Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jmemmgr.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains the JPEG system-independent memory management
      9  * routines.  This code is usable across a wide variety of machines; most
     10  * of the system dependencies have been isolated in a separate file.
     11  * The major functions provided here are:
     12  *   * pool-based allocation and freeing of memory;
     13  *   * policy decisions about how to divide available memory among the
     14  *     virtual arrays;
     15  *   * control logic for swapping virtual arrays between main memory and
     16  *     backing storage.
     17  * The separate system-dependent file provides the actual backing-storage
     18  * access code, and it contains the policy decision about how much total
     19  * main memory to use.
     20  * This file is system-dependent in the sense that some of its functions
     21  * are unnecessary in some systems.  For example, if there is enough virtual
     22  * memory so that backing storage will never be used, much of the virtual
     23  * array control logic could be removed.  (Of course, if you have that much
     24  * memory then you shouldn't care about a little bit of unused code...)
     25  */
     26 
     27 #define JPEG_INTERNALS
     28 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
     29 #include "jinclude.h"
     30 #include "jpeglib.h"
     31 #include "jmemsys.h"		/* import the system-dependent declarations */
     32 
     33 #ifndef NO_GETENV
     34 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
     35 extern char * getenv JPP((const char * name));
     36 #endif
     37 #endif
     38 
     39 
     40 LOCAL(size_t)
     41 round_up_pow2 (size_t a, size_t b)
     42 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
     43 /* Assumes a >= 0, b > 0, and b is a power of 2 */
     44 {
     45   return ((a + b - 1) & (~(b - 1)));
     46 }
     47 
     48 
     49 /*
     50  * Some important notes:
     51  *   The allocation routines provided here must never return NULL.
     52  *   They should exit to error_exit if unsuccessful.
     53  *
     54  *   It's not a good idea to try to merge the sarray and barray routines,
     55  *   even though they are textually almost the same, because samples are
     56  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     57  *   in machines where byte pointers have a different representation from
     58  *   word pointers, the resulting machine code could not be the same.
     59  */
     60 
     61 
     62 /*
     63  * Many machines require storage alignment: longs must start on 4-byte
     64  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     65  * always returns pointers that are multiples of the worst-case alignment
     66  * requirement, and we had better do so too.
     67  * There isn't any really portable way to determine the worst-case alignment
     68  * requirement.  This module assumes that the alignment requirement is
     69  * multiples of ALIGN_SIZE.
     70  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on some
     71  * workstations (where doubles really do need 8-byte alignment) and will work
     72  * fine on nearly everything.  If your machine has lesser alignment needs,
     73  * you can save a few bytes by making ALIGN_SIZE smaller.
     74  * The only place I know of where this will NOT work is certain Macintosh
     75  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     76  * Doing 10-byte alignment is counterproductive because longwords won't be
     77  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
     78  * such a compiler.
     79  */
     80 
     81 #ifndef ALIGN_SIZE		/* so can override from jconfig.h */
     82 #ifndef WITH_SIMD
     83 #define ALIGN_SIZE  SIZEOF(double)
     84 #else
     85 #define ALIGN_SIZE  16 /* Most SIMD implementations require this */
     86 #endif
     87 #endif
     88 
     89 /*
     90  * We allocate objects from "pools", where each pool is gotten with a single
     91  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     92  * overhead within a pool, except for alignment padding.  Each pool has a
     93  * header with a link to the next pool of the same class.
     94  * Small and large pool headers are identical except that the latter's
     95  * link pointer must be FAR on 80x86 machines.
     96  */
     97 
     98 typedef struct small_pool_struct * small_pool_ptr;
     99 
    100 typedef struct small_pool_struct {
    101   small_pool_ptr next;	/* next in list of pools */
    102   size_t bytes_used;		/* how many bytes already used within pool */
    103   size_t bytes_left;		/* bytes still available in this pool */
    104 } small_pool_hdr;
    105 
    106 typedef struct large_pool_struct FAR * large_pool_ptr;
    107 
    108 typedef struct large_pool_struct {
    109   large_pool_ptr next;	/* next in list of pools */
    110   size_t bytes_used;		/* how many bytes already used within pool */
    111   size_t bytes_left;		/* bytes still available in this pool */
    112 } large_pool_hdr;
    113 
    114 /*
    115  * Here is the full definition of a memory manager object.
    116  */
    117 
    118 typedef struct {
    119   struct jpeg_memory_mgr pub;	/* public fields */
    120 
    121   /* Each pool identifier (lifetime class) names a linked list of pools. */
    122   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    123   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    124 
    125   /* Since we only have one lifetime class of virtual arrays, only one
    126    * linked list is necessary (for each datatype).  Note that the virtual
    127    * array control blocks being linked together are actually stored somewhere
    128    * in the small-pool list.
    129    */
    130   jvirt_sarray_ptr virt_sarray_list;
    131   jvirt_barray_ptr virt_barray_list;
    132 
    133   /* This counts total space obtained from jpeg_get_small/large */
    134   size_t total_space_allocated;
    135 
    136   /* alloc_sarray and alloc_barray set this value for use by virtual
    137    * array routines.
    138    */
    139   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
    140 } my_memory_mgr;
    141 
    142 typedef my_memory_mgr * my_mem_ptr;
    143 
    144 
    145 /*
    146  * The control blocks for virtual arrays.
    147  * Note that these blocks are allocated in the "small" pool area.
    148  * System-dependent info for the associated backing store (if any) is hidden
    149  * inside the backing_store_info struct.
    150  */
    151 
    152 struct jvirt_sarray_control {
    153   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
    154   JDIMENSION rows_in_array;	/* total virtual array height */
    155   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
    156   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
    157   JDIMENSION rows_in_mem;	/* height of memory buffer */
    158   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    159   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    160   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    161   boolean pre_zero;		/* pre-zero mode requested? */
    162   boolean dirty;		/* do current buffer contents need written? */
    163   boolean b_s_open;		/* is backing-store data valid? */
    164   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
    165   backing_store_info b_s_info;	/* System-dependent control info */
    166 };
    167 
    168 struct jvirt_barray_control {
    169   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
    170   JDIMENSION rows_in_array;	/* total virtual array height */
    171   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
    172   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
    173   JDIMENSION rows_in_mem;	/* height of memory buffer */
    174   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    175   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    176   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    177   boolean pre_zero;		/* pre-zero mode requested? */
    178   boolean dirty;		/* do current buffer contents need written? */
    179   boolean b_s_open;		/* is backing-store data valid? */
    180   jvirt_barray_ptr next;	/* link to next virtual barray control block */
    181   backing_store_info b_s_info;	/* System-dependent control info */
    182 };
    183 
    184 
    185 #ifdef MEM_STATS		/* optional extra stuff for statistics */
    186 
    187 LOCAL(void)
    188 print_mem_stats (j_common_ptr cinfo, int pool_id)
    189 {
    190   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    191   small_pool_ptr shdr_ptr;
    192   large_pool_ptr lhdr_ptr;
    193 
    194   /* Since this is only a debugging stub, we can cheat a little by using
    195    * fprintf directly rather than going through the trace message code.
    196    * This is helpful because message parm array can't handle longs.
    197    */
    198   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    199 	  pool_id, mem->total_space_allocated);
    200 
    201   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    202        lhdr_ptr = lhdr_ptr->next) {
    203     fprintf(stderr, "  Large chunk used %ld\n",
    204 	    (long) lhdr_ptr->bytes_used);
    205   }
    206 
    207   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    208        shdr_ptr = shdr_ptr->next) {
    209     fprintf(stderr, "  Small chunk used %ld free %ld\n",
    210 	    (long) shdr_ptr->bytes_used,
    211 	    (long) shdr_ptr->bytes_left);
    212   }
    213 }
    214 
    215 #endif /* MEM_STATS */
    216 
    217 
    218 LOCAL(void)
    219 out_of_memory (j_common_ptr cinfo, int which)
    220 /* Report an out-of-memory error and stop execution */
    221 /* If we compiled MEM_STATS support, report alloc requests before dying */
    222 {
    223 #ifdef MEM_STATS
    224   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
    225 #endif
    226   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    227 }
    228 
    229 
    230 /*
    231  * Allocation of "small" objects.
    232  *
    233  * For these, we use pooled storage.  When a new pool must be created,
    234  * we try to get enough space for the current request plus a "slop" factor,
    235  * where the slop will be the amount of leftover space in the new pool.
    236  * The speed vs. space tradeoff is largely determined by the slop values.
    237  * A different slop value is provided for each pool class (lifetime),
    238  * and we also distinguish the first pool of a class from later ones.
    239  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    240  * machines, but may be too small if longs are 64 bits or more.
    241  *
    242  * Since we do not know what alignment malloc() gives us, we have to
    243  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
    244  * adjustment.
    245  */
    246 
    247 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
    248 {
    249 	1600,			/* first PERMANENT pool */
    250 	16000			/* first IMAGE pool */
    251 };
    252 
    253 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
    254 {
    255 	0,			/* additional PERMANENT pools */
    256 	5000			/* additional IMAGE pools */
    257 };
    258 
    259 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
    260 
    261 
    262 METHODDEF(void *)
    263 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    264 /* Allocate a "small" object */
    265 {
    266   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    267   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    268   char * data_ptr;
    269   size_t min_request, slop;
    270 
    271   /*
    272    * Round up the requested size to a multiple of ALIGN_SIZE in order
    273    * to assure alignment for the next object allocated in the same pool
    274    * and so that algorithms can straddle outside the proper area up
    275    * to the next alignment.
    276    */
    277   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
    278 
    279   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    280   if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
    281     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
    282 
    283   /* See if space is available in any existing pool */
    284   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    285     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    286   prev_hdr_ptr = NULL;
    287   hdr_ptr = mem->small_list[pool_id];
    288   while (hdr_ptr != NULL) {
    289     if (hdr_ptr->bytes_left >= sizeofobject)
    290       break;			/* found pool with enough space */
    291     prev_hdr_ptr = hdr_ptr;
    292     hdr_ptr = hdr_ptr->next;
    293   }
    294 
    295   /* Time to make a new pool? */
    296   if (hdr_ptr == NULL) {
    297     /* min_request is what we need now, slop is what will be leftover */
    298     min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
    299     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    300       slop = first_pool_slop[pool_id];
    301     else
    302       slop = extra_pool_slop[pool_id];
    303     /* Don't ask for more than MAX_ALLOC_CHUNK */
    304     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
    305       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    306     /* Try to get space, if fail reduce slop and try again */
    307     for (;;) {
    308       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
    309       if (hdr_ptr != NULL)
    310 	break;
    311       slop /= 2;
    312       if (slop < MIN_SLOP)	/* give up when it gets real small */
    313 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    314     }
    315     mem->total_space_allocated += min_request + slop;
    316     /* Success, initialize the new pool header and add to end of list */
    317     hdr_ptr->next = NULL;
    318     hdr_ptr->bytes_used = 0;
    319     hdr_ptr->bytes_left = sizeofobject + slop;
    320     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    321       mem->small_list[pool_id] = hdr_ptr;
    322     else
    323       prev_hdr_ptr->next = hdr_ptr;
    324   }
    325 
    326   /* OK, allocate the object from the current pool */
    327   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
    328   data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
    329   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
    330     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
    331   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
    332   hdr_ptr->bytes_used += sizeofobject;
    333   hdr_ptr->bytes_left -= sizeofobject;
    334 
    335   return (void *) data_ptr;
    336 }
    337 
    338 
    339 /*
    340  * Allocation of "large" objects.
    341  *
    342  * The external semantics of these are the same as "small" objects,
    343  * except that FAR pointers are used on 80x86.  However the pool
    344  * management heuristics are quite different.  We assume that each
    345  * request is large enough that it may as well be passed directly to
    346  * jpeg_get_large; the pool management just links everything together
    347  * so that we can free it all on demand.
    348  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    349  * structures.  The routines that create these structures (see below)
    350  * deliberately bunch rows together to ensure a large request size.
    351  */
    352 
    353 METHODDEF(void FAR *)
    354 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    355 /* Allocate a "large" object */
    356 {
    357   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    358   large_pool_ptr hdr_ptr;
    359   char FAR * data_ptr;
    360 
    361   /*
    362    * Round up the requested size to a multiple of ALIGN_SIZE so that
    363    * algorithms can straddle outside the proper area up to the next
    364    * alignment.
    365    */
    366   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
    367 
    368   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    369   if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
    370     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
    371 
    372   /* Always make a new pool */
    373   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    374     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    375 
    376   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
    377 					    SIZEOF(large_pool_hdr) +
    378 					    ALIGN_SIZE - 1);
    379   if (hdr_ptr == NULL)
    380     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
    381   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1;
    382 
    383   /* Success, initialize the new pool header and add to list */
    384   hdr_ptr->next = mem->large_list[pool_id];
    385   /* We maintain space counts in each pool header for statistical purposes,
    386    * even though they are not needed for allocation.
    387    */
    388   hdr_ptr->bytes_used = sizeofobject;
    389   hdr_ptr->bytes_left = 0;
    390   mem->large_list[pool_id] = hdr_ptr;
    391 
    392   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
    393   data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
    394   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
    395     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
    396 
    397   return (void FAR *) data_ptr;
    398 }
    399 
    400 
    401 /*
    402  * Creation of 2-D sample arrays.
    403  * The pointers are in near heap, the samples themselves in FAR heap.
    404  *
    405  * To minimize allocation overhead and to allow I/O of large contiguous
    406  * blocks, we allocate the sample rows in groups of as many rows as possible
    407  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    408  * NB: the virtual array control routines, later in this file, know about
    409  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    410  * object so that it can be saved away if this sarray is the workspace for
    411  * a virtual array.
    412  *
    413  * Since we are often upsampling with a factor 2, we align the size (not
    414  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
    415  * to be as careful about size.
    416  */
    417 
    418 METHODDEF(JSAMPARRAY)
    419 alloc_sarray (j_common_ptr cinfo, int pool_id,
    420 	      JDIMENSION samplesperrow, JDIMENSION numrows)
    421 /* Allocate a 2-D sample array */
    422 {
    423   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    424   JSAMPARRAY result;
    425   JSAMPROW workspace;
    426   JDIMENSION rowsperchunk, currow, i;
    427   long ltemp;
    428 
    429   /* Make sure each row is properly aligned */
    430   if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
    431     out_of_memory(cinfo, 5);	/* safety check */
    432   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE));
    433 
    434   /* Calculate max # of rows allowed in one allocation chunk */
    435   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    436 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
    437   if (ltemp <= 0)
    438     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    439   if (ltemp < (long) numrows)
    440     rowsperchunk = (JDIMENSION) ltemp;
    441   else
    442     rowsperchunk = numrows;
    443   mem->last_rowsperchunk = rowsperchunk;
    444 
    445   /* Get space for row pointers (small object) */
    446   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
    447 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
    448 
    449   /* Get the rows themselves (large objects) */
    450   currow = 0;
    451   while (currow < numrows) {
    452     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    453     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
    454 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
    455 		  * SIZEOF(JSAMPLE)));
    456     for (i = rowsperchunk; i > 0; i--) {
    457       result[currow++] = workspace;
    458       workspace += samplesperrow;
    459     }
    460   }
    461 
    462   return result;
    463 }
    464 
    465 
    466 /*
    467  * Creation of 2-D coefficient-block arrays.
    468  * This is essentially the same as the code for sample arrays, above.
    469  */
    470 
    471 METHODDEF(JBLOCKARRAY)
    472 alloc_barray (j_common_ptr cinfo, int pool_id,
    473 	      JDIMENSION blocksperrow, JDIMENSION numrows)
    474 /* Allocate a 2-D coefficient-block array */
    475 {
    476   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    477   JBLOCKARRAY result;
    478   JBLOCKROW workspace;
    479   JDIMENSION rowsperchunk, currow, i;
    480   long ltemp;
    481 
    482   /* Make sure each row is properly aligned */
    483   if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
    484     out_of_memory(cinfo, 6);	/* safety check */
    485 
    486   /* Calculate max # of rows allowed in one allocation chunk */
    487   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    488 	  ((long) blocksperrow * SIZEOF(JBLOCK));
    489   if (ltemp <= 0)
    490     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    491   if (ltemp < (long) numrows)
    492     rowsperchunk = (JDIMENSION) ltemp;
    493   else
    494     rowsperchunk = numrows;
    495   mem->last_rowsperchunk = rowsperchunk;
    496 
    497   /* Get space for row pointers (small object) */
    498   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
    499 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
    500 
    501   /* Get the rows themselves (large objects) */
    502   currow = 0;
    503   while (currow < numrows) {
    504     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    505     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
    506 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
    507 		  * SIZEOF(JBLOCK)));
    508     for (i = rowsperchunk; i > 0; i--) {
    509       result[currow++] = workspace;
    510       workspace += blocksperrow;
    511     }
    512   }
    513 
    514   return result;
    515 }
    516 
    517 
    518 /*
    519  * About virtual array management:
    520  *
    521  * The above "normal" array routines are only used to allocate strip buffers
    522  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    523  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    524  * time, but the memory manager must save the whole array for repeated
    525  * accesses.  The intended implementation is that there is a strip buffer in
    526  * memory (as high as is possible given the desired memory limit), plus a
    527  * backing file that holds the rest of the array.
    528  *
    529  * The request_virt_array routines are told the total size of the image and
    530  * the maximum number of rows that will be accessed at once.  The in-memory
    531  * buffer must be at least as large as the maxaccess value.
    532  *
    533  * The request routines create control blocks but not the in-memory buffers.
    534  * That is postponed until realize_virt_arrays is called.  At that time the
    535  * total amount of space needed is known (approximately, anyway), so free
    536  * memory can be divided up fairly.
    537  *
    538  * The access_virt_array routines are responsible for making a specific strip
    539  * area accessible (after reading or writing the backing file, if necessary).
    540  * Note that the access routines are told whether the caller intends to modify
    541  * the accessed strip; during a read-only pass this saves having to rewrite
    542  * data to disk.  The access routines are also responsible for pre-zeroing
    543  * any newly accessed rows, if pre-zeroing was requested.
    544  *
    545  * In current usage, the access requests are usually for nonoverlapping
    546  * strips; that is, successive access start_row numbers differ by exactly
    547  * num_rows = maxaccess.  This means we can get good performance with simple
    548  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    549  * of the access height; then there will never be accesses across bufferload
    550  * boundaries.  The code will still work with overlapping access requests,
    551  * but it doesn't handle bufferload overlaps very efficiently.
    552  */
    553 
    554 
    555 METHODDEF(jvirt_sarray_ptr)
    556 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    557 		     JDIMENSION samplesperrow, JDIMENSION numrows,
    558 		     JDIMENSION maxaccess)
    559 /* Request a virtual 2-D sample array */
    560 {
    561   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    562   jvirt_sarray_ptr result;
    563 
    564   /* Only IMAGE-lifetime virtual arrays are currently supported */
    565   if (pool_id != JPOOL_IMAGE)
    566     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    567 
    568   /* get control block */
    569   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
    570 					  SIZEOF(struct jvirt_sarray_control));
    571 
    572   result->mem_buffer = NULL;	/* marks array not yet realized */
    573   result->rows_in_array = numrows;
    574   result->samplesperrow = samplesperrow;
    575   result->maxaccess = maxaccess;
    576   result->pre_zero = pre_zero;
    577   result->b_s_open = FALSE;	/* no associated backing-store object */
    578   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    579   mem->virt_sarray_list = result;
    580 
    581   return result;
    582 }
    583 
    584 
    585 METHODDEF(jvirt_barray_ptr)
    586 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    587 		     JDIMENSION blocksperrow, JDIMENSION numrows,
    588 		     JDIMENSION maxaccess)
    589 /* Request a virtual 2-D coefficient-block array */
    590 {
    591   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    592   jvirt_barray_ptr result;
    593 
    594   /* Only IMAGE-lifetime virtual arrays are currently supported */
    595   if (pool_id != JPOOL_IMAGE)
    596     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    597 
    598   /* get control block */
    599   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
    600 					  SIZEOF(struct jvirt_barray_control));
    601 
    602   result->mem_buffer = NULL;	/* marks array not yet realized */
    603   result->rows_in_array = numrows;
    604   result->blocksperrow = blocksperrow;
    605   result->maxaccess = maxaccess;
    606   result->pre_zero = pre_zero;
    607   result->b_s_open = FALSE;	/* no associated backing-store object */
    608   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    609   mem->virt_barray_list = result;
    610 
    611   return result;
    612 }
    613 
    614 
    615 METHODDEF(void)
    616 realize_virt_arrays (j_common_ptr cinfo)
    617 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    618 {
    619   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    620   size_t space_per_minheight, maximum_space, avail_mem;
    621   size_t minheights, max_minheights;
    622   jvirt_sarray_ptr sptr;
    623   jvirt_barray_ptr bptr;
    624 
    625   /* Compute the minimum space needed (maxaccess rows in each buffer)
    626    * and the maximum space needed (full image height in each buffer).
    627    * These may be of use to the system-dependent jpeg_mem_available routine.
    628    */
    629   space_per_minheight = 0;
    630   maximum_space = 0;
    631   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    632     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    633       space_per_minheight += (long) sptr->maxaccess *
    634 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    635       maximum_space += (long) sptr->rows_in_array *
    636 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    637     }
    638   }
    639   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    640     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    641       space_per_minheight += (long) bptr->maxaccess *
    642 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    643       maximum_space += (long) bptr->rows_in_array *
    644 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    645     }
    646   }
    647 
    648   if (space_per_minheight <= 0)
    649     return;			/* no unrealized arrays, no work */
    650 
    651   /* Determine amount of memory to actually use; this is system-dependent. */
    652   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    653 				 mem->total_space_allocated);
    654 
    655   /* If the maximum space needed is available, make all the buffers full
    656    * height; otherwise parcel it out with the same number of minheights
    657    * in each buffer.
    658    */
    659   if (avail_mem >= maximum_space)
    660     max_minheights = 1000000000L;
    661   else {
    662     max_minheights = avail_mem / space_per_minheight;
    663     /* If there doesn't seem to be enough space, try to get the minimum
    664      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    665      */
    666     if (max_minheights <= 0)
    667       max_minheights = 1;
    668   }
    669 
    670   /* Allocate the in-memory buffers and initialize backing store as needed. */
    671 
    672   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    673     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    674       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    675       if (minheights <= max_minheights) {
    676 	/* This buffer fits in memory */
    677 	sptr->rows_in_mem = sptr->rows_in_array;
    678       } else {
    679 	/* It doesn't fit in memory, create backing store. */
    680 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
    681 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
    682 				(long) sptr->rows_in_array *
    683 				(long) sptr->samplesperrow *
    684 				(long) SIZEOF(JSAMPLE));
    685 	sptr->b_s_open = TRUE;
    686       }
    687       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    688 				      sptr->samplesperrow, sptr->rows_in_mem);
    689       sptr->rowsperchunk = mem->last_rowsperchunk;
    690       sptr->cur_start_row = 0;
    691       sptr->first_undef_row = 0;
    692       sptr->dirty = FALSE;
    693     }
    694   }
    695 
    696   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    697     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    698       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    699       if (minheights <= max_minheights) {
    700 	/* This buffer fits in memory */
    701 	bptr->rows_in_mem = bptr->rows_in_array;
    702       } else {
    703 	/* It doesn't fit in memory, create backing store. */
    704 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
    705 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
    706 				(long) bptr->rows_in_array *
    707 				(long) bptr->blocksperrow *
    708 				(long) SIZEOF(JBLOCK));
    709 	bptr->b_s_open = TRUE;
    710       }
    711       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    712 				      bptr->blocksperrow, bptr->rows_in_mem);
    713       bptr->rowsperchunk = mem->last_rowsperchunk;
    714       bptr->cur_start_row = 0;
    715       bptr->first_undef_row = 0;
    716       bptr->dirty = FALSE;
    717     }
    718   }
    719 }
    720 
    721 
    722 LOCAL(void)
    723 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    724 /* Do backing store read or write of a virtual sample array */
    725 {
    726   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    727 
    728   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
    729   file_offset = ptr->cur_start_row * bytesperrow;
    730   /* Loop to read or write each allocation chunk in mem_buffer */
    731   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    732     /* One chunk, but check for short chunk at end of buffer */
    733     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    734     /* Transfer no more than is currently defined */
    735     thisrow = (long) ptr->cur_start_row + i;
    736     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    737     /* Transfer no more than fits in file */
    738     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    739     if (rows <= 0)		/* this chunk might be past end of file! */
    740       break;
    741     byte_count = rows * bytesperrow;
    742     if (writing)
    743       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    744 					    (void FAR *) ptr->mem_buffer[i],
    745 					    file_offset, byte_count);
    746     else
    747       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    748 					   (void FAR *) ptr->mem_buffer[i],
    749 					   file_offset, byte_count);
    750     file_offset += byte_count;
    751   }
    752 }
    753 
    754 
    755 LOCAL(void)
    756 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    757 /* Do backing store read or write of a virtual coefficient-block array */
    758 {
    759   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    760 
    761   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
    762   file_offset = ptr->cur_start_row * bytesperrow;
    763   /* Loop to read or write each allocation chunk in mem_buffer */
    764   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    765     /* One chunk, but check for short chunk at end of buffer */
    766     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    767     /* Transfer no more than is currently defined */
    768     thisrow = (long) ptr->cur_start_row + i;
    769     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    770     /* Transfer no more than fits in file */
    771     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    772     if (rows <= 0)		/* this chunk might be past end of file! */
    773       break;
    774     byte_count = rows * bytesperrow;
    775     if (writing)
    776       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    777 					    (void FAR *) ptr->mem_buffer[i],
    778 					    file_offset, byte_count);
    779     else
    780       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    781 					   (void FAR *) ptr->mem_buffer[i],
    782 					   file_offset, byte_count);
    783     file_offset += byte_count;
    784   }
    785 }
    786 
    787 
    788 METHODDEF(JSAMPARRAY)
    789 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    790 		    JDIMENSION start_row, JDIMENSION num_rows,
    791 		    boolean writable)
    792 /* Access the part of a virtual sample array starting at start_row */
    793 /* and extending for num_rows rows.  writable is true if  */
    794 /* caller intends to modify the accessed area. */
    795 {
    796   JDIMENSION end_row = start_row + num_rows;
    797   JDIMENSION undef_row;
    798 
    799   /* debugging check */
    800   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    801       ptr->mem_buffer == NULL)
    802     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    803 
    804   /* Make the desired part of the virtual array accessible */
    805   if (start_row < ptr->cur_start_row ||
    806       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    807     if (! ptr->b_s_open)
    808       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    809     /* Flush old buffer contents if necessary */
    810     if (ptr->dirty) {
    811       do_sarray_io(cinfo, ptr, TRUE);
    812       ptr->dirty = FALSE;
    813     }
    814     /* Decide what part of virtual array to access.
    815      * Algorithm: if target address > current window, assume forward scan,
    816      * load starting at target address.  If target address < current window,
    817      * assume backward scan, load so that target area is top of window.
    818      * Note that when switching from forward write to forward read, will have
    819      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    820      */
    821     if (start_row > ptr->cur_start_row) {
    822       ptr->cur_start_row = start_row;
    823     } else {
    824       /* use long arithmetic here to avoid overflow & unsigned problems */
    825       long ltemp;
    826 
    827       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    828       if (ltemp < 0)
    829 	ltemp = 0;		/* don't fall off front end of file */
    830       ptr->cur_start_row = (JDIMENSION) ltemp;
    831     }
    832     /* Read in the selected part of the array.
    833      * During the initial write pass, we will do no actual read
    834      * because the selected part is all undefined.
    835      */
    836     do_sarray_io(cinfo, ptr, FALSE);
    837   }
    838   /* Ensure the accessed part of the array is defined; prezero if needed.
    839    * To improve locality of access, we only prezero the part of the array
    840    * that the caller is about to access, not the entire in-memory array.
    841    */
    842   if (ptr->first_undef_row < end_row) {
    843     if (ptr->first_undef_row < start_row) {
    844       if (writable)		/* writer skipped over a section of array */
    845 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    846       undef_row = start_row;	/* but reader is allowed to read ahead */
    847     } else {
    848       undef_row = ptr->first_undef_row;
    849     }
    850     if (writable)
    851       ptr->first_undef_row = end_row;
    852     if (ptr->pre_zero) {
    853       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
    854       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    855       end_row -= ptr->cur_start_row;
    856       while (undef_row < end_row) {
    857 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    858 	undef_row++;
    859       }
    860     } else {
    861       if (! writable)		/* reader looking at undefined data */
    862 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    863     }
    864   }
    865   /* Flag the buffer dirty if caller will write in it */
    866   if (writable)
    867     ptr->dirty = TRUE;
    868   /* Return address of proper part of the buffer */
    869   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    870 }
    871 
    872 
    873 METHODDEF(JBLOCKARRAY)
    874 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
    875 		    JDIMENSION start_row, JDIMENSION num_rows,
    876 		    boolean writable)
    877 /* Access the part of a virtual block array starting at start_row */
    878 /* and extending for num_rows rows.  writable is true if  */
    879 /* caller intends to modify the accessed area. */
    880 {
    881   JDIMENSION end_row = start_row + num_rows;
    882   JDIMENSION undef_row;
    883 
    884   /* debugging check */
    885   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    886       ptr->mem_buffer == NULL)
    887     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    888 
    889   /* Make the desired part of the virtual array accessible */
    890   if (start_row < ptr->cur_start_row ||
    891       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    892     if (! ptr->b_s_open)
    893       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    894     /* Flush old buffer contents if necessary */
    895     if (ptr->dirty) {
    896       do_barray_io(cinfo, ptr, TRUE);
    897       ptr->dirty = FALSE;
    898     }
    899     /* Decide what part of virtual array to access.
    900      * Algorithm: if target address > current window, assume forward scan,
    901      * load starting at target address.  If target address < current window,
    902      * assume backward scan, load so that target area is top of window.
    903      * Note that when switching from forward write to forward read, will have
    904      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    905      */
    906     if (start_row > ptr->cur_start_row) {
    907       ptr->cur_start_row = start_row;
    908     } else {
    909       /* use long arithmetic here to avoid overflow & unsigned problems */
    910       long ltemp;
    911 
    912       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    913       if (ltemp < 0)
    914 	ltemp = 0;		/* don't fall off front end of file */
    915       ptr->cur_start_row = (JDIMENSION) ltemp;
    916     }
    917     /* Read in the selected part of the array.
    918      * During the initial write pass, we will do no actual read
    919      * because the selected part is all undefined.
    920      */
    921     do_barray_io(cinfo, ptr, FALSE);
    922   }
    923   /* Ensure the accessed part of the array is defined; prezero if needed.
    924    * To improve locality of access, we only prezero the part of the array
    925    * that the caller is about to access, not the entire in-memory array.
    926    */
    927   if (ptr->first_undef_row < end_row) {
    928     if (ptr->first_undef_row < start_row) {
    929       if (writable)		/* writer skipped over a section of array */
    930 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    931       undef_row = start_row;	/* but reader is allowed to read ahead */
    932     } else {
    933       undef_row = ptr->first_undef_row;
    934     }
    935     if (writable)
    936       ptr->first_undef_row = end_row;
    937     if (ptr->pre_zero) {
    938       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
    939       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    940       end_row -= ptr->cur_start_row;
    941       while (undef_row < end_row) {
    942 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    943 	undef_row++;
    944       }
    945     } else {
    946       if (! writable)		/* reader looking at undefined data */
    947 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    948     }
    949   }
    950   /* Flag the buffer dirty if caller will write in it */
    951   if (writable)
    952     ptr->dirty = TRUE;
    953   /* Return address of proper part of the buffer */
    954   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    955 }
    956 
    957 
    958 /*
    959  * Release all objects belonging to a specified pool.
    960  */
    961 
    962 METHODDEF(void)
    963 free_pool (j_common_ptr cinfo, int pool_id)
    964 {
    965   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    966   small_pool_ptr shdr_ptr;
    967   large_pool_ptr lhdr_ptr;
    968   size_t space_freed;
    969 
    970   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    971     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    972 
    973 #ifdef MEM_STATS
    974   if (cinfo->err->trace_level > 1)
    975     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
    976 #endif
    977 
    978   /* If freeing IMAGE pool, close any virtual arrays first */
    979   if (pool_id == JPOOL_IMAGE) {
    980     jvirt_sarray_ptr sptr;
    981     jvirt_barray_ptr bptr;
    982 
    983     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    984       if (sptr->b_s_open) {	/* there may be no backing store */
    985 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
    986 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
    987       }
    988     }
    989     mem->virt_sarray_list = NULL;
    990     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    991       if (bptr->b_s_open) {	/* there may be no backing store */
    992 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
    993 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
    994       }
    995     }
    996     mem->virt_barray_list = NULL;
    997   }
    998 
    999   /* Release large objects */
   1000   lhdr_ptr = mem->large_list[pool_id];
   1001   mem->large_list[pool_id] = NULL;
   1002 
   1003   while (lhdr_ptr != NULL) {
   1004     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
   1005     space_freed = lhdr_ptr->bytes_used +
   1006 		  lhdr_ptr->bytes_left +
   1007 		  SIZEOF(large_pool_hdr);
   1008     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
   1009     mem->total_space_allocated -= space_freed;
   1010     lhdr_ptr = next_lhdr_ptr;
   1011   }
   1012 
   1013   /* Release small objects */
   1014   shdr_ptr = mem->small_list[pool_id];
   1015   mem->small_list[pool_id] = NULL;
   1016 
   1017   while (shdr_ptr != NULL) {
   1018     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
   1019     space_freed = shdr_ptr->bytes_used +
   1020 		  shdr_ptr->bytes_left +
   1021 		  SIZEOF(small_pool_hdr);
   1022     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
   1023     mem->total_space_allocated -= space_freed;
   1024     shdr_ptr = next_shdr_ptr;
   1025   }
   1026 }
   1027 
   1028 
   1029 /*
   1030  * Close up shop entirely.
   1031  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1032  */
   1033 
   1034 METHODDEF(void)
   1035 self_destruct (j_common_ptr cinfo)
   1036 {
   1037   int pool;
   1038 
   1039   /* Close all backing store, release all memory.
   1040    * Releasing pools in reverse order might help avoid fragmentation
   1041    * with some (brain-damaged) malloc libraries.
   1042    */
   1043   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1044     free_pool(cinfo, pool);
   1045   }
   1046 
   1047   /* Release the memory manager control block too. */
   1048   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
   1049   cinfo->mem = NULL;		/* ensures I will be called only once */
   1050 
   1051   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
   1052 }
   1053 
   1054 
   1055 /*
   1056  * Memory manager initialization.
   1057  * When this is called, only the error manager pointer is valid in cinfo!
   1058  */
   1059 
   1060 GLOBAL(void)
   1061 jinit_memory_mgr (j_common_ptr cinfo)
   1062 {
   1063   my_mem_ptr mem;
   1064   long max_to_use;
   1065   int pool;
   1066   size_t test_mac;
   1067 
   1068   cinfo->mem = NULL;		/* for safety if init fails */
   1069 
   1070   /* Check for configuration errors.
   1071    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1072    * doesn't reflect any real hardware alignment requirement.
   1073    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1074    * in common if and only if X is a power of 2, ie has only one one-bit.
   1075    * Some compilers may give an "unreachable code" warning here; ignore it.
   1076    */
   1077   if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
   1078     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1079   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1080    * a multiple of ALIGN_SIZE.
   1081    * Again, an "unreachable code" warning may be ignored here.
   1082    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1083    */
   1084   test_mac = (size_t) MAX_ALLOC_CHUNK;
   1085   if ((long) test_mac != MAX_ALLOC_CHUNK ||
   1086       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
   1087     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1088 
   1089   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1090 
   1091   /* Attempt to allocate memory manager's control block */
   1092   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
   1093 
   1094   if (mem == NULL) {
   1095     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
   1096     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1097   }
   1098 
   1099   /* OK, fill in the method pointers */
   1100   mem->pub.alloc_small = alloc_small;
   1101   mem->pub.alloc_large = alloc_large;
   1102   mem->pub.alloc_sarray = alloc_sarray;
   1103   mem->pub.alloc_barray = alloc_barray;
   1104   mem->pub.request_virt_sarray = request_virt_sarray;
   1105   mem->pub.request_virt_barray = request_virt_barray;
   1106   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1107   mem->pub.access_virt_sarray = access_virt_sarray;
   1108   mem->pub.access_virt_barray = access_virt_barray;
   1109   mem->pub.free_pool = free_pool;
   1110   mem->pub.self_destruct = self_destruct;
   1111 
   1112   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1113   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1114 
   1115   /* Initialize working state */
   1116   mem->pub.max_memory_to_use = max_to_use;
   1117 
   1118   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1119     mem->small_list[pool] = NULL;
   1120     mem->large_list[pool] = NULL;
   1121   }
   1122   mem->virt_sarray_list = NULL;
   1123   mem->virt_barray_list = NULL;
   1124 
   1125   mem->total_space_allocated = SIZEOF(my_memory_mgr);
   1126 
   1127   /* Declare ourselves open for business */
   1128   cinfo->mem = & mem->pub;
   1129 
   1130   /* Check for an environment variable JPEGMEM; if found, override the
   1131    * default max_memory setting from jpeg_mem_init.  Note that the
   1132    * surrounding application may again override this value.
   1133    * If your system doesn't support getenv(), define NO_GETENV to disable
   1134    * this feature.
   1135    */
   1136 #ifndef NO_GETENV
   1137   { char * memenv;
   1138 
   1139     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1140       char ch = 'x';
   1141 
   1142       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1143 	if (ch == 'm' || ch == 'M')
   1144 	  max_to_use *= 1000L;
   1145 	mem->pub.max_memory_to_use = max_to_use * 1000L;
   1146       }
   1147     }
   1148   }
   1149 #endif
   1150 
   1151 }
   1152