Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jfss2fst-64.asm - fast integer FDCT (64-bit SSE2)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ; Copyright 2009 D. R. Commander
      6 ;
      7 ; Based on
      8 ; x86 SIMD extension for IJG JPEG library
      9 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
     10 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     11 ;
     12 ; This file should be assembled with NASM (Netwide Assembler),
     13 ; can *not* be assembled with Microsoft's MASM or any compatible
     14 ; assembler (including Borland's Turbo Assembler).
     15 ; NASM is available from http://nasm.sourceforge.net/ or
     16 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     17 ;
     18 ; This file contains a fast, not so accurate integer implementation of
     19 ; the forward DCT (Discrete Cosine Transform). The following code is
     20 ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c
     21 ; for more details.
     22 ;
     23 ; [TAB8]
     24 
     25 %include "jsimdext.inc"
     26 %include "jdct.inc"
     27 
     28 ; --------------------------------------------------------------------------
     29 
     30 %define CONST_BITS	8	; 14 is also OK.
     31 
     32 %if CONST_BITS == 8
     33 F_0_382	equ	 98		; FIX(0.382683433)
     34 F_0_541	equ	139		; FIX(0.541196100)
     35 F_0_707	equ	181		; FIX(0.707106781)
     36 F_1_306	equ	334		; FIX(1.306562965)
     37 %else
     38 ; NASM cannot do compile-time arithmetic on floating-point constants.
     39 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
     40 F_0_382	equ	DESCALE( 410903207,30-CONST_BITS)	; FIX(0.382683433)
     41 F_0_541	equ	DESCALE( 581104887,30-CONST_BITS)	; FIX(0.541196100)
     42 F_0_707	equ	DESCALE( 759250124,30-CONST_BITS)	; FIX(0.707106781)
     43 F_1_306	equ	DESCALE(1402911301,30-CONST_BITS)	; FIX(1.306562965)
     44 %endif
     45 
     46 ; --------------------------------------------------------------------------
     47 	SECTION	SEG_CONST
     48 
     49 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
     50 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
     51 
     52 %define PRE_MULTIPLY_SCALE_BITS   2
     53 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
     54 
     55 	alignz	16
     56 	global	EXTN(jconst_fdct_ifast_sse2) PRIVATE
     57 
     58 EXTN(jconst_fdct_ifast_sse2):
     59 
     60 PW_F0707	times 8 dw  F_0_707 << CONST_SHIFT
     61 PW_F0382	times 8 dw  F_0_382 << CONST_SHIFT
     62 PW_F0541	times 8 dw  F_0_541 << CONST_SHIFT
     63 PW_F1306	times 8 dw  F_1_306 << CONST_SHIFT
     64 
     65 	alignz	16
     66 
     67 ; --------------------------------------------------------------------------
     68 	SECTION	SEG_TEXT
     69 	BITS	64
     70 ;
     71 ; Perform the forward DCT on one block of samples.
     72 ;
     73 ; GLOBAL(void)
     74 ; jsimd_fdct_ifast_sse2 (DCTELEM * data)
     75 ;
     76 
     77 ; r10 = DCTELEM * data
     78 
     79 %define wk(i)		rbp-(WK_NUM-(i))*SIZEOF_XMMWORD	; xmmword wk[WK_NUM]
     80 %define WK_NUM		2
     81 
     82 	align	16
     83 	global	EXTN(jsimd_fdct_ifast_sse2) PRIVATE
     84 
     85 EXTN(jsimd_fdct_ifast_sse2):
     86 	push	rbp
     87 	mov	rax,rsp				; rax = original rbp
     88 	sub	rsp, byte 4
     89 	and	rsp, byte (-SIZEOF_XMMWORD)	; align to 128 bits
     90 	mov	[rsp],rax
     91 	mov	rbp,rsp				; rbp = aligned rbp
     92 	lea	rsp, [wk(0)]
     93 	collect_args
     94 
     95 	; ---- Pass 1: process rows.
     96 
     97 	mov	rdx, r10	; (DCTELEM *)
     98 
     99 	movdqa	xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)]
    100 	movdqa	xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)]
    101 	movdqa	xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)]
    102 	movdqa	xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)]
    103 
    104 	; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27)
    105 	; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37)
    106 
    107 	movdqa    xmm4,xmm0		; transpose coefficients(phase 1)
    108 	punpcklwd xmm0,xmm1		; xmm0=(00 10 01 11 02 12 03 13)
    109 	punpckhwd xmm4,xmm1		; xmm4=(04 14 05 15 06 16 07 17)
    110 	movdqa    xmm5,xmm2		; transpose coefficients(phase 1)
    111 	punpcklwd xmm2,xmm3		; xmm2=(20 30 21 31 22 32 23 33)
    112 	punpckhwd xmm5,xmm3		; xmm5=(24 34 25 35 26 36 27 37)
    113 
    114 	movdqa	xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)]
    115 	movdqa	xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)]
    116 	movdqa	xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)]
    117 	movdqa	xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)]
    118 
    119 	; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62)
    120 	; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63)
    121 
    122 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=(20 30 21 31 22 32 23 33)
    123 	movdqa	XMMWORD [wk(1)], xmm5	; wk(1)=(24 34 25 35 26 36 27 37)
    124 
    125 	movdqa    xmm2,xmm6		; transpose coefficients(phase 1)
    126 	punpcklwd xmm6,xmm7		; xmm6=(40 50 41 51 42 52 43 53)
    127 	punpckhwd xmm2,xmm7		; xmm2=(44 54 45 55 46 56 47 57)
    128 	movdqa    xmm5,xmm1		; transpose coefficients(phase 1)
    129 	punpcklwd xmm1,xmm3		; xmm1=(60 70 61 71 62 72 63 73)
    130 	punpckhwd xmm5,xmm3		; xmm5=(64 74 65 75 66 76 67 77)
    131 
    132 	movdqa    xmm7,xmm6		; transpose coefficients(phase 2)
    133 	punpckldq xmm6,xmm1		; xmm6=(40 50 60 70 41 51 61 71)
    134 	punpckhdq xmm7,xmm1		; xmm7=(42 52 62 72 43 53 63 73)
    135 	movdqa    xmm3,xmm2		; transpose coefficients(phase 2)
    136 	punpckldq xmm2,xmm5		; xmm2=(44 54 64 74 45 55 65 75)
    137 	punpckhdq xmm3,xmm5		; xmm3=(46 56 66 76 47 57 67 77)
    138 
    139 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=(20 30 21 31 22 32 23 33)
    140 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=(24 34 25 35 26 36 27 37)
    141 	movdqa	XMMWORD [wk(0)], xmm7	; wk(0)=(42 52 62 72 43 53 63 73)
    142 	movdqa	XMMWORD [wk(1)], xmm2	; wk(1)=(44 54 64 74 45 55 65 75)
    143 
    144 	movdqa    xmm7,xmm0		; transpose coefficients(phase 2)
    145 	punpckldq xmm0,xmm1		; xmm0=(00 10 20 30 01 11 21 31)
    146 	punpckhdq xmm7,xmm1		; xmm7=(02 12 22 32 03 13 23 33)
    147 	movdqa    xmm2,xmm4		; transpose coefficients(phase 2)
    148 	punpckldq xmm4,xmm5		; xmm4=(04 14 24 34 05 15 25 35)
    149 	punpckhdq xmm2,xmm5		; xmm2=(06 16 26 36 07 17 27 37)
    150 
    151 	movdqa     xmm1,xmm0		; transpose coefficients(phase 3)
    152 	punpcklqdq xmm0,xmm6		; xmm0=(00 10 20 30 40 50 60 70)=data0
    153 	punpckhqdq xmm1,xmm6		; xmm1=(01 11 21 31 41 51 61 71)=data1
    154 	movdqa     xmm5,xmm2		; transpose coefficients(phase 3)
    155 	punpcklqdq xmm2,xmm3		; xmm2=(06 16 26 36 46 56 66 76)=data6
    156 	punpckhqdq xmm5,xmm3		; xmm5=(07 17 27 37 47 57 67 77)=data7
    157 
    158 	movdqa	xmm6,xmm1
    159 	movdqa	xmm3,xmm0
    160 	psubw	xmm1,xmm2		; xmm1=data1-data6=tmp6
    161 	psubw	xmm0,xmm5		; xmm0=data0-data7=tmp7
    162 	paddw	xmm6,xmm2		; xmm6=data1+data6=tmp1
    163 	paddw	xmm3,xmm5		; xmm3=data0+data7=tmp0
    164 
    165 	movdqa	xmm2, XMMWORD [wk(0)]	; xmm2=(42 52 62 72 43 53 63 73)
    166 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=(44 54 64 74 45 55 65 75)
    167 	movdqa	XMMWORD [wk(0)], xmm1	; wk(0)=tmp6
    168 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=tmp7
    169 
    170 	movdqa     xmm1,xmm7		; transpose coefficients(phase 3)
    171 	punpcklqdq xmm7,xmm2		; xmm7=(02 12 22 32 42 52 62 72)=data2
    172 	punpckhqdq xmm1,xmm2		; xmm1=(03 13 23 33 43 53 63 73)=data3
    173 	movdqa     xmm0,xmm4		; transpose coefficients(phase 3)
    174 	punpcklqdq xmm4,xmm5		; xmm4=(04 14 24 34 44 54 64 74)=data4
    175 	punpckhqdq xmm0,xmm5		; xmm0=(05 15 25 35 45 55 65 75)=data5
    176 
    177 	movdqa	xmm2,xmm1
    178 	movdqa	xmm5,xmm7
    179 	paddw	xmm1,xmm4		; xmm1=data3+data4=tmp3
    180 	paddw	xmm7,xmm0		; xmm7=data2+data5=tmp2
    181 	psubw	xmm2,xmm4		; xmm2=data3-data4=tmp4
    182 	psubw	xmm5,xmm0		; xmm5=data2-data5=tmp5
    183 
    184 	; -- Even part
    185 
    186 	movdqa	xmm4,xmm3
    187 	movdqa	xmm0,xmm6
    188 	psubw	xmm3,xmm1		; xmm3=tmp13
    189 	psubw	xmm6,xmm7		; xmm6=tmp12
    190 	paddw	xmm4,xmm1		; xmm4=tmp10
    191 	paddw	xmm0,xmm7		; xmm0=tmp11
    192 
    193 	paddw	xmm6,xmm3
    194 	psllw	xmm6,PRE_MULTIPLY_SCALE_BITS
    195 	pmulhw	xmm6,[rel PW_F0707] ; xmm6=z1
    196 
    197 	movdqa	xmm1,xmm4
    198 	movdqa	xmm7,xmm3
    199 	psubw	xmm4,xmm0		; xmm4=data4
    200 	psubw	xmm3,xmm6		; xmm3=data6
    201 	paddw	xmm1,xmm0		; xmm1=data0
    202 	paddw	xmm7,xmm6		; xmm7=data2
    203 
    204 	movdqa	xmm0, XMMWORD [wk(0)]	; xmm0=tmp6
    205 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=tmp7
    206 	movdqa	XMMWORD [wk(0)], xmm4	; wk(0)=data4
    207 	movdqa	XMMWORD [wk(1)], xmm3	; wk(1)=data6
    208 
    209 	; -- Odd part
    210 
    211 	paddw	xmm2,xmm5		; xmm2=tmp10
    212 	paddw	xmm5,xmm0		; xmm5=tmp11
    213 	paddw	xmm0,xmm6		; xmm0=tmp12, xmm6=tmp7
    214 
    215 	psllw	xmm2,PRE_MULTIPLY_SCALE_BITS
    216 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
    217 
    218 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
    219 	pmulhw	xmm5,[rel PW_F0707] ; xmm5=z3
    220 
    221 	movdqa	xmm4,xmm2		; xmm4=tmp10
    222 	psubw	xmm2,xmm0
    223 	pmulhw	xmm2,[rel PW_F0382] ; xmm2=z5
    224 	pmulhw	xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
    225 	pmulhw	xmm0,[rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562)
    226 	paddw	xmm4,xmm2		; xmm4=z2
    227 	paddw	xmm0,xmm2		; xmm0=z4
    228 
    229 	movdqa	xmm3,xmm6
    230 	psubw	xmm6,xmm5		; xmm6=z13
    231 	paddw	xmm3,xmm5		; xmm3=z11
    232 
    233 	movdqa	xmm2,xmm6
    234 	movdqa	xmm5,xmm3
    235 	psubw	xmm6,xmm4		; xmm6=data3
    236 	psubw	xmm3,xmm0		; xmm3=data7
    237 	paddw	xmm2,xmm4		; xmm2=data5
    238 	paddw	xmm5,xmm0		; xmm5=data1
    239 
    240 	; ---- Pass 2: process columns.
    241 
    242 	; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72)
    243 	; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73)
    244 
    245 	movdqa    xmm4,xmm1		; transpose coefficients(phase 1)
    246 	punpcklwd xmm1,xmm5		; xmm1=(00 01 10 11 20 21 30 31)
    247 	punpckhwd xmm4,xmm5		; xmm4=(40 41 50 51 60 61 70 71)
    248 	movdqa    xmm0,xmm7		; transpose coefficients(phase 1)
    249 	punpcklwd xmm7,xmm6		; xmm7=(02 03 12 13 22 23 32 33)
    250 	punpckhwd xmm0,xmm6		; xmm0=(42 43 52 53 62 63 72 73)
    251 
    252 	movdqa	xmm5, XMMWORD [wk(0)]	; xmm5=col4
    253 	movdqa	xmm6, XMMWORD [wk(1)]	; xmm6=col6
    254 
    255 	; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76)
    256 	; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77)
    257 
    258 	movdqa	XMMWORD [wk(0)], xmm7	; wk(0)=(02 03 12 13 22 23 32 33)
    259 	movdqa	XMMWORD [wk(1)], xmm0	; wk(1)=(42 43 52 53 62 63 72 73)
    260 
    261 	movdqa    xmm7,xmm5		; transpose coefficients(phase 1)
    262 	punpcklwd xmm5,xmm2		; xmm5=(04 05 14 15 24 25 34 35)
    263 	punpckhwd xmm7,xmm2		; xmm7=(44 45 54 55 64 65 74 75)
    264 	movdqa    xmm0,xmm6		; transpose coefficients(phase 1)
    265 	punpcklwd xmm6,xmm3		; xmm6=(06 07 16 17 26 27 36 37)
    266 	punpckhwd xmm0,xmm3		; xmm0=(46 47 56 57 66 67 76 77)
    267 
    268 	movdqa    xmm2,xmm5		; transpose coefficients(phase 2)
    269 	punpckldq xmm5,xmm6		; xmm5=(04 05 06 07 14 15 16 17)
    270 	punpckhdq xmm2,xmm6		; xmm2=(24 25 26 27 34 35 36 37)
    271 	movdqa    xmm3,xmm7		; transpose coefficients(phase 2)
    272 	punpckldq xmm7,xmm0		; xmm7=(44 45 46 47 54 55 56 57)
    273 	punpckhdq xmm3,xmm0		; xmm3=(64 65 66 67 74 75 76 77)
    274 
    275 	movdqa	xmm6, XMMWORD [wk(0)]	; xmm6=(02 03 12 13 22 23 32 33)
    276 	movdqa	xmm0, XMMWORD [wk(1)]	; xmm0=(42 43 52 53 62 63 72 73)
    277 	movdqa	XMMWORD [wk(0)], xmm2	; wk(0)=(24 25 26 27 34 35 36 37)
    278 	movdqa	XMMWORD [wk(1)], xmm7	; wk(1)=(44 45 46 47 54 55 56 57)
    279 
    280 	movdqa    xmm2,xmm1		; transpose coefficients(phase 2)
    281 	punpckldq xmm1,xmm6		; xmm1=(00 01 02 03 10 11 12 13)
    282 	punpckhdq xmm2,xmm6		; xmm2=(20 21 22 23 30 31 32 33)
    283 	movdqa    xmm7,xmm4		; transpose coefficients(phase 2)
    284 	punpckldq xmm4,xmm0		; xmm4=(40 41 42 43 50 51 52 53)
    285 	punpckhdq xmm7,xmm0		; xmm7=(60 61 62 63 70 71 72 73)
    286 
    287 	movdqa     xmm6,xmm1		; transpose coefficients(phase 3)
    288 	punpcklqdq xmm1,xmm5		; xmm1=(00 01 02 03 04 05 06 07)=data0
    289 	punpckhqdq xmm6,xmm5		; xmm6=(10 11 12 13 14 15 16 17)=data1
    290 	movdqa     xmm0,xmm7		; transpose coefficients(phase 3)
    291 	punpcklqdq xmm7,xmm3		; xmm7=(60 61 62 63 64 65 66 67)=data6
    292 	punpckhqdq xmm0,xmm3		; xmm0=(70 71 72 73 74 75 76 77)=data7
    293 
    294 	movdqa	xmm5,xmm6
    295 	movdqa	xmm3,xmm1
    296 	psubw	xmm6,xmm7		; xmm6=data1-data6=tmp6
    297 	psubw	xmm1,xmm0		; xmm1=data0-data7=tmp7
    298 	paddw	xmm5,xmm7		; xmm5=data1+data6=tmp1
    299 	paddw	xmm3,xmm0		; xmm3=data0+data7=tmp0
    300 
    301 	movdqa	xmm7, XMMWORD [wk(0)]	; xmm7=(24 25 26 27 34 35 36 37)
    302 	movdqa	xmm0, XMMWORD [wk(1)]	; xmm0=(44 45 46 47 54 55 56 57)
    303 	movdqa	XMMWORD [wk(0)], xmm6	; wk(0)=tmp6
    304 	movdqa	XMMWORD [wk(1)], xmm1	; wk(1)=tmp7
    305 
    306 	movdqa     xmm6,xmm2		; transpose coefficients(phase 3)
    307 	punpcklqdq xmm2,xmm7		; xmm2=(20 21 22 23 24 25 26 27)=data2
    308 	punpckhqdq xmm6,xmm7		; xmm6=(30 31 32 33 34 35 36 37)=data3
    309 	movdqa     xmm1,xmm4		; transpose coefficients(phase 3)
    310 	punpcklqdq xmm4,xmm0		; xmm4=(40 41 42 43 44 45 46 47)=data4
    311 	punpckhqdq xmm1,xmm0		; xmm1=(50 51 52 53 54 55 56 57)=data5
    312 
    313 	movdqa	xmm7,xmm6
    314 	movdqa	xmm0,xmm2
    315 	paddw	xmm6,xmm4		; xmm6=data3+data4=tmp3
    316 	paddw	xmm2,xmm1		; xmm2=data2+data5=tmp2
    317 	psubw	xmm7,xmm4		; xmm7=data3-data4=tmp4
    318 	psubw	xmm0,xmm1		; xmm0=data2-data5=tmp5
    319 
    320 	; -- Even part
    321 
    322 	movdqa	xmm4,xmm3
    323 	movdqa	xmm1,xmm5
    324 	psubw	xmm3,xmm6		; xmm3=tmp13
    325 	psubw	xmm5,xmm2		; xmm5=tmp12
    326 	paddw	xmm4,xmm6		; xmm4=tmp10
    327 	paddw	xmm1,xmm2		; xmm1=tmp11
    328 
    329 	paddw	xmm5,xmm3
    330 	psllw	xmm5,PRE_MULTIPLY_SCALE_BITS
    331 	pmulhw	xmm5,[rel PW_F0707] ; xmm5=z1
    332 
    333 	movdqa	xmm6,xmm4
    334 	movdqa	xmm2,xmm3
    335 	psubw	xmm4,xmm1		; xmm4=data4
    336 	psubw	xmm3,xmm5		; xmm3=data6
    337 	paddw	xmm6,xmm1		; xmm6=data0
    338 	paddw	xmm2,xmm5		; xmm2=data2
    339 
    340 	movdqa	XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4
    341 	movdqa	XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3
    342 	movdqa	XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6
    343 	movdqa	XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2
    344 
    345 	; -- Odd part
    346 
    347 	movdqa	xmm1, XMMWORD [wk(0)]	; xmm1=tmp6
    348 	movdqa	xmm5, XMMWORD [wk(1)]	; xmm5=tmp7
    349 
    350 	paddw	xmm7,xmm0		; xmm7=tmp10
    351 	paddw	xmm0,xmm1		; xmm0=tmp11
    352 	paddw	xmm1,xmm5		; xmm1=tmp12, xmm5=tmp7
    353 
    354 	psllw	xmm7,PRE_MULTIPLY_SCALE_BITS
    355 	psllw	xmm1,PRE_MULTIPLY_SCALE_BITS
    356 
    357 	psllw	xmm0,PRE_MULTIPLY_SCALE_BITS
    358 	pmulhw	xmm0,[rel PW_F0707] ; xmm0=z3
    359 
    360 	movdqa	xmm4,xmm7		; xmm4=tmp10
    361 	psubw	xmm7,xmm1
    362 	pmulhw	xmm7,[rel PW_F0382] ; xmm7=z5
    363 	pmulhw	xmm4,[rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196)
    364 	pmulhw	xmm1,[rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562)
    365 	paddw	xmm4,xmm7		; xmm4=z2
    366 	paddw	xmm1,xmm7		; xmm1=z4
    367 
    368 	movdqa	xmm3,xmm5
    369 	psubw	xmm5,xmm0		; xmm5=z13
    370 	paddw	xmm3,xmm0		; xmm3=z11
    371 
    372 	movdqa	xmm6,xmm5
    373 	movdqa	xmm2,xmm3
    374 	psubw	xmm5,xmm4		; xmm5=data3
    375 	psubw	xmm3,xmm1		; xmm3=data7
    376 	paddw	xmm6,xmm4		; xmm6=data5
    377 	paddw	xmm2,xmm1		; xmm2=data1
    378 
    379 	movdqa	XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5
    380 	movdqa	XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3
    381 	movdqa	XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6
    382 	movdqa	XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2
    383 
    384 	uncollect_args
    385 	mov	rsp,rbp		; rsp <- aligned rbp
    386 	pop	rsp		; rsp <- original rbp
    387 	pop	rbp
    388 	ret
    389 
    390 ; For some reason, the OS X linker does not honor the request to align the
    391 ; segment unless we do this.
    392 	align	16
    393