Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  *
      7  * The following code is based on the description in RFC 1321.
      8  * http://www.ietf.org/rfc/rfc1321.txt
      9  */
     10 
     11 #include "SkTypes.h"
     12 #include "SkMD5.h"
     13 #include <string.h>
     14 
     15 /** MD5 basic transformation. Transforms state based on block. */
     16 static void transform(uint32_t state[4], const uint8_t block[64]);
     17 
     18 /** Encodes input into output (4 little endian 32 bit values). */
     19 static void encode(uint8_t output[16], const uint32_t input[4]);
     20 
     21 /** Encodes input into output (little endian 64 bit value). */
     22 static void encode(uint8_t output[8], const uint64_t input);
     23 
     24 /** Decodes input (4 little endian 32 bit values) into storage, if required. */
     25 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]);
     26 
     27 SkMD5::SkMD5() : byteCount(0) {
     28     // These are magic numbers from the specification.
     29     this->state[0] = 0x67452301;
     30     this->state[1] = 0xefcdab89;
     31     this->state[2] = 0x98badcfe;
     32     this->state[3] = 0x10325476;
     33 }
     34 
     35 void SkMD5::update(const uint8_t* input, size_t inputLength) {
     36     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
     37     unsigned int bufferAvailable = 64 - bufferIndex;
     38 
     39     unsigned int inputIndex;
     40     if (inputLength >= bufferAvailable) {
     41         if (bufferIndex) {
     42             memcpy(&this->buffer[bufferIndex], input, bufferAvailable);
     43             transform(this->state, this->buffer);
     44             inputIndex = bufferAvailable;
     45         } else {
     46             inputIndex = 0;
     47         }
     48 
     49         for (; inputIndex + 63 < inputLength; inputIndex += 64) {
     50             transform(this->state, &input[inputIndex]);
     51         }
     52 
     53         bufferIndex = 0;
     54     } else {
     55         inputIndex = 0;
     56     }
     57 
     58     memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex);
     59 
     60     this->byteCount += inputLength;
     61 }
     62 
     63 void SkMD5::finish(Digest& digest) {
     64     // Get the number of bits before padding.
     65     uint8_t bits[8];
     66     encode(bits, this->byteCount << 3);
     67 
     68     // Pad out to 56 mod 64.
     69     unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F);
     70     unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex);
     71     static uint8_t PADDING[64] = {
     72         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     73            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     74            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     75            0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
     76     };
     77     this->update(PADDING, paddingLength);
     78 
     79     // Append length (length before padding, will cause final update).
     80     this->update(bits, 8);
     81 
     82     // Write out digest.
     83     encode(digest.data, this->state);
     84 
     85 #if defined(SK_MD5_CLEAR_DATA)
     86     // Clear state.
     87     memset(this, 0, sizeof(*this));
     88 #endif
     89 }
     90 
     91 struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
     92     //return (x & y) | ((~x) & z);
     93     return ((y ^ z) & x) ^ z; //equivelent but faster
     94 }};
     95 
     96 struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
     97     return (x & z) | (y & (~z));
     98     //return ((x ^ y) & z) ^ y; //equivelent but slower
     99 }};
    100 
    101 struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    102     return x ^ y ^ z;
    103 }};
    104 
    105 struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) {
    106     return y ^ (x | (~z));
    107 }};
    108 
    109 /** Rotates x left n bits. */
    110 static inline uint32_t rotate_left(uint32_t x, uint8_t n) {
    111     return (x << n) | (x >> (32 - n));
    112 }
    113 
    114 template <typename T>
    115 static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d,
    116                              uint32_t x, uint8_t s, uint32_t t) {
    117     a = b + rotate_left(a + operation(b, c, d) + x + t, s);
    118 }
    119 
    120 static void transform(uint32_t state[4], const uint8_t block[64]) {
    121     uint32_t a = state[0], b = state[1], c = state[2], d = state[3];
    122 
    123     uint32_t storage[16];
    124     const uint32_t* X = decode(storage, block);
    125 
    126     // Round 1
    127     operation(F(), a, b, c, d, X[ 0],  7, 0xd76aa478); // 1
    128     operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2
    129     operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3
    130     operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4
    131     operation(F(), a, b, c, d, X[ 4],  7, 0xf57c0faf); // 5
    132     operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6
    133     operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7
    134     operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8
    135     operation(F(), a, b, c, d, X[ 8],  7, 0x698098d8); // 9
    136     operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10
    137     operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11
    138     operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12
    139     operation(F(), a, b, c, d, X[12],  7, 0x6b901122); // 13
    140     operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14
    141     operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15
    142     operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16
    143 
    144     // Round 2
    145     operation(G(), a, b, c, d, X[ 1],  5, 0xf61e2562); // 17
    146     operation(G(), d, a, b, c, X[ 6],  9, 0xc040b340); // 18
    147     operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19
    148     operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20
    149     operation(G(), a, b, c, d, X[ 5],  5, 0xd62f105d); // 21
    150     operation(G(), d, a, b, c, X[10],  9,  0x2441453); // 22
    151     operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23
    152     operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24
    153     operation(G(), a, b, c, d, X[ 9],  5, 0x21e1cde6); // 25
    154     operation(G(), d, a, b, c, X[14],  9, 0xc33707d6); // 26
    155     operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27
    156     operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28
    157     operation(G(), a, b, c, d, X[13],  5, 0xa9e3e905); // 29
    158     operation(G(), d, a, b, c, X[ 2],  9, 0xfcefa3f8); // 30
    159     operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31
    160     operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32
    161 
    162     // Round 3
    163     operation(H(), a, b, c, d, X[ 5],  4, 0xfffa3942); // 33
    164     operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34
    165     operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35
    166     operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36
    167     operation(H(), a, b, c, d, X[ 1],  4, 0xa4beea44); // 37
    168     operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38
    169     operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39
    170     operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40
    171     operation(H(), a, b, c, d, X[13],  4, 0x289b7ec6); // 41
    172     operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42
    173     operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43
    174     operation(H(), b, c, d, a, X[ 6], 23,  0x4881d05); // 44
    175     operation(H(), a, b, c, d, X[ 9],  4, 0xd9d4d039); // 45
    176     operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46
    177     operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47
    178     operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48
    179 
    180     // Round 4
    181     operation(I(), a, b, c, d, X[ 0],  6, 0xf4292244); // 49
    182     operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50
    183     operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51
    184     operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52
    185     operation(I(), a, b, c, d, X[12],  6, 0x655b59c3); // 53
    186     operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54
    187     operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55
    188     operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56
    189     operation(I(), a, b, c, d, X[ 8],  6, 0x6fa87e4f); // 57
    190     operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58
    191     operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59
    192     operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60
    193     operation(I(), a, b, c, d, X[ 4],  6, 0xf7537e82); // 61
    194     operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62
    195     operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63
    196     operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64
    197 
    198     state[0] += a;
    199     state[1] += b;
    200     state[2] += c;
    201     state[3] += d;
    202 
    203 #if defined(SK_MD5_CLEAR_DATA)
    204     // Clear sensitive information.
    205     if (X == &storage) {
    206         memset(storage, 0, sizeof(storage));
    207     }
    208 #endif
    209 }
    210 
    211 static void encode(uint8_t output[16], const uint32_t input[4]) {
    212     for (size_t i = 0, j = 0; i < 4; i++, j += 4) {
    213         output[j  ] = (uint8_t) (input[i]        & 0xff);
    214         output[j+1] = (uint8_t)((input[i] >>  8) & 0xff);
    215         output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
    216         output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
    217     }
    218 }
    219 
    220 static void encode(uint8_t output[8], const uint64_t input) {
    221     output[0] = (uint8_t) (input        & 0xff);
    222     output[1] = (uint8_t)((input >>  8) & 0xff);
    223     output[2] = (uint8_t)((input >> 16) & 0xff);
    224     output[3] = (uint8_t)((input >> 24) & 0xff);
    225     output[4] = (uint8_t)((input >> 32) & 0xff);
    226     output[5] = (uint8_t)((input >> 40) & 0xff);
    227     output[6] = (uint8_t)((input >> 48) & 0xff);
    228     output[7] = (uint8_t)((input >> 56) & 0xff);
    229 }
    230 
    231 static inline bool is_aligned(const void *pointer, size_t byte_count) {
    232     return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0;
    233 }
    234 
    235 static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) {
    236 #if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS)
    237    return reinterpret_cast<const uint32_t*>(input);
    238 #else
    239 #if defined(SK_CPU_LENDIAN)
    240     if (is_aligned(input, 4)) {
    241         return reinterpret_cast<const uint32_t*>(input);
    242     }
    243 #endif
    244     for (size_t i = 0, j = 0; j < 64; i++, j += 4) {
    245         storage[i] =  ((uint32_t)input[j  ])        |
    246                      (((uint32_t)input[j+1]) <<  8) |
    247                      (((uint32_t)input[j+2]) << 16) |
    248                      (((uint32_t)input[j+3]) << 24);
    249     }
    250     return storage;
    251 #endif
    252 }
    253