Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkMath.h"
      9 #include "SkMatrix.h"
     10 #include "SkMatrixUtils.h"
     11 #include "SkRandom.h"
     12 #include "Test.h"
     13 
     14 static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
     15     const SkScalar tolerance = SK_Scalar1 / 200000;
     16     return SkScalarAbs(a - b) <= tolerance;
     17 }
     18 
     19 static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) {
     20     for (int i = 0; i < 9; i++) {
     21         if (!nearly_equal_scalar(a[i], b[i])) {
     22             SkDebugf("not equal %g %g\n", (float)a[i], (float)b[i]);
     23             return false;
     24         }
     25     }
     26     return true;
     27 }
     28 
     29 static bool are_equal(skiatest::Reporter* reporter,
     30                       const SkMatrix& a,
     31                       const SkMatrix& b) {
     32     bool equal = a == b;
     33     bool cheapEqual = a.cheapEqualTo(b);
     34     if (equal != cheapEqual) {
     35         if (equal) {
     36             bool foundZeroSignDiff = false;
     37             for (int i = 0; i < 9; ++i) {
     38                 float aVal = a.get(i);
     39                 float bVal = b.get(i);
     40                 int aValI = *SkTCast<int*>(&aVal);
     41                 int bValI = *SkTCast<int*>(&bVal);
     42                 if (0 == aVal && 0 == bVal && aValI != bValI) {
     43                     foundZeroSignDiff = true;
     44                 } else {
     45                     REPORTER_ASSERT(reporter, aVal == bVal && aValI == aValI);
     46                 }
     47             }
     48             REPORTER_ASSERT(reporter, foundZeroSignDiff);
     49         } else {
     50             bool foundNaN = false;
     51             for (int i = 0; i < 9; ++i) {
     52                 float aVal = a.get(i);
     53                 float bVal = b.get(i);
     54                 int aValI = *SkTCast<int*>(&aVal);
     55                 int bValI = *SkTCast<int*>(&bVal);
     56                 if (sk_float_isnan(aVal) && aValI == bValI) {
     57                     foundNaN = true;
     58                 } else {
     59                     REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
     60                 }
     61             }
     62             REPORTER_ASSERT(reporter, foundNaN);
     63         }
     64     }
     65     return equal;
     66 }
     67 
     68 static bool is_identity(const SkMatrix& m) {
     69     SkMatrix identity;
     70     identity.reset();
     71     return nearly_equal(m, identity);
     72 }
     73 
     74 static void test_matrix_recttorect(skiatest::Reporter* reporter) {
     75     SkRect src, dst;
     76     SkMatrix matrix;
     77 
     78     src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10);
     79     dst = src;
     80     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
     81     REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType());
     82     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
     83 
     84     dst.offset(SK_Scalar1, SK_Scalar1);
     85     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
     86     REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType());
     87     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
     88 
     89     dst.fRight += SK_Scalar1;
     90     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
     91     REPORTER_ASSERT(reporter,
     92                     (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType());
     93     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
     94 
     95     dst = src;
     96     dst.fRight = src.fRight * 2;
     97     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
     98     REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType());
     99     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
    100 }
    101 
    102 static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) {
    103     // add 100 in case we have a bug, I don't want to kill my stack in the test
    104     static const size_t kBufferSize = SkMatrix::kMaxFlattenSize + 100;
    105     char buffer[kBufferSize];
    106     size_t size1 = m.writeToMemory(NULL);
    107     size_t size2 = m.writeToMemory(buffer);
    108     REPORTER_ASSERT(reporter, size1 == size2);
    109     REPORTER_ASSERT(reporter, size1 <= SkMatrix::kMaxFlattenSize);
    110 
    111     SkMatrix m2;
    112     size_t size3 = m2.readFromMemory(buffer, kBufferSize);
    113     REPORTER_ASSERT(reporter, size1 == size3);
    114     REPORTER_ASSERT(reporter, are_equal(reporter, m, m2));
    115 
    116     char buffer2[kBufferSize];
    117     size3 = m2.writeToMemory(buffer2);
    118     REPORTER_ASSERT(reporter, size1 == size3);
    119     REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
    120 }
    121 
    122 static void test_matrix_min_max_scale(skiatest::Reporter* reporter) {
    123     SkScalar scales[2];
    124     bool success;
    125 
    126     SkMatrix identity;
    127     identity.reset();
    128     REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale());
    129     REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale());
    130     success = identity.getMinMaxScales(scales);
    131     REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
    132 
    133     SkMatrix scale;
    134     scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4);
    135     REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale());
    136     REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale());
    137     success = scale.getMinMaxScales(scales);
    138     REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]);
    139 
    140     SkMatrix rot90Scale;
    141     rot90Scale.setRotate(90 * SK_Scalar1);
    142     rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
    143     REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale());
    144     REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale());
    145     success = rot90Scale.getMinMaxScales(scales);
    146     REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4  == scales[0] && SK_Scalar1 / 2 == scales[1]);
    147 
    148     SkMatrix rotate;
    149     rotate.setRotate(128 * SK_Scalar1);
    150     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero));
    151     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero));
    152     success = rotate.getMinMaxScales(scales);
    153     REPORTER_ASSERT(reporter, success);
    154     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero));
    155     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero));
    156 
    157     SkMatrix translate;
    158     translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1);
    159     REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale());
    160     REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale());
    161     success = translate.getMinMaxScales(scales);
    162     REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
    163 
    164     SkMatrix perspX;
    165     perspX.reset();
    166     perspX.setPerspX(SkScalarToPersp(SK_Scalar1 / 1000));
    167     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale());
    168     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale());
    169     // Verify that getMinMaxScales() doesn't update the scales array on failure.
    170     scales[0] = -5;
    171     scales[1] = -5;
    172     success = perspX.getMinMaxScales(scales);
    173     REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);
    174 
    175     SkMatrix perspY;
    176     perspY.reset();
    177     perspY.setPerspY(SkScalarToPersp(-SK_Scalar1 / 500));
    178     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale());
    179     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale());
    180     scales[0] = -5;
    181     scales[1] = -5;
    182     success = perspY.getMinMaxScales(scales);
    183     REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);
    184 
    185     SkMatrix baseMats[] = {scale, rot90Scale, rotate,
    186                            translate, perspX, perspY};
    187     SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)];
    188     for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) {
    189         mats[i] = baseMats[i];
    190         bool invertable = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]);
    191         REPORTER_ASSERT(reporter, invertable);
    192     }
    193     SkRandom rand;
    194     for (int m = 0; m < 1000; ++m) {
    195         SkMatrix mat;
    196         mat.reset();
    197         for (int i = 0; i < 4; ++i) {
    198             int x = rand.nextU() % SK_ARRAY_COUNT(mats);
    199             mat.postConcat(mats[x]);
    200         }
    201 
    202         SkScalar minScale = mat.getMinScale();
    203         SkScalar maxScale = mat.getMaxScale();
    204         REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0));
    205         REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective());
    206 
    207         SkScalar scales[2];
    208         bool success = mat.getMinMaxScales(scales);
    209         REPORTER_ASSERT(reporter, success == !mat.hasPerspective());
    210         REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale));
    211 
    212         if (mat.hasPerspective()) {
    213             m -= 1; // try another non-persp matrix
    214             continue;
    215         }
    216 
    217         // test a bunch of vectors. All should be scaled by between minScale and maxScale
    218         // (modulo some error) and we should find a vector that is scaled by almost each.
    219         static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100;
    220         static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100;
    221         SkScalar max = 0, min = SK_ScalarMax;
    222         SkVector vectors[1000];
    223         for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
    224             vectors[i].fX = rand.nextSScalar1();
    225             vectors[i].fY = rand.nextSScalar1();
    226             if (!vectors[i].normalize()) {
    227                 i -= 1;
    228                 continue;
    229             }
    230         }
    231         mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors));
    232         for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
    233             SkScalar d = vectors[i].length();
    234             REPORTER_ASSERT(reporter, SkScalarDiv(d, maxScale) < gVectorScaleTol);
    235             REPORTER_ASSERT(reporter, SkScalarDiv(minScale, d) < gVectorScaleTol);
    236             if (max < d) {
    237                 max = d;
    238             }
    239             if (min > d) {
    240                 min = d;
    241             }
    242         }
    243         REPORTER_ASSERT(reporter, SkScalarDiv(max, maxScale) >= gCloseScaleTol);
    244         REPORTER_ASSERT(reporter, SkScalarDiv(minScale, min) >= gCloseScaleTol);
    245     }
    246 }
    247 
    248 static void test_matrix_preserve_shape(skiatest::Reporter* reporter) {
    249     SkMatrix mat;
    250 
    251     // identity
    252     mat.setIdentity();
    253     REPORTER_ASSERT(reporter, mat.isSimilarity());
    254     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    255 
    256     // translation only
    257     mat.reset();
    258     mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    259     REPORTER_ASSERT(reporter, mat.isSimilarity());
    260     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    261 
    262     // scale with same size
    263     mat.reset();
    264     mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    265     REPORTER_ASSERT(reporter, mat.isSimilarity());
    266     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    267 
    268     // scale with one negative
    269     mat.reset();
    270     mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    271     REPORTER_ASSERT(reporter, mat.isSimilarity());
    272     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    273 
    274     // scale with different size
    275     mat.reset();
    276     mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    277     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    278     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    279 
    280     // scale with same size at a pivot point
    281     mat.reset();
    282     mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
    283                  SkIntToScalar(2), SkIntToScalar(2));
    284     REPORTER_ASSERT(reporter, mat.isSimilarity());
    285     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    286 
    287     // scale with different size at a pivot point
    288     mat.reset();
    289     mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
    290                  SkIntToScalar(2), SkIntToScalar(2));
    291     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    292     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    293 
    294     // skew with same size
    295     mat.reset();
    296     mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    297     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    298     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    299 
    300     // skew with different size
    301     mat.reset();
    302     mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    303     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    304     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    305 
    306     // skew with same size at a pivot point
    307     mat.reset();
    308     mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
    309                 SkIntToScalar(2), SkIntToScalar(2));
    310     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    311     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    312 
    313     // skew with different size at a pivot point
    314     mat.reset();
    315     mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
    316                 SkIntToScalar(2), SkIntToScalar(2));
    317     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    318     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    319 
    320     // perspective x
    321     mat.reset();
    322     mat.setPerspX(SkScalarToPersp(SK_Scalar1 / 2));
    323     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    324     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    325 
    326     // perspective y
    327     mat.reset();
    328     mat.setPerspY(SkScalarToPersp(SK_Scalar1 / 2));
    329     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    330     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    331 
    332     // rotate
    333     for (int angle = 0; angle < 360; ++angle) {
    334         mat.reset();
    335         mat.setRotate(SkIntToScalar(angle));
    336         REPORTER_ASSERT(reporter, mat.isSimilarity());
    337         REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    338     }
    339 
    340     // see if there are any accumulated precision issues
    341     mat.reset();
    342     for (int i = 1; i < 360; i++) {
    343         mat.postRotate(SkIntToScalar(1));
    344     }
    345     REPORTER_ASSERT(reporter, mat.isSimilarity());
    346     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    347 
    348     // rotate + translate
    349     mat.reset();
    350     mat.setRotate(SkIntToScalar(30));
    351     mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    352     REPORTER_ASSERT(reporter, mat.isSimilarity());
    353     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    354 
    355     // rotate + uniform scale
    356     mat.reset();
    357     mat.setRotate(SkIntToScalar(30));
    358     mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    359     REPORTER_ASSERT(reporter, mat.isSimilarity());
    360     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    361 
    362     // rotate + non-uniform scale
    363     mat.reset();
    364     mat.setRotate(SkIntToScalar(30));
    365     mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    366     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    367     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    368 
    369     // non-uniform scale + rotate
    370     mat.reset();
    371     mat.setScale(SkIntToScalar(3), SkIntToScalar(2));
    372     mat.postRotate(SkIntToScalar(30));
    373     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    374     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    375 
    376     // all zero
    377     mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    378     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    379     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    380 
    381     // all zero except perspective
    382     mat.reset();
    383     mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    384     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    385     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    386 
    387     // scales zero, only skews (rotation)
    388     mat.setAll(0, SK_Scalar1, 0,
    389                -SK_Scalar1, 0, 0,
    390                0, 0, SkMatrix::I()[8]);
    391     REPORTER_ASSERT(reporter, mat.isSimilarity());
    392     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    393 
    394     // scales zero, only skews (reflection)
    395     mat.setAll(0, SK_Scalar1, 0,
    396                SK_Scalar1, 0, 0,
    397                0, 0, SkMatrix::I()[8]);
    398     REPORTER_ASSERT(reporter, mat.isSimilarity());
    399     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    400 }
    401 
    402 // For test_matrix_decomposition, below.
    403 static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
    404                                          SkScalar tolerance = SK_ScalarNearlyZero) {
    405     // from Bruce Dawson
    406     // absolute check
    407     SkScalar diff = SkScalarAbs(a - b);
    408     if (diff < tolerance) {
    409         return true;
    410     }
    411 
    412     // relative check
    413     a = SkScalarAbs(a);
    414     b = SkScalarAbs(b);
    415     SkScalar largest = (b > a) ? b : a;
    416 
    417     if (diff <= largest*tolerance) {
    418         return true;
    419     }
    420 
    421     return false;
    422 }
    423 
    424 static bool check_matrix_recomposition(const SkMatrix& mat,
    425                                        const SkPoint& rotation1,
    426                                        const SkPoint& scale,
    427                                        const SkPoint& rotation2) {
    428     SkScalar c1 = rotation1.fX;
    429     SkScalar s1 = rotation1.fY;
    430     SkScalar scaleX = scale.fX;
    431     SkScalar scaleY = scale.fY;
    432     SkScalar c2 = rotation2.fX;
    433     SkScalar s2 = rotation2.fY;
    434 
    435     // We do a relative check here because large scale factors cause problems with an absolute check
    436     bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
    437                                                scaleX*c1*c2 - scaleY*s1*s2) &&
    438                   scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
    439                                                -scaleX*s1*c2 - scaleY*c1*s2) &&
    440                   scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
    441                                                scaleX*c1*s2 + scaleY*s1*c2) &&
    442                   scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
    443                                                -scaleX*s1*s2 + scaleY*c1*c2);
    444     return result;
    445 }
    446 
    447 static void test_matrix_decomposition(skiatest::Reporter* reporter) {
    448     SkMatrix mat;
    449     SkPoint rotation1, scale, rotation2;
    450 
    451     const float kRotation0 = 15.5f;
    452     const float kRotation1 = -50.f;
    453     const float kScale0 = 5000.f;
    454     const float kScale1 = 0.001f;
    455 
    456     // identity
    457     mat.reset();
    458     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    459     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    460     // make sure it doesn't crash if we pass in NULLs
    461     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL));
    462 
    463     // rotation only
    464     mat.setRotate(kRotation0);
    465     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    466     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    467 
    468     // uniform scale only
    469     mat.setScale(kScale0, kScale0);
    470     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    471     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    472 
    473     // anisotropic scale only
    474     mat.setScale(kScale1, kScale0);
    475     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    476     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    477 
    478     // rotation then uniform scale
    479     mat.setRotate(kRotation1);
    480     mat.postScale(kScale0, kScale0);
    481     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    482     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    483 
    484     // uniform scale then rotation
    485     mat.setScale(kScale0, kScale0);
    486     mat.postRotate(kRotation1);
    487     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    488     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    489 
    490     // rotation then uniform scale+reflection
    491     mat.setRotate(kRotation0);
    492     mat.postScale(kScale1, -kScale1);
    493     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    494     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    495 
    496     // uniform scale+reflection, then rotate
    497     mat.setScale(kScale0, -kScale0);
    498     mat.postRotate(kRotation1);
    499     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    500     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    501 
    502     // rotation then anisotropic scale
    503     mat.setRotate(kRotation1);
    504     mat.postScale(kScale1, kScale0);
    505     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    506     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    507 
    508     // rotation then anisotropic scale
    509     mat.setRotate(90);
    510     mat.postScale(kScale1, kScale0);
    511     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    512     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    513 
    514     // anisotropic scale then rotation
    515     mat.setScale(kScale1, kScale0);
    516     mat.postRotate(kRotation0);
    517     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    518     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    519 
    520     // anisotropic scale then rotation
    521     mat.setScale(kScale1, kScale0);
    522     mat.postRotate(90);
    523     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    524     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    525 
    526     // rotation, uniform scale, then different rotation
    527     mat.setRotate(kRotation1);
    528     mat.postScale(kScale0, kScale0);
    529     mat.postRotate(kRotation0);
    530     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    531     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    532 
    533     // rotation, anisotropic scale, then different rotation
    534     mat.setRotate(kRotation0);
    535     mat.postScale(kScale1, kScale0);
    536     mat.postRotate(kRotation1);
    537     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    538     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    539 
    540     // rotation, anisotropic scale + reflection, then different rotation
    541     mat.setRotate(kRotation0);
    542     mat.postScale(-kScale1, kScale0);
    543     mat.postRotate(kRotation1);
    544     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    545     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    546 
    547     // try some random matrices
    548     SkRandom rand;
    549     for (int m = 0; m < 1000; ++m) {
    550         SkScalar rot0 = rand.nextRangeF(-180, 180);
    551         SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
    552         SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
    553         SkScalar rot1 = rand.nextRangeF(-180, 180);
    554         mat.setRotate(rot0);
    555         mat.postScale(sx, sy);
    556         mat.postRotate(rot1);
    557 
    558         if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
    559             REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    560         } else {
    561             // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
    562             SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
    563                                mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
    564             REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
    565         }
    566     }
    567 
    568     // translation shouldn't affect this
    569     mat.postTranslate(-1000.f, 1000.f);
    570     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    571     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    572 
    573     // perspective shouldn't affect this
    574     mat[SkMatrix::kMPersp0] = 12.f;
    575     mat[SkMatrix::kMPersp1] = 4.f;
    576     mat[SkMatrix::kMPersp2] = 1872.f;
    577     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    578     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    579 
    580     // degenerate matrices
    581     // mostly zero entries
    582     mat.reset();
    583     mat[SkMatrix::kMScaleX] = 0.f;
    584     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    585     mat.reset();
    586     mat[SkMatrix::kMScaleY] = 0.f;
    587     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    588     mat.reset();
    589     // linearly dependent entries
    590     mat[SkMatrix::kMScaleX] = 1.f;
    591     mat[SkMatrix::kMSkewX] = 2.f;
    592     mat[SkMatrix::kMSkewY] = 4.f;
    593     mat[SkMatrix::kMScaleY] = 8.f;
    594     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    595 }
    596 
    597 // For test_matrix_homogeneous, below.
    598 static bool scalar_array_nearly_equal_relative(const SkScalar a[], const SkScalar b[], int count) {
    599     for (int i = 0; i < count; ++i) {
    600         if (!scalar_nearly_equal_relative(a[i], b[i])) {
    601             return false;
    602         }
    603     }
    604     return true;
    605 }
    606 
    607 // For test_matrix_homogeneous, below.
    608 // Maps a single triple in src using m and compares results to those in dst
    609 static bool naive_homogeneous_mapping(const SkMatrix& m, const SkScalar src[3],
    610                                       const SkScalar dst[3]) {
    611     SkScalar res[3];
    612     SkScalar ms[9] = {m[0], m[1], m[2],
    613                       m[3], m[4], m[5],
    614                       m[6], m[7], m[8]};
    615     res[0] = src[0] * ms[0] + src[1] * ms[1] + src[2] * ms[2];
    616     res[1] = src[0] * ms[3] + src[1] * ms[4] + src[2] * ms[5];
    617     res[2] = src[0] * ms[6] + src[1] * ms[7] + src[2] * ms[8];
    618     return scalar_array_nearly_equal_relative(res, dst, 3);
    619 }
    620 
    621 static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
    622     SkMatrix mat;
    623 
    624     const float kRotation0 = 15.5f;
    625     const float kRotation1 = -50.f;
    626     const float kScale0 = 5000.f;
    627 
    628     const int kTripleCount = 1000;
    629     const int kMatrixCount = 1000;
    630     SkRandom rand;
    631 
    632     SkScalar randTriples[3*kTripleCount];
    633     for (int i = 0; i < 3*kTripleCount; ++i) {
    634         randTriples[i] = rand.nextRangeF(-3000.f, 3000.f);
    635     }
    636 
    637     SkMatrix mats[kMatrixCount];
    638     for (int i = 0; i < kMatrixCount; ++i) {
    639         for (int j = 0; j < 9; ++j) {
    640             mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
    641         }
    642     }
    643 
    644     // identity
    645     {
    646     mat.reset();
    647     SkScalar dst[3*kTripleCount];
    648     mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    649     REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(randTriples, dst, kTripleCount*3));
    650     }
    651 
    652     // zero matrix
    653     {
    654     mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
    655     SkScalar dst[3*kTripleCount];
    656     mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    657     SkScalar zeros[3] = {0.f, 0.f, 0.f};
    658     for (int i = 0; i < kTripleCount; ++i) {
    659         REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(&dst[i*3], zeros, 3));
    660     }
    661     }
    662 
    663     // zero point
    664     {
    665     SkScalar zeros[3] = {0.f, 0.f, 0.f};
    666     for (int i = 0; i < kMatrixCount; ++i) {
    667         SkScalar dst[3];
    668         mats[i].mapHomogeneousPoints(dst, zeros, 1);
    669         REPORTER_ASSERT(reporter, scalar_array_nearly_equal_relative(dst, zeros, 3));
    670     }
    671     }
    672 
    673     // doesn't crash with null dst, src, count == 0
    674     {
    675     mats[0].mapHomogeneousPoints(NULL, NULL, 0);
    676     }
    677 
    678     // uniform scale of point
    679     {
    680     mat.setScale(kScale0, kScale0);
    681     SkScalar dst[3];
    682     SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    683     SkPoint pnt;
    684     pnt.set(src[0], src[1]);
    685     mat.mapHomogeneousPoints(dst, src, 1);
    686     mat.mapPoints(&pnt, &pnt, 1);
    687     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    688     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    689     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    690     }
    691 
    692     // rotation of point
    693     {
    694     mat.setRotate(kRotation0);
    695     SkScalar dst[3];
    696     SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    697     SkPoint pnt;
    698     pnt.set(src[0], src[1]);
    699     mat.mapHomogeneousPoints(dst, src, 1);
    700     mat.mapPoints(&pnt, &pnt, 1);
    701     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    702     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    703     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    704     }
    705 
    706     // rotation, scale, rotation of point
    707     {
    708     mat.setRotate(kRotation1);
    709     mat.postScale(kScale0, kScale0);
    710     mat.postRotate(kRotation0);
    711     SkScalar dst[3];
    712     SkScalar src[3] = {randTriples[0], randTriples[1], 1.f};
    713     SkPoint pnt;
    714     pnt.set(src[0], src[1]);
    715     mat.mapHomogeneousPoints(dst, src, 1);
    716     mat.mapPoints(&pnt, &pnt, 1);
    717     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[0], pnt.fX));
    718     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[1], pnt.fY));
    719     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst[2], SK_Scalar1));
    720     }
    721 
    722     // compare with naive approach
    723     {
    724     for (int i = 0; i < kMatrixCount; ++i) {
    725         for (int j = 0; j < kTripleCount; ++j) {
    726             SkScalar dst[3];
    727             mats[i].mapHomogeneousPoints(dst, &randTriples[j*3], 1);
    728             REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], &randTriples[j*3], dst));
    729         }
    730     }
    731     }
    732 
    733 }
    734 
    735 DEF_TEST(Matrix, reporter) {
    736     SkMatrix    mat, inverse, iden1, iden2;
    737 
    738     mat.reset();
    739     mat.setTranslate(SK_Scalar1, SK_Scalar1);
    740     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    741     iden1.setConcat(mat, inverse);
    742     REPORTER_ASSERT(reporter, is_identity(iden1));
    743 
    744     mat.setScale(SkIntToScalar(2), SkIntToScalar(4));
    745     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    746     iden1.setConcat(mat, inverse);
    747     REPORTER_ASSERT(reporter, is_identity(iden1));
    748     test_flatten(reporter, mat);
    749 
    750     mat.setScale(SK_Scalar1/2, SkIntToScalar(2));
    751     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    752     iden1.setConcat(mat, inverse);
    753     REPORTER_ASSERT(reporter, is_identity(iden1));
    754     test_flatten(reporter, mat);
    755 
    756     mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0);
    757     mat.postRotate(SkIntToScalar(25));
    758     REPORTER_ASSERT(reporter, mat.invert(NULL));
    759     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    760     iden1.setConcat(mat, inverse);
    761     REPORTER_ASSERT(reporter, is_identity(iden1));
    762     iden2.setConcat(inverse, mat);
    763     REPORTER_ASSERT(reporter, is_identity(iden2));
    764     test_flatten(reporter, mat);
    765     test_flatten(reporter, iden2);
    766 
    767     mat.setScale(0, SK_Scalar1);
    768     REPORTER_ASSERT(reporter, !mat.invert(NULL));
    769     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
    770     mat.setScale(SK_Scalar1, 0);
    771     REPORTER_ASSERT(reporter, !mat.invert(NULL));
    772     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
    773 
    774     // rectStaysRect test
    775     {
    776         static const struct {
    777             SkScalar    m00, m01, m10, m11;
    778             bool        mStaysRect;
    779         }
    780         gRectStaysRectSamples[] = {
    781             {          0,          0,          0,           0, false },
    782             {          0,          0,          0,  SK_Scalar1, false },
    783             {          0,          0, SK_Scalar1,           0, false },
    784             {          0,          0, SK_Scalar1,  SK_Scalar1, false },
    785             {          0, SK_Scalar1,          0,           0, false },
    786             {          0, SK_Scalar1,          0,  SK_Scalar1, false },
    787             {          0, SK_Scalar1, SK_Scalar1,           0, true },
    788             {          0, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false },
    789             { SK_Scalar1,          0,          0,           0, false },
    790             { SK_Scalar1,          0,          0,  SK_Scalar1, true },
    791             { SK_Scalar1,          0, SK_Scalar1,           0, false },
    792             { SK_Scalar1,          0, SK_Scalar1,  SK_Scalar1, false },
    793             { SK_Scalar1, SK_Scalar1,          0,           0, false },
    794             { SK_Scalar1, SK_Scalar1,          0,  SK_Scalar1, false },
    795             { SK_Scalar1, SK_Scalar1, SK_Scalar1,           0, false },
    796             { SK_Scalar1, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false }
    797         };
    798 
    799         for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) {
    800             SkMatrix    m;
    801 
    802             m.reset();
    803             m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
    804             m.set(SkMatrix::kMSkewX,  gRectStaysRectSamples[i].m01);
    805             m.set(SkMatrix::kMSkewY,  gRectStaysRectSamples[i].m10);
    806             m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
    807             REPORTER_ASSERT(reporter,
    808                     m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
    809         }
    810     }
    811 
    812     mat.reset();
    813     mat.set(SkMatrix::kMScaleX, SkIntToScalar(1));
    814     mat.set(SkMatrix::kMSkewX,  SkIntToScalar(2));
    815     mat.set(SkMatrix::kMTransX, SkIntToScalar(3));
    816     mat.set(SkMatrix::kMSkewY,  SkIntToScalar(4));
    817     mat.set(SkMatrix::kMScaleY, SkIntToScalar(5));
    818     mat.set(SkMatrix::kMTransY, SkIntToScalar(6));
    819     SkScalar affine[6];
    820     REPORTER_ASSERT(reporter, mat.asAffine(affine));
    821 
    822     #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e)
    823     REPORTER_ASSERT(reporter, affineEqual(ScaleX));
    824     REPORTER_ASSERT(reporter, affineEqual(SkewY));
    825     REPORTER_ASSERT(reporter, affineEqual(SkewX));
    826     REPORTER_ASSERT(reporter, affineEqual(ScaleY));
    827     REPORTER_ASSERT(reporter, affineEqual(TransX));
    828     REPORTER_ASSERT(reporter, affineEqual(TransY));
    829     #undef affineEqual
    830 
    831     mat.set(SkMatrix::kMPersp1, SkScalarToPersp(SK_Scalar1 / 2));
    832     REPORTER_ASSERT(reporter, !mat.asAffine(affine));
    833 
    834     SkMatrix mat2;
    835     mat2.reset();
    836     mat.reset();
    837     SkScalar zero = 0;
    838     mat.set(SkMatrix::kMSkewX, -zero);
    839     REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2));
    840 
    841     mat2.reset();
    842     mat.reset();
    843     mat.set(SkMatrix::kMSkewX, SK_ScalarNaN);
    844     mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN);
    845     REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2));
    846 
    847     test_matrix_min_max_scale(reporter);
    848     test_matrix_preserve_shape(reporter);
    849     test_matrix_recttorect(reporter);
    850     test_matrix_decomposition(reporter);
    851     test_matrix_homogeneous(reporter);
    852 }
    853 
    854 DEF_TEST(Matrix_Concat, r) {
    855     SkMatrix a;
    856     a.setTranslate(10, 20);
    857 
    858     SkMatrix b;
    859     b.setScale(3, 5);
    860 
    861     SkMatrix expected;
    862     expected.setConcat(a,b);
    863 
    864     REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b));
    865 }
    866