Home | History | Annotate | Download | only in core
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "SkConvolver.h"
      6 #include "SkSize.h"
      7 #include "SkTypes.h"
      8 
      9 namespace {
     10 
     11     // Converts the argument to an 8-bit unsigned value by clamping to the range
     12     // 0-255.
     13     inline unsigned char ClampTo8(int a) {
     14         if (static_cast<unsigned>(a) < 256) {
     15             return a;  // Avoid the extra check in the common case.
     16         }
     17         if (a < 0) {
     18             return 0;
     19         }
     20         return 255;
     21     }
     22 
     23     // Stores a list of rows in a circular buffer. The usage is you write into it
     24     // by calling AdvanceRow. It will keep track of which row in the buffer it
     25     // should use next, and the total number of rows added.
     26     class CircularRowBuffer {
     27     public:
     28         // The number of pixels in each row is given in |sourceRowPixelWidth|.
     29         // The maximum number of rows needed in the buffer is |maxYFilterSize|
     30         // (we only need to store enough rows for the biggest filter).
     31         //
     32         // We use the |firstInputRow| to compute the coordinates of all of the
     33         // following rows returned by Advance().
     34         CircularRowBuffer(int destRowPixelWidth, int maxYFilterSize,
     35                           int firstInputRow)
     36             : fRowByteWidth(destRowPixelWidth * 4),
     37               fNumRows(maxYFilterSize),
     38               fNextRow(0),
     39               fNextRowCoordinate(firstInputRow) {
     40             fBuffer.reset(fRowByteWidth * maxYFilterSize);
     41             fRowAddresses.reset(fNumRows);
     42         }
     43 
     44         // Moves to the next row in the buffer, returning a pointer to the beginning
     45         // of it.
     46         unsigned char* advanceRow() {
     47             unsigned char* row = &fBuffer[fNextRow * fRowByteWidth];
     48             fNextRowCoordinate++;
     49 
     50             // Set the pointer to the next row to use, wrapping around if necessary.
     51             fNextRow++;
     52             if (fNextRow == fNumRows) {
     53                 fNextRow = 0;
     54             }
     55             return row;
     56         }
     57 
     58         // Returns a pointer to an "unrolled" array of rows. These rows will start
     59         // at the y coordinate placed into |*firstRowIndex| and will continue in
     60         // order for the maximum number of rows in this circular buffer.
     61         //
     62         // The |firstRowIndex_| may be negative. This means the circular buffer
     63         // starts before the top of the image (it hasn't been filled yet).
     64         unsigned char* const* GetRowAddresses(int* firstRowIndex) {
     65             // Example for a 4-element circular buffer holding coords 6-9.
     66             //   Row 0   Coord 8
     67             //   Row 1   Coord 9
     68             //   Row 2   Coord 6  <- fNextRow = 2, fNextRowCoordinate = 10.
     69             //   Row 3   Coord 7
     70             //
     71             // The "next" row is also the first (lowest) coordinate. This computation
     72             // may yield a negative value, but that's OK, the math will work out
     73             // since the user of this buffer will compute the offset relative
     74             // to the firstRowIndex and the negative rows will never be used.
     75             *firstRowIndex = fNextRowCoordinate - fNumRows;
     76 
     77             int curRow = fNextRow;
     78             for (int i = 0; i < fNumRows; i++) {
     79                 fRowAddresses[i] = &fBuffer[curRow * fRowByteWidth];
     80 
     81                 // Advance to the next row, wrapping if necessary.
     82                 curRow++;
     83                 if (curRow == fNumRows) {
     84                     curRow = 0;
     85                 }
     86             }
     87             return &fRowAddresses[0];
     88         }
     89 
     90     private:
     91         // The buffer storing the rows. They are packed, each one fRowByteWidth.
     92         SkTArray<unsigned char> fBuffer;
     93 
     94         // Number of bytes per row in the |buffer|.
     95         int fRowByteWidth;
     96 
     97         // The number of rows available in the buffer.
     98         int fNumRows;
     99 
    100         // The next row index we should write into. This wraps around as the
    101         // circular buffer is used.
    102         int fNextRow;
    103 
    104         // The y coordinate of the |fNextRow|. This is incremented each time a
    105         // new row is appended and does not wrap.
    106         int fNextRowCoordinate;
    107 
    108         // Buffer used by GetRowAddresses().
    109         SkTArray<unsigned char*> fRowAddresses;
    110     };
    111 
    112 // Convolves horizontally along a single row. The row data is given in
    113 // |srcData| and continues for the numValues() of the filter.
    114 template<bool hasAlpha>
    115     void ConvolveHorizontally(const unsigned char* srcData,
    116                               const SkConvolutionFilter1D& filter,
    117                               unsigned char* outRow) {
    118         // Loop over each pixel on this row in the output image.
    119         int numValues = filter.numValues();
    120         for (int outX = 0; outX < numValues; outX++) {
    121             // Get the filter that determines the current output pixel.
    122             int filterOffset, filterLength;
    123             const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
    124                 filter.FilterForValue(outX, &filterOffset, &filterLength);
    125 
    126             // Compute the first pixel in this row that the filter affects. It will
    127             // touch |filterLength| pixels (4 bytes each) after this.
    128             const unsigned char* rowToFilter = &srcData[filterOffset * 4];
    129 
    130             // Apply the filter to the row to get the destination pixel in |accum|.
    131             int accum[4] = {0};
    132             for (int filterX = 0; filterX < filterLength; filterX++) {
    133                 SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
    134                 accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
    135                 accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
    136                 accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
    137                 if (hasAlpha) {
    138                     accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
    139                 }
    140             }
    141 
    142             // Bring this value back in range. All of the filter scaling factors
    143             // are in fixed point with kShiftBits bits of fractional part.
    144             accum[0] >>= SkConvolutionFilter1D::kShiftBits;
    145             accum[1] >>= SkConvolutionFilter1D::kShiftBits;
    146             accum[2] >>= SkConvolutionFilter1D::kShiftBits;
    147             if (hasAlpha) {
    148                 accum[3] >>= SkConvolutionFilter1D::kShiftBits;
    149             }
    150 
    151             // Store the new pixel.
    152             outRow[outX * 4 + 0] = ClampTo8(accum[0]);
    153             outRow[outX * 4 + 1] = ClampTo8(accum[1]);
    154             outRow[outX * 4 + 2] = ClampTo8(accum[2]);
    155             if (hasAlpha) {
    156                 outRow[outX * 4 + 3] = ClampTo8(accum[3]);
    157             }
    158         }
    159     }
    160 
    161     // There's a bug somewhere here with GCC autovectorization (-ftree-vectorize).  We originally
    162     // thought this was 32 bit only, but subsequent tests show that some 64 bit gcc compiles
    163     // suffer here too.
    164     //
    165     // Dropping to -O2 disables -ftree-vectorize.  GCC 4.6 needs noinline.  http://skbug.com/2575
    166     #if SK_HAS_ATTRIBUTE(optimize) && defined(SK_RELEASE)
    167         #define SK_MAYBE_DISABLE_VECTORIZATION __attribute__((optimize("O2"), noinline))
    168     #else
    169         #define SK_MAYBE_DISABLE_VECTORIZATION
    170     #endif
    171 
    172     SK_MAYBE_DISABLE_VECTORIZATION
    173     static void ConvolveHorizontallyAlpha(const unsigned char* srcData,
    174                                           const SkConvolutionFilter1D& filter,
    175                                           unsigned char* outRow) {
    176         return ConvolveHorizontally<true>(srcData, filter, outRow);
    177     }
    178 
    179     SK_MAYBE_DISABLE_VECTORIZATION
    180     static void ConvolveHorizontallyNoAlpha(const unsigned char* srcData,
    181                                             const SkConvolutionFilter1D& filter,
    182                                             unsigned char* outRow) {
    183         return ConvolveHorizontally<false>(srcData, filter, outRow);
    184     }
    185 
    186     #undef SK_MAYBE_DISABLE_VECTORIZATION
    187 
    188 
    189 // Does vertical convolution to produce one output row. The filter values and
    190 // length are given in the first two parameters. These are applied to each
    191 // of the rows pointed to in the |sourceDataRows| array, with each row
    192 // being |pixelWidth| wide.
    193 //
    194 // The output must have room for |pixelWidth * 4| bytes.
    195 template<bool hasAlpha>
    196     void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
    197                             int filterLength,
    198                             unsigned char* const* sourceDataRows,
    199                             int pixelWidth,
    200                             unsigned char* outRow) {
    201         // We go through each column in the output and do a vertical convolution,
    202         // generating one output pixel each time.
    203         for (int outX = 0; outX < pixelWidth; outX++) {
    204             // Compute the number of bytes over in each row that the current column
    205             // we're convolving starts at. The pixel will cover the next 4 bytes.
    206             int byteOffset = outX * 4;
    207 
    208             // Apply the filter to one column of pixels.
    209             int accum[4] = {0};
    210             for (int filterY = 0; filterY < filterLength; filterY++) {
    211                 SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
    212                 accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
    213                 accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
    214                 accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
    215                 if (hasAlpha) {
    216                     accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
    217                 }
    218             }
    219 
    220             // Bring this value back in range. All of the filter scaling factors
    221             // are in fixed point with kShiftBits bits of precision.
    222             accum[0] >>= SkConvolutionFilter1D::kShiftBits;
    223             accum[1] >>= SkConvolutionFilter1D::kShiftBits;
    224             accum[2] >>= SkConvolutionFilter1D::kShiftBits;
    225             if (hasAlpha) {
    226                 accum[3] >>= SkConvolutionFilter1D::kShiftBits;
    227             }
    228 
    229             // Store the new pixel.
    230             outRow[byteOffset + 0] = ClampTo8(accum[0]);
    231             outRow[byteOffset + 1] = ClampTo8(accum[1]);
    232             outRow[byteOffset + 2] = ClampTo8(accum[2]);
    233             if (hasAlpha) {
    234                 unsigned char alpha = ClampTo8(accum[3]);
    235 
    236                 // Make sure the alpha channel doesn't come out smaller than any of the
    237                 // color channels. We use premultipled alpha channels, so this should
    238                 // never happen, but rounding errors will cause this from time to time.
    239                 // These "impossible" colors will cause overflows (and hence random pixel
    240                 // values) when the resulting bitmap is drawn to the screen.
    241                 //
    242                 // We only need to do this when generating the final output row (here).
    243                 int maxColorChannel = SkTMax(outRow[byteOffset + 0],
    244                                                SkTMax(outRow[byteOffset + 1],
    245                                                       outRow[byteOffset + 2]));
    246                 if (alpha < maxColorChannel) {
    247                     outRow[byteOffset + 3] = maxColorChannel;
    248                 } else {
    249                     outRow[byteOffset + 3] = alpha;
    250                 }
    251             } else {
    252                 // No alpha channel, the image is opaque.
    253                 outRow[byteOffset + 3] = 0xff;
    254             }
    255         }
    256     }
    257 
    258     void ConvolveVertically(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
    259                             int filterLength,
    260                             unsigned char* const* sourceDataRows,
    261                             int pixelWidth,
    262                             unsigned char* outRow,
    263                             bool sourceHasAlpha) {
    264         if (sourceHasAlpha) {
    265             ConvolveVertically<true>(filterValues, filterLength,
    266                                      sourceDataRows, pixelWidth,
    267                                      outRow);
    268         } else {
    269             ConvolveVertically<false>(filterValues, filterLength,
    270                                       sourceDataRows, pixelWidth,
    271                                       outRow);
    272         }
    273     }
    274 
    275 }  // namespace
    276 
    277 // SkConvolutionFilter1D ---------------------------------------------------------
    278 
    279 SkConvolutionFilter1D::SkConvolutionFilter1D()
    280 : fMaxFilter(0) {
    281 }
    282 
    283 SkConvolutionFilter1D::~SkConvolutionFilter1D() {
    284 }
    285 
    286 void SkConvolutionFilter1D::AddFilter(int filterOffset,
    287                                       const float* filterValues,
    288                                       int filterLength) {
    289     SkASSERT(filterLength > 0);
    290 
    291     SkTArray<ConvolutionFixed> fixedValues;
    292     fixedValues.reset(filterLength);
    293 
    294     for (int i = 0; i < filterLength; ++i) {
    295         fixedValues.push_back(FloatToFixed(filterValues[i]));
    296     }
    297 
    298     AddFilter(filterOffset, &fixedValues[0], filterLength);
    299 }
    300 
    301 void SkConvolutionFilter1D::AddFilter(int filterOffset,
    302                                       const ConvolutionFixed* filterValues,
    303                                       int filterLength) {
    304     // It is common for leading/trailing filter values to be zeros. In such
    305     // cases it is beneficial to only store the central factors.
    306     // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on
    307     // a 1080p image this optimization gives a ~10% speed improvement.
    308     int filterSize = filterLength;
    309     int firstNonZero = 0;
    310     while (firstNonZero < filterLength && filterValues[firstNonZero] == 0) {
    311         firstNonZero++;
    312     }
    313 
    314     if (firstNonZero < filterLength) {
    315         // Here we have at least one non-zero factor.
    316         int lastNonZero = filterLength - 1;
    317         while (lastNonZero >= 0 && filterValues[lastNonZero] == 0) {
    318             lastNonZero--;
    319         }
    320 
    321         filterOffset += firstNonZero;
    322         filterLength = lastNonZero + 1 - firstNonZero;
    323         SkASSERT(filterLength > 0);
    324 
    325         for (int i = firstNonZero; i <= lastNonZero; i++) {
    326             fFilterValues.push_back(filterValues[i]);
    327         }
    328     } else {
    329         // Here all the factors were zeroes.
    330         filterLength = 0;
    331     }
    332 
    333     FilterInstance instance;
    334 
    335     // We pushed filterLength elements onto fFilterValues
    336     instance.fDataLocation = (static_cast<int>(fFilterValues.count()) -
    337                                                filterLength);
    338     instance.fOffset = filterOffset;
    339     instance.fTrimmedLength = filterLength;
    340     instance.fLength = filterSize;
    341     fFilters.push_back(instance);
    342 
    343     fMaxFilter = SkTMax(fMaxFilter, filterLength);
    344 }
    345 
    346 const SkConvolutionFilter1D::ConvolutionFixed* SkConvolutionFilter1D::GetSingleFilter(
    347                                         int* specifiedFilterlength,
    348                                         int* filterOffset,
    349                                         int* filterLength) const {
    350     const FilterInstance& filter = fFilters[0];
    351     *filterOffset = filter.fOffset;
    352     *filterLength = filter.fTrimmedLength;
    353     *specifiedFilterlength = filter.fLength;
    354     if (filter.fTrimmedLength == 0) {
    355         return NULL;
    356     }
    357 
    358     return &fFilterValues[filter.fDataLocation];
    359 }
    360 
    361 void BGRAConvolve2D(const unsigned char* sourceData,
    362                     int sourceByteRowStride,
    363                     bool sourceHasAlpha,
    364                     const SkConvolutionFilter1D& filterX,
    365                     const SkConvolutionFilter1D& filterY,
    366                     int outputByteRowStride,
    367                     unsigned char* output,
    368                     const SkConvolutionProcs& convolveProcs,
    369                     bool useSimdIfPossible) {
    370 
    371     int maxYFilterSize = filterY.maxFilter();
    372 
    373     // The next row in the input that we will generate a horizontally
    374     // convolved row for. If the filter doesn't start at the beginning of the
    375     // image (this is the case when we are only resizing a subset), then we
    376     // don't want to generate any output rows before that. Compute the starting
    377     // row for convolution as the first pixel for the first vertical filter.
    378     int filterOffset, filterLength;
    379     const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
    380         filterY.FilterForValue(0, &filterOffset, &filterLength);
    381     int nextXRow = filterOffset;
    382 
    383     // We loop over each row in the input doing a horizontal convolution. This
    384     // will result in a horizontally convolved image. We write the results into
    385     // a circular buffer of convolved rows and do vertical convolution as rows
    386     // are available. This prevents us from having to store the entire
    387     // intermediate image and helps cache coherency.
    388     // We will need four extra rows to allow horizontal convolution could be done
    389     // simultaneously. We also pad each row in row buffer to be aligned-up to
    390     // 16 bytes.
    391     // TODO(jiesun): We do not use aligned load from row buffer in vertical
    392     // convolution pass yet. Somehow Windows does not like it.
    393     int rowBufferWidth = (filterX.numValues() + 15) & ~0xF;
    394     int rowBufferHeight = maxYFilterSize +
    395                           (convolveProcs.fConvolve4RowsHorizontally ? 4 : 0);
    396     CircularRowBuffer rowBuffer(rowBufferWidth,
    397                                 rowBufferHeight,
    398                                 filterOffset);
    399 
    400     // Loop over every possible output row, processing just enough horizontal
    401     // convolutions to run each subsequent vertical convolution.
    402     SkASSERT(outputByteRowStride >= filterX.numValues() * 4);
    403     int numOutputRows = filterY.numValues();
    404 
    405     // We need to check which is the last line to convolve before we advance 4
    406     // lines in one iteration.
    407     int lastFilterOffset, lastFilterLength;
    408 
    409     // SSE2 can access up to 3 extra pixels past the end of the
    410     // buffer. At the bottom of the image, we have to be careful
    411     // not to access data past the end of the buffer. Normally
    412     // we fall back to the C++ implementation for the last row.
    413     // If the last row is less than 3 pixels wide, we may have to fall
    414     // back to the C++ version for more rows. Compute how many
    415     // rows we need to avoid the SSE implementation for here.
    416     filterX.FilterForValue(filterX.numValues() - 1, &lastFilterOffset,
    417                            &lastFilterLength);
    418     int avoidSimdRows = 1 + convolveProcs.fExtraHorizontalReads /
    419         (lastFilterOffset + lastFilterLength);
    420 
    421     filterY.FilterForValue(numOutputRows - 1, &lastFilterOffset,
    422                            &lastFilterLength);
    423 
    424     for (int outY = 0; outY < numOutputRows; outY++) {
    425         filterValues = filterY.FilterForValue(outY,
    426                                               &filterOffset, &filterLength);
    427 
    428         // Generate output rows until we have enough to run the current filter.
    429         while (nextXRow < filterOffset + filterLength) {
    430             if (convolveProcs.fConvolve4RowsHorizontally &&
    431                 nextXRow + 3 < lastFilterOffset + lastFilterLength -
    432                 avoidSimdRows) {
    433                 const unsigned char* src[4];
    434                 unsigned char* outRow[4];
    435                 for (int i = 0; i < 4; ++i) {
    436                     src[i] = &sourceData[(uint64_t)(nextXRow + i) * sourceByteRowStride];
    437                     outRow[i] = rowBuffer.advanceRow();
    438                 }
    439                 convolveProcs.fConvolve4RowsHorizontally(src, filterX, outRow);
    440                 nextXRow += 4;
    441             } else {
    442                 // Check if we need to avoid SSE2 for this row.
    443                 if (convolveProcs.fConvolveHorizontally &&
    444                     nextXRow < lastFilterOffset + lastFilterLength -
    445                     avoidSimdRows) {
    446                     convolveProcs.fConvolveHorizontally(
    447                         &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
    448                         filterX, rowBuffer.advanceRow(), sourceHasAlpha);
    449                 } else {
    450                     if (sourceHasAlpha) {
    451                         ConvolveHorizontallyAlpha(
    452                             &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
    453                             filterX, rowBuffer.advanceRow());
    454                     } else {
    455                         ConvolveHorizontallyNoAlpha(
    456                             &sourceData[(uint64_t)nextXRow * sourceByteRowStride],
    457                             filterX, rowBuffer.advanceRow());
    458                     }
    459                 }
    460                 nextXRow++;
    461             }
    462         }
    463 
    464         // Compute where in the output image this row of final data will go.
    465         unsigned char* curOutputRow = &output[(uint64_t)outY * outputByteRowStride];
    466 
    467         // Get the list of rows that the circular buffer has, in order.
    468         int firstRowInCircularBuffer;
    469         unsigned char* const* rowsToConvolve =
    470             rowBuffer.GetRowAddresses(&firstRowInCircularBuffer);
    471 
    472         // Now compute the start of the subset of those rows that the filter
    473         // needs.
    474         unsigned char* const* firstRowForFilter =
    475             &rowsToConvolve[filterOffset - firstRowInCircularBuffer];
    476 
    477         if (convolveProcs.fConvolveVertically) {
    478             convolveProcs.fConvolveVertically(filterValues, filterLength,
    479                                                firstRowForFilter,
    480                                                filterX.numValues(), curOutputRow,
    481                                                sourceHasAlpha);
    482         } else {
    483             ConvolveVertically(filterValues, filterLength,
    484                                firstRowForFilter,
    485                                filterX.numValues(), curOutputRow,
    486                                sourceHasAlpha);
    487         }
    488     }
    489 }
    490