Home | History | Annotate | Download | only in libjpeg_turbo
      1 /*
      2  * jquant1.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009, D. R. Commander
      8  * For conditions of distribution and use, see the accompanying README file.
      9  *
     10  * This file contains 1-pass color quantization (color mapping) routines.
     11  * These routines provide mapping to a fixed color map using equally spaced
     12  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
     13  */
     14 
     15 #define JPEG_INTERNALS
     16 #include "jinclude.h"
     17 #include "jpeglib.h"
     18 
     19 #ifdef QUANT_1PASS_SUPPORTED
     20 
     21 
     22 /*
     23  * The main purpose of 1-pass quantization is to provide a fast, if not very
     24  * high quality, colormapped output capability.  A 2-pass quantizer usually
     25  * gives better visual quality; however, for quantized grayscale output this
     26  * quantizer is perfectly adequate.  Dithering is highly recommended with this
     27  * quantizer, though you can turn it off if you really want to.
     28  *
     29  * In 1-pass quantization the colormap must be chosen in advance of seeing the
     30  * image.  We use a map consisting of all combinations of Ncolors[i] color
     31  * values for the i'th component.  The Ncolors[] values are chosen so that
     32  * their product, the total number of colors, is no more than that requested.
     33  * (In most cases, the product will be somewhat less.)
     34  *
     35  * Since the colormap is orthogonal, the representative value for each color
     36  * component can be determined without considering the other components;
     37  * then these indexes can be combined into a colormap index by a standard
     38  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
     39  * can be precalculated and stored in the lookup table colorindex[].
     40  * colorindex[i][j] maps pixel value j in component i to the nearest
     41  * representative value (grid plane) for that component; this index is
     42  * multiplied by the array stride for component i, so that the
     43  * index of the colormap entry closest to a given pixel value is just
     44  *    sum( colorindex[component-number][pixel-component-value] )
     45  * Aside from being fast, this scheme allows for variable spacing between
     46  * representative values with no additional lookup cost.
     47  *
     48  * If gamma correction has been applied in color conversion, it might be wise
     49  * to adjust the color grid spacing so that the representative colors are
     50  * equidistant in linear space.  At this writing, gamma correction is not
     51  * implemented by jdcolor, so nothing is done here.
     52  */
     53 
     54 
     55 /* Declarations for ordered dithering.
     56  *
     57  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
     58  * dithering is described in many references, for instance Dale Schumacher's
     59  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
     60  * In place of Schumacher's comparisons against a "threshold" value, we add a
     61  * "dither" value to the input pixel and then round the result to the nearest
     62  * output value.  The dither value is equivalent to (0.5 - threshold) times
     63  * the distance between output values.  For ordered dithering, we assume that
     64  * the output colors are equally spaced; if not, results will probably be
     65  * worse, since the dither may be too much or too little at a given point.
     66  *
     67  * The normal calculation would be to form pixel value + dither, range-limit
     68  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
     69  * We can skip the separate range-limiting step by extending the colorindex
     70  * table in both directions.
     71  */
     72 
     73 #define ODITHER_SIZE  16	/* dimension of dither matrix */
     74 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
     75 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
     76 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
     77 
     78 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
     79 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
     80 
     81 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
     82   /* Bayer's order-4 dither array.  Generated by the code given in
     83    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
     84    * The values in this array must range from 0 to ODITHER_CELLS-1.
     85    */
     86   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
     87   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
     88   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
     89   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
     90   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
     91   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
     92   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
     93   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
     94   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
     95   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
     96   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
     97   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
     98   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
     99   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
    100   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
    101   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
    102 };
    103 
    104 
    105 /* Declarations for Floyd-Steinberg dithering.
    106  *
    107  * Errors are accumulated into the array fserrors[], at a resolution of
    108  * 1/16th of a pixel count.  The error at a given pixel is propagated
    109  * to its not-yet-processed neighbors using the standard F-S fractions,
    110  *		...	(here)	7/16
    111  *		3/16	5/16	1/16
    112  * We work left-to-right on even rows, right-to-left on odd rows.
    113  *
    114  * We can get away with a single array (holding one row's worth of errors)
    115  * by using it to store the current row's errors at pixel columns not yet
    116  * processed, but the next row's errors at columns already processed.  We
    117  * need only a few extra variables to hold the errors immediately around the
    118  * current column.  (If we are lucky, those variables are in registers, but
    119  * even if not, they're probably cheaper to access than array elements are.)
    120  *
    121  * The fserrors[] array is indexed [component#][position].
    122  * We provide (#columns + 2) entries per component; the extra entry at each
    123  * end saves us from special-casing the first and last pixels.
    124  *
    125  * Note: on a wide image, we might not have enough room in a PC's near data
    126  * segment to hold the error array; so it is allocated with alloc_large.
    127  */
    128 
    129 #if BITS_IN_JSAMPLE == 8
    130 typedef INT16 FSERROR;		/* 16 bits should be enough */
    131 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
    132 #else
    133 typedef INT32 FSERROR;		/* may need more than 16 bits */
    134 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
    135 #endif
    136 
    137 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
    138 
    139 
    140 /* Private subobject */
    141 
    142 #define MAX_Q_COMPS 4		/* max components I can handle */
    143 
    144 typedef struct {
    145   struct jpeg_color_quantizer pub; /* public fields */
    146 
    147   /* Initially allocated colormap is saved here */
    148   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
    149   int sv_actual;		/* number of entries in use */
    150 
    151   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
    152   /* colorindex[i][j] = index of color closest to pixel value j in component i,
    153    * premultiplied as described above.  Since colormap indexes must fit into
    154    * JSAMPLEs, the entries of this array will too.
    155    */
    156   boolean is_padded;		/* is the colorindex padded for odither? */
    157 
    158   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
    159 
    160   /* Variables for ordered dithering */
    161   int row_index;		/* cur row's vertical index in dither matrix */
    162   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
    163 
    164   /* Variables for Floyd-Steinberg dithering */
    165   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
    166   boolean on_odd_row;		/* flag to remember which row we are on */
    167 } my_cquantizer;
    168 
    169 typedef my_cquantizer * my_cquantize_ptr;
    170 
    171 
    172 /*
    173  * Policy-making subroutines for create_colormap and create_colorindex.
    174  * These routines determine the colormap to be used.  The rest of the module
    175  * only assumes that the colormap is orthogonal.
    176  *
    177  *  * select_ncolors decides how to divvy up the available colors
    178  *    among the components.
    179  *  * output_value defines the set of representative values for a component.
    180  *  * largest_input_value defines the mapping from input values to
    181  *    representative values for a component.
    182  * Note that the latter two routines may impose different policies for
    183  * different components, though this is not currently done.
    184  */
    185 
    186 
    187 LOCAL(int)
    188 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
    189 /* Determine allocation of desired colors to components, */
    190 /* and fill in Ncolors[] array to indicate choice. */
    191 /* Return value is total number of colors (product of Ncolors[] values). */
    192 {
    193   int nc = cinfo->out_color_components; /* number of color components */
    194   int max_colors = cinfo->desired_number_of_colors;
    195   int total_colors, iroot, i, j;
    196   boolean changed;
    197   long temp;
    198   int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
    199   RGB_order[0] = rgb_green[cinfo->out_color_space];
    200   RGB_order[1] = rgb_red[cinfo->out_color_space];
    201   RGB_order[2] = rgb_blue[cinfo->out_color_space];
    202 
    203   /* We can allocate at least the nc'th root of max_colors per component. */
    204   /* Compute floor(nc'th root of max_colors). */
    205   iroot = 1;
    206   do {
    207     iroot++;
    208     temp = iroot;		/* set temp = iroot ** nc */
    209     for (i = 1; i < nc; i++)
    210       temp *= iroot;
    211   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
    212   iroot--;			/* now iroot = floor(root) */
    213 
    214   /* Must have at least 2 color values per component */
    215   if (iroot < 2)
    216     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
    217 
    218   /* Initialize to iroot color values for each component */
    219   total_colors = 1;
    220   for (i = 0; i < nc; i++) {
    221     Ncolors[i] = iroot;
    222     total_colors *= iroot;
    223   }
    224   /* We may be able to increment the count for one or more components without
    225    * exceeding max_colors, though we know not all can be incremented.
    226    * Sometimes, the first component can be incremented more than once!
    227    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
    228    * In RGB colorspace, try to increment G first, then R, then B.
    229    */
    230   do {
    231     changed = FALSE;
    232     for (i = 0; i < nc; i++) {
    233       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
    234       /* calculate new total_colors if Ncolors[j] is incremented */
    235       temp = total_colors / Ncolors[j];
    236       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
    237       if (temp > (long) max_colors)
    238 	break;			/* won't fit, done with this pass */
    239       Ncolors[j]++;		/* OK, apply the increment */
    240       total_colors = (int) temp;
    241       changed = TRUE;
    242     }
    243   } while (changed);
    244 
    245   return total_colors;
    246 }
    247 
    248 
    249 LOCAL(int)
    250 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    251 /* Return j'th output value, where j will range from 0 to maxj */
    252 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
    253 {
    254   /* We always provide values 0 and MAXJSAMPLE for each component;
    255    * any additional values are equally spaced between these limits.
    256    * (Forcing the upper and lower values to the limits ensures that
    257    * dithering can't produce a color outside the selected gamut.)
    258    */
    259   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
    260 }
    261 
    262 
    263 LOCAL(int)
    264 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    265 /* Return largest input value that should map to j'th output value */
    266 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
    267 {
    268   /* Breakpoints are halfway between values returned by output_value */
    269   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
    270 }
    271 
    272 
    273 /*
    274  * Create the colormap.
    275  */
    276 
    277 LOCAL(void)
    278 create_colormap (j_decompress_ptr cinfo)
    279 {
    280   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    281   JSAMPARRAY colormap;		/* Created colormap */
    282   int total_colors;		/* Number of distinct output colors */
    283   int i,j,k, nci, blksize, blkdist, ptr, val;
    284 
    285   /* Select number of colors for each component */
    286   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
    287 
    288   /* Report selected color counts */
    289   if (cinfo->out_color_components == 3)
    290     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
    291 	     total_colors, cquantize->Ncolors[0],
    292 	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
    293   else
    294     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
    295 
    296   /* Allocate and fill in the colormap. */
    297   /* The colors are ordered in the map in standard row-major order, */
    298   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
    299 
    300   colormap = (*cinfo->mem->alloc_sarray)
    301     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    302      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
    303 
    304   /* blksize is number of adjacent repeated entries for a component */
    305   /* blkdist is distance between groups of identical entries for a component */
    306   blkdist = total_colors;
    307 
    308   for (i = 0; i < cinfo->out_color_components; i++) {
    309     /* fill in colormap entries for i'th color component */
    310     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    311     blksize = blkdist / nci;
    312     for (j = 0; j < nci; j++) {
    313       /* Compute j'th output value (out of nci) for component */
    314       val = output_value(cinfo, i, j, nci-1);
    315       /* Fill in all colormap entries that have this value of this component */
    316       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
    317 	/* fill in blksize entries beginning at ptr */
    318 	for (k = 0; k < blksize; k++)
    319 	  colormap[i][ptr+k] = (JSAMPLE) val;
    320       }
    321     }
    322     blkdist = blksize;		/* blksize of this color is blkdist of next */
    323   }
    324 
    325   /* Save the colormap in private storage,
    326    * where it will survive color quantization mode changes.
    327    */
    328   cquantize->sv_colormap = colormap;
    329   cquantize->sv_actual = total_colors;
    330 }
    331 
    332 
    333 /*
    334  * Create the color index table.
    335  */
    336 
    337 LOCAL(void)
    338 create_colorindex (j_decompress_ptr cinfo)
    339 {
    340   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    341   JSAMPROW indexptr;
    342   int i,j,k, nci, blksize, val, pad;
    343 
    344   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
    345    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
    346    * This is not necessary in the other dithering modes.  However, we
    347    * flag whether it was done in case user changes dithering mode.
    348    */
    349   if (cinfo->dither_mode == JDITHER_ORDERED) {
    350     pad = MAXJSAMPLE*2;
    351     cquantize->is_padded = TRUE;
    352   } else {
    353     pad = 0;
    354     cquantize->is_padded = FALSE;
    355   }
    356 
    357   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
    358     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    359      (JDIMENSION) (MAXJSAMPLE+1 + pad),
    360      (JDIMENSION) cinfo->out_color_components);
    361 
    362   /* blksize is number of adjacent repeated entries for a component */
    363   blksize = cquantize->sv_actual;
    364 
    365   for (i = 0; i < cinfo->out_color_components; i++) {
    366     /* fill in colorindex entries for i'th color component */
    367     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    368     blksize = blksize / nci;
    369 
    370     /* adjust colorindex pointers to provide padding at negative indexes. */
    371     if (pad)
    372       cquantize->colorindex[i] += MAXJSAMPLE;
    373 
    374     /* in loop, val = index of current output value, */
    375     /* and k = largest j that maps to current val */
    376     indexptr = cquantize->colorindex[i];
    377     val = 0;
    378     k = largest_input_value(cinfo, i, 0, nci-1);
    379     for (j = 0; j <= MAXJSAMPLE; j++) {
    380       while (j > k)		/* advance val if past boundary */
    381 	k = largest_input_value(cinfo, i, ++val, nci-1);
    382       /* premultiply so that no multiplication needed in main processing */
    383       indexptr[j] = (JSAMPLE) (val * blksize);
    384     }
    385     /* Pad at both ends if necessary */
    386     if (pad)
    387       for (j = 1; j <= MAXJSAMPLE; j++) {
    388 	indexptr[-j] = indexptr[0];
    389 	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
    390       }
    391   }
    392 }
    393 
    394 
    395 /*
    396  * Create an ordered-dither array for a component having ncolors
    397  * distinct output values.
    398  */
    399 
    400 LOCAL(ODITHER_MATRIX_PTR)
    401 make_odither_array (j_decompress_ptr cinfo, int ncolors)
    402 {
    403   ODITHER_MATRIX_PTR odither;
    404   int j,k;
    405   INT32 num,den;
    406 
    407   odither = (ODITHER_MATRIX_PTR)
    408     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    409 				SIZEOF(ODITHER_MATRIX));
    410   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
    411    * Hence the dither value for the matrix cell with fill order f
    412    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
    413    * On 16-bit-int machine, be careful to avoid overflow.
    414    */
    415   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
    416   for (j = 0; j < ODITHER_SIZE; j++) {
    417     for (k = 0; k < ODITHER_SIZE; k++) {
    418       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
    419 	    * MAXJSAMPLE;
    420       /* Ensure round towards zero despite C's lack of consistency
    421        * about rounding negative values in integer division...
    422        */
    423       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
    424     }
    425   }
    426   return odither;
    427 }
    428 
    429 
    430 /*
    431  * Create the ordered-dither tables.
    432  * Components having the same number of representative colors may
    433  * share a dither table.
    434  */
    435 
    436 LOCAL(void)
    437 create_odither_tables (j_decompress_ptr cinfo)
    438 {
    439   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    440   ODITHER_MATRIX_PTR odither;
    441   int i, j, nci;
    442 
    443   for (i = 0; i < cinfo->out_color_components; i++) {
    444     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    445     odither = NULL;		/* search for matching prior component */
    446     for (j = 0; j < i; j++) {
    447       if (nci == cquantize->Ncolors[j]) {
    448 	odither = cquantize->odither[j];
    449 	break;
    450       }
    451     }
    452     if (odither == NULL)	/* need a new table? */
    453       odither = make_odither_array(cinfo, nci);
    454     cquantize->odither[i] = odither;
    455   }
    456 }
    457 
    458 
    459 /*
    460  * Map some rows of pixels to the output colormapped representation.
    461  */
    462 
    463 METHODDEF(void)
    464 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    465 		JSAMPARRAY output_buf, int num_rows)
    466 /* General case, no dithering */
    467 {
    468   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    469   JSAMPARRAY colorindex = cquantize->colorindex;
    470   register int pixcode, ci;
    471   register JSAMPROW ptrin, ptrout;
    472   int row;
    473   JDIMENSION col;
    474   JDIMENSION width = cinfo->output_width;
    475   register int nc = cinfo->out_color_components;
    476 
    477   for (row = 0; row < num_rows; row++) {
    478     ptrin = input_buf[row];
    479     ptrout = output_buf[row];
    480     for (col = width; col > 0; col--) {
    481       pixcode = 0;
    482       for (ci = 0; ci < nc; ci++) {
    483 	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
    484       }
    485       *ptrout++ = (JSAMPLE) pixcode;
    486     }
    487   }
    488 }
    489 
    490 
    491 METHODDEF(void)
    492 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    493 		 JSAMPARRAY output_buf, int num_rows)
    494 /* Fast path for out_color_components==3, no dithering */
    495 {
    496   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    497   register int pixcode;
    498   register JSAMPROW ptrin, ptrout;
    499   JSAMPROW colorindex0 = cquantize->colorindex[0];
    500   JSAMPROW colorindex1 = cquantize->colorindex[1];
    501   JSAMPROW colorindex2 = cquantize->colorindex[2];
    502   int row;
    503   JDIMENSION col;
    504   JDIMENSION width = cinfo->output_width;
    505 
    506   for (row = 0; row < num_rows; row++) {
    507     ptrin = input_buf[row];
    508     ptrout = output_buf[row];
    509     for (col = width; col > 0; col--) {
    510       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
    511       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
    512       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
    513       *ptrout++ = (JSAMPLE) pixcode;
    514     }
    515   }
    516 }
    517 
    518 
    519 METHODDEF(void)
    520 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    521 		     JSAMPARRAY output_buf, int num_rows)
    522 /* General case, with ordered dithering */
    523 {
    524   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    525   register JSAMPROW input_ptr;
    526   register JSAMPROW output_ptr;
    527   JSAMPROW colorindex_ci;
    528   int * dither;			/* points to active row of dither matrix */
    529   int row_index, col_index;	/* current indexes into dither matrix */
    530   int nc = cinfo->out_color_components;
    531   int ci;
    532   int row;
    533   JDIMENSION col;
    534   JDIMENSION width = cinfo->output_width;
    535 
    536   for (row = 0; row < num_rows; row++) {
    537     /* Initialize output values to 0 so can process components separately */
    538     jzero_far((void FAR *) output_buf[row],
    539 	      (size_t) (width * SIZEOF(JSAMPLE)));
    540     row_index = cquantize->row_index;
    541     for (ci = 0; ci < nc; ci++) {
    542       input_ptr = input_buf[row] + ci;
    543       output_ptr = output_buf[row];
    544       colorindex_ci = cquantize->colorindex[ci];
    545       dither = cquantize->odither[ci][row_index];
    546       col_index = 0;
    547 
    548       for (col = width; col > 0; col--) {
    549 	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
    550 	 * select output value, accumulate into output code for this pixel.
    551 	 * Range-limiting need not be done explicitly, as we have extended
    552 	 * the colorindex table to produce the right answers for out-of-range
    553 	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
    554 	 * required amount of padding.
    555 	 */
    556 	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
    557 	input_ptr += nc;
    558 	output_ptr++;
    559 	col_index = (col_index + 1) & ODITHER_MASK;
    560       }
    561     }
    562     /* Advance row index for next row */
    563     row_index = (row_index + 1) & ODITHER_MASK;
    564     cquantize->row_index = row_index;
    565   }
    566 }
    567 
    568 
    569 METHODDEF(void)
    570 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    571 		      JSAMPARRAY output_buf, int num_rows)
    572 /* Fast path for out_color_components==3, with ordered dithering */
    573 {
    574   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    575   register int pixcode;
    576   register JSAMPROW input_ptr;
    577   register JSAMPROW output_ptr;
    578   JSAMPROW colorindex0 = cquantize->colorindex[0];
    579   JSAMPROW colorindex1 = cquantize->colorindex[1];
    580   JSAMPROW colorindex2 = cquantize->colorindex[2];
    581   int * dither0;		/* points to active row of dither matrix */
    582   int * dither1;
    583   int * dither2;
    584   int row_index, col_index;	/* current indexes into dither matrix */
    585   int row;
    586   JDIMENSION col;
    587   JDIMENSION width = cinfo->output_width;
    588 
    589   for (row = 0; row < num_rows; row++) {
    590     row_index = cquantize->row_index;
    591     input_ptr = input_buf[row];
    592     output_ptr = output_buf[row];
    593     dither0 = cquantize->odither[0][row_index];
    594     dither1 = cquantize->odither[1][row_index];
    595     dither2 = cquantize->odither[2][row_index];
    596     col_index = 0;
    597 
    598     for (col = width; col > 0; col--) {
    599       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
    600 					dither0[col_index]]);
    601       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
    602 					dither1[col_index]]);
    603       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
    604 					dither2[col_index]]);
    605       *output_ptr++ = (JSAMPLE) pixcode;
    606       col_index = (col_index + 1) & ODITHER_MASK;
    607     }
    608     row_index = (row_index + 1) & ODITHER_MASK;
    609     cquantize->row_index = row_index;
    610   }
    611 }
    612 
    613 
    614 METHODDEF(void)
    615 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    616 		    JSAMPARRAY output_buf, int num_rows)
    617 /* General case, with Floyd-Steinberg dithering */
    618 {
    619   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    620   register LOCFSERROR cur;	/* current error or pixel value */
    621   LOCFSERROR belowerr;		/* error for pixel below cur */
    622   LOCFSERROR bpreverr;		/* error for below/prev col */
    623   LOCFSERROR bnexterr;		/* error for below/next col */
    624   LOCFSERROR delta;
    625   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
    626   register JSAMPROW input_ptr;
    627   register JSAMPROW output_ptr;
    628   JSAMPROW colorindex_ci;
    629   JSAMPROW colormap_ci;
    630   int pixcode;
    631   int nc = cinfo->out_color_components;
    632   int dir;			/* 1 for left-to-right, -1 for right-to-left */
    633   int dirnc;			/* dir * nc */
    634   int ci;
    635   int row;
    636   JDIMENSION col;
    637   JDIMENSION width = cinfo->output_width;
    638   JSAMPLE *range_limit = cinfo->sample_range_limit;
    639   SHIFT_TEMPS
    640 
    641   for (row = 0; row < num_rows; row++) {
    642     /* Initialize output values to 0 so can process components separately */
    643     jzero_far((void FAR *) output_buf[row],
    644 	      (size_t) (width * SIZEOF(JSAMPLE)));
    645     for (ci = 0; ci < nc; ci++) {
    646       input_ptr = input_buf[row] + ci;
    647       output_ptr = output_buf[row];
    648       if (cquantize->on_odd_row) {
    649 	/* work right to left in this row */
    650 	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
    651 	output_ptr += width-1;
    652 	dir = -1;
    653 	dirnc = -nc;
    654 	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
    655       } else {
    656 	/* work left to right in this row */
    657 	dir = 1;
    658 	dirnc = nc;
    659 	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
    660       }
    661       colorindex_ci = cquantize->colorindex[ci];
    662       colormap_ci = cquantize->sv_colormap[ci];
    663       /* Preset error values: no error propagated to first pixel from left */
    664       cur = 0;
    665       /* and no error propagated to row below yet */
    666       belowerr = bpreverr = 0;
    667 
    668       for (col = width; col > 0; col--) {
    669 	/* cur holds the error propagated from the previous pixel on the
    670 	 * current line.  Add the error propagated from the previous line
    671 	 * to form the complete error correction term for this pixel, and
    672 	 * round the error term (which is expressed * 16) to an integer.
    673 	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
    674 	 * for either sign of the error value.
    675 	 * Note: errorptr points to *previous* column's array entry.
    676 	 */
    677 	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
    678 	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
    679 	 * The maximum error is +- MAXJSAMPLE; this sets the required size
    680 	 * of the range_limit array.
    681 	 */
    682 	cur += GETJSAMPLE(*input_ptr);
    683 	cur = GETJSAMPLE(range_limit[cur]);
    684 	/* Select output value, accumulate into output code for this pixel */
    685 	pixcode = GETJSAMPLE(colorindex_ci[cur]);
    686 	*output_ptr += (JSAMPLE) pixcode;
    687 	/* Compute actual representation error at this pixel */
    688 	/* Note: we can do this even though we don't have the final */
    689 	/* pixel code, because the colormap is orthogonal. */
    690 	cur -= GETJSAMPLE(colormap_ci[pixcode]);
    691 	/* Compute error fractions to be propagated to adjacent pixels.
    692 	 * Add these into the running sums, and simultaneously shift the
    693 	 * next-line error sums left by 1 column.
    694 	 */
    695 	bnexterr = cur;
    696 	delta = cur * 2;
    697 	cur += delta;		/* form error * 3 */
    698 	errorptr[0] = (FSERROR) (bpreverr + cur);
    699 	cur += delta;		/* form error * 5 */
    700 	bpreverr = belowerr + cur;
    701 	belowerr = bnexterr;
    702 	cur += delta;		/* form error * 7 */
    703 	/* At this point cur contains the 7/16 error value to be propagated
    704 	 * to the next pixel on the current line, and all the errors for the
    705 	 * next line have been shifted over. We are therefore ready to move on.
    706 	 */
    707 	input_ptr += dirnc;	/* advance input ptr to next column */
    708 	output_ptr += dir;	/* advance output ptr to next column */
    709 	errorptr += dir;	/* advance errorptr to current column */
    710       }
    711       /* Post-loop cleanup: we must unload the final error value into the
    712        * final fserrors[] entry.  Note we need not unload belowerr because
    713        * it is for the dummy column before or after the actual array.
    714        */
    715       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
    716     }
    717     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
    718   }
    719 }
    720 
    721 
    722 /*
    723  * Allocate workspace for Floyd-Steinberg errors.
    724  */
    725 
    726 LOCAL(void)
    727 alloc_fs_workspace (j_decompress_ptr cinfo)
    728 {
    729   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    730   size_t arraysize;
    731   int i;
    732 
    733   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
    734   for (i = 0; i < cinfo->out_color_components; i++) {
    735     cquantize->fserrors[i] = (FSERRPTR)
    736       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
    737   }
    738 }
    739 
    740 
    741 /*
    742  * Initialize for one-pass color quantization.
    743  */
    744 
    745 METHODDEF(void)
    746 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
    747 {
    748   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    749   size_t arraysize;
    750   int i;
    751 
    752   /* Install my colormap. */
    753   cinfo->colormap = cquantize->sv_colormap;
    754   cinfo->actual_number_of_colors = cquantize->sv_actual;
    755 
    756   /* Initialize for desired dithering mode. */
    757   switch (cinfo->dither_mode) {
    758   case JDITHER_NONE:
    759     if (cinfo->out_color_components == 3)
    760       cquantize->pub.color_quantize = color_quantize3;
    761     else
    762       cquantize->pub.color_quantize = color_quantize;
    763     break;
    764   case JDITHER_ORDERED:
    765     if (cinfo->out_color_components == 3)
    766       cquantize->pub.color_quantize = quantize3_ord_dither;
    767     else
    768       cquantize->pub.color_quantize = quantize_ord_dither;
    769     cquantize->row_index = 0;	/* initialize state for ordered dither */
    770     /* If user changed to ordered dither from another mode,
    771      * we must recreate the color index table with padding.
    772      * This will cost extra space, but probably isn't very likely.
    773      */
    774     if (! cquantize->is_padded)
    775       create_colorindex(cinfo);
    776     /* Create ordered-dither tables if we didn't already. */
    777     if (cquantize->odither[0] == NULL)
    778       create_odither_tables(cinfo);
    779     break;
    780   case JDITHER_FS:
    781     cquantize->pub.color_quantize = quantize_fs_dither;
    782     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
    783     /* Allocate Floyd-Steinberg workspace if didn't already. */
    784     if (cquantize->fserrors[0] == NULL)
    785       alloc_fs_workspace(cinfo);
    786     /* Initialize the propagated errors to zero. */
    787     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
    788     for (i = 0; i < cinfo->out_color_components; i++)
    789       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
    790     break;
    791   default:
    792     ERREXIT(cinfo, JERR_NOT_COMPILED);
    793     break;
    794   }
    795 }
    796 
    797 
    798 /*
    799  * Finish up at the end of the pass.
    800  */
    801 
    802 METHODDEF(void)
    803 finish_pass_1_quant (j_decompress_ptr cinfo)
    804 {
    805   /* no work in 1-pass case */
    806 }
    807 
    808 
    809 /*
    810  * Switch to a new external colormap between output passes.
    811  * Shouldn't get to this module!
    812  */
    813 
    814 METHODDEF(void)
    815 new_color_map_1_quant (j_decompress_ptr cinfo)
    816 {
    817   ERREXIT(cinfo, JERR_MODE_CHANGE);
    818 }
    819 
    820 
    821 /*
    822  * Module initialization routine for 1-pass color quantization.
    823  */
    824 
    825 GLOBAL(void)
    826 jinit_1pass_quantizer (j_decompress_ptr cinfo)
    827 {
    828   my_cquantize_ptr cquantize;
    829 
    830   cquantize = (my_cquantize_ptr)
    831     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    832 				SIZEOF(my_cquantizer));
    833   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
    834   cquantize->pub.start_pass = start_pass_1_quant;
    835   cquantize->pub.finish_pass = finish_pass_1_quant;
    836   cquantize->pub.new_color_map = new_color_map_1_quant;
    837   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
    838   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
    839 
    840   /* Make sure my internal arrays won't overflow */
    841   if (cinfo->out_color_components > MAX_Q_COMPS)
    842     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
    843   /* Make sure colormap indexes can be represented by JSAMPLEs */
    844   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
    845     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
    846 
    847   /* Create the colormap and color index table. */
    848   create_colormap(cinfo);
    849   create_colorindex(cinfo);
    850 
    851   /* Allocate Floyd-Steinberg workspace now if requested.
    852    * We do this now since it is FAR storage and may affect the memory
    853    * manager's space calculations.  If the user changes to FS dither
    854    * mode in a later pass, we will allocate the space then, and will
    855    * possibly overrun the max_memory_to_use setting.
    856    */
    857   if (cinfo->dither_mode == JDITHER_FS)
    858     alloc_fs_workspace(cinfo);
    859 }
    860 
    861 #endif /* QUANT_1PASS_SUPPORTED */
    862