283    * this lets us detect duplicate VAL entries here, and later
    284    * allows emit_bits to detect any attempt to emit such symbols.
    285    */
    286   MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
    287 
    288   /* This is also a convenient place to check for out-of-range
    289    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    290    * but only 0..15 for DC.  (We could constrain them further
    291    * based on data depth and mode, but this seems enough.)
    292    */
    293   maxsymbol = isDC ? 15 : 255;
    294 
    295   for (p = 0; p < lastp; p++) {
    296     i = htbl->huffval[p];
    297     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    298       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    299     dtbl->ehufco[i] = huffcode[p];
    300     dtbl->ehufsi[i] = huffsize[p];
    301   }
    302 
    303 #ifndef USE_CLZ_INTRINSIC
    304   if(!jpeg_nbits_table_init) {
    305     for(i = 0; i < 65536; i++) {
    306       int nbits = 0, temp = i;
    307       while (temp) {temp >>= 1;  nbits++;}
    308       jpeg_nbits_table[i] = nbits;
    309     }
    310     jpeg_nbits_table_init = 1;
    311   }
    312 #endif
    313 }
    314 
    315 
    316 /* Outputting bytes to the file */
    317 
    318 /* Emit a byte, taking 'action' if must suspend. */
    319 #define emit_byte(state,val,action)  \
    320 	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
    321 	  if (--(state)->free_in_buffer == 0)  \
    322 	    if (! dump_buffer(state))  \
    323 	      { action; } }
    324 
    325 
    326 LOCAL(boolean)
    327 dump_buffer (working_state * state)
    328 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    329 {
    330   struct jpeg_destination_mgr * dest = state->cinfo->dest;
    331 
    332   if (! (*dest->empty_output_buffer) (state->cinfo))
    333     return FALSE;
    334   /* After a successful buffer dump, must reset buffer pointers */
    335   state->next_output_byte = dest->next_output_byte;
    336   state->free_in_buffer = dest->free_in_buffer;
    337   return TRUE;
    338 }
    339 
    340 
    341 /* Outputting bits to the file */
    342 
    343 /* These macros perform the same task as the emit_bits() function in the
    344  * original libjpeg code.  In addition to reducing overhead by explicitly
    345  * inlining the code, additional performance is achieved by taking into
    346  * account the size of the bit buffer and waiting until it is almost full
    347  * before emptying it.  This mostly benefits 64-bit platforms, since 6
    348  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
    349  */
    350 
    351 #define EMIT_BYTE() { \
    352   JOCTET c; \
    353   put_bits -= 8; \
    354   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
    355   *buffer++ = c; \
    356   if (c == 0xFF)  /* need to stuff a zero byte? */ \
    357     *buffer++ = 0; \
    358  }
    359 
    360 #define PUT_BITS(code, size) { \
    361   put_bits += size; \
    362   put_buffer = (put_buffer << size) | code; \
    363 }
    364 
    365 #define CHECKBUF15() { \
    366   if (put_bits > 15) { \
    367     EMIT_BYTE() \
    368     EMIT_BYTE() \
    369   } \
    370 }
    371 
    372 #define CHECKBUF31() { \
    373   if (put_bits > 31) { \
    374     EMIT_BYTE() \
    375     EMIT_BYTE() \
    376     EMIT_BYTE() \
    377     EMIT_BYTE() \
    378   } \
    379 }
    380 
    381 #define CHECKBUF47() { \
    382   if (put_bits > 47) { \
    383     EMIT_BYTE() \
    384     EMIT_BYTE() \
    385     EMIT_BYTE() \
    386     EMIT_BYTE() \
    387     EMIT_BYTE() \
    388     EMIT_BYTE() \
    389   } \
    390 }
    391 
    392 #if __WORDSIZE==64 || defined(_WIN64)
    393 
    394 #define EMIT_BITS(code, size) { \
    395   CHECKBUF47() \
    396   PUT_BITS(code, size) \
    397 }
    398 
    399 #define EMIT_CODE(code, size) { \
    400   temp2 &= (((INT32) 1)<<nbits) - 1; \
    401   CHECKBUF31() \
    402   PUT_BITS(code, size) \
    403   PUT_BITS(temp2, nbits) \
    404  }
    405 
    406 #else
    407 
    408 #define EMIT_BITS(code, size) { \
    409   PUT_BITS(code, size) \
    410   CHECKBUF15() \
    411 }
    412 
    413 #define EMIT_CODE(code, size) { \
    414   temp2 &= (((INT32) 1)<<nbits) - 1; \
    415   PUT_BITS(code, size) \
    416   CHECKBUF15() \
    417   PUT_BITS(temp2, nbits) \
    418   CHECKBUF15() \
    419  }
    420 
    421 #endif
    422 
    423 
    424 #define BUFSIZE (DCTSIZE2 * 2)
    425 
    426 #define LOAD_BUFFER() { \
    427   if (state->free_in_buffer < BUFSIZE) { \
    428     localbuf = 1; \
    429     buffer = _buffer; \
    430   } \
    431   else buffer = state->next_output_byte; \
    432  }
    433 
    434 #define STORE_BUFFER() { \
    435   if (localbuf) { \
    436     bytes = buffer - _buffer; \
    437     buffer = _buffer; \
    438     while (bytes > 0) { \
    439       bytestocopy = min(bytes, state->free_in_buffer); \
    440       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
    441       state->next_output_byte += bytestocopy; \
    442       buffer += bytestocopy; \
    443       state->free_in_buffer -= bytestocopy; \
    444       if (state->free_in_buffer == 0) \
    445         if (! dump_buffer(state)) return FALSE; \
    446       bytes -= bytestocopy; \
    447     } \
    448   } \
    449   else { \
    450     state->free_in_buffer -= (buffer - state->next_output_byte); \
    451     state->next_output_byte = buffer; \
    452   } \
    453  }
    454 
    455 
    456 LOCAL(boolean)
    457 flush_bits (working_state * state)
    458 {
    459   JOCTET _buffer[BUFSIZE], *buffer;
    460   size_t put_buffer;  int put_bits;
    461   size_t bytes, bytestocopy;  int localbuf = 0;
    462 
    463   put_buffer = state->cur.put_buffer;
    464   put_bits = state->cur.put_bits;
    465   LOAD_BUFFER()
    466 
    467   /* fill any partial byte with ones */
    468   PUT_BITS(0x7F, 7)
    469   while (put_bits >= 8) EMIT_BYTE()
    470 
    471   state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
    472   state->cur.put_bits = 0;
    473   STORE_BUFFER()
    474 
    475   return TRUE;
    476 }
    477 
    478 
    479 /* Encode a single block's worth of coefficients */
    480 
    481 LOCAL(boolean)
    482 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
    483 		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
    484 {
    485   int temp, temp2, temp3;
    486   int nbits;
    487   int r, code, size;
    488   JOCTET _buffer[BUFSIZE], *buffer;
    489   size_t put_buffer;  int put_bits;
    490   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
    491   size_t bytes, bytestocopy;  int localbuf = 0;
    492 
    493   put_buffer = state->cur.put_buffer;
    494   put_bits = state->cur.put_bits;
    495   LOAD_BUFFER()
    496 
    497   /* Encode the DC coefficient difference per section F.1.2.1 */
    498 
    499   temp = temp2 = block[0] - last_dc_val;
    500 
    501  /* This is a well-known technique for obtaining the absolute value without a
    502   * branch.  It is derived from an assembly language technique presented in
    503   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
    504   * Agner Fog.
    505   */
    506   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
    507   temp ^= temp3;
    508   temp -= temp3;
    509 
    510   /* For a negative input, want temp2 = bitwise complement of abs(input) */
    511   /* This code assumes we are on a two's complement machine */
    512   temp2 += temp3;
    513 
    514   /* Find the number of bits needed for the magnitude of the coefficient */
    515   nbits = JPEG_NBITS(temp);
    516 
    517   /* Emit the Huffman-coded symbol for the number of bits */
    518   code = dctbl->ehufco[nbits];
    519   size = dctbl->ehufsi[nbits];
    520   PUT_BITS(code, size)
    521   CHECKBUF15()
    522 
    523   /* Mask off any extra bits in code */
    524   temp2 &= (((INT32) 1)<<nbits) - 1;
    525 
    526   /* Emit that number of bits of the value, if positive, */
    527   /* or the complement of its magnitude, if negative. */
    528   PUT_BITS(temp2, nbits)
    529   CHECKBUF15()
    530 
    531   /* Encode the AC coefficients per section F.1.2.2 */
    532 
    533   r = 0;			/* r = run length of zeros */
    534 
    535 /* Manually unroll the k loop to eliminate the counter variable.  This
    536  * improves performance greatly on systems with a limited number of
    537  * registers (such as x86.)
    538  */
    539 #define kloop(jpeg_natural_order_of_k) {  \
    540   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
    541     r++; \
    542   } else { \
    543     temp2 = temp; \
    544     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
    545     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
    546     temp ^= temp3; \
    547     temp -= temp3; \
    548     temp2 += temp3; \
    549     nbits = JPEG_NBITS_NONZERO(temp); \
    550     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
    551     while (r > 15) { \
    552       EMIT_BITS(code_0xf0, size_0xf0) \
    553       r -= 16; \
    554     } \
    555     /* Emit Huffman symbol for run length / number of bits */ \
    556     temp3 = (r << 4) + nbits;  \
    557     code = actbl->ehufco[temp3]; \
    558     size = actbl->ehufsi[temp3]; \
    559     EMIT_CODE(code, size) \
    560     r = 0;  \
    561   } \
    562 }
    563 
    564   /* One iteration for each value in jpeg_natural_order[] */
    565   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
    566   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
    567   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
    568   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
    569   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
    570   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
    571   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
    572   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
    573   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
    574   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
    575   kloop(55);  kloop(62);  kloop(63);
    576 
    577   /* If the last coef(s) were zero, emit an end-of-block code */
    578   if (r > 0) {
    579     code = actbl->ehufco[0];
    580     size = actbl->ehufsi[0];
    581     EMIT_BITS(code, size)
    582   }
    583 
    584   state->cur.put_buffer = put_buffer;
    585   state->cur.put_bits = put_bits;
    586   STORE_BUFFER()
    587 
    588   return TRUE;
    589 }
    590 
    591 
    592 /*
    593  * Emit a restart marker & resynchronize predictions.
    594  */
    595 
    596 LOCAL(boolean)
    597 emit_restart (working_state * state, int restart_num)
    598 {
    599   int ci;
    600 
    601   if (! flush_bits(state))
    602     return FALSE;
    603 
    604   emit_byte(state, 0xFF, return FALSE);
    605   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
    606 
    607   /* Re-initialize DC predictions to 0 */
    608   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    609     state->cur.last_dc_val[ci] = 0;
    610 
    611   /* The restart counter is not updated until we successfully write the MCU. */
    612 
    613   return TRUE;
    614 }
    615 
    616 
    617 /*
    618  * Encode and output one MCU's worth of Huffman-compressed coefficients.
    619  */
    620 
    621 METHODDEF(boolean)
    622 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    623 {
    624   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    625   working_state state;
    626   int blkn, ci;
    627   jpeg_component_info * compptr;
    628 
    629   /* Load up working state */
    630   state.next_output_byte = cinfo->dest->next_output_byte;
    631   state.free_in_buffer = cinfo->dest->free_in_buffer;
    632   ASSIGN_STATE(state.cur, entropy->saved);
    633   state.cinfo = cinfo;
    634 
    635   /* Emit restart marker if needed */
    636   if (cinfo->restart_interval) {
    637     if (entropy->restarts_to_go == 0)
    638       if (! emit_restart(&state, entropy->next_restart_num))
    639 	return FALSE;
    640   }
    641 
    642   /* Encode the MCU data blocks */
    643   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    644     ci = cinfo->MCU_membership[blkn];
    645     compptr = cinfo->cur_comp_info[ci];
    646     if (! encode_one_block(&state,
    647 			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
    648 			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
    649 			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    650       return FALSE;
    651     /* Update last_dc_val */
    652     state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    653   }
    654 
    655   /* Completed MCU, so update state */
    656   cinfo->dest->next_output_byte = state.next_output_byte;
    657   cinfo->dest->free_in_buffer = state.free_in_buffer;
    658   ASSIGN_STATE(entropy->saved, state.cur);
    659 
    660   /* Update restart-interval state too */
    661   if (cinfo->restart_interval) {
    662     if (entropy->restarts_to_go == 0) {
    663       entropy->restarts_to_go = cinfo->restart_interval;
    664       entropy->next_restart_num++;
    665       entropy->next_restart_num &= 7;
    666     }
    667     entropy->restarts_to_go--;
    668   }
    669 
    670   return TRUE;
    671 }
    672 
    673 
    674 /*
    675  * Finish up at the end of a Huffman-compressed scan.
    676  */
    677 
    678 METHODDEF(void)
    679 finish_pass_huff (j_compress_ptr cinfo)
    680 {
    681   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    682   working_state state;
    683 
    684   /* Load up working state ... flush_bits needs it */
    685   state.next_output_byte = cinfo->dest->next_output_byte;
    686   state.free_in_buffer = cinfo->dest->free_in_buffer;
    687   ASSIGN_STATE(state.cur, entropy->saved);
    688   state.cinfo = cinfo;
    689 
    690   /* Flush out the last data */
    691   if (! flush_bits(&state))
    692     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    693 
    694   /* Update state */
    695   cinfo->dest->next_output_byte = state.next_output_byte;
    696   cinfo->dest->free_in_buffer = state.free_in_buffer;
    697   ASSIGN_STATE(entropy->saved, state.cur);
    698 }
    699 
    700 
    701 /*
    702  * Huffman coding optimization.
    703  *
    704  * We first scan the supplied data and count the number of uses of each symbol
    705  * that is to be Huffman-coded. (This process MUST agree with the code above.)
    706  * Then we build a Huffman coding tree for the observed counts.
    707  * Symbols which are not needed at all for the particular image are not
    708  * assigned any code, which saves space in the DHT marker as well as in
    709  * the compressed data.
    710  */
    711 
    712 #ifdef ENTROPY_OPT_SUPPORTED
    713 
    714 
    715 /* Process a single block's worth of coefficients */
    716 
    717 LOCAL(void)
    718 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
    719 		 long dc_counts[], long ac_counts[])
    720 {
    721   register int temp;
    722   register int nbits;
    723   register int k, r;
    724 
    725   /* Encode the DC coefficient difference per section F.1.2.1 */
    726 
    727   temp = block[0] - last_dc_val;
    728   if (temp < 0)
    729     temp = -temp;
    730 
    731   /* Find the number of bits needed for the magnitude of the coefficient */
    732   nbits = 0;
    733   while (temp) {
    734     nbits++;
    735     temp >>= 1;
    736   }
    737   /* Check for out-of-range coefficient values.
    738    * Since we're encoding a difference, the range limit is twice as much.
    739    */
    740   if (nbits > MAX_COEF_BITS+1)
    741     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    742 
    743   /* Count the Huffman symbol for the number of bits */
    744   dc_counts[nbits]++;
    745 
    746   /* Encode the AC coefficients per section F.1.2.2 */
    747 
    748   r = 0;			/* r = run length of zeros */
    749 
    750   for (k = 1; k < DCTSIZE2; k++) {
    751     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    752       r++;
    753     } else {
    754       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    755       while (r > 15) {
    756 	ac_counts[0xF0]++;
    757 	r -= 16;
    758       }
    759 
    760       /* Find the number of bits needed for the magnitude of the coefficient */
    761       if (temp < 0)
    762 	temp = -temp;
    763 
    764       /* Find the number of bits needed for the magnitude of the coefficient */
    765       nbits = 1;		/* there must be at least one 1 bit */
    766       while ((temp >>= 1))
    767 	nbits++;
    768       /* Check for out-of-range coefficient values */
    769       if (nbits > MAX_COEF_BITS)
    770 	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    771 
    772       /* Count Huffman symbol for run length / number of bits */
    773       ac_counts[(r << 4) + nbits]++;
    774 
    775       r = 0;
    776     }
    777   }
    778 
    779   /* If the last coef(s) were zero, emit an end-of-block code */
    780   if (r > 0)
    781     ac_counts[0]++;
    782 }
    783 
    784 
    785 /*
    786  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
    787  * No data is actually output, so no suspension return is possible.
    788  */
    789 
    790 METHODDEF(boolean)
    791 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    792 {
    793   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    794   int blkn, ci;
    795   jpeg_component_info * compptr;
    796 
    797   /* Take care of restart intervals if needed */
    798   if (cinfo->restart_interval) {
    799     if (entropy->restarts_to_go == 0) {
    800       /* Re-initialize DC predictions to 0 */
    801       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    802 	entropy->saved.last_dc_val[ci] = 0;
    803       /* Update restart state */
    804       entropy->restarts_to_go = cinfo->restart_interval;
    805     }
    806     entropy->restarts_to_go--;
    807   }
    808 
    809   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    810     ci = cinfo->MCU_membership[blkn];
    811     compptr = cinfo->cur_comp_info[ci];
    812     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
    813 		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
    814 		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    815     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
    816   }
    817 
    818   return TRUE;
    819 }
    820 
    821 
    822 /*
    823  * Generate the best Huffman code table for the given counts, fill htbl.
    824  * Note this is also used by jcphuff.c.
    825  *
    826  * The JPEG standard requires that no symbol be assigned a codeword of all
    827  * one bits (so that padding bits added at the end of a compressed segment
    828  * can't look like a valid code).  Because of the canonical ordering of
    829  * codewords, this just means that there must be an unused slot in the
    830  * longest codeword length category.  Section K.2 of the JPEG spec suggests
    831  * reserving such a slot by pretending that symbol 256 is a valid symbol
    832  * with count 1.  In theory that's not optimal; giving it count zero but
    833  * including it in the symbol set anyway should give a better Huffman code.
    834  * But the theoretically better code actually seems to come out worse in
    835  * practice, because it produces more all-ones bytes (which incur stuffed
    836  * zero bytes in the final file).  In any case the difference is tiny.
    837  *
    838  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
    839  * If some symbols have a very small but nonzero probability, the Huffman tree
    840  * must be adjusted to meet the code length restriction.  We currently use
    841  * the adjustment method suggested in JPEG section K.2.  This method is *not*
    842  * optimal; it may not choose the best possible limited-length code.  But
    843  * typically only very-low-frequency symbols will be given less-than-optimal
    844  * lengths, so the code is almost optimal.  Experimental comparisons against
    845  * an optimal limited-length-code algorithm indicate that the difference is
    846  * microscopic --- usually less than a hundredth of a percent of total size.
    847  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
    848  */
    849 
    850 GLOBAL(void)
    851 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
    852 {
    853 #define MAX_CLEN 32		/* assumed maximum initial code length */
    854   UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
    855   int codesize[257];		/* codesize[k] = code length of symbol k */
    856   int others[257];		/* next symbol in current branch of tree */
    857   int c1, c2;
    858   int p, i, j;
    859   long v;
    860 
    861   /* This algorithm is explained in section K.2 of the JPEG standard */
    862 
    863   MEMZERO(bits, SIZEOF(bits));
    864   MEMZERO(codesize, SIZEOF(codesize));
    865   for (i = 0; i < 257; i++)
    866     others[i] = -1;		/* init links to empty */
    867 
    868   freq[256] = 1;		/* make sure 256 has a nonzero count */
    869   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
    870    * that no real symbol is given code-value of all ones, because 256
    871    * will be placed last in the largest codeword category.
    872    */
    873 
    874   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
    875 
    876   for (;;) {
    877     /* Find the smallest nonzero frequency, set c1 = its symbol */
    878     /* In case of ties, take the larger symbol number */
    879     c1 = -1;
    880     v = 1000000000L;
    881     for (i = 0; i <= 256; i++) {
    882       if (freq[i] && freq[i] <= v) {
    883 	v = freq[i];
    884 	c1 = i;
    885       }
    886     }
    887 
    888     /* Find the next smallest nonzero frequency, set c2 = its symbol */
    889     /* In case of ties, take the larger symbol number */
    890     c2 = -1;
    891     v = 1000000000L;
    892     for (i = 0; i <= 256; i++) {
    893       if (freq[i] && freq[i] <= v && i != c1) {
    894 	v = freq[i];
    895 	c2 = i;
    896       }
    897     }
    898 
    899     /* Done if we've merged everything into one frequency */
    900     if (c2 < 0)
    901       break;
    902 
    903     /* Else merge the two counts/trees */
    904     freq[c1] += freq[c2];
    905     freq[c2] = 0;
    906 
    907     /* Increment the codesize of everything in c1's tree branch */
    908     codesize[c1]++;
    909     while (others[c1] >= 0) {
    910       c1 = others[c1];
    911       codesize[c1]++;
    912     }
    913 
    914     others[c1] = c2;		/* chain c2 onto c1's tree branch */
    915 
    916     /* Increment the codesize of everything in c2's tree branch */
    917     codesize[c2]++;
    918     while (others[c2] >= 0) {
    919       c2 = others[c2];
    920       codesize[c2]++;
    921     }
    922   }
    923 
    924   /* Now count the number of symbols of each code length */
    925   for (i = 0; i <= 256; i++) {
    926     if (codesize[i]) {
    927       /* The JPEG standard seems to think that this can't happen, */
    928       /* but I'm paranoid... */
    929       if (codesize[i] > MAX_CLEN)
    930 	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
    931 
    932       bits[codesize[i]]++;
    933     }
    934   }
    935 
    936   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
    937    * Huffman procedure assigned any such lengths, we must adjust the coding.
    938    * Here is what the JPEG spec says about how this next bit works:
    939    * Since symbols are paired for the longest Huffman code, the symbols are
    940    * removed from this length category two at a time.  The prefix for the pair
    941    * (which is one bit shorter) is allocated to one of the pair; then,
    942    * skipping the BITS entry for that prefix length, a code word from the next
    943    * shortest nonzero BITS entry is converted into a prefix for two code words
    944    * one bit longer.
    945    */
    946 
    947   for (i = MAX_CLEN; i > 16; i--) {
    948     while (bits[i] > 0) {
    949       j = i - 2;		/* find length of new prefix to be used */
    950       while (bits[j] == 0)
    951 	j--;
    952 
    953       bits[i] -= 2;		/* remove two symbols */
    954       bits[i-1]++;		/* one goes in this length */
    955       bits[j+1] += 2;		/* two new symbols in this length */
    956       bits[j]--;		/* symbol of this length is now a prefix */
    957     }
    958   }
    959 
    960   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
    961   while (bits[i] == 0)		/* find largest codelength still in use */
    962     i--;
    963   bits[i]--;
    964 
    965   /* Return final symbol counts (only for lengths 0..16) */
    966   MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
    967 
    968   /* Return a list of the symbols sorted by code length */
    969   /* It's not real clear to me why we don't need to consider the codelength
    970    * changes made above, but the JPEG spec seems to think this works.
    971    */
    972   p = 0;
    973   for (i = 1; i <= MAX_CLEN; i++) {
    974     for (j = 0; j <= 255; j++) {
    975       if (codesize[j] == i) {
    976 	htbl->huffval[p] = (UINT8) j;
    977 	p++;
    978       }
    979     }
    980   }
    981 
    982   /* Set sent_table FALSE so updated table will be written to JPEG file. */
    983   htbl->sent_table = FALSE;
    984 }
    985 
    986 
    987 /*
    988  * Finish up a statistics-gathering pass and create the new Huffman tables.
    989  */
    990 
    991 METHODDEF(void)
    992 finish_pass_gather (j_compress_ptr cinfo)
    993 {
    994   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    995   int ci, dctbl, actbl;
    996   jpeg_component_info * compptr;
    997   JHUFF_TBL **htblptr;
    998   boolean did_dc[NUM_HUFF_TBLS];
    999   boolean did_ac[NUM_HUFF_TBLS];
   1000 
   1001   /* It's important not to apply jpeg_gen_optimal_table more than once
   1002    * per table, because it clobbers the input frequency counts!
   1003    */
   1004   MEMZERO(did_dc, SIZEOF(did_dc));
   1005   MEMZERO(did_ac, SIZEOF(did_ac));
   1006 
   1007   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   1008     compptr = cinfo->cur_comp_info[ci];
   1009     dctbl = compptr->dc_tbl_no;
   1010     actbl = compptr->ac_tbl_no;
   1011     if (! did_dc[dctbl]) {
   1012       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
   1013       if (*htblptr == NULL)
   1014 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   1015       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
   1016       did_dc[dctbl] = TRUE;
   1017     }
   1018     if (! did_ac[actbl]) {
   1019       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
   1020       if (*htblptr == NULL)
   1021 	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   1022       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
   1023       did_ac[actbl] = TRUE;
   1024     }
   1025   }
   1026 }
   1027 
   1028 
   1029 #endif /* ENTROPY_OPT_SUPPORTED */
   1030 
   1031 
   1032 /*
   1033  * Module initialization routine for Huffman entropy encoding.
   1034  */
   1035 
   1036 GLOBAL(void)
   1037 jinit_huff_encoder (j_compress_ptr cinfo)
   1038 {
   1039   huff_entropy_ptr entropy;
   1040   int i;
   1041 
   1042   entropy = (huff_entropy_ptr)
   1043     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1044 				SIZEOF(huff_entropy_encoder));
   1045   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
   1046   entropy->pub.start_pass = start_pass_huff;
   1047 
   1048   /* Mark tables unallocated */
   1049   for (i = 0; i < NUM_HUFF_TBLS; i++) {
   1050     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
   1051 #ifdef ENTROPY_OPT_SUPPORTED
   1052     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
   1053 #endif
   1054   }
   1055 }
   1056