Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jcphuff.c
      3  *
      4  * Copyright (C) 1995-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains Huffman entropy encoding routines for progressive JPEG.
      9  *
     10  * We do not support output suspension in this module, since the library
     11  * currently does not allow multiple-scan files to be written with output
     12  * suspension.
     13  */
     14 
     15 #define JPEG_INTERNALS
     16 #include "jinclude.h"
     17 #include "jpeglib.h"
     18 #include "jchuff.h"		/* Declarations shared with jchuff.c */
     19 
     20 #ifdef C_PROGRESSIVE_SUPPORTED
     21 
     22 /* Expanded entropy encoder object for progressive Huffman encoding. */
     23 
     24 typedef struct {
     25   struct jpeg_entropy_encoder pub; /* public fields */
     26 
     27   /* Mode flag: TRUE for optimization, FALSE for actual data output */
     28   boolean gather_statistics;
     29 
     30   /* Bit-level coding status.
     31    * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
     32    */
     33   JOCTET * next_output_byte;	/* => next byte to write in buffer */
     34   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
     35   INT32 put_buffer;		/* current bit-accumulation buffer */
     36   int put_bits;			/* # of bits now in it */
     37   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
     38 
     39   /* Coding status for DC components */
     40   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     41 
     42   /* Coding status for AC components */
     43   int ac_tbl_no;		/* the table number of the single component */
     44   unsigned int EOBRUN;		/* run length of EOBs */
     45   unsigned int BE;		/* # of buffered correction bits before MCU */
     46   char * bit_buffer;		/* buffer for correction bits (1 per char) */
     47   /* packing correction bits tightly would save some space but cost time... */
     48 
     49   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     50   int next_restart_num;		/* next restart number to write (0-7) */
     51 
     52   /* Pointers to derived tables (these workspaces have image lifespan).
     53    * Since any one scan codes only DC or only AC, we only need one set
     54    * of tables, not one for DC and one for AC.
     55    */
     56   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
     57 
     58   /* Statistics tables for optimization; again, one set is enough */
     59   long * count_ptrs[NUM_HUFF_TBLS];
     60 } phuff_entropy_encoder;
     61 
     62 typedef phuff_entropy_encoder * phuff_entropy_ptr;
     63 
     64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
     65  * buffer can hold.  Larger sizes may slightly improve compression, but
     66  * 1000 is already well into the realm of overkill.
     67  * The minimum safe size is 64 bits.
     68  */
     69 
     70 #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
     71 
     72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
     73  * We assume that int right shift is unsigned if INT32 right shift is,
     74  * which should be safe.
     75  */
     76 
     77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
     78 #define ISHIFT_TEMPS	int ishift_temp;
     79 #define IRIGHT_SHIFT(x,shft)  \
     80 	((ishift_temp = (x)) < 0 ? \
     81 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
     82 	 (ishift_temp >> (shft)))
     83 #else
     84 #define ISHIFT_TEMPS
     85 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
     86 #endif
     87 
     88 /* Forward declarations */
     89 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
     90 					    JBLOCKROW *MCU_data));
     91 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
     92 					    JBLOCKROW *MCU_data));
     93 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
     94 					     JBLOCKROW *MCU_data));
     95 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
     96 					     JBLOCKROW *MCU_data));
     97 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
     98 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
     99 
    100 
    101 /*
    102  * Initialize for a Huffman-compressed scan using progressive JPEG.
    103  */
    104 
    105 METHODDEF(void)
    106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
    107 {
    108   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    109   boolean is_DC_band;
    110   int ci, tbl;
    111   jpeg_component_info * compptr;
    112 
    113   entropy->cinfo = cinfo;
    114   entropy->gather_statistics = gather_statistics;
    115 
    116   is_DC_band = (cinfo->Ss == 0);
    117 
    118   /* We assume jcmaster.c already validated the scan parameters. */
    119 
    120   /* Select execution routines */
    121   if (cinfo->Ah == 0) {
    122     if (is_DC_band)
    123       entropy->pub.encode_mcu = encode_mcu_DC_first;
    124     else
    125       entropy->pub.encode_mcu = encode_mcu_AC_first;
    126   } else {
    127     if (is_DC_band)
    128       entropy->pub.encode_mcu = encode_mcu_DC_refine;
    129     else {
    130       entropy->pub.encode_mcu = encode_mcu_AC_refine;
    131       /* AC refinement needs a correction bit buffer */
    132       if (entropy->bit_buffer == NULL)
    133 	entropy->bit_buffer = (char *)
    134 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    135 				      MAX_CORR_BITS * SIZEOF(char));
    136     }
    137   }
    138   if (gather_statistics)
    139     entropy->pub.finish_pass = finish_pass_gather_phuff;
    140   else
    141     entropy->pub.finish_pass = finish_pass_phuff;
    142 
    143   /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
    144    * for AC coefficients.
    145    */
    146   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    147     compptr = cinfo->cur_comp_info[ci];
    148     /* Initialize DC predictions to 0 */
    149     entropy->last_dc_val[ci] = 0;
    150     /* Get table index */
    151     if (is_DC_band) {
    152       if (cinfo->Ah != 0)	/* DC refinement needs no table */
    153 	continue;
    154       tbl = compptr->dc_tbl_no;
    155     } else {
    156       entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
    157     }
    158     if (gather_statistics) {
    159       /* Check for invalid table index */
    160       /* (make_c_derived_tbl does this in the other path) */
    161       if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
    162         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
    163       /* Allocate and zero the statistics tables */
    164       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    165       if (entropy->count_ptrs[tbl] == NULL)
    166 	entropy->count_ptrs[tbl] = (long *)
    167 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    168 				      257 * SIZEOF(long));
    169       MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
    170     } else {
    171       /* Compute derived values for Huffman table */
    172       /* We may do this more than once for a table, but it's not expensive */
    173       jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
    174 			      & entropy->derived_tbls[tbl]);
    175     }
    176   }
    177 
    178   /* Initialize AC stuff */
    179   entropy->EOBRUN = 0;
    180   entropy->BE = 0;
    181 
    182   /* Initialize bit buffer to empty */
    183   entropy->put_buffer = 0;
    184   entropy->put_bits = 0;
    185 
    186   /* Initialize restart stuff */
    187   entropy->restarts_to_go = cinfo->restart_interval;
    188   entropy->next_restart_num = 0;
    189 }
    190 
    191 
    192 /* Outputting bytes to the file.
    193  * NB: these must be called only when actually outputting,
    194  * that is, entropy->gather_statistics == FALSE.
    195  */
    196 
    197 /* Emit a byte */
    198 #define emit_byte(entropy,val)  \
    199 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
    200 	  if (--(entropy)->free_in_buffer == 0)  \
    201 	    dump_buffer(entropy); }
    202 
    203 
    204 LOCAL(void)
    205 dump_buffer (phuff_entropy_ptr entropy)
    206 /* Empty the output buffer; we do not support suspension in this module. */
    207 {
    208   struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
    209 
    210   if (! (*dest->empty_output_buffer) (entropy->cinfo))
    211     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
    212   /* After a successful buffer dump, must reset buffer pointers */
    213   entropy->next_output_byte = dest->next_output_byte;
    214   entropy->free_in_buffer = dest->free_in_buffer;
    215 }
    216 
    217 
    218 /* Outputting bits to the file */
    219 
    220 /* Only the right 24 bits of put_buffer are used; the valid bits are
    221  * left-justified in this part.  At most 16 bits can be passed to emit_bits
    222  * in one call, and we never retain more than 7 bits in put_buffer
    223  * between calls, so 24 bits are sufficient.
    224  */
    225 
    226 LOCAL(void)
    227 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
    228 /* Emit some bits, unless we are in gather mode */
    229 {
    230   /* This routine is heavily used, so it's worth coding tightly. */
    231   register INT32 put_buffer = (INT32) code;
    232   register int put_bits = entropy->put_bits;
    233 
    234   /* if size is 0, caller used an invalid Huffman table entry */
    235   if (size == 0)
    236     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    237 
    238   if (entropy->gather_statistics)
    239     return;			/* do nothing if we're only getting stats */
    240 
    241   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
    242 
    243   put_bits += size;		/* new number of bits in buffer */
    244 
    245   put_buffer <<= 24 - put_bits; /* align incoming bits */
    246 
    247   put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
    248 
    249   while (put_bits >= 8) {
    250     int c = (int) ((put_buffer >> 16) & 0xFF);
    251 
    252     emit_byte(entropy, c);
    253     if (c == 0xFF) {		/* need to stuff a zero byte? */
    254       emit_byte(entropy, 0);
    255     }
    256     put_buffer <<= 8;
    257     put_bits -= 8;
    258   }
    259 
    260   entropy->put_buffer = put_buffer; /* update variables */
    261   entropy->put_bits = put_bits;
    262 }
    263 
    264 
    265 LOCAL(void)
    266 flush_bits (phuff_entropy_ptr entropy)
    267 {
    268   emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
    269   entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
    270   entropy->put_bits = 0;
    271 }
    272 
    273 
    274 /*
    275  * Emit (or just count) a Huffman symbol.
    276  */
    277 
    278 LOCAL(void)
    279 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
    280 {
    281   if (entropy->gather_statistics)
    282     entropy->count_ptrs[tbl_no][symbol]++;
    283   else {
    284     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
    285     emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
    286   }
    287 }
    288 
    289 
    290 /*
    291  * Emit bits from a correction bit buffer.
    292  */
    293 
    294 LOCAL(void)
    295 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
    296 		    unsigned int nbits)
    297 {
    298   if (entropy->gather_statistics)
    299     return;			/* no real work */
    300 
    301   while (nbits > 0) {
    302     emit_bits(entropy, (unsigned int) (*bufstart), 1);
    303     bufstart++;
    304     nbits--;
    305   }
    306 }
    307 
    308 
    309 /*
    310  * Emit any pending EOBRUN symbol.
    311  */
    312 
    313 LOCAL(void)
    314 emit_eobrun (phuff_entropy_ptr entropy)
    315 {
    316   register int temp, nbits;
    317 
    318   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
    319     temp = entropy->EOBRUN;
    320     nbits = 0;
    321     while ((temp >>= 1))
    322       nbits++;
    323     /* safety check: shouldn't happen given limited correction-bit buffer */
    324     if (nbits > 14)
    325       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
    326 
    327     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
    328     if (nbits)
    329       emit_bits(entropy, entropy->EOBRUN, nbits);
    330 
    331     entropy->EOBRUN = 0;
    332 
    333     /* Emit any buffered correction bits */
    334     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
    335     entropy->BE = 0;
    336   }
    337 }
    338 
    339 
    340 /*
    341  * Emit a restart marker & resynchronize predictions.
    342  */
    343 
    344 LOCAL(void)
    345 emit_restart (phuff_entropy_ptr entropy, int restart_num)
    346 {
    347   int ci;
    348 
    349   emit_eobrun(entropy);
    350 
    351   if (! entropy->gather_statistics) {
    352     flush_bits(entropy);
    353     emit_byte(entropy, 0xFF);
    354     emit_byte(entropy, JPEG_RST0 + restart_num);
    355   }
    356 
    357   if (entropy->cinfo->Ss == 0) {
    358     /* Re-initialize DC predictions to 0 */
    359     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
    360       entropy->last_dc_val[ci] = 0;
    361   } else {
    362     /* Re-initialize all AC-related fields to 0 */
    363     entropy->EOBRUN = 0;
    364     entropy->BE = 0;
    365   }
    366 }
    367 
    368 
    369 /*
    370  * MCU encoding for DC initial scan (either spectral selection,
    371  * or first pass of successive approximation).
    372  */
    373 
    374 METHODDEF(boolean)
    375 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    376 {
    377   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    378   register int temp, temp2;
    379   register int nbits;
    380   int blkn, ci;
    381   int Al = cinfo->Al;
    382   JBLOCKROW block;
    383   jpeg_component_info * compptr;
    384   ISHIFT_TEMPS
    385 
    386   entropy->next_output_byte = cinfo->dest->next_output_byte;
    387   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    388 
    389   /* Emit restart marker if needed */
    390   if (cinfo->restart_interval)
    391     if (entropy->restarts_to_go == 0)
    392       emit_restart(entropy, entropy->next_restart_num);
    393 
    394   /* Encode the MCU data blocks */
    395   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    396     block = MCU_data[blkn];
    397     ci = cinfo->MCU_membership[blkn];
    398     compptr = cinfo->cur_comp_info[ci];
    399 
    400     /* Compute the DC value after the required point transform by Al.
    401      * This is simply an arithmetic right shift.
    402      */
    403     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
    404 
    405     /* DC differences are figured on the point-transformed values. */
    406     temp = temp2 - entropy->last_dc_val[ci];
    407     entropy->last_dc_val[ci] = temp2;
    408 
    409     /* Encode the DC coefficient difference per section G.1.2.1 */
    410     temp2 = temp;
    411     if (temp < 0) {
    412       temp = -temp;		/* temp is abs value of input */
    413       /* For a negative input, want temp2 = bitwise complement of abs(input) */
    414       /* This code assumes we are on a two's complement machine */
    415       temp2--;
    416     }
    417 
    418     /* Find the number of bits needed for the magnitude of the coefficient */
    419     nbits = 0;
    420     while (temp) {
    421       nbits++;
    422       temp >>= 1;
    423     }
    424     /* Check for out-of-range coefficient values.
    425      * Since we're encoding a difference, the range limit is twice as much.
    426      */
    427     if (nbits > MAX_COEF_BITS+1)
    428       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    429 
    430     /* Count/emit the Huffman-coded symbol for the number of bits */
    431     emit_symbol(entropy, compptr->dc_tbl_no, nbits);
    432 
    433     /* Emit that number of bits of the value, if positive, */
    434     /* or the complement of its magnitude, if negative. */
    435     if (nbits)			/* emit_bits rejects calls with size 0 */
    436       emit_bits(entropy, (unsigned int) temp2, nbits);
    437   }
    438 
    439   cinfo->dest->next_output_byte = entropy->next_output_byte;
    440   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    441 
    442   /* Update restart-interval state too */
    443   if (cinfo->restart_interval) {
    444     if (entropy->restarts_to_go == 0) {
    445       entropy->restarts_to_go = cinfo->restart_interval;
    446       entropy->next_restart_num++;
    447       entropy->next_restart_num &= 7;
    448     }
    449     entropy->restarts_to_go--;
    450   }
    451 
    452   return TRUE;
    453 }
    454 
    455 
    456 /*
    457  * MCU encoding for AC initial scan (either spectral selection,
    458  * or first pass of successive approximation).
    459  */
    460 
    461 METHODDEF(boolean)
    462 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    463 {
    464   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    465   register int temp, temp2;
    466   register int nbits;
    467   register int r, k;
    468   int Se = cinfo->Se;
    469   int Al = cinfo->Al;
    470   JBLOCKROW block;
    471 
    472   entropy->next_output_byte = cinfo->dest->next_output_byte;
    473   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    474 
    475   /* Emit restart marker if needed */
    476   if (cinfo->restart_interval)
    477     if (entropy->restarts_to_go == 0)
    478       emit_restart(entropy, entropy->next_restart_num);
    479 
    480   /* Encode the MCU data block */
    481   block = MCU_data[0];
    482 
    483   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
    484 
    485   r = 0;			/* r = run length of zeros */
    486 
    487   for (k = cinfo->Ss; k <= Se; k++) {
    488     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
    489       r++;
    490       continue;
    491     }
    492     /* We must apply the point transform by Al.  For AC coefficients this
    493      * is an integer division with rounding towards 0.  To do this portably
    494      * in C, we shift after obtaining the absolute value; so the code is
    495      * interwoven with finding the abs value (temp) and output bits (temp2).
    496      */
    497     if (temp < 0) {
    498       temp = -temp;		/* temp is abs value of input */
    499       temp >>= Al;		/* apply the point transform */
    500       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
    501       temp2 = ~temp;
    502     } else {
    503       temp >>= Al;		/* apply the point transform */
    504       temp2 = temp;
    505     }
    506     /* Watch out for case that nonzero coef is zero after point transform */
    507     if (temp == 0) {
    508       r++;
    509       continue;
    510     }
    511 
    512     /* Emit any pending EOBRUN */
    513     if (entropy->EOBRUN > 0)
    514       emit_eobrun(entropy);
    515     /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    516     while (r > 15) {
    517       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    518       r -= 16;
    519     }
    520 
    521     /* Find the number of bits needed for the magnitude of the coefficient */
    522     nbits = 1;			/* there must be at least one 1 bit */
    523     while ((temp >>= 1))
    524       nbits++;
    525     /* Check for out-of-range coefficient values */
    526     if (nbits > MAX_COEF_BITS)
    527       ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    528 
    529     /* Count/emit Huffman symbol for run length / number of bits */
    530     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
    531 
    532     /* Emit that number of bits of the value, if positive, */
    533     /* or the complement of its magnitude, if negative. */
    534     emit_bits(entropy, (unsigned int) temp2, nbits);
    535 
    536     r = 0;			/* reset zero run length */
    537   }
    538 
    539   if (r > 0) {			/* If there are trailing zeroes, */
    540     entropy->EOBRUN++;		/* count an EOB */
    541     if (entropy->EOBRUN == 0x7FFF)
    542       emit_eobrun(entropy);	/* force it out to avoid overflow */
    543   }
    544 
    545   cinfo->dest->next_output_byte = entropy->next_output_byte;
    546   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    547 
    548   /* Update restart-interval state too */
    549   if (cinfo->restart_interval) {
    550     if (entropy->restarts_to_go == 0) {
    551       entropy->restarts_to_go = cinfo->restart_interval;
    552       entropy->next_restart_num++;
    553       entropy->next_restart_num &= 7;
    554     }
    555     entropy->restarts_to_go--;
    556   }
    557 
    558   return TRUE;
    559 }
    560 
    561 
    562 /*
    563  * MCU encoding for DC successive approximation refinement scan.
    564  * Note: we assume such scans can be multi-component, although the spec
    565  * is not very clear on the point.
    566  */
    567 
    568 METHODDEF(boolean)
    569 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    570 {
    571   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    572   register int temp;
    573   int blkn;
    574   int Al = cinfo->Al;
    575   JBLOCKROW block;
    576 
    577   entropy->next_output_byte = cinfo->dest->next_output_byte;
    578   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    579 
    580   /* Emit restart marker if needed */
    581   if (cinfo->restart_interval)
    582     if (entropy->restarts_to_go == 0)
    583       emit_restart(entropy, entropy->next_restart_num);
    584 
    585   /* Encode the MCU data blocks */
    586   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    587     block = MCU_data[blkn];
    588 
    589     /* We simply emit the Al'th bit of the DC coefficient value. */
    590     temp = (*block)[0];
    591     emit_bits(entropy, (unsigned int) (temp >> Al), 1);
    592   }
    593 
    594   cinfo->dest->next_output_byte = entropy->next_output_byte;
    595   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    596 
    597   /* Update restart-interval state too */
    598   if (cinfo->restart_interval) {
    599     if (entropy->restarts_to_go == 0) {
    600       entropy->restarts_to_go = cinfo->restart_interval;
    601       entropy->next_restart_num++;
    602       entropy->next_restart_num &= 7;
    603     }
    604     entropy->restarts_to_go--;
    605   }
    606 
    607   return TRUE;
    608 }
    609 
    610 
    611 /*
    612  * MCU encoding for AC successive approximation refinement scan.
    613  */
    614 
    615 METHODDEF(boolean)
    616 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    617 {
    618   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    619   register int temp;
    620   register int r, k;
    621   int EOB;
    622   char *BR_buffer;
    623   unsigned int BR;
    624   int Se = cinfo->Se;
    625   int Al = cinfo->Al;
    626   JBLOCKROW block;
    627   int absvalues[DCTSIZE2];
    628 
    629   entropy->next_output_byte = cinfo->dest->next_output_byte;
    630   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    631 
    632   /* Emit restart marker if needed */
    633   if (cinfo->restart_interval)
    634     if (entropy->restarts_to_go == 0)
    635       emit_restart(entropy, entropy->next_restart_num);
    636 
    637   /* Encode the MCU data block */
    638   block = MCU_data[0];
    639 
    640   /* It is convenient to make a pre-pass to determine the transformed
    641    * coefficients' absolute values and the EOB position.
    642    */
    643   EOB = 0;
    644   for (k = cinfo->Ss; k <= Se; k++) {
    645     temp = (*block)[jpeg_natural_order[k]];
    646     /* We must apply the point transform by Al.  For AC coefficients this
    647      * is an integer division with rounding towards 0.  To do this portably
    648      * in C, we shift after obtaining the absolute value.
    649      */
    650     if (temp < 0)
    651       temp = -temp;		/* temp is abs value of input */
    652     temp >>= Al;		/* apply the point transform */
    653     absvalues[k] = temp;	/* save abs value for main pass */
    654     if (temp == 1)
    655       EOB = k;			/* EOB = index of last newly-nonzero coef */
    656   }
    657 
    658   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
    659 
    660   r = 0;			/* r = run length of zeros */
    661   BR = 0;			/* BR = count of buffered bits added now */
    662   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
    663 
    664   for (k = cinfo->Ss; k <= Se; k++) {
    665     if ((temp = absvalues[k]) == 0) {
    666       r++;
    667       continue;
    668     }
    669 
    670     /* Emit any required ZRLs, but not if they can be folded into EOB */
    671     while (r > 15 && k <= EOB) {
    672       /* emit any pending EOBRUN and the BE correction bits */
    673       emit_eobrun(entropy);
    674       /* Emit ZRL */
    675       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
    676       r -= 16;
    677       /* Emit buffered correction bits that must be associated with ZRL */
    678       emit_buffered_bits(entropy, BR_buffer, BR);
    679       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    680       BR = 0;
    681     }
    682 
    683     /* If the coef was previously nonzero, it only needs a correction bit.
    684      * NOTE: a straight translation of the spec's figure G.7 would suggest
    685      * that we also need to test r > 15.  But if r > 15, we can only get here
    686      * if k > EOB, which implies that this coefficient is not 1.
    687      */
    688     if (temp > 1) {
    689       /* The correction bit is the next bit of the absolute value. */
    690       BR_buffer[BR++] = (char) (temp & 1);
    691       continue;
    692     }
    693 
    694     /* Emit any pending EOBRUN and the BE correction bits */
    695     emit_eobrun(entropy);
    696 
    697     /* Count/emit Huffman symbol for run length / number of bits */
    698     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
    699 
    700     /* Emit output bit for newly-nonzero coef */
    701     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
    702     emit_bits(entropy, (unsigned int) temp, 1);
    703 
    704     /* Emit buffered correction bits that must be associated with this code */
    705     emit_buffered_bits(entropy, BR_buffer, BR);
    706     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
    707     BR = 0;
    708     r = 0;			/* reset zero run length */
    709   }
    710 
    711   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
    712     entropy->EOBRUN++;		/* count an EOB */
    713     entropy->BE += BR;		/* concat my correction bits to older ones */
    714     /* We force out the EOB if we risk either:
    715      * 1. overflow of the EOB counter;
    716      * 2. overflow of the correction bit buffer during the next MCU.
    717      */
    718     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
    719       emit_eobrun(entropy);
    720   }
    721 
    722   cinfo->dest->next_output_byte = entropy->next_output_byte;
    723   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    724 
    725   /* Update restart-interval state too */
    726   if (cinfo->restart_interval) {
    727     if (entropy->restarts_to_go == 0) {
    728       entropy->restarts_to_go = cinfo->restart_interval;
    729       entropy->next_restart_num++;
    730       entropy->next_restart_num &= 7;
    731     }
    732     entropy->restarts_to_go--;
    733   }
    734 
    735   return TRUE;
    736 }
    737 
    738 
    739 /*
    740  * Finish up at the end of a Huffman-compressed progressive scan.
    741  */
    742 
    743 METHODDEF(void)
    744 finish_pass_phuff (j_compress_ptr cinfo)
    745 {
    746   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    747 
    748   entropy->next_output_byte = cinfo->dest->next_output_byte;
    749   entropy->free_in_buffer = cinfo->dest->free_in_buffer;
    750 
    751   /* Flush out any buffered data */
    752   emit_eobrun(entropy);
    753   flush_bits(entropy);
    754 
    755   cinfo->dest->next_output_byte = entropy->next_output_byte;
    756   cinfo->dest->free_in_buffer = entropy->free_in_buffer;
    757 }
    758 
    759 
    760 /*
    761  * Finish up a statistics-gathering pass and create the new Huffman tables.
    762  */
    763 
    764 METHODDEF(void)
    765 finish_pass_gather_phuff (j_compress_ptr cinfo)
    766 {
    767   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
    768   boolean is_DC_band;
    769   int ci, tbl;
    770   jpeg_component_info * compptr;
    771   JHUFF_TBL **htblptr;
    772   boolean did[NUM_HUFF_TBLS];
    773 
    774   /* Flush out buffered data (all we care about is counting the EOB symbol) */
    775   emit_eobrun(entropy);
    776 
    777   is_DC_band = (cinfo->Ss == 0);
    778 
    779   /* It's important not to apply jpeg_gen_optimal_table more than once
    780    * per table, because it clobbers the input frequency counts!
    781    */
    782   MEMZERO(did, SIZEOF(did));
    783 
    784   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    785     compptr = cinfo->cur_comp_info[ci];
    786     if (is_DC_band) {
    787       if (cinfo->Ah != 0)	/* DC refinement needs no table */
    788 	continue;
    789       tbl = compptr->dc_tbl_no;
    790     } else {
    791       tbl = compptr->ac_tbl_no;
    792     }
    793     if (! did[tbl]) {
    794       if (is_DC_band)
    795         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
    796       else
    797         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
    798       if (*htblptr == NULL)
    799         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
    800       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
    801       did[tbl] = TRUE;
    802     }
    803   }
    804 }
    805 
    806 
    807 /*
    808  * Module initialization routine for progressive Huffman entropy encoding.
    809  */
    810 
    811 GLOBAL(void)
    812 jinit_phuff_encoder (j_compress_ptr cinfo)
    813 {
    814   phuff_entropy_ptr entropy;
    815   int i;
    816 
    817   entropy = (phuff_entropy_ptr)
    818     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    819 				SIZEOF(phuff_entropy_encoder));
    820   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    821   entropy->pub.start_pass = start_pass_phuff;
    822 
    823   /* Mark tables unallocated */
    824   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    825     entropy->derived_tbls[i] = NULL;
    826     entropy->count_ptrs[i] = NULL;
    827   }
    828   entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
    829 }
    830 
    831 #endif /* C_PROGRESSIVE_SUPPORTED */
    832