Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jdhuff.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009-2011, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains Huffman entropy decoding routines.
     11  *
     12  * Much of the complexity here has to do with supporting input suspension.
     13  * If the data source module demands suspension, we want to be able to back
     14  * up to the start of the current MCU.  To do this, we copy state variables
     15  * into local working storage, and update them back to the permanent
     16  * storage only upon successful completion of an MCU.
     17  */
     18 
     19 #define JPEG_INTERNALS
     20 #include "jinclude.h"
     21 #include "jpeglib.h"
     22 #include "jdhuff.h"		/* Declarations shared with jdphuff.c */
     23 #include "jpegcomp.h"
     24 
     25 
     26 /*
     27  * Expanded entropy decoder object for Huffman decoding.
     28  *
     29  * The savable_state subrecord contains fields that change within an MCU,
     30  * but must not be updated permanently until we complete the MCU.
     31  */
     32 
     33 typedef struct {
     34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     35 } savable_state;
     36 
     37 /* This macro is to work around compilers with missing or broken
     38  * structure assignment.  You'll need to fix this code if you have
     39  * such a compiler and you change MAX_COMPS_IN_SCAN.
     40  */
     41 
     42 #ifndef NO_STRUCT_ASSIGN
     43 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     44 #else
     45 #if MAX_COMPS_IN_SCAN == 4
     46 #define ASSIGN_STATE(dest,src)  \
     47 	((dest).last_dc_val[0] = (src).last_dc_val[0], \
     48 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
     49 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
     50 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
     51 #endif
     52 #endif
     53 
     54 
     55 typedef struct {
     56   struct jpeg_entropy_decoder pub; /* public fields */
     57 
     58   /* These fields are loaded into local variables at start of each MCU.
     59    * In case of suspension, we exit WITHOUT updating them.
     60    */
     61   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
     62   savable_state saved;		/* Other state at start of MCU */
     63 
     64   /* These fields are NOT loaded into local working state. */
     65   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
     66 
     67   /* Pointers to derived tables (these workspaces have image lifespan) */
     68   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
     69   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
     70 
     71   /* Precalculated info set up by start_pass for use in decode_mcu: */
     72 
     73   /* Pointers to derived tables to be used for each block within an MCU */
     74   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     75   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
     76   /* Whether we care about the DC and AC coefficient values for each block */
     77   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
     78   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
     79 } huff_entropy_decoder;
     80 
     81 typedef huff_entropy_decoder * huff_entropy_ptr;
     82 
     83 
     84 /*
     85  * Initialize for a Huffman-compressed scan.
     86  */
     87 
     88 METHODDEF(void)
     89 start_pass_huff_decoder (j_decompress_ptr cinfo)
     90 {
     91   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
     92   int ci, blkn, dctbl, actbl;
     93   jpeg_component_info * compptr;
     94 
     95   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
     96    * This ought to be an error condition, but we make it a warning because
     97    * there are some baseline files out there with all zeroes in these bytes.
     98    */
     99   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
    100       cinfo->Ah != 0 || cinfo->Al != 0)
    101     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
    102 
    103   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    104     compptr = cinfo->cur_comp_info[ci];
    105     dctbl = compptr->dc_tbl_no;
    106     actbl = compptr->ac_tbl_no;
    107     /* Compute derived values for Huffman tables */
    108     /* We may do this more than once for a table, but it's not expensive */
    109     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
    110 			    & entropy->dc_derived_tbls[dctbl]);
    111     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
    112 			    & entropy->ac_derived_tbls[actbl]);
    113     /* Initialize DC predictions to 0 */
    114     entropy->saved.last_dc_val[ci] = 0;
    115   }
    116 
    117   /* Precalculate decoding info for each block in an MCU of this scan */
    118   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    119     ci = cinfo->MCU_membership[blkn];
    120     compptr = cinfo->cur_comp_info[ci];
    121     /* Precalculate which table to use for each block */
    122     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
    123     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
    124     /* Decide whether we really care about the coefficient values */
    125     if (compptr->component_needed) {
    126       entropy->dc_needed[blkn] = TRUE;
    127       /* we don't need the ACs if producing a 1/8th-size image */
    128       entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
    129     } else {
    130       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
    131     }
    132   }
    133 
    134   /* Initialize bitread state variables */
    135   entropy->bitstate.bits_left = 0;
    136   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
    137   entropy->pub.insufficient_data = FALSE;
    138 
    139   /* Initialize restart counter */
    140   entropy->restarts_to_go = cinfo->restart_interval;
    141 }
    142 
    143 
    144 /*
    145  * Compute the derived values for a Huffman table.
    146  * This routine also performs some validation checks on the table.
    147  *
    148  * Note this is also used by jdphuff.c.
    149  */
    150 
    151 GLOBAL(void)
    152 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
    153 			 d_derived_tbl ** pdtbl)
    154 {
    155   JHUFF_TBL *htbl;
    156   d_derived_tbl *dtbl;
    157   int p, i, l, si, numsymbols;
    158   int lookbits, ctr;
    159   char huffsize[257];
    160   unsigned int huffcode[257];
    161   unsigned int code;
    162 
    163   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    164    * paralleling the order of the symbols themselves in htbl->huffval[].
    165    */
    166 
    167   /* Find the input Huffman table */
    168   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    169     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    170   htbl =
    171     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    172   if (htbl == NULL)
    173     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    174 
    175   /* Allocate a workspace if we haven't already done so. */
    176   if (*pdtbl == NULL)
    177     *pdtbl = (d_derived_tbl *)
    178       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    179 				  SIZEOF(d_derived_tbl));
    180   dtbl = *pdtbl;
    181   dtbl->pub = htbl;		/* fill in back link */
    182 
    183   /* Figure C.1: make table of Huffman code length for each symbol */
    184 
    185   p = 0;
    186   for (l = 1; l <= 16; l++) {
    187     i = (int) htbl->bits[l];
    188     if (i < 0 || p + i > 256)	/* protect against table overrun */
    189       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    190     while (i--)
    191       huffsize[p++] = (char) l;
    192   }
    193   huffsize[p] = 0;
    194   numsymbols = p;
    195 
    196   /* Figure C.2: generate the codes themselves */
    197   /* We also validate that the counts represent a legal Huffman code tree. */
    198 
    199   code = 0;
    200   si = huffsize[0];
    201   p = 0;
    202   while (huffsize[p]) {
    203     while (((int) huffsize[p]) == si) {
    204       huffcode[p++] = code;
    205       code++;
    206     }
    207     /* code is now 1 more than the last code used for codelength si; but
    208      * it must still fit in si bits, since no code is allowed to be all ones.
    209      */
    210     if (((INT32) code) >= (((INT32) 1) << si))
    211       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    212     code <<= 1;
    213     si++;
    214   }
    215 
    216   /* Figure F.15: generate decoding tables for bit-sequential decoding */
    217 
    218   p = 0;
    219   for (l = 1; l <= 16; l++) {
    220     if (htbl->bits[l]) {
    221       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
    222        * minus the minimum code of length l
    223        */
    224       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
    225       p += htbl->bits[l];
    226       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    227     } else {
    228       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    229     }
    230   }
    231   dtbl->valoffset[17] = 0;
    232   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
    233 
    234   /* Compute lookahead tables to speed up decoding.
    235    * First we set all the table entries to 0, indicating "too long";
    236    * then we iterate through the Huffman codes that are short enough and
    237    * fill in all the entries that correspond to bit sequences starting
    238    * with that code.
    239    */
    240 
    241    for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
    242      dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
    243 
    244   p = 0;
    245   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    246     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
    247       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
    248       /* Generate left-justified code followed by all possible bit sequences */
    249       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
    250       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
    251 	dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
    252 	lookbits++;
    253       }
    254     }
    255   }
    256 
    257   /* Validate symbols as being reasonable.
    258    * For AC tables, we make no check, but accept all byte values 0..255.
    259    * For DC tables, we require the symbols to be in range 0..15.
    260    * (Tighter bounds could be applied depending on the data depth and mode,
    261    * but this is sufficient to ensure safe decoding.)
    262    */
    263   if (isDC) {
    264     for (i = 0; i < numsymbols; i++) {
    265       int sym = htbl->huffval[i];
    266       if (sym < 0 || sym > 15)
    267 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    268     }
    269   }
    270 }
    271 
    272 
    273 /*
    274  * Out-of-line code for bit fetching (shared with jdphuff.c).
    275  * See jdhuff.h for info about usage.
    276  * Note: current values of get_buffer and bits_left are passed as parameters,
    277  * but are returned in the corresponding fields of the state struct.
    278  *
    279  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
    280  * of get_buffer to be used.  (On machines with wider words, an even larger
    281  * buffer could be used.)  However, on some machines 32-bit shifts are
    282  * quite slow and take time proportional to the number of places shifted.
    283  * (This is true with most PC compilers, for instance.)  In this case it may
    284  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
    285  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
    286  */
    287 
    288 #ifdef SLOW_SHIFT_32
    289 #define MIN_GET_BITS  15	/* minimum allowable value */
    290 #else
    291 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
    292 #endif
    293 
    294 
    295 GLOBAL(boolean)
    296 jpeg_fill_bit_buffer (bitread_working_state * state,
    297 		      register bit_buf_type get_buffer, register int bits_left,
    298 		      int nbits)
    299 /* Load up the bit buffer to a depth of at least nbits */
    300 {
    301   /* Copy heavily used state fields into locals (hopefully registers) */
    302   register const JOCTET * next_input_byte = state->next_input_byte;
    303   register size_t bytes_in_buffer = state->bytes_in_buffer;
    304   j_decompress_ptr cinfo = state->cinfo;
    305 
    306   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
    307   /* (It is assumed that no request will be for more than that many bits.) */
    308   /* We fail to do so only if we hit a marker or are forced to suspend. */
    309 
    310   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
    311     while (bits_left < MIN_GET_BITS) {
    312       register int c;
    313 
    314       /* Attempt to read a byte */
    315       if (bytes_in_buffer == 0) {
    316 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
    317 	  return FALSE;
    318 	next_input_byte = cinfo->src->next_input_byte;
    319 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
    320       }
    321       bytes_in_buffer--;
    322       c = GETJOCTET(*next_input_byte++);
    323 
    324       /* If it's 0xFF, check and discard stuffed zero byte */
    325       if (c == 0xFF) {
    326 	/* Loop here to discard any padding FF's on terminating marker,
    327 	 * so that we can save a valid unread_marker value.  NOTE: we will
    328 	 * accept multiple FF's followed by a 0 as meaning a single FF data
    329 	 * byte.  This data pattern is not valid according to the standard.
    330 	 */
    331 	do {
    332 	  if (bytes_in_buffer == 0) {
    333 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
    334 	      return FALSE;
    335 	    next_input_byte = cinfo->src->next_input_byte;
    336 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
    337 	  }
    338 	  bytes_in_buffer--;
    339 	  c = GETJOCTET(*next_input_byte++);
    340 	} while (c == 0xFF);
    341 
    342 	if (c == 0) {
    343 	  /* Found FF/00, which represents an FF data byte */
    344 	  c = 0xFF;
    345 	} else {
    346 	  /* Oops, it's actually a marker indicating end of compressed data.
    347 	   * Save the marker code for later use.
    348 	   * Fine point: it might appear that we should save the marker into
    349 	   * bitread working state, not straight into permanent state.  But
    350 	   * once we have hit a marker, we cannot need to suspend within the
    351 	   * current MCU, because we will read no more bytes from the data
    352 	   * source.  So it is OK to update permanent state right away.
    353 	   */
    354 	  cinfo->unread_marker = c;
    355 	  /* See if we need to insert some fake zero bits. */
    356 	  goto no_more_bytes;
    357 	}
    358       }
    359 
    360       /* OK, load c into get_buffer */
    361       get_buffer = (get_buffer << 8) | c;
    362       bits_left += 8;
    363     } /* end while */
    364   } else {
    365   no_more_bytes:
    366     /* We get here if we've read the marker that terminates the compressed
    367      * data segment.  There should be enough bits in the buffer register
    368      * to satisfy the request; if so, no problem.
    369      */
    370     if (nbits > bits_left) {
    371       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
    372        * the data stream, so that we can produce some kind of image.
    373        * We use a nonvolatile flag to ensure that only one warning message
    374        * appears per data segment.
    375        */
    376       if (! cinfo->entropy->insufficient_data) {
    377 	WARNMS(cinfo, JWRN_HIT_MARKER);
    378 	cinfo->entropy->insufficient_data = TRUE;
    379       }
    380       /* Fill the buffer with zero bits */
    381       get_buffer <<= MIN_GET_BITS - bits_left;
    382       bits_left = MIN_GET_BITS;
    383     }
    384   }
    385 
    386   /* Unload the local registers */
    387   state->next_input_byte = next_input_byte;
    388   state->bytes_in_buffer = bytes_in_buffer;
    389   state->get_buffer = get_buffer;
    390   state->bits_left = bits_left;
    391 
    392   return TRUE;
    393 }
    394 
    395 
    396 /* Macro version of the above, which performs much better but does not
    397    handle markers.  We have to hand off any blocks with markers to the
    398    slower routines. */
    399 
    400 #define GET_BYTE \
    401 { \
    402   register int c0, c1; \
    403   c0 = GETJOCTET(*buffer++); \
    404   c1 = GETJOCTET(*buffer); \
    405   /* Pre-execute most common case */ \
    406   get_buffer = (get_buffer << 8) | c0; \
    407   bits_left += 8; \
    408   if (c0 == 0xFF) { \
    409     /* Pre-execute case of FF/00, which represents an FF data byte */ \
    410     buffer++; \
    411     if (c1 != 0) { \
    412       /* Oops, it's actually a marker indicating end of compressed data. */ \
    413       cinfo->unread_marker = c1; \
    414       /* Back out pre-execution and fill the buffer with zero bits */ \
    415       buffer -= 2; \
    416       get_buffer &= ~0xFF; \
    417     } \
    418   } \
    419 }
    420 
    421 #if __WORDSIZE == 64 || defined(_WIN64)
    422 
    423 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
    424 #define FILL_BIT_BUFFER_FAST \
    425   if (bits_left < 16) { \
    426     GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
    427   }
    428 
    429 #else
    430 
    431 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
    432 #define FILL_BIT_BUFFER_FAST \
    433   if (bits_left < 16) { \
    434     GET_BYTE GET_BYTE \
    435   }
    436 
    437 #endif
    438 
    439 
    440 /*
    441  * Out-of-line code for Huffman code decoding.
    442  * See jdhuff.h for info about usage.
    443  */
    444 
    445 GLOBAL(int)
    446 jpeg_huff_decode (bitread_working_state * state,
    447 		  register bit_buf_type get_buffer, register int bits_left,
    448 		  d_derived_tbl * htbl, int min_bits)
    449 {
    450   register int l = min_bits;
    451   register INT32 code;
    452 
    453   /* HUFF_DECODE has determined that the code is at least min_bits */
    454   /* bits long, so fetch that many bits in one swoop. */
    455 
    456   CHECK_BIT_BUFFER(*state, l, return -1);
    457   code = GET_BITS(l);
    458 
    459   /* Collect the rest of the Huffman code one bit at a time. */
    460   /* This is per Figure F.16 in the JPEG spec. */
    461 
    462   while (code > htbl->maxcode[l]) {
    463     code <<= 1;
    464     CHECK_BIT_BUFFER(*state, 1, return -1);
    465     code |= GET_BITS(1);
    466     l++;
    467   }
    468 
    469   /* Unload the local registers */
    470   state->get_buffer = get_buffer;
    471   state->bits_left = bits_left;
    472 
    473   /* With garbage input we may reach the sentinel value l = 17. */
    474 
    475   if (l > 16) {
    476     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
    477     return 0;			/* fake a zero as the safest result */
    478   }
    479 
    480   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
    481 }
    482 
    483 
    484 /*
    485  * Figure F.12: extend sign bit.
    486  * On some machines, a shift and add will be faster than a table lookup.
    487  */
    488 
    489 #define AVOID_TABLES
    490 #ifdef AVOID_TABLES
    491 
    492 #define HUFF_EXTEND(x,s)  ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1)))
    493 
    494 #else
    495 
    496 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
    497 
    498 static const int extend_test[16] =   /* entry n is 2**(n-1) */
    499   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    500     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
    501 
    502 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
    503   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    504     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    505     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    506     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
    507 
    508 #endif /* AVOID_TABLES */
    509 
    510 
    511 /*
    512  * Check for a restart marker & resynchronize decoder.
    513  * Returns FALSE if must suspend.
    514  */
    515 
    516 LOCAL(boolean)
    517 process_restart (j_decompress_ptr cinfo)
    518 {
    519   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    520   int ci;
    521 
    522   /* Throw away any unused bits remaining in bit buffer; */
    523   /* include any full bytes in next_marker's count of discarded bytes */
    524   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
    525   entropy->bitstate.bits_left = 0;
    526 
    527   /* Advance past the RSTn marker */
    528   if (! (*cinfo->marker->read_restart_marker) (cinfo))
    529     return FALSE;
    530 
    531   /* Re-initialize DC predictions to 0 */
    532   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    533     entropy->saved.last_dc_val[ci] = 0;
    534 
    535   /* Reset restart counter */
    536   entropy->restarts_to_go = cinfo->restart_interval;
    537 
    538   /* Reset out-of-data flag, unless read_restart_marker left us smack up
    539    * against a marker.  In that case we will end up treating the next data
    540    * segment as empty, and we can avoid producing bogus output pixels by
    541    * leaving the flag set.
    542    */
    543   if (cinfo->unread_marker == 0)
    544     entropy->pub.insufficient_data = FALSE;
    545 
    546   return TRUE;
    547 }
    548 
    549 
    550 LOCAL(boolean)
    551 decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    552 {
    553   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    554   BITREAD_STATE_VARS;
    555   int blkn;
    556   savable_state state;
    557   /* Outer loop handles each block in the MCU */
    558 
    559   /* Load up working state */
    560   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    561   ASSIGN_STATE(state, entropy->saved);
    562 
    563   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    564     JBLOCKROW block = MCU_data[blkn];
    565     d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
    566     d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
    567     register int s, k, r;
    568 
    569     /* Decode a single block's worth of coefficients */
    570 
    571     /* Section F.2.2.1: decode the DC coefficient difference */
    572     HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
    573     if (s) {
    574       CHECK_BIT_BUFFER(br_state, s, return FALSE);
    575       r = GET_BITS(s);
    576       s = HUFF_EXTEND(r, s);
    577     }
    578 
    579     if (entropy->dc_needed[blkn]) {
    580       /* Convert DC difference to actual value, update last_dc_val */
    581       int ci = cinfo->MCU_membership[blkn];
    582       s += state.last_dc_val[ci];
    583       state.last_dc_val[ci] = s;
    584       /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
    585       (*block)[0] = (JCOEF) s;
    586     }
    587 
    588     if (entropy->ac_needed[blkn]) {
    589 
    590       /* Section F.2.2.2: decode the AC coefficients */
    591       /* Since zeroes are skipped, output area must be cleared beforehand */
    592       for (k = 1; k < DCTSIZE2; k++) {
    593         HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
    594 
    595         r = s >> 4;
    596         s &= 15;
    597 
    598         if (s) {
    599           k += r;
    600           CHECK_BIT_BUFFER(br_state, s, return FALSE);
    601           r = GET_BITS(s);
    602           s = HUFF_EXTEND(r, s);
    603           /* Output coefficient in natural (dezigzagged) order.
    604            * Note: the extra entries in jpeg_natural_order[] will save us
    605            * if k >= DCTSIZE2, which could happen if the data is corrupted.
    606            */
    607           (*block)[jpeg_natural_order[k]] = (JCOEF) s;
    608         } else {
    609           if (r != 15)
    610             break;
    611           k += 15;
    612         }
    613       }
    614 
    615     } else {
    616 
    617       /* Section F.2.2.2: decode the AC coefficients */
    618       /* In this path we just discard the values */
    619       for (k = 1; k < DCTSIZE2; k++) {
    620         HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
    621 
    622         r = s >> 4;
    623         s &= 15;
    624 
    625         if (s) {
    626           k += r;
    627           CHECK_BIT_BUFFER(br_state, s, return FALSE);
    628           DROP_BITS(s);
    629         } else {
    630           if (r != 15)
    631             break;
    632           k += 15;
    633         }
    634       }
    635     }
    636   }
    637 
    638   /* Completed MCU, so update state */
    639   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    640   ASSIGN_STATE(entropy->saved, state);
    641   return TRUE;
    642 }
    643 
    644 
    645 LOCAL(boolean)
    646 decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    647 {
    648   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    649   BITREAD_STATE_VARS;
    650   JOCTET *buffer;
    651   int blkn;
    652   savable_state state;
    653   /* Outer loop handles each block in the MCU */
    654 
    655   /* Load up working state */
    656   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    657   buffer = (JOCTET *) br_state.next_input_byte;
    658   ASSIGN_STATE(state, entropy->saved);
    659 
    660   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    661     JBLOCKROW block = MCU_data[blkn];
    662     d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
    663     d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
    664     register int s, k, r, l;
    665 
    666     HUFF_DECODE_FAST(s, l, dctbl);
    667     if (s) {
    668       FILL_BIT_BUFFER_FAST
    669       r = GET_BITS(s);
    670       s = HUFF_EXTEND(r, s);
    671     }
    672 
    673     if (entropy->dc_needed[blkn]) {
    674       int ci = cinfo->MCU_membership[blkn];
    675       s += state.last_dc_val[ci];
    676       state.last_dc_val[ci] = s;
    677       (*block)[0] = (JCOEF) s;
    678     }
    679 
    680     if (entropy->ac_needed[blkn]) {
    681 
    682       for (k = 1; k < DCTSIZE2; k++) {
    683         HUFF_DECODE_FAST(s, l, actbl);
    684         r = s >> 4;
    685         s &= 15;
    686 
    687         if (s) {
    688           k += r;
    689           FILL_BIT_BUFFER_FAST
    690           r = GET_BITS(s);
    691           s = HUFF_EXTEND(r, s);
    692           (*block)[jpeg_natural_order[k]] = (JCOEF) s;
    693         } else {
    694           if (r != 15) break;
    695           k += 15;
    696         }
    697       }
    698 
    699     } else {
    700 
    701       for (k = 1; k < DCTSIZE2; k++) {
    702         HUFF_DECODE_FAST(s, l, actbl);
    703         r = s >> 4;
    704         s &= 15;
    705 
    706         if (s) {
    707           k += r;
    708           FILL_BIT_BUFFER_FAST
    709           DROP_BITS(s);
    710         } else {
    711           if (r != 15) break;
    712           k += 15;
    713         }
    714       }
    715     }
    716   }
    717 
    718   if (cinfo->unread_marker != 0) {
    719     cinfo->unread_marker = 0;
    720     return FALSE;
    721   }
    722 
    723   br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
    724   br_state.next_input_byte = buffer;
    725   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    726   ASSIGN_STATE(entropy->saved, state);
    727   return TRUE;
    728 }
    729 
    730 
    731 /*
    732  * Decode and return one MCU's worth of Huffman-compressed coefficients.
    733  * The coefficients are reordered from zigzag order into natural array order,
    734  * but are not dequantized.
    735  *
    736  * The i'th block of the MCU is stored into the block pointed to by
    737  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
    738  * (Wholesale zeroing is usually a little faster than retail...)
    739  *
    740  * Returns FALSE if data source requested suspension.  In that case no
    741  * changes have been made to permanent state.  (Exception: some output
    742  * coefficients may already have been assigned.  This is harmless for
    743  * this module, since we'll just re-assign them on the next call.)
    744  */
    745 
    746 #define BUFSIZE (DCTSIZE2 * 2u)
    747 
    748 METHODDEF(boolean)
    749 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
    750 {
    751   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    752   int usefast = 1;
    753 
    754   /* Process restart marker if needed; may have to suspend */
    755   if (cinfo->restart_interval) {
    756     if (entropy->restarts_to_go == 0)
    757       if (! process_restart(cinfo))
    758 	return FALSE;
    759     usefast = 0;
    760   }
    761 
    762   if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
    763     || cinfo->unread_marker != 0)
    764     usefast = 0;
    765 
    766   /* If we've run out of data, just leave the MCU set to zeroes.
    767    * This way, we return uniform gray for the remainder of the segment.
    768    */
    769   if (! entropy->pub.insufficient_data) {
    770 
    771     if (usefast) {
    772       if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
    773     }
    774     else {
    775       use_slow:
    776       if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
    777     }
    778 
    779   }
    780 
    781   /* Account for restart interval (no-op if not using restarts) */
    782   entropy->restarts_to_go--;
    783 
    784   return TRUE;
    785 }
    786 
    787 
    788 /*
    789  * Module initialization routine for Huffman entropy decoding.
    790  */
    791 
    792 GLOBAL(void)
    793 jinit_huff_decoder (j_decompress_ptr cinfo)
    794 {
    795   huff_entropy_ptr entropy;
    796   int i;
    797 
    798   entropy = (huff_entropy_ptr)
    799     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    800 				SIZEOF(huff_entropy_decoder));
    801   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
    802   entropy->pub.start_pass = start_pass_huff_decoder;
    803   entropy->pub.decode_mcu = decode_mcu;
    804 
    805   /* Mark tables unallocated */
    806   for (i = 0; i < NUM_HUFF_TBLS; i++) {
    807     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
    808   }
    809 }
    810