Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jfmmxfst.asm - fast integer FDCT (MMX)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ;
      6 ; Based on
      7 ; x86 SIMD extension for IJG JPEG library
      8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     10 ;
     11 ; This file should be assembled with NASM (Netwide Assembler),
     12 ; can *not* be assembled with Microsoft's MASM or any compatible
     13 ; assembler (including Borland's Turbo Assembler).
     14 ; NASM is available from http://nasm.sourceforge.net/ or
     15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     16 ;
     17 ; This file contains a fast, not so accurate integer implementation of
     18 ; the forward DCT (Discrete Cosine Transform). The following code is
     19 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
     20 ; for more details.
     21 ;
     22 ; [TAB8]
     23 
     24 %include "jsimdext.inc"
     25 %include "jdct.inc"
     26 
     27 ; --------------------------------------------------------------------------
     28 
     29 %define CONST_BITS	8	; 14 is also OK.
     30 
     31 %if CONST_BITS == 8
     32 F_0_382	equ	 98		; FIX(0.382683433)
     33 F_0_541	equ	139		; FIX(0.541196100)
     34 F_0_707	equ	181		; FIX(0.707106781)
     35 F_1_306	equ	334		; FIX(1.306562965)
     36 %else
     37 ; NASM cannot do compile-time arithmetic on floating-point constants.
     38 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
     39 F_0_382	equ	DESCALE( 410903207,30-CONST_BITS)	; FIX(0.382683433)
     40 F_0_541	equ	DESCALE( 581104887,30-CONST_BITS)	; FIX(0.541196100)
     41 F_0_707	equ	DESCALE( 759250124,30-CONST_BITS)	; FIX(0.707106781)
     42 F_1_306	equ	DESCALE(1402911301,30-CONST_BITS)	; FIX(1.306562965)
     43 %endif
     44 
     45 ; --------------------------------------------------------------------------
     46 	SECTION	SEG_CONST
     47 
     48 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
     49 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
     50 
     51 %define PRE_MULTIPLY_SCALE_BITS   2
     52 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
     53 
     54 	alignz	16
     55 	global	EXTN(jconst_fdct_ifast_mmx) PRIVATE
     56 
     57 EXTN(jconst_fdct_ifast_mmx):
     58 
     59 PW_F0707	times 4 dw  F_0_707 << CONST_SHIFT
     60 PW_F0382	times 4 dw  F_0_382 << CONST_SHIFT
     61 PW_F0541	times 4 dw  F_0_541 << CONST_SHIFT
     62 PW_F1306	times 4 dw  F_1_306 << CONST_SHIFT
     63 
     64 	alignz	16
     65 
     66 ; --------------------------------------------------------------------------
     67 	SECTION	SEG_TEXT
     68 	BITS	32
     69 ;
     70 ; Perform the forward DCT on one block of samples.
     71 ;
     72 ; GLOBAL(void)
     73 ; jsimd_fdct_ifast_mmx (DCTELEM * data)
     74 ;
     75 
     76 %define data(b)		(b)+8		; DCTELEM * data
     77 
     78 %define original_ebp	ebp+0
     79 %define wk(i)		ebp-(WK_NUM-(i))*SIZEOF_MMWORD	; mmword wk[WK_NUM]
     80 %define WK_NUM		2
     81 
     82 	align	16
     83 	global	EXTN(jsimd_fdct_ifast_mmx) PRIVATE
     84 
     85 EXTN(jsimd_fdct_ifast_mmx):
     86 	push	ebp
     87 	mov	eax,esp				; eax = original ebp
     88 	sub	esp, byte 4
     89 	and	esp, byte (-SIZEOF_MMWORD)	; align to 64 bits
     90 	mov	[esp],eax
     91 	mov	ebp,esp				; ebp = aligned ebp
     92 	lea	esp, [wk(0)]
     93 	pushpic	ebx
     94 ;	push	ecx		; need not be preserved
     95 ;	push	edx		; need not be preserved
     96 ;	push	esi		; unused
     97 ;	push	edi		; unused
     98 
     99 	get_GOT	ebx		; get GOT address
    100 
    101 	; ---- Pass 1: process rows.
    102 
    103 	mov	edx, POINTER [data(eax)]	; (DCTELEM *)
    104 	mov	ecx, DCTSIZE/4
    105 	alignx	16,7
    106 .rowloop:
    107 
    108 	movq	mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
    109 	movq	mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
    110 	movq	mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)]
    111 	movq	mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)]
    112 
    113 	; mm0=(20 21 22 23), mm2=(24 25 26 27)
    114 	; mm1=(30 31 32 33), mm3=(34 35 36 37)
    115 
    116 	movq      mm4,mm0		; transpose coefficients(phase 1)
    117 	punpcklwd mm0,mm1		; mm0=(20 30 21 31)
    118 	punpckhwd mm4,mm1		; mm4=(22 32 23 33)
    119 	movq      mm5,mm2		; transpose coefficients(phase 1)
    120 	punpcklwd mm2,mm3		; mm2=(24 34 25 35)
    121 	punpckhwd mm5,mm3		; mm5=(26 36 27 37)
    122 
    123 	movq	mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
    124 	movq	mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
    125 	movq	mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)]
    126 	movq	mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)]
    127 
    128 	; mm6=(00 01 02 03), mm1=(04 05 06 07)
    129 	; mm7=(10 11 12 13), mm3=(14 15 16 17)
    130 
    131 	movq	MMWORD [wk(0)], mm4	; wk(0)=(22 32 23 33)
    132 	movq	MMWORD [wk(1)], mm2	; wk(1)=(24 34 25 35)
    133 
    134 	movq      mm4,mm6		; transpose coefficients(phase 1)
    135 	punpcklwd mm6,mm7		; mm6=(00 10 01 11)
    136 	punpckhwd mm4,mm7		; mm4=(02 12 03 13)
    137 	movq      mm2,mm1		; transpose coefficients(phase 1)
    138 	punpcklwd mm1,mm3		; mm1=(04 14 05 15)
    139 	punpckhwd mm2,mm3		; mm2=(06 16 07 17)
    140 
    141 	movq      mm7,mm6		; transpose coefficients(phase 2)
    142 	punpckldq mm6,mm0		; mm6=(00 10 20 30)=data0
    143 	punpckhdq mm7,mm0		; mm7=(01 11 21 31)=data1
    144 	movq      mm3,mm2		; transpose coefficients(phase 2)
    145 	punpckldq mm2,mm5		; mm2=(06 16 26 36)=data6
    146 	punpckhdq mm3,mm5		; mm3=(07 17 27 37)=data7
    147 
    148 	movq	mm0,mm7
    149 	movq	mm5,mm6
    150 	psubw	mm7,mm2			; mm7=data1-data6=tmp6
    151 	psubw	mm6,mm3			; mm6=data0-data7=tmp7
    152 	paddw	mm0,mm2			; mm0=data1+data6=tmp1
    153 	paddw	mm5,mm3			; mm5=data0+data7=tmp0
    154 
    155 	movq	mm2, MMWORD [wk(0)]	; mm2=(22 32 23 33)
    156 	movq	mm3, MMWORD [wk(1)]	; mm3=(24 34 25 35)
    157 	movq	MMWORD [wk(0)], mm7	; wk(0)=tmp6
    158 	movq	MMWORD [wk(1)], mm6	; wk(1)=tmp7
    159 
    160 	movq      mm7,mm4		; transpose coefficients(phase 2)
    161 	punpckldq mm4,mm2		; mm4=(02 12 22 32)=data2
    162 	punpckhdq mm7,mm2		; mm7=(03 13 23 33)=data3
    163 	movq      mm6,mm1		; transpose coefficients(phase 2)
    164 	punpckldq mm1,mm3		; mm1=(04 14 24 34)=data4
    165 	punpckhdq mm6,mm3		; mm6=(05 15 25 35)=data5
    166 
    167 	movq	mm2,mm7
    168 	movq	mm3,mm4
    169 	paddw	mm7,mm1			; mm7=data3+data4=tmp3
    170 	paddw	mm4,mm6			; mm4=data2+data5=tmp2
    171 	psubw	mm2,mm1			; mm2=data3-data4=tmp4
    172 	psubw	mm3,mm6			; mm3=data2-data5=tmp5
    173 
    174 	; -- Even part
    175 
    176 	movq	mm1,mm5
    177 	movq	mm6,mm0
    178 	psubw	mm5,mm7			; mm5=tmp13
    179 	psubw	mm0,mm4			; mm0=tmp12
    180 	paddw	mm1,mm7			; mm1=tmp10
    181 	paddw	mm6,mm4			; mm6=tmp11
    182 
    183 	paddw	mm0,mm5
    184 	psllw	mm0,PRE_MULTIPLY_SCALE_BITS
    185 	pmulhw	mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1
    186 
    187 	movq	mm7,mm1
    188 	movq	mm4,mm5
    189 	psubw	mm1,mm6			; mm1=data4
    190 	psubw	mm5,mm0			; mm5=data6
    191 	paddw	mm7,mm6			; mm7=data0
    192 	paddw	mm4,mm0			; mm4=data2
    193 
    194 	movq	MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm1
    195 	movq	MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm5
    196 	movq	MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7
    197 	movq	MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4
    198 
    199 	; -- Odd part
    200 
    201 	movq	mm6, MMWORD [wk(0)]	; mm6=tmp6
    202 	movq	mm0, MMWORD [wk(1)]	; mm0=tmp7
    203 
    204 	paddw	mm2,mm3			; mm2=tmp10
    205 	paddw	mm3,mm6			; mm3=tmp11
    206 	paddw	mm6,mm0			; mm6=tmp12, mm0=tmp7
    207 
    208 	psllw	mm2,PRE_MULTIPLY_SCALE_BITS
    209 	psllw	mm6,PRE_MULTIPLY_SCALE_BITS
    210 
    211 	psllw	mm3,PRE_MULTIPLY_SCALE_BITS
    212 	pmulhw	mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3
    213 
    214 	movq	mm1,mm2			; mm1=tmp10
    215 	psubw	mm2,mm6
    216 	pmulhw	mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5
    217 	pmulhw	mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610)
    218 	pmulhw	mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296)
    219 	paddw	mm1,mm2			; mm1=z2
    220 	paddw	mm6,mm2			; mm6=z4
    221 
    222 	movq	mm5,mm0
    223 	psubw	mm0,mm3			; mm0=z13
    224 	paddw	mm5,mm3			; mm5=z11
    225 
    226 	movq	mm7,mm0
    227 	movq	mm4,mm5
    228 	psubw	mm0,mm1			; mm0=data3
    229 	psubw	mm5,mm6			; mm5=data7
    230 	paddw	mm7,mm1			; mm7=data5
    231 	paddw	mm4,mm6			; mm4=data1
    232 
    233 	movq	MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0
    234 	movq	MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm5
    235 	movq	MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm7
    236 	movq	MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4
    237 
    238 	add	edx, byte 4*DCTSIZE*SIZEOF_DCTELEM
    239 	dec	ecx
    240 	jnz	near .rowloop
    241 
    242 	; ---- Pass 2: process columns.
    243 
    244 	mov	edx, POINTER [data(eax)]	; (DCTELEM *)
    245 	mov	ecx, DCTSIZE/4
    246 	alignx	16,7
    247 .columnloop:
    248 
    249 	movq	mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)]
    250 	movq	mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)]
    251 	movq	mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)]
    252 	movq	mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)]
    253 
    254 	; mm0=(02 12 22 32), mm2=(42 52 62 72)
    255 	; mm1=(03 13 23 33), mm3=(43 53 63 73)
    256 
    257 	movq      mm4,mm0		; transpose coefficients(phase 1)
    258 	punpcklwd mm0,mm1		; mm0=(02 03 12 13)
    259 	punpckhwd mm4,mm1		; mm4=(22 23 32 33)
    260 	movq      mm5,mm2		; transpose coefficients(phase 1)
    261 	punpcklwd mm2,mm3		; mm2=(42 43 52 53)
    262 	punpckhwd mm5,mm3		; mm5=(62 63 72 73)
    263 
    264 	movq	mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)]
    265 	movq	mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)]
    266 	movq	mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)]
    267 	movq	mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)]
    268 
    269 	; mm6=(00 10 20 30), mm1=(40 50 60 70)
    270 	; mm7=(01 11 21 31), mm3=(41 51 61 71)
    271 
    272 	movq	MMWORD [wk(0)], mm4	; wk(0)=(22 23 32 33)
    273 	movq	MMWORD [wk(1)], mm2	; wk(1)=(42 43 52 53)
    274 
    275 	movq      mm4,mm6		; transpose coefficients(phase 1)
    276 	punpcklwd mm6,mm7		; mm6=(00 01 10 11)
    277 	punpckhwd mm4,mm7		; mm4=(20 21 30 31)
    278 	movq      mm2,mm1		; transpose coefficients(phase 1)
    279 	punpcklwd mm1,mm3		; mm1=(40 41 50 51)
    280 	punpckhwd mm2,mm3		; mm2=(60 61 70 71)
    281 
    282 	movq      mm7,mm6		; transpose coefficients(phase 2)
    283 	punpckldq mm6,mm0		; mm6=(00 01 02 03)=data0
    284 	punpckhdq mm7,mm0		; mm7=(10 11 12 13)=data1
    285 	movq      mm3,mm2		; transpose coefficients(phase 2)
    286 	punpckldq mm2,mm5		; mm2=(60 61 62 63)=data6
    287 	punpckhdq mm3,mm5		; mm3=(70 71 72 73)=data7
    288 
    289 	movq	mm0,mm7
    290 	movq	mm5,mm6
    291 	psubw	mm7,mm2			; mm7=data1-data6=tmp6
    292 	psubw	mm6,mm3			; mm6=data0-data7=tmp7
    293 	paddw	mm0,mm2			; mm0=data1+data6=tmp1
    294 	paddw	mm5,mm3			; mm5=data0+data7=tmp0
    295 
    296 	movq	mm2, MMWORD [wk(0)]	; mm2=(22 23 32 33)
    297 	movq	mm3, MMWORD [wk(1)]	; mm3=(42 43 52 53)
    298 	movq	MMWORD [wk(0)], mm7	; wk(0)=tmp6
    299 	movq	MMWORD [wk(1)], mm6	; wk(1)=tmp7
    300 
    301 	movq      mm7,mm4		; transpose coefficients(phase 2)
    302 	punpckldq mm4,mm2		; mm4=(20 21 22 23)=data2
    303 	punpckhdq mm7,mm2		; mm7=(30 31 32 33)=data3
    304 	movq      mm6,mm1		; transpose coefficients(phase 2)
    305 	punpckldq mm1,mm3		; mm1=(40 41 42 43)=data4
    306 	punpckhdq mm6,mm3		; mm6=(50 51 52 53)=data5
    307 
    308 	movq	mm2,mm7
    309 	movq	mm3,mm4
    310 	paddw	mm7,mm1			; mm7=data3+data4=tmp3
    311 	paddw	mm4,mm6			; mm4=data2+data5=tmp2
    312 	psubw	mm2,mm1			; mm2=data3-data4=tmp4
    313 	psubw	mm3,mm6			; mm3=data2-data5=tmp5
    314 
    315 	; -- Even part
    316 
    317 	movq	mm1,mm5
    318 	movq	mm6,mm0
    319 	psubw	mm5,mm7			; mm5=tmp13
    320 	psubw	mm0,mm4			; mm0=tmp12
    321 	paddw	mm1,mm7			; mm1=tmp10
    322 	paddw	mm6,mm4			; mm6=tmp11
    323 
    324 	paddw	mm0,mm5
    325 	psllw	mm0,PRE_MULTIPLY_SCALE_BITS
    326 	pmulhw	mm0,[GOTOFF(ebx,PW_F0707)] ; mm0=z1
    327 
    328 	movq	mm7,mm1
    329 	movq	mm4,mm5
    330 	psubw	mm1,mm6			; mm1=data4
    331 	psubw	mm5,mm0			; mm5=data6
    332 	paddw	mm7,mm6			; mm7=data0
    333 	paddw	mm4,mm0			; mm4=data2
    334 
    335 	movq	MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm1
    336 	movq	MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm5
    337 	movq	MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7
    338 	movq	MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4
    339 
    340 	; -- Odd part
    341 
    342 	movq	mm6, MMWORD [wk(0)]	; mm6=tmp6
    343 	movq	mm0, MMWORD [wk(1)]	; mm0=tmp7
    344 
    345 	paddw	mm2,mm3			; mm2=tmp10
    346 	paddw	mm3,mm6			; mm3=tmp11
    347 	paddw	mm6,mm0			; mm6=tmp12, mm0=tmp7
    348 
    349 	psllw	mm2,PRE_MULTIPLY_SCALE_BITS
    350 	psllw	mm6,PRE_MULTIPLY_SCALE_BITS
    351 
    352 	psllw	mm3,PRE_MULTIPLY_SCALE_BITS
    353 	pmulhw	mm3,[GOTOFF(ebx,PW_F0707)] ; mm3=z3
    354 
    355 	movq	mm1,mm2			; mm1=tmp10
    356 	psubw	mm2,mm6
    357 	pmulhw	mm2,[GOTOFF(ebx,PW_F0382)] ; mm2=z5
    358 	pmulhw	mm1,[GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610)
    359 	pmulhw	mm6,[GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296)
    360 	paddw	mm1,mm2			; mm1=z2
    361 	paddw	mm6,mm2			; mm6=z4
    362 
    363 	movq	mm5,mm0
    364 	psubw	mm0,mm3			; mm0=z13
    365 	paddw	mm5,mm3			; mm5=z11
    366 
    367 	movq	mm7,mm0
    368 	movq	mm4,mm5
    369 	psubw	mm0,mm1			; mm0=data3
    370 	psubw	mm5,mm6			; mm5=data7
    371 	paddw	mm7,mm1			; mm7=data5
    372 	paddw	mm4,mm6			; mm4=data1
    373 
    374 	movq	MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0
    375 	movq	MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm5
    376 	movq	MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm7
    377 	movq	MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4
    378 
    379 	add	edx, byte 4*SIZEOF_DCTELEM
    380 	dec	ecx
    381 	jnz	near .columnloop
    382 
    383 	emms		; empty MMX state
    384 
    385 ;	pop	edi		; unused
    386 ;	pop	esi		; unused
    387 ;	pop	edx		; need not be preserved
    388 ;	pop	ecx		; need not be preserved
    389 	poppic	ebx
    390 	mov	esp,ebp		; esp <- aligned ebp
    391 	pop	esp		; esp <- original ebp
    392 	pop	ebp
    393 	ret
    394 
    395 ; For some reason, the OS X linker does not honor the request to align the
    396 ; segment unless we do this.
    397 	align	16
    398