Home | History | Annotate | Download | only in src
      1 // Copyright (c) 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Author: Sanjay Ghemawat <opensource (at) google.com>
     32 //
     33 // A malloc that uses a per-thread cache to satisfy small malloc requests.
     34 // (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
     35 //
     36 // See doc/tcmalloc.html for a high-level
     37 // description of how this malloc works.
     38 //
     39 // SYNCHRONIZATION
     40 //  1. The thread-specific lists are accessed without acquiring any locks.
     41 //     This is safe because each such list is only accessed by one thread.
     42 //  2. We have a lock per central free-list, and hold it while manipulating
     43 //     the central free list for a particular size.
     44 //  3. The central page allocator is protected by "pageheap_lock".
     45 //  4. The pagemap (which maps from page-number to descriptor),
     46 //     can be read without holding any locks, and written while holding
     47 //     the "pageheap_lock".
     48 //  5. To improve performance, a subset of the information one can get
     49 //     from the pagemap is cached in a data structure, pagemap_cache_,
     50 //     that atomically reads and writes its entries.  This cache can be
     51 //     read and written without locking.
     52 //
     53 //     This multi-threaded access to the pagemap is safe for fairly
     54 //     subtle reasons.  We basically assume that when an object X is
     55 //     allocated by thread A and deallocated by thread B, there must
     56 //     have been appropriate synchronization in the handoff of object
     57 //     X from thread A to thread B.  The same logic applies to pagemap_cache_.
     58 //
     59 // THE PAGEID-TO-SIZECLASS CACHE
     60 // Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
     61 // returns 0 for a particular PageID then that means "no information," not that
     62 // the sizeclass is 0.  The cache may have stale information for pages that do
     63 // not hold the beginning of any free()'able object.  Staleness is eliminated
     64 // in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
     65 // do_memalign() for all other relevant pages.
     66 //
     67 // PAGEMAP
     68 // -------
     69 // Page map contains a mapping from page id to Span.
     70 //
     71 // If Span s occupies pages [p..q],
     72 //      pagemap[p] == s
     73 //      pagemap[q] == s
     74 //      pagemap[p+1..q-1] are undefined
     75 //      pagemap[p-1] and pagemap[q+1] are defined:
     76 //         NULL if the corresponding page is not yet in the address space.
     77 //         Otherwise it points to a Span.  This span may be free
     78 //         or allocated.  If free, it is in one of pageheap's freelist.
     79 //
     80 // TODO: Bias reclamation to larger addresses
     81 // TODO: implement mallinfo/mallopt
     82 // TODO: Better testing
     83 //
     84 // 9/28/2003 (new page-level allocator replaces ptmalloc2):
     85 // * malloc/free of small objects goes from ~300 ns to ~50 ns.
     86 // * allocation of a reasonably complicated struct
     87 //   goes from about 1100 ns to about 300 ns.
     88 
     89 #include "config.h"
     90 #include <gperftools/tcmalloc.h>
     91 
     92 #include <errno.h>                      // for ENOMEM, EINVAL, errno
     93 #ifdef HAVE_SYS_CDEFS_H
     94 #include <sys/cdefs.h>                  // for __THROW
     95 #endif
     96 #if defined HAVE_STDINT_H
     97 #include <stdint.h>
     98 #elif defined HAVE_INTTYPES_H
     99 #include <inttypes.h>
    100 #else
    101 #include <sys/types.h>
    102 #endif
    103 #include <stddef.h>                     // for size_t, NULL
    104 #include <stdlib.h>                     // for getenv
    105 #include <string.h>                     // for strcmp, memset, strlen, etc
    106 #ifdef HAVE_UNISTD_H
    107 #include <unistd.h>                     // for getpagesize, write, etc
    108 #endif
    109 #include <algorithm>                    // for max, min
    110 #include <limits>                       // for numeric_limits
    111 #include <new>                          // for nothrow_t (ptr only), etc
    112 #include <vector>                       // for vector
    113 
    114 #include <gperftools/malloc_extension.h>
    115 #include <gperftools/malloc_hook.h>         // for MallocHook
    116 #include "base/basictypes.h"            // for int64
    117 #include "base/commandlineflags.h"      // for RegisterFlagValidator, etc
    118 #include "base/dynamic_annotations.h"   // for RunningOnValgrind
    119 #include "base/spinlock.h"              // for SpinLockHolder
    120 #include "central_freelist.h"  // for CentralFreeListPadded
    121 #include "common.h"            // for StackTrace, kPageShift, etc
    122 #include "free_list.h"         // for FL_Init
    123 #include "internal_logging.h"  // for ASSERT, TCMalloc_Printer, etc
    124 #include "malloc_hook-inl.h"       // for MallocHook::InvokeNewHook, etc
    125 #include "page_heap.h"         // for PageHeap, PageHeap::Stats
    126 #include "page_heap_allocator.h"  // for PageHeapAllocator
    127 #include "span.h"              // for Span, DLL_Prepend, etc
    128 #include "stack_trace_table.h"  // for StackTraceTable
    129 #include "static_vars.h"       // for Static
    130 #include "system-alloc.h"      // for DumpSystemAllocatorStats, etc
    131 #include "tcmalloc_guard.h"    // for TCMallocGuard
    132 #include "thread_cache.h"      // for ThreadCache
    133 
    134 #if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
    135 # define WIN32_DO_PATCHING 1
    136 #endif
    137 
    138 // Some windows file somewhere (at least on cygwin) #define's small (!)
    139 // For instance, <windows.h> appears to have "#define small char".
    140 #undef small
    141 
    142 using STL_NAMESPACE::max;
    143 using STL_NAMESPACE::min;
    144 using STL_NAMESPACE::numeric_limits;
    145 using STL_NAMESPACE::vector;
    146 
    147 #include "libc_override.h"
    148 
    149 // __THROW is defined in glibc (via <sys/cdefs.h>).  It means,
    150 // counter-intuitively, "This function will never throw an exception."
    151 // It's an optional optimization tool, but we may need to use it to
    152 // match glibc prototypes.
    153 #ifndef __THROW    // I guess we're not on a glibc system
    154 # define __THROW   // __THROW is just an optimization, so ok to make it ""
    155 #endif
    156 
    157 using tcmalloc::AlignmentForSize;
    158 using tcmalloc::kLog;
    159 using tcmalloc::kCrash;
    160 using tcmalloc::kCrashWithStats;
    161 using tcmalloc::Log;
    162 using tcmalloc::PageHeap;
    163 using tcmalloc::PageHeapAllocator;
    164 using tcmalloc::SizeMap;
    165 using tcmalloc::Span;
    166 using tcmalloc::StackTrace;
    167 using tcmalloc::Static;
    168 using tcmalloc::ThreadCache;
    169 
    170 // ---- Functions doing validation with an extra mark.
    171 static size_t ExcludeSpaceForMark(size_t size);
    172 static void AddRoomForMark(size_t* size);
    173 static void ExcludeMarkFromSize(size_t* new_size);
    174 static void MarkAllocatedRegion(void* ptr);
    175 static void ValidateAllocatedRegion(void* ptr, size_t cl);
    176 // ---- End validation functions.
    177 
    178 DECLARE_int64(tcmalloc_sample_parameter);
    179 DECLARE_double(tcmalloc_release_rate);
    180 
    181 // For windows, the printf we use to report large allocs is
    182 // potentially dangerous: it could cause a malloc that would cause an
    183 // infinite loop.  So by default we set the threshold to a huge number
    184 // on windows, so this bad situation will never trigger.  You can
    185 // always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
    186 // want this functionality.
    187 #ifdef _WIN32
    188 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
    189 #else
    190 const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
    191 #endif
    192 DEFINE_int64(tcmalloc_large_alloc_report_threshold,
    193              EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
    194                         kDefaultLargeAllocReportThreshold),
    195              "Allocations larger than this value cause a stack "
    196              "trace to be dumped to stderr.  The threshold for "
    197              "dumping stack traces is increased by a factor of 1.125 "
    198              "every time we print a message so that the threshold "
    199              "automatically goes up by a factor of ~1000 every 60 "
    200              "messages.  This bounds the amount of extra logging "
    201              "generated by this flag.  Default value of this flag "
    202              "is very large and therefore you should see no extra "
    203              "logging unless the flag is overridden.  Set to 0 to "
    204              "disable reporting entirely.");
    205 
    206 
    207 // We already declared these functions in tcmalloc.h, but we have to
    208 // declare them again to give them an ATTRIBUTE_SECTION: we want to
    209 // put all callers of MallocHook::Invoke* in this module into
    210 // ATTRIBUTE_SECTION(google_malloc) section, so that
    211 // MallocHook::GetCallerStackTrace can function accurately.
    212 extern "C" {
    213   void* tc_malloc(size_t size) __THROW
    214       ATTRIBUTE_SECTION(google_malloc);
    215   void tc_free(void* ptr) __THROW
    216       ATTRIBUTE_SECTION(google_malloc);
    217   void* tc_realloc(void* ptr, size_t size) __THROW
    218       ATTRIBUTE_SECTION(google_malloc);
    219   void* tc_calloc(size_t nmemb, size_t size) __THROW
    220       ATTRIBUTE_SECTION(google_malloc);
    221   void tc_cfree(void* ptr) __THROW
    222       ATTRIBUTE_SECTION(google_malloc);
    223 
    224   void* tc_memalign(size_t __alignment, size_t __size) __THROW
    225       ATTRIBUTE_SECTION(google_malloc);
    226   int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
    227       ATTRIBUTE_SECTION(google_malloc);
    228   void* tc_valloc(size_t __size) __THROW
    229       ATTRIBUTE_SECTION(google_malloc);
    230   void* tc_pvalloc(size_t __size) __THROW
    231       ATTRIBUTE_SECTION(google_malloc);
    232 
    233   void tc_malloc_stats(void) __THROW
    234       ATTRIBUTE_SECTION(google_malloc);
    235   int tc_mallopt(int cmd, int value) __THROW
    236       ATTRIBUTE_SECTION(google_malloc);
    237 #ifdef HAVE_STRUCT_MALLINFO
    238   struct mallinfo tc_mallinfo(void) __THROW
    239       ATTRIBUTE_SECTION(google_malloc);
    240 #endif
    241 
    242   void* tc_new(size_t size)
    243       ATTRIBUTE_SECTION(google_malloc);
    244   void tc_delete(void* p) __THROW
    245       ATTRIBUTE_SECTION(google_malloc);
    246   void* tc_newarray(size_t size)
    247       ATTRIBUTE_SECTION(google_malloc);
    248   void tc_deletearray(void* p) __THROW
    249       ATTRIBUTE_SECTION(google_malloc);
    250 
    251   // And the nothrow variants of these:
    252   void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
    253       ATTRIBUTE_SECTION(google_malloc);
    254   void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
    255       ATTRIBUTE_SECTION(google_malloc);
    256   // Surprisingly, standard C++ library implementations use a
    257   // nothrow-delete internally.  See, eg:
    258   // http://www.dinkumware.com/manuals/?manual=compleat&page=new.html
    259   void tc_delete_nothrow(void* ptr, const std::nothrow_t&) __THROW
    260       ATTRIBUTE_SECTION(google_malloc);
    261   void tc_deletearray_nothrow(void* ptr, const std::nothrow_t&) __THROW
    262       ATTRIBUTE_SECTION(google_malloc);
    263 
    264   // Some non-standard extensions that we support.
    265 
    266   // This is equivalent to
    267   //    OS X: malloc_size()
    268   //    glibc: malloc_usable_size()
    269   //    Windows: _msize()
    270   size_t tc_malloc_size(void* p) __THROW
    271       ATTRIBUTE_SECTION(google_malloc);
    272 
    273   void* tc_malloc_skip_new_handler(size_t size)
    274       ATTRIBUTE_SECTION(google_malloc);
    275 }  // extern "C"
    276 
    277 
    278 // ----------------------- IMPLEMENTATION -------------------------------
    279 
    280 static int tc_new_mode = 0;  // See tc_set_new_mode().
    281 
    282 // Routines such as free() and realloc() catch some erroneous pointers
    283 // passed to them, and invoke the below when they do.  (An erroneous pointer
    284 // won't be caught if it's within a valid span or a stale span for which
    285 // the pagemap cache has a non-zero sizeclass.) This is a cheap (source-editing
    286 // required) kind of exception handling for these routines.
    287 namespace {
    288 void InvalidFree(void* ptr) {
    289   Log(kCrash, __FILE__, __LINE__, "Attempt to free invalid pointer", ptr);
    290 }
    291 
    292 size_t InvalidGetSizeForRealloc(const void* old_ptr) {
    293   Log(kCrash, __FILE__, __LINE__,
    294       "Attempt to realloc invalid pointer", old_ptr);
    295   return 0;
    296 }
    297 
    298 size_t InvalidGetAllocatedSize(const void* ptr) {
    299   Log(kCrash, __FILE__, __LINE__,
    300       "Attempt to get the size of an invalid pointer", ptr);
    301   return 0;
    302 }
    303 
    304 // For security reasons, we want to limit the size of allocations.
    305 // See crbug.com/169327.
    306 inline bool IsAllocSizePermitted(size_t alloc_size) {
    307   // Never allow an allocation larger than what can be indexed via an int.
    308   // Remove kPageSize to account for various rounding, padding and to have a
    309   // small margin.
    310   return alloc_size <= ((std::numeric_limits<int>::max)() - kPageSize);
    311 }
    312 
    313 }  // unnamed namespace
    314 
    315 // Extract interesting stats
    316 struct TCMallocStats {
    317   uint64_t thread_bytes;      // Bytes in thread caches
    318   uint64_t central_bytes;     // Bytes in central cache
    319   uint64_t transfer_bytes;    // Bytes in central transfer cache
    320   uint64_t metadata_bytes;    // Bytes alloced for metadata
    321   uint64_t metadata_unmapped_bytes;    // Address space reserved for metadata
    322                                        // but is not committed.
    323   PageHeap::Stats pageheap;   // Stats from page heap
    324 };
    325 
    326 // Get stats into "r".  Also get per-size-class counts if class_count != NULL
    327 static void ExtractStats(TCMallocStats* r, uint64_t* class_count,
    328                          PageHeap::SmallSpanStats* small_spans,
    329                          PageHeap::LargeSpanStats* large_spans) {
    330   r->central_bytes = 0;
    331   r->transfer_bytes = 0;
    332   for (int cl = 0; cl < kNumClasses; ++cl) {
    333     const int length = Static::central_cache()[cl].length();
    334     const int tc_length = Static::central_cache()[cl].tc_length();
    335     const size_t cache_overhead = Static::central_cache()[cl].OverheadBytes();
    336     const size_t size = static_cast<uint64_t>(
    337         Static::sizemap()->ByteSizeForClass(cl));
    338     r->central_bytes += (size * length) + cache_overhead;
    339     r->transfer_bytes += (size * tc_length);
    340     if (class_count) class_count[cl] = length + tc_length;
    341   }
    342 
    343   // Add stats from per-thread heaps
    344   r->thread_bytes = 0;
    345   { // scope
    346     SpinLockHolder h(Static::pageheap_lock());
    347     ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
    348     r->metadata_bytes = tcmalloc::metadata_system_bytes();
    349     r->metadata_unmapped_bytes = tcmalloc::metadata_unmapped_bytes();
    350     r->pageheap = Static::pageheap()->stats();
    351     if (small_spans != NULL) {
    352       Static::pageheap()->GetSmallSpanStats(small_spans);
    353     }
    354     if (large_spans != NULL) {
    355       Static::pageheap()->GetLargeSpanStats(large_spans);
    356     }
    357   }
    358 }
    359 
    360 static double PagesToMiB(uint64_t pages) {
    361   return (pages << kPageShift) / 1048576.0;
    362 }
    363 
    364 // WRITE stats to "out"
    365 static void DumpStats(TCMalloc_Printer* out, int level) {
    366   TCMallocStats stats;
    367   uint64_t class_count[kNumClasses];
    368   PageHeap::SmallSpanStats small;
    369   PageHeap::LargeSpanStats large;
    370   if (level >= 2) {
    371     ExtractStats(&stats, class_count, &small, &large);
    372   } else {
    373     ExtractStats(&stats, NULL, NULL, NULL);
    374   }
    375 
    376   static const double MiB = 1048576.0;
    377 
    378   const uint64_t physical_memory_used_by_metadata =
    379       stats.metadata_bytes - stats.metadata_unmapped_bytes;
    380   const uint64_t unmapped_bytes =
    381       stats.pageheap.unmapped_bytes + stats.metadata_unmapped_bytes;
    382 
    383   const uint64_t virtual_memory_used = (stats.pageheap.system_bytes
    384                                         + stats.metadata_bytes);
    385   const uint64_t physical_memory_used = virtual_memory_used - unmapped_bytes;
    386   const uint64_t bytes_in_use_by_app = (physical_memory_used
    387                                         - physical_memory_used_by_metadata
    388                                         - stats.pageheap.free_bytes
    389                                         - stats.central_bytes
    390                                         - stats.transfer_bytes
    391                                         - stats.thread_bytes);
    392 
    393   out->printf(
    394       "WASTE:   %7.1f MiB bytes in use\n"
    395       "WASTE: + %7.1f MiB committed but not used\n"
    396       "WASTE:   ------------\n"
    397       "WASTE: = %7.1f MiB bytes committed\n"
    398       "WASTE: committed/used ratio of %f\n",
    399       bytes_in_use_by_app / MiB,
    400       (stats.pageheap.committed_bytes - bytes_in_use_by_app) / MiB,
    401       stats.pageheap.committed_bytes / MiB,
    402       stats.pageheap.committed_bytes / static_cast<double>(bytes_in_use_by_app)
    403       );
    404 #ifdef TCMALLOC_SMALL_BUT_SLOW
    405   out->printf(
    406       "NOTE:  SMALL MEMORY MODEL IS IN USE, PERFORMANCE MAY SUFFER.\n");
    407 #endif
    408   out->printf(
    409       "------------------------------------------------\n"
    410       "MALLOC:   %12" PRIu64 " (%7.1f MiB) Bytes in use by application\n"
    411       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in page heap freelist\n"
    412       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in central cache freelist\n"
    413       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in transfer cache freelist\n"
    414       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in thread cache freelists\n"
    415       "MALLOC:   ------------\n"
    416       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Bytes committed\n"
    417       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes in malloc metadata\n"
    418       "MALLOC:   ------------\n"
    419       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Actual memory used (physical + swap)\n"
    420       "MALLOC: + %12" PRIu64 " (%7.1f MiB) Bytes released to OS (aka unmapped)\n"
    421       "MALLOC:   ------------\n"
    422       "MALLOC: = %12" PRIu64 " (%7.1f MiB) Virtual address space used\n"
    423       "MALLOC:\n"
    424       "MALLOC:   %12" PRIu64 "              Spans in use\n"
    425       "MALLOC:   %12" PRIu64 "              Thread heaps in use\n"
    426       "MALLOC:   %12" PRIu64 "              Tcmalloc page size\n"
    427       "------------------------------------------------\n"
    428       "Call ReleaseFreeMemory() to release freelist memory to the OS"
    429       " (via madvise()).\n"
    430       "Bytes released to the OS take up virtual address space"
    431       " but no physical memory.\n",
    432       bytes_in_use_by_app, bytes_in_use_by_app / MiB,
    433       stats.pageheap.free_bytes, stats.pageheap.free_bytes / MiB,
    434       stats.central_bytes, stats.central_bytes / MiB,
    435       stats.transfer_bytes, stats.transfer_bytes / MiB,
    436       stats.thread_bytes, stats.thread_bytes / MiB,
    437       stats.pageheap.committed_bytes, stats.pageheap.committed_bytes / MiB,
    438       physical_memory_used_by_metadata , physical_memory_used_by_metadata / MiB,
    439       physical_memory_used, physical_memory_used / MiB,
    440       unmapped_bytes, unmapped_bytes / MiB,
    441       virtual_memory_used, virtual_memory_used / MiB,
    442       uint64_t(Static::span_allocator()->inuse()),
    443       uint64_t(ThreadCache::HeapsInUse()),
    444       uint64_t(kPageSize));
    445 
    446   if (level >= 2) {
    447     out->printf("------------------------------------------------\n");
    448     out->printf("Size class breakdown\n");
    449     out->printf("------------------------------------------------\n");
    450     uint64_t cumulative = 0;
    451     for (int cl = 0; cl < kNumClasses; ++cl) {
    452       if (class_count[cl] > 0) {
    453         uint64_t class_bytes =
    454             class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
    455         cumulative += class_bytes;
    456         out->printf("class %3d [ %8" PRIuS " bytes ] : "
    457                 "%8" PRIu64 " objs; %5.1f MiB; %5.1f cum MiB\n",
    458                 cl, Static::sizemap()->ByteSizeForClass(cl),
    459                 class_count[cl],
    460                 class_bytes / MiB,
    461                 cumulative / MiB);
    462       }
    463     }
    464 
    465     // append page heap info
    466     int nonempty_sizes = 0;
    467     for (int s = 0; s < kMaxPages; s++) {
    468       if (small.normal_length[s] + small.returned_length[s] > 0) {
    469         nonempty_sizes++;
    470       }
    471     }
    472     out->printf("------------------------------------------------\n");
    473     out->printf("PageHeap: %d sizes; %6.1f MiB free; %6.1f MiB unmapped\n",
    474                 nonempty_sizes, stats.pageheap.free_bytes / MiB,
    475                 stats.pageheap.unmapped_bytes / MiB);
    476     out->printf("------------------------------------------------\n");
    477     uint64_t total_normal = 0;
    478     uint64_t total_returned = 0;
    479     for (int s = 0; s < kMaxPages; s++) {
    480       const int n_length = small.normal_length[s];
    481       const int r_length = small.returned_length[s];
    482       if (n_length + r_length > 0) {
    483         uint64_t n_pages = s * n_length;
    484         uint64_t r_pages = s * r_length;
    485         total_normal += n_pages;
    486         total_returned += r_pages;
    487         out->printf("%6u pages * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
    488                     "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
    489                     s,
    490                     (n_length + r_length),
    491                     PagesToMiB(n_pages + r_pages),
    492                     PagesToMiB(total_normal + total_returned),
    493                     PagesToMiB(r_pages),
    494                     PagesToMiB(total_returned));
    495       }
    496     }
    497 
    498     total_normal += large.normal_pages;
    499     total_returned += large.returned_pages;
    500     out->printf(">255   large * %6u spans ~ %6.1f MiB; %6.1f MiB cum"
    501                 "; unmapped: %6.1f MiB; %6.1f MiB cum\n",
    502                 static_cast<unsigned int>(large.spans),
    503                 PagesToMiB(large.normal_pages + large.returned_pages),
    504                 PagesToMiB(total_normal + total_returned),
    505                 PagesToMiB(large.returned_pages),
    506                 PagesToMiB(total_returned));
    507   }
    508 }
    509 
    510 static void PrintStats(int level) {
    511   const int kBufferSize = 16 << 10;
    512   char* buffer = new char[kBufferSize];
    513   TCMalloc_Printer printer(buffer, kBufferSize);
    514   DumpStats(&printer, level);
    515   write(STDERR_FILENO, buffer, strlen(buffer));
    516   delete[] buffer;
    517 }
    518 
    519 static void** DumpHeapGrowthStackTraces() {
    520   // Count how much space we need
    521   int needed_slots = 0;
    522   {
    523     SpinLockHolder h(Static::pageheap_lock());
    524     for (StackTrace* t = Static::growth_stacks();
    525          t != NULL;
    526          t = reinterpret_cast<StackTrace*>(
    527              t->stack[tcmalloc::kMaxStackDepth-1])) {
    528       needed_slots += 3 + t->depth;
    529     }
    530     needed_slots += 100;            // Slop in case list grows
    531     needed_slots += needed_slots/8; // An extra 12.5% slop
    532   }
    533 
    534   void** result = new void*[needed_slots];
    535   if (result == NULL) {
    536     Log(kLog, __FILE__, __LINE__,
    537         "tcmalloc: allocation failed for stack trace slots",
    538         needed_slots * sizeof(*result));
    539     return NULL;
    540   }
    541 
    542   SpinLockHolder h(Static::pageheap_lock());
    543   int used_slots = 0;
    544   for (StackTrace* t = Static::growth_stacks();
    545        t != NULL;
    546        t = reinterpret_cast<StackTrace*>(
    547            t->stack[tcmalloc::kMaxStackDepth-1])) {
    548     ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
    549     if (used_slots + 3 + t->depth >= needed_slots) {
    550       // No more room
    551       break;
    552     }
    553 
    554     result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
    555     result[used_slots+1] = reinterpret_cast<void*>(t->size);
    556     result[used_slots+2] = reinterpret_cast<void*>(t->depth);
    557     for (int d = 0; d < t->depth; d++) {
    558       result[used_slots+3+d] = t->stack[d];
    559     }
    560     used_slots += 3 + t->depth;
    561   }
    562   result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
    563   return result;
    564 }
    565 
    566 static void IterateOverRanges(void* arg, MallocExtension::RangeFunction func) {
    567   PageID page = 1;  // Some code may assume that page==0 is never used
    568   bool done = false;
    569   while (!done) {
    570     // Accumulate a small number of ranges in a local buffer
    571     static const int kNumRanges = 16;
    572     static base::MallocRange ranges[kNumRanges];
    573     int n = 0;
    574     {
    575       SpinLockHolder h(Static::pageheap_lock());
    576       while (n < kNumRanges) {
    577         if (!Static::pageheap()->GetNextRange(page, &ranges[n])) {
    578           done = true;
    579           break;
    580         } else {
    581           uintptr_t limit = ranges[n].address + ranges[n].length;
    582           page = (limit + kPageSize - 1) >> kPageShift;
    583           n++;
    584         }
    585       }
    586     }
    587 
    588     for (int i = 0; i < n; i++) {
    589       (*func)(arg, &ranges[i]);
    590     }
    591   }
    592 }
    593 
    594 // TCMalloc's support for extra malloc interfaces
    595 class TCMallocImplementation : public MallocExtension {
    596  private:
    597   // ReleaseToSystem() might release more than the requested bytes because
    598   // the page heap releases at the span granularity, and spans are of wildly
    599   // different sizes.  This member keeps track of the extra bytes bytes
    600   // released so that the app can periodically call ReleaseToSystem() to
    601   // release memory at a constant rate.
    602   // NOTE: Protected by Static::pageheap_lock().
    603   size_t extra_bytes_released_;
    604 
    605  public:
    606   TCMallocImplementation()
    607       : extra_bytes_released_(0) {
    608   }
    609 
    610   virtual void GetStats(char* buffer, int buffer_length) {
    611     ASSERT(buffer_length > 0);
    612     TCMalloc_Printer printer(buffer, buffer_length);
    613 
    614     // Print level one stats unless lots of space is available
    615     if (buffer_length < 10000) {
    616       DumpStats(&printer, 1);
    617     } else {
    618       DumpStats(&printer, 2);
    619     }
    620   }
    621 
    622   // We may print an extra, tcmalloc-specific warning message here.
    623   virtual void GetHeapSample(MallocExtensionWriter* writer) {
    624     if (FLAGS_tcmalloc_sample_parameter == 0) {
    625       const char* const kWarningMsg =
    626           "%warn\n"
    627           "%warn This heap profile does not have any data in it, because\n"
    628           "%warn the application was run with heap sampling turned off.\n"
    629           "%warn To get useful data from GetHeapSample(), you must\n"
    630           "%warn set the environment variable TCMALLOC_SAMPLE_PARAMETER to\n"
    631           "%warn a positive sampling period, such as 524288.\n"
    632           "%warn\n";
    633       writer->append(kWarningMsg, strlen(kWarningMsg));
    634     }
    635     MallocExtension::GetHeapSample(writer);
    636   }
    637 
    638   virtual void** ReadStackTraces(int* sample_period) {
    639     tcmalloc::StackTraceTable table;
    640     {
    641       SpinLockHolder h(Static::pageheap_lock());
    642       Span* sampled = Static::sampled_objects();
    643       for (Span* s = sampled->next; s != sampled; s = s->next) {
    644         table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
    645       }
    646     }
    647     *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
    648     return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
    649   }
    650 
    651   virtual void** ReadHeapGrowthStackTraces() {
    652     return DumpHeapGrowthStackTraces();
    653   }
    654 
    655   virtual void Ranges(void* arg, RangeFunction func) {
    656     IterateOverRanges(arg, func);
    657   }
    658 
    659   virtual bool GetNumericProperty(const char* name, size_t* value) {
    660     ASSERT(name != NULL);
    661 
    662     if (strcmp(name, "generic.current_allocated_bytes") == 0) {
    663       TCMallocStats stats;
    664       ExtractStats(&stats, NULL, NULL, NULL);
    665       *value = stats.pageheap.system_bytes
    666                - stats.thread_bytes
    667                - stats.central_bytes
    668                - stats.transfer_bytes
    669                - stats.pageheap.free_bytes
    670                - stats.pageheap.unmapped_bytes;
    671       return true;
    672     }
    673 
    674     if (strcmp(name, "generic.heap_size") == 0) {
    675       TCMallocStats stats;
    676       ExtractStats(&stats, NULL, NULL, NULL);
    677       *value = stats.pageheap.system_bytes;
    678       return true;
    679     }
    680 
    681     if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
    682       // Kept for backwards compatibility.  Now defined externally as:
    683       //    pageheap_free_bytes + pageheap_unmapped_bytes.
    684       SpinLockHolder l(Static::pageheap_lock());
    685       PageHeap::Stats stats = Static::pageheap()->stats();
    686       *value = stats.free_bytes + stats.unmapped_bytes;
    687       return true;
    688     }
    689 
    690     if (strcmp(name, "tcmalloc.pageheap_free_bytes") == 0) {
    691       SpinLockHolder l(Static::pageheap_lock());
    692       *value = Static::pageheap()->stats().free_bytes;
    693       return true;
    694     }
    695 
    696     if (strcmp(name, "tcmalloc.pageheap_unmapped_bytes") == 0) {
    697       SpinLockHolder l(Static::pageheap_lock());
    698       *value = Static::pageheap()->stats().unmapped_bytes;
    699       return true;
    700     }
    701 
    702     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
    703       SpinLockHolder l(Static::pageheap_lock());
    704       *value = ThreadCache::overall_thread_cache_size();
    705       return true;
    706     }
    707 
    708     if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
    709       TCMallocStats stats;
    710       ExtractStats(&stats, NULL, NULL, NULL);
    711       *value = stats.thread_bytes;
    712       return true;
    713     }
    714 
    715     return false;
    716   }
    717 
    718   virtual bool SetNumericProperty(const char* name, size_t value) {
    719     ASSERT(name != NULL);
    720 
    721     if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
    722       SpinLockHolder l(Static::pageheap_lock());
    723       ThreadCache::set_overall_thread_cache_size(value);
    724       return true;
    725     }
    726 
    727     return false;
    728   }
    729 
    730   virtual void MarkThreadIdle() {
    731     ThreadCache::BecomeIdle();
    732   }
    733 
    734   virtual void MarkThreadBusy();  // Implemented below
    735 
    736   virtual SysAllocator* GetSystemAllocator() {
    737     SpinLockHolder h(Static::pageheap_lock());
    738     return sys_alloc;
    739   }
    740 
    741   virtual void SetSystemAllocator(SysAllocator* alloc) {
    742     SpinLockHolder h(Static::pageheap_lock());
    743     sys_alloc = alloc;
    744   }
    745 
    746   virtual void ReleaseToSystem(size_t num_bytes) {
    747     SpinLockHolder h(Static::pageheap_lock());
    748     if (num_bytes <= extra_bytes_released_) {
    749       // We released too much on a prior call, so don't release any
    750       // more this time.
    751       extra_bytes_released_ = extra_bytes_released_ - num_bytes;
    752       return;
    753     }
    754     num_bytes = num_bytes - extra_bytes_released_;
    755     // num_bytes might be less than one page.  If we pass zero to
    756     // ReleaseAtLeastNPages, it won't do anything, so we release a whole
    757     // page now and let extra_bytes_released_ smooth it out over time.
    758     Length num_pages = max<Length>(num_bytes >> kPageShift, 1);
    759     size_t bytes_released = Static::pageheap()->ReleaseAtLeastNPages(
    760         num_pages) << kPageShift;
    761     if (bytes_released > num_bytes) {
    762       extra_bytes_released_ = bytes_released - num_bytes;
    763     } else {
    764       // The PageHeap wasn't able to release num_bytes.  Don't try to
    765       // compensate with a big release next time.  Specifically,
    766       // ReleaseFreeMemory() calls ReleaseToSystem(LONG_MAX).
    767       extra_bytes_released_ = 0;
    768     }
    769   }
    770 
    771   virtual void SetMemoryReleaseRate(double rate) {
    772     FLAGS_tcmalloc_release_rate = rate;
    773   }
    774 
    775   virtual double GetMemoryReleaseRate() {
    776     return FLAGS_tcmalloc_release_rate;
    777   }
    778   virtual size_t GetEstimatedAllocatedSize(size_t size) {
    779     if (size <= kMaxSize) {
    780       const size_t cl = Static::sizemap()->SizeClass(size);
    781       const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
    782       return alloc_size;
    783     } else {
    784       return tcmalloc::pages(size) << kPageShift;
    785     }
    786   }
    787 
    788   // This just calls GetSizeWithCallback, but because that's in an
    789   // unnamed namespace, we need to move the definition below it in the
    790   // file.
    791   virtual size_t GetAllocatedSize(const void* ptr);
    792 
    793   // This duplicates some of the logic in GetSizeWithCallback, but is
    794   // faster.  This is important on OS X, where this function is called
    795   // on every allocation operation.
    796   virtual Ownership GetOwnership(const void* ptr) {
    797     const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    798     // The rest of tcmalloc assumes that all allocated pointers use at
    799     // most kAddressBits bits.  If ptr doesn't, then it definitely
    800     // wasn't alloacted by tcmalloc.
    801     if ((p >> (kAddressBits - kPageShift)) > 0) {
    802       return kNotOwned;
    803     }
    804     size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
    805     if (cl != 0) {
    806       return kOwned;
    807     }
    808     const Span *span = Static::pageheap()->GetDescriptor(p);
    809     return span ? kOwned : kNotOwned;
    810   }
    811 
    812   virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) {
    813     static const char* kCentralCacheType = "tcmalloc.central";
    814     static const char* kTransferCacheType = "tcmalloc.transfer";
    815     static const char* kThreadCacheType = "tcmalloc.thread";
    816     static const char* kPageHeapType = "tcmalloc.page";
    817     static const char* kPageHeapUnmappedType = "tcmalloc.page_unmapped";
    818     static const char* kLargeSpanType = "tcmalloc.large";
    819     static const char* kLargeUnmappedSpanType = "tcmalloc.large_unmapped";
    820 
    821     v->clear();
    822 
    823     // central class information
    824     int64 prev_class_size = 0;
    825     for (int cl = 1; cl < kNumClasses; ++cl) {
    826       size_t class_size = Static::sizemap()->ByteSizeForClass(cl);
    827       MallocExtension::FreeListInfo i;
    828       i.min_object_size = prev_class_size + 1;
    829       i.max_object_size = class_size;
    830       i.total_bytes_free =
    831           Static::central_cache()[cl].length() * class_size;
    832       i.type = kCentralCacheType;
    833       v->push_back(i);
    834 
    835       // transfer cache
    836       i.total_bytes_free =
    837           Static::central_cache()[cl].tc_length() * class_size;
    838       i.type = kTransferCacheType;
    839       v->push_back(i);
    840 
    841       prev_class_size = Static::sizemap()->ByteSizeForClass(cl);
    842     }
    843 
    844     // Add stats from per-thread heaps
    845     uint64_t class_count[kNumClasses];
    846     memset(class_count, 0, sizeof(class_count));
    847     {
    848       SpinLockHolder h(Static::pageheap_lock());
    849       uint64_t thread_bytes = 0;
    850       ThreadCache::GetThreadStats(&thread_bytes, class_count);
    851     }
    852 
    853     prev_class_size = 0;
    854     for (int cl = 1; cl < kNumClasses; ++cl) {
    855       MallocExtension::FreeListInfo i;
    856       i.min_object_size = prev_class_size + 1;
    857       i.max_object_size = Static::sizemap()->ByteSizeForClass(cl);
    858       i.total_bytes_free =
    859           class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
    860       i.type = kThreadCacheType;
    861       v->push_back(i);
    862     }
    863 
    864     // append page heap info
    865     PageHeap::SmallSpanStats small;
    866     PageHeap::LargeSpanStats large;
    867     {
    868       SpinLockHolder h(Static::pageheap_lock());
    869       Static::pageheap()->GetSmallSpanStats(&small);
    870       Static::pageheap()->GetLargeSpanStats(&large);
    871     }
    872 
    873     // large spans: mapped
    874     MallocExtension::FreeListInfo span_info;
    875     span_info.type = kLargeSpanType;
    876     span_info.max_object_size = (numeric_limits<size_t>::max)();
    877     span_info.min_object_size = kMaxPages << kPageShift;
    878     span_info.total_bytes_free = large.normal_pages << kPageShift;
    879     v->push_back(span_info);
    880 
    881     // large spans: unmapped
    882     span_info.type = kLargeUnmappedSpanType;
    883     span_info.total_bytes_free = large.returned_pages << kPageShift;
    884     v->push_back(span_info);
    885 
    886     // small spans
    887     for (int s = 1; s < kMaxPages; s++) {
    888       MallocExtension::FreeListInfo i;
    889       i.max_object_size = (s << kPageShift);
    890       i.min_object_size = ((s - 1) << kPageShift);
    891 
    892       i.type = kPageHeapType;
    893       i.total_bytes_free = (s << kPageShift) * small.normal_length[s];
    894       v->push_back(i);
    895 
    896       i.type = kPageHeapUnmappedType;
    897       i.total_bytes_free = (s << kPageShift) * small.returned_length[s];
    898       v->push_back(i);
    899     }
    900   }
    901 };
    902 
    903 // The constructor allocates an object to ensure that initialization
    904 // runs before main(), and therefore we do not have a chance to become
    905 // multi-threaded before initialization.  We also create the TSD key
    906 // here.  Presumably by the time this constructor runs, glibc is in
    907 // good enough shape to handle pthread_key_create().
    908 //
    909 // The constructor also takes the opportunity to tell STL to use
    910 // tcmalloc.  We want to do this early, before construct time, so
    911 // all user STL allocations go through tcmalloc (which works really
    912 // well for STL).
    913 //
    914 // The destructor prints stats when the program exits.
    915 static int tcmallocguard_refcount = 0;  // no lock needed: runs before main()
    916 TCMallocGuard::TCMallocGuard() {
    917   if (tcmallocguard_refcount++ == 0) {
    918 #ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
    919     // Check whether the kernel also supports TLS (needs to happen at runtime)
    920     tcmalloc::CheckIfKernelSupportsTLS();
    921 #endif
    922     ReplaceSystemAlloc();    // defined in libc_override_*.h
    923     tc_free(tc_malloc(1));
    924     ThreadCache::InitTSD();
    925     tc_free(tc_malloc(1));
    926     // Either we, or debugallocation.cc, or valgrind will control memory
    927     // management.  We register our extension if we're the winner.
    928 #ifdef TCMALLOC_USING_DEBUGALLOCATION
    929     // Let debugallocation register its extension.
    930 #else
    931     if (RunningOnValgrind()) {
    932       // Let Valgrind uses its own malloc (so don't register our extension).
    933     } else {
    934       MallocExtension::Register(new TCMallocImplementation);
    935     }
    936 #endif
    937   }
    938 }
    939 
    940 TCMallocGuard::~TCMallocGuard() {
    941   if (--tcmallocguard_refcount == 0) {
    942     const char* env = getenv("MALLOCSTATS");
    943     if (env != NULL) {
    944       int level = atoi(env);
    945       if (level < 1) level = 1;
    946       PrintStats(level);
    947     }
    948   }
    949 }
    950 #ifndef WIN32_OVERRIDE_ALLOCATORS
    951 static TCMallocGuard module_enter_exit_hook;
    952 #endif
    953 
    954 //-------------------------------------------------------------------
    955 // Helpers for the exported routines below
    956 //-------------------------------------------------------------------
    957 
    958 static inline bool CheckCachedSizeClass(void *ptr) {
    959   PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
    960   size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
    961   return cached_value == 0 ||
    962       cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
    963 }
    964 
    965 static inline void* CheckMallocResult(void *result) {
    966   ASSERT(result == NULL || CheckCachedSizeClass(result));
    967   MarkAllocatedRegion(result);
    968   return result;
    969 }
    970 
    971 static inline void* SpanToMallocResult(Span *span) {
    972   Static::pageheap()->CacheSizeClass(span->start, 0);
    973   return
    974       CheckMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
    975 }
    976 
    977 static void* DoSampledAllocation(size_t size) {
    978   // Grab the stack trace outside the heap lock
    979   StackTrace tmp;
    980   tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
    981   tmp.size = size;
    982 
    983   SpinLockHolder h(Static::pageheap_lock());
    984   // Allocate span
    985   Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
    986   if (span == NULL) {
    987     return NULL;
    988   }
    989 
    990   // Allocate stack trace
    991   StackTrace *stack = Static::stacktrace_allocator()->New();
    992   if (stack == NULL) {
    993     // Sampling failed because of lack of memory
    994     return span;
    995   }
    996   *stack = tmp;
    997   span->sample = 1;
    998   span->objects = stack;
    999   tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
   1000 
   1001   return SpanToMallocResult(span);
   1002 }
   1003 
   1004 namespace {
   1005 
   1006 // Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
   1007 // automatic increases factored in.
   1008 static int64_t large_alloc_threshold =
   1009   (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
   1010    ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
   1011 
   1012 static void ReportLargeAlloc(Length num_pages, void* result) {
   1013   StackTrace stack;
   1014   stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
   1015 
   1016   static const int N = 1000;
   1017   char buffer[N];
   1018   TCMalloc_Printer printer(buffer, N);
   1019   printer.printf("tcmalloc: large alloc %" PRIu64 " bytes == %p @ ",
   1020                  static_cast<uint64>(num_pages) << kPageShift,
   1021                  result);
   1022   for (int i = 0; i < stack.depth; i++) {
   1023     printer.printf(" %p", stack.stack[i]);
   1024   }
   1025   printer.printf("\n");
   1026   write(STDERR_FILENO, buffer, strlen(buffer));
   1027 }
   1028 
   1029 inline void* cpp_alloc(size_t size, bool nothrow);
   1030 inline void* do_malloc(size_t size);
   1031 
   1032 // TODO(willchan): Investigate whether or not inlining this much is harmful to
   1033 // performance.
   1034 // This is equivalent to do_malloc() except when tc_new_mode is set to true.
   1035 // Otherwise, it will run the std::new_handler if set.
   1036 inline void* do_malloc_or_cpp_alloc(size_t size) {
   1037   return tc_new_mode ? cpp_alloc(size, true) : do_malloc(size);
   1038 }
   1039 
   1040 void* cpp_memalign(size_t align, size_t size);
   1041 void* do_memalign(size_t align, size_t size);
   1042 
   1043 inline void* do_memalign_or_cpp_memalign(size_t align, size_t size) {
   1044   return tc_new_mode ? cpp_memalign(align, size) : do_memalign(align, size);
   1045 }
   1046 
   1047 // Must be called with the page lock held.
   1048 inline bool should_report_large(Length num_pages) {
   1049   const int64 threshold = large_alloc_threshold;
   1050   if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
   1051     // Increase the threshold by 1/8 every time we generate a report.
   1052     // We cap the threshold at 8GiB to avoid overflow problems.
   1053     large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
   1054                              ? threshold + threshold/8 : 8ll<<30);
   1055     return true;
   1056   }
   1057   return false;
   1058 }
   1059 
   1060 // Helper for do_malloc().
   1061 inline void* do_malloc_pages(ThreadCache* heap, size_t size) {
   1062   void* result;
   1063   bool report_large;
   1064 
   1065   Length num_pages = tcmalloc::pages(size);
   1066   size = num_pages << kPageShift;
   1067 
   1068   // Chromium profiling.  Measurements in March 2013 suggest this
   1069   // imposes a small enough runtime cost that there's no reason to
   1070   // try to optimize it.
   1071   heap->AddToByteAllocatedTotal(size);
   1072 
   1073   if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
   1074     result = DoSampledAllocation(size);
   1075 
   1076     SpinLockHolder h(Static::pageheap_lock());
   1077     report_large = should_report_large(num_pages);
   1078   } else {
   1079     SpinLockHolder h(Static::pageheap_lock());
   1080     Span* span = Static::pageheap()->New(num_pages);
   1081     result = (span == NULL ? NULL : SpanToMallocResult(span));
   1082     report_large = should_report_large(num_pages);
   1083   }
   1084 
   1085   if (report_large) {
   1086     ReportLargeAlloc(num_pages, result);
   1087   }
   1088   return result;
   1089 }
   1090 
   1091 inline void* do_malloc(size_t size) {
   1092   AddRoomForMark(&size);
   1093 
   1094   void* ret = NULL;
   1095 
   1096   // The following call forces module initialization
   1097   ThreadCache* heap = ThreadCache::GetCache();
   1098   if (size <= kMaxSize && IsAllocSizePermitted(size)) {
   1099     size_t cl = Static::sizemap()->SizeClass(size);
   1100     size = Static::sizemap()->class_to_size(cl);
   1101 
   1102     // Chromium profiling.  Measurements in March 2013 suggest this
   1103     // imposes a small enough runtime cost that there's no reason to
   1104     // try to optimize it.
   1105     heap->AddToByteAllocatedTotal(size);
   1106 
   1107     if ((FLAGS_tcmalloc_sample_parameter > 0) &&
   1108         heap->SampleAllocation(size)) {
   1109       ret = DoSampledAllocation(size);
   1110       MarkAllocatedRegion(ret);
   1111     } else {
   1112       // The common case, and also the simplest.  This just pops the
   1113       // size-appropriate freelist, after replenishing it if it's empty.
   1114       ret = CheckMallocResult(heap->Allocate(size, cl));
   1115     }
   1116   } else if (IsAllocSizePermitted(size)) {
   1117     ret = do_malloc_pages(heap, size);
   1118     MarkAllocatedRegion(ret);
   1119   }
   1120   if (ret == NULL) errno = ENOMEM;
   1121   ASSERT(IsAllocSizePermitted(size) || ret == NULL);
   1122   return ret;
   1123 }
   1124 
   1125 inline void* do_calloc(size_t n, size_t elem_size) {
   1126   // Overflow check
   1127   const size_t size = n * elem_size;
   1128   if (elem_size != 0 && size / elem_size != n) return NULL;
   1129 
   1130   void* result = do_malloc_or_cpp_alloc(size);
   1131   if (result != NULL) {
   1132     memset(result, 0, size);
   1133   }
   1134   return result;
   1135 }
   1136 
   1137 static inline ThreadCache* GetCacheIfPresent() {
   1138   void* const p = ThreadCache::GetCacheIfPresent();
   1139   return reinterpret_cast<ThreadCache*>(p);
   1140 }
   1141 
   1142 // This lets you call back to a given function pointer if ptr is invalid.
   1143 // It is used primarily by windows code which wants a specialized callback.
   1144 inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
   1145   if (ptr == NULL) return;
   1146   if (Static::pageheap() == NULL) {
   1147     // We called free() before malloc().  This can occur if the
   1148     // (system) malloc() is called before tcmalloc is loaded, and then
   1149     // free() is called after tcmalloc is loaded (and tc_free has
   1150     // replaced free), but before the global constructor has run that
   1151     // sets up the tcmalloc data structures.
   1152     (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
   1153     return;
   1154   }
   1155   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
   1156   Span* span = NULL;
   1157   size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
   1158 
   1159   if (cl == 0) {
   1160     span = Static::pageheap()->GetDescriptor(p);
   1161     if (!span) {
   1162       // span can be NULL because the pointer passed in is invalid
   1163       // (not something returned by malloc or friends), or because the
   1164       // pointer was allocated with some other allocator besides
   1165       // tcmalloc.  The latter can happen if tcmalloc is linked in via
   1166       // a dynamic library, but is not listed last on the link line.
   1167       // In that case, libraries after it on the link line will
   1168       // allocate with libc malloc, but free with tcmalloc's free.
   1169       (*invalid_free_fn)(ptr);  // Decide how to handle the bad free request
   1170       return;
   1171     }
   1172     cl = span->sizeclass;
   1173     Static::pageheap()->CacheSizeClass(p, cl);
   1174   }
   1175   if (cl == 0) {
   1176     // Check to see if the object is in use.
   1177     CHECK_CONDITION_PRINT(span->location == Span::IN_USE,
   1178                           "Object was not in-use");
   1179 
   1180     CHECK_CONDITION_PRINT(
   1181         span->start << kPageShift == reinterpret_cast<uintptr_t>(ptr),
   1182         "Pointer is not pointing to the start of a span");
   1183   }
   1184   ValidateAllocatedRegion(ptr, cl);
   1185 
   1186   if (cl != 0) {
   1187     ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
   1188     ThreadCache* heap = GetCacheIfPresent();
   1189     if (heap != NULL) {
   1190       heap->Deallocate(ptr, cl);
   1191     } else {
   1192       // Delete directly into central cache
   1193       tcmalloc::FL_Init(ptr);
   1194       Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
   1195     }
   1196   } else {
   1197     SpinLockHolder h(Static::pageheap_lock());
   1198     ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
   1199     ASSERT(span != NULL && span->start == p);
   1200     if (span->sample) {
   1201       StackTrace* st = reinterpret_cast<StackTrace*>(span->objects);
   1202       tcmalloc::DLL_Remove(span);
   1203       Static::stacktrace_allocator()->Delete(st);
   1204       span->objects = NULL;
   1205     }
   1206     Static::pageheap()->Delete(span);
   1207   }
   1208 }
   1209 
   1210 // The default "do_free" that uses the default callback.
   1211 inline void do_free(void* ptr) {
   1212   return do_free_with_callback(ptr, &InvalidFree);
   1213 }
   1214 
   1215 // NOTE: some logic here is duplicated in GetOwnership (above), for
   1216 // speed.  If you change this function, look at that one too.
   1217 inline size_t GetSizeWithCallback(const void* ptr,
   1218                                   size_t (*invalid_getsize_fn)(const void*)) {
   1219   if (ptr == NULL)
   1220     return 0;
   1221   const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
   1222   size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
   1223   if (cl != 0) {
   1224     return Static::sizemap()->ByteSizeForClass(cl);
   1225   } else {
   1226     const Span *span = Static::pageheap()->GetDescriptor(p);
   1227     if (span == NULL) {  // means we do not own this memory
   1228       return (*invalid_getsize_fn)(ptr);
   1229     } else if (span->sizeclass != 0) {
   1230       Static::pageheap()->CacheSizeClass(p, span->sizeclass);
   1231       return Static::sizemap()->ByteSizeForClass(span->sizeclass);
   1232     } else {
   1233       return span->length << kPageShift;
   1234     }
   1235   }
   1236 }
   1237 
   1238 // This lets you call back to a given function pointer if ptr is invalid.
   1239 // It is used primarily by windows code which wants a specialized callback.
   1240 inline void* do_realloc_with_callback(
   1241     void* old_ptr, size_t new_size,
   1242     void (*invalid_free_fn)(void*),
   1243     size_t (*invalid_get_size_fn)(const void*)) {
   1244   AddRoomForMark(&new_size);
   1245   // Get the size of the old entry
   1246   const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
   1247 
   1248   // Reallocate if the new size is larger than the old size,
   1249   // or if the new size is significantly smaller than the old size.
   1250   // We do hysteresis to avoid resizing ping-pongs:
   1251   //    . If we need to grow, grow to max(new_size, old_size * 1.X)
   1252   //    . Don't shrink unless new_size < old_size * 0.Y
   1253   // X and Y trade-off time for wasted space.  For now we do 1.25 and 0.5.
   1254   const size_t min_growth = min(old_size / 4,
   1255       (std::numeric_limits<size_t>::max)() - old_size);  // Avoid overflow.
   1256   const size_t lower_bound_to_grow = old_size + min_growth;
   1257   const size_t upper_bound_to_shrink = old_size / 2;
   1258   if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
   1259     // Need to reallocate.
   1260     void* new_ptr = NULL;
   1261 
   1262     if (new_size > old_size && new_size < lower_bound_to_grow) {
   1263       new_ptr = do_malloc_or_cpp_alloc(lower_bound_to_grow);
   1264     }
   1265     ExcludeMarkFromSize(&new_size);  // do_malloc will add space if needed.
   1266     if (new_ptr == NULL) {
   1267       // Either new_size is not a tiny increment, or last do_malloc failed.
   1268       new_ptr = do_malloc_or_cpp_alloc(new_size);
   1269     }
   1270     if (new_ptr == NULL) {
   1271       return NULL;
   1272     }
   1273     MallocHook::InvokeNewHook(new_ptr, new_size);
   1274     memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
   1275     MallocHook::InvokeDeleteHook(old_ptr);
   1276     // We could use a variant of do_free() that leverages the fact
   1277     // that we already know the sizeclass of old_ptr.  The benefit
   1278     // would be small, so don't bother.
   1279     do_free_with_callback(old_ptr, invalid_free_fn);
   1280     return new_ptr;
   1281   } else {
   1282     // We still need to call hooks to report the updated size:
   1283     MallocHook::InvokeDeleteHook(old_ptr);
   1284     ExcludeMarkFromSize(&new_size);
   1285     MallocHook::InvokeNewHook(old_ptr, new_size);
   1286     return old_ptr;
   1287   }
   1288 }
   1289 
   1290 inline void* do_realloc(void* old_ptr, size_t new_size) {
   1291   return do_realloc_with_callback(old_ptr, new_size,
   1292                                   &InvalidFree, &InvalidGetSizeForRealloc);
   1293 }
   1294 
   1295 // For use by exported routines below that want specific alignments
   1296 //
   1297 // Note: this code can be slow for alignments > 16, and can
   1298 // significantly fragment memory.  The expectation is that
   1299 // memalign/posix_memalign/valloc/pvalloc will not be invoked very
   1300 // often.  This requirement simplifies our implementation and allows
   1301 // us to tune for expected allocation patterns.
   1302 void* do_memalign(size_t align, size_t size) {
   1303   ASSERT((align & (align - 1)) == 0);
   1304   ASSERT(align > 0);
   1305   // Marked in CheckMallocResult(), which is also inside SpanToMallocResult().
   1306   AddRoomForMark(&size);
   1307   if (size + align < size) return NULL;         // Overflow
   1308 
   1309   // Fall back to malloc if we would already align this memory access properly.
   1310   if (align <= AlignmentForSize(size)) {
   1311     void* p = do_malloc(size);
   1312     ASSERT((reinterpret_cast<uintptr_t>(p) % align) == 0);
   1313     return p;
   1314   }
   1315 
   1316   if (Static::pageheap() == NULL) ThreadCache::InitModule();
   1317 
   1318   // Allocate at least one byte to avoid boundary conditions below
   1319   if (size == 0) size = 1;
   1320 
   1321   if (size <= kMaxSize && align < kPageSize) {
   1322     // Search through acceptable size classes looking for one with
   1323     // enough alignment.  This depends on the fact that
   1324     // InitSizeClasses() currently produces several size classes that
   1325     // are aligned at powers of two.  We will waste time and space if
   1326     // we miss in the size class array, but that is deemed acceptable
   1327     // since memalign() should be used rarely.
   1328     int cl = Static::sizemap()->SizeClass(size);
   1329     while (cl < kNumClasses &&
   1330            ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
   1331       cl++;
   1332     }
   1333     if (cl < kNumClasses) {
   1334       ThreadCache* heap = ThreadCache::GetCache();
   1335       size = Static::sizemap()->class_to_size(cl);
   1336       return CheckMallocResult(heap->Allocate(size, cl));
   1337     }
   1338   }
   1339 
   1340   // We will allocate directly from the page heap
   1341   SpinLockHolder h(Static::pageheap_lock());
   1342 
   1343   if (align <= kPageSize) {
   1344     // Any page-level allocation will be fine
   1345     // TODO: We could put the rest of this page in the appropriate
   1346     // TODO: cache but it does not seem worth it.
   1347     Span* span = Static::pageheap()->New(tcmalloc::pages(size));
   1348     return span == NULL ? NULL : SpanToMallocResult(span);
   1349   }
   1350 
   1351   // Allocate extra pages and carve off an aligned portion
   1352   const Length alloc = tcmalloc::pages(size + align);
   1353   Span* span = Static::pageheap()->New(alloc);
   1354   if (span == NULL) return NULL;
   1355 
   1356   // Skip starting portion so that we end up aligned
   1357   Length skip = 0;
   1358   while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
   1359     skip++;
   1360   }
   1361   ASSERT(skip < alloc);
   1362   if (skip > 0) {
   1363     Span* rest = Static::pageheap()->Split(span, skip);
   1364     Static::pageheap()->Delete(span);
   1365     span = rest;
   1366   }
   1367 
   1368   // Skip trailing portion that we do not need to return
   1369   const Length needed = tcmalloc::pages(size);
   1370   ASSERT(span->length >= needed);
   1371   if (span->length > needed) {
   1372     Span* trailer = Static::pageheap()->Split(span, needed);
   1373     Static::pageheap()->Delete(trailer);
   1374   }
   1375   return SpanToMallocResult(span);
   1376 }
   1377 
   1378 // Helpers for use by exported routines below:
   1379 
   1380 inline void do_malloc_stats() {
   1381   PrintStats(1);
   1382 }
   1383 
   1384 inline int do_mallopt(int cmd, int value) {
   1385   return 1;     // Indicates error
   1386 }
   1387 
   1388 #ifdef HAVE_STRUCT_MALLINFO
   1389 inline struct mallinfo do_mallinfo() {
   1390   TCMallocStats stats;
   1391   ExtractStats(&stats, NULL, NULL, NULL);
   1392 
   1393   // Just some of the fields are filled in.
   1394   struct mallinfo info;
   1395   memset(&info, 0, sizeof(info));
   1396 
   1397   // Unfortunately, the struct contains "int" field, so some of the
   1398   // size values will be truncated.
   1399   info.arena     = static_cast<int>(stats.pageheap.system_bytes);
   1400   info.fsmblks   = static_cast<int>(stats.thread_bytes
   1401                                     + stats.central_bytes
   1402                                     + stats.transfer_bytes);
   1403   info.fordblks  = static_cast<int>(stats.pageheap.free_bytes +
   1404                                     stats.pageheap.unmapped_bytes);
   1405   info.uordblks  = static_cast<int>(stats.pageheap.system_bytes
   1406                                     - stats.thread_bytes
   1407                                     - stats.central_bytes
   1408                                     - stats.transfer_bytes
   1409                                     - stats.pageheap.free_bytes
   1410                                     - stats.pageheap.unmapped_bytes);
   1411 
   1412   return info;
   1413 }
   1414 #endif  // HAVE_STRUCT_MALLINFO
   1415 
   1416 static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
   1417 
   1418 inline void* cpp_alloc(size_t size, bool nothrow) {
   1419   for (;;) {
   1420     void* p = do_malloc(size);
   1421 #ifdef PREANSINEW
   1422     return p;
   1423 #else
   1424     if (p == NULL) {  // allocation failed
   1425       // Get the current new handler.  NB: this function is not
   1426       // thread-safe.  We make a feeble stab at making it so here, but
   1427       // this lock only protects against tcmalloc interfering with
   1428       // itself, not with other libraries calling set_new_handler.
   1429       std::new_handler nh;
   1430       {
   1431         SpinLockHolder h(&set_new_handler_lock);
   1432         nh = std::set_new_handler(0);
   1433         (void) std::set_new_handler(nh);
   1434       }
   1435 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1436       if (nh) {
   1437         // Since exceptions are disabled, we don't really know if new_handler
   1438         // failed.  Assume it will abort if it fails.
   1439         (*nh)();
   1440         continue;
   1441       }
   1442       return 0;
   1443 #else
   1444       // If no new_handler is established, the allocation failed.
   1445       if (!nh) {
   1446         if (nothrow) return 0;
   1447         throw std::bad_alloc();
   1448       }
   1449       // Otherwise, try the new_handler.  If it returns, retry the
   1450       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1451       // if it throws something else, don't interfere.
   1452       try {
   1453         (*nh)();
   1454       } catch (const std::bad_alloc&) {
   1455         if (!nothrow) throw;
   1456         return p;
   1457       }
   1458 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1459     } else {  // allocation success
   1460       return p;
   1461     }
   1462 #endif  // PREANSINEW
   1463   }
   1464 }
   1465 
   1466 void* cpp_memalign(size_t align, size_t size) {
   1467   for (;;) {
   1468     void* p = do_memalign(align, size);
   1469 #ifdef PREANSINEW
   1470     return p;
   1471 #else
   1472     if (p == NULL) {  // allocation failed
   1473       // Get the current new handler.  NB: this function is not
   1474       // thread-safe.  We make a feeble stab at making it so here, but
   1475       // this lock only protects against tcmalloc interfering with
   1476       // itself, not with other libraries calling set_new_handler.
   1477       std::new_handler nh;
   1478       {
   1479         SpinLockHolder h(&set_new_handler_lock);
   1480         nh = std::set_new_handler(0);
   1481         (void) std::set_new_handler(nh);
   1482       }
   1483 #if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1484       if (nh) {
   1485         // Since exceptions are disabled, we don't really know if new_handler
   1486         // failed.  Assume it will abort if it fails.
   1487         (*nh)();
   1488         continue;
   1489       }
   1490       return 0;
   1491 #else
   1492       // If no new_handler is established, the allocation failed.
   1493       if (!nh)
   1494         return 0;
   1495 
   1496       // Otherwise, try the new_handler.  If it returns, retry the
   1497       // allocation.  If it throws std::bad_alloc, fail the allocation.
   1498       // if it throws something else, don't interfere.
   1499       try {
   1500         (*nh)();
   1501       } catch (const std::bad_alloc&) {
   1502         return p;
   1503       }
   1504 #endif  // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
   1505     } else {  // allocation success
   1506       return p;
   1507     }
   1508 #endif  // PREANSINEW
   1509   }
   1510 }
   1511 
   1512 }  // end unnamed namespace
   1513 
   1514 // As promised, the definition of this function, declared above.
   1515 size_t TCMallocImplementation::GetAllocatedSize(const void* ptr) {
   1516   // Chromium workaround for third-party code calling tc_malloc_size(NULL), see
   1517   // http://code.google.com/p/chromium/issues/detail?id=118087
   1518   // Note: this is consistent with GLIBC's implementation of
   1519   // malloc_usable_size(NULL).
   1520   if (ptr == NULL)
   1521     return 0;
   1522   ASSERT(TCMallocImplementation::GetOwnership(ptr)
   1523          != TCMallocImplementation::kNotOwned);
   1524   return ExcludeSpaceForMark(
   1525       GetSizeWithCallback(ptr, &InvalidGetAllocatedSize));
   1526 }
   1527 
   1528 void TCMallocImplementation::MarkThreadBusy() {
   1529   // Allocate to force the creation of a thread cache, but avoid
   1530   // invoking any hooks.
   1531   do_free(do_malloc(0));
   1532 }
   1533 
   1534 //-------------------------------------------------------------------
   1535 // Exported routines
   1536 //-------------------------------------------------------------------
   1537 
   1538 extern "C" PERFTOOLS_DLL_DECL const char* tc_version(
   1539     int* major, int* minor, const char** patch) __THROW {
   1540   if (major) *major = TC_VERSION_MAJOR;
   1541   if (minor) *minor = TC_VERSION_MINOR;
   1542   if (patch) *patch = TC_VERSION_PATCH;
   1543   return TC_VERSION_STRING;
   1544 }
   1545 
   1546 // This function behaves similarly to MSVC's _set_new_mode.
   1547 // If flag is 0 (default), calls to malloc will behave normally.
   1548 // If flag is 1, calls to malloc will behave like calls to new,
   1549 // and the std_new_handler will be invoked on failure.
   1550 // Returns the previous mode.
   1551 extern "C" PERFTOOLS_DLL_DECL int tc_set_new_mode(int flag) __THROW {
   1552   int old_mode = tc_new_mode;
   1553   tc_new_mode = flag;
   1554   return old_mode;
   1555 }
   1556 
   1557 #ifndef TCMALLOC_USING_DEBUGALLOCATION  // debugallocation.cc defines its own
   1558 
   1559 // CAVEAT: The code structure below ensures that MallocHook methods are always
   1560 //         called from the stack frame of the invoked allocation function.
   1561 //         heap-checker.cc depends on this to start a stack trace from
   1562 //         the call to the (de)allocation function.
   1563 
   1564 extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW {
   1565   void* result = do_malloc_or_cpp_alloc(size);
   1566   MallocHook::InvokeNewHook(result, size);
   1567   return result;
   1568 }
   1569 
   1570 extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW {
   1571   MallocHook::InvokeDeleteHook(ptr);
   1572   do_free(ptr);
   1573 }
   1574 
   1575 extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t n,
   1576                                               size_t elem_size) __THROW {
   1577   void* result = do_calloc(n, elem_size);
   1578   MallocHook::InvokeNewHook(result, n * elem_size);
   1579   return result;
   1580 }
   1581 
   1582 extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW {
   1583   MallocHook::InvokeDeleteHook(ptr);
   1584   do_free(ptr);
   1585 }
   1586 
   1587 extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* old_ptr,
   1588                                                size_t new_size) __THROW {
   1589   if (old_ptr == NULL) {
   1590     void* result = do_malloc_or_cpp_alloc(new_size);
   1591     MallocHook::InvokeNewHook(result, new_size);
   1592     return result;
   1593   }
   1594   if (new_size == 0) {
   1595     MallocHook::InvokeDeleteHook(old_ptr);
   1596     do_free(old_ptr);
   1597     return NULL;
   1598   }
   1599   return do_realloc(old_ptr, new_size);
   1600 }
   1601 
   1602 extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) {
   1603   void* p = cpp_alloc(size, false);
   1604   // We keep this next instruction out of cpp_alloc for a reason: when
   1605   // it's in, and new just calls cpp_alloc, the optimizer may fold the
   1606   // new call into cpp_alloc, which messes up our whole section-based
   1607   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
   1608   // isn't the last thing this fn calls, and prevents the folding.
   1609   MallocHook::InvokeNewHook(p, size);
   1610   return p;
   1611 }
   1612 
   1613 extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
   1614   void* p = cpp_alloc(size, true);
   1615   MallocHook::InvokeNewHook(p, size);
   1616   return p;
   1617 }
   1618 
   1619 extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW {
   1620   MallocHook::InvokeDeleteHook(p);
   1621   do_free(p);
   1622 }
   1623 
   1624 // Standard C++ library implementations define and use this
   1625 // (via ::operator delete(ptr, nothrow)).
   1626 // But it's really the same as normal delete, so we just do the same thing.
   1627 extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW {
   1628   MallocHook::InvokeDeleteHook(p);
   1629   do_free(p);
   1630 }
   1631 
   1632 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) {
   1633   void* p = cpp_alloc(size, false);
   1634   // We keep this next instruction out of cpp_alloc for a reason: when
   1635   // it's in, and new just calls cpp_alloc, the optimizer may fold the
   1636   // new call into cpp_alloc, which messes up our whole section-based
   1637   // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
   1638   // isn't the last thing this fn calls, and prevents the folding.
   1639   MallocHook::InvokeNewHook(p, size);
   1640   return p;
   1641 }
   1642 
   1643 extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&)
   1644     __THROW {
   1645   void* p = cpp_alloc(size, true);
   1646   MallocHook::InvokeNewHook(p, size);
   1647   return p;
   1648 }
   1649 
   1650 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW {
   1651   MallocHook::InvokeDeleteHook(p);
   1652   do_free(p);
   1653 }
   1654 
   1655 extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW {
   1656   MallocHook::InvokeDeleteHook(p);
   1657   do_free(p);
   1658 }
   1659 
   1660 extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align,
   1661                                                 size_t size) __THROW {
   1662   void* result = do_memalign_or_cpp_memalign(align, size);
   1663   MallocHook::InvokeNewHook(result, size);
   1664   return result;
   1665 }
   1666 
   1667 extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(
   1668     void** result_ptr, size_t align, size_t size) __THROW {
   1669   if (((align % sizeof(void*)) != 0) ||
   1670       ((align & (align - 1)) != 0) ||
   1671       (align == 0)) {
   1672     return EINVAL;
   1673   }
   1674 
   1675   void* result = do_memalign_or_cpp_memalign(align, size);
   1676   MallocHook::InvokeNewHook(result, size);
   1677   if (result == NULL) {
   1678     return ENOMEM;
   1679   } else {
   1680     *result_ptr = result;
   1681     return 0;
   1682   }
   1683 }
   1684 
   1685 static size_t pagesize = 0;
   1686 
   1687 extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW {
   1688   // Allocate page-aligned object of length >= size bytes
   1689   if (pagesize == 0) pagesize = getpagesize();
   1690   void* result = do_memalign_or_cpp_memalign(pagesize, size);
   1691   MallocHook::InvokeNewHook(result, size);
   1692   return result;
   1693 }
   1694 
   1695 extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW {
   1696   // Round up size to a multiple of pagesize
   1697   if (pagesize == 0) pagesize = getpagesize();
   1698   if (size == 0) {     // pvalloc(0) should allocate one page, according to
   1699     size = pagesize;   // http://man.free4web.biz/man3/libmpatrol.3.html
   1700   }
   1701   size = (size + pagesize - 1) & ~(pagesize - 1);
   1702   void* result = do_memalign_or_cpp_memalign(pagesize, size);
   1703   MallocHook::InvokeNewHook(result, size);
   1704   return result;
   1705 }
   1706 
   1707 extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW {
   1708   do_malloc_stats();
   1709 }
   1710 
   1711 extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW {
   1712   return do_mallopt(cmd, value);
   1713 }
   1714 
   1715 #ifdef HAVE_STRUCT_MALLINFO
   1716 extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW {
   1717   return do_mallinfo();
   1718 }
   1719 #endif
   1720 
   1721 extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW {
   1722   return MallocExtension::instance()->GetAllocatedSize(ptr);
   1723 }
   1724 
   1725 #if defined(OS_LINUX)
   1726 extern "C" void* PERFTOOLS_DLL_DECL tc_malloc_skip_new_handler(size_t size) {
   1727   void* result = do_malloc(size);
   1728   MallocHook::InvokeNewHook(result, size);
   1729   return result;
   1730 }
   1731 #endif
   1732 
   1733 #endif  // TCMALLOC_USING_DEBUGALLOCATION
   1734 
   1735 #if defined(OS_LINUX)
   1736 // Alias the weak symbol in chromium to our implementation.
   1737 extern "C" __attribute__((visibility("default"), alias("tc_malloc_skip_new_handler")))
   1738 void* tc_malloc_skip_new_handler_weak(size_t size);
   1739 #endif
   1740 
   1741 // --- Validation implementation with an extra mark ----------------------------
   1742 // We will put a mark at the extreme end of each allocation block.  We make
   1743 // sure that we always allocate enough "extra memory" that we can fit in the
   1744 // mark, and still provide the requested usable region.  If ever that mark is
   1745 // not as expected, then we know that the user is corrupting memory beyond their
   1746 // request size, or that they have called free a second time without having
   1747 // the memory allocated (again).  This allows us to spot most double free()s,
   1748 // but some can "slip by" or confuse our logic if the caller reallocates memory
   1749 // (for a second use) before performing an evil double-free of a first
   1750 // allocation
   1751 
   1752 // This code can be optimized, but for now, it is written to be most easily
   1753 // understood, and flexible (since it is evolving a bit). Potential
   1754 // optimizations include using other calculated data, such as class size, or
   1755 // allocation size, which is known in the code above, but then is recalculated
   1756 // below.  Another potential optimization would be careful manual inlining of
   1757 // code, but I *think* that the compile will probably do this for me, and I've
   1758 // been careful to avoid aliasing issues that might make a compiler back-off.
   1759 
   1760 // Evolution includes experimenting with different marks, to minimize the chance
   1761 // that a mark would be misunderstood (missed corruption).  The marks are meant
   1762 // to be hashed encoding of the location, so that they can't be copied over a
   1763 // different region (by accident) without being detected (most of the time).
   1764 
   1765 // Enable the following define to turn on all the TCMalloc checking.
   1766 // It will cost about 2% in performance, but it will catch double frees (most of
   1767 // the time), and will often catch allocated-buffer overrun errors.  This
   1768 // validation is only active when TCMalloc is used as the allocator.
   1769 #ifndef NDEBUG
   1770 #define TCMALLOC_VALIDATION
   1771 #endif
   1772 
   1773 #if !defined(TCMALLOC_VALIDATION)
   1774 
   1775 static size_t ExcludeSpaceForMark(size_t size) { return size; }
   1776 static void AddRoomForMark(size_t* size) {}
   1777 static void ExcludeMarkFromSize(size_t* new_size) {}
   1778 static void MarkAllocatedRegion(void* ptr) {}
   1779 static void ValidateAllocatedRegion(void* ptr, size_t cl) {}
   1780 
   1781 #else  // TCMALLOC_VALIDATION
   1782 
   1783 static void DieFromDoubleFree() {
   1784   Log(kCrash, __FILE__, __LINE__, "Attempt to double free");
   1785 }
   1786 
   1787 static void DieFromMemoryCorruption() {
   1788   Log(kCrash, __FILE__, __LINE__, "Memory corrupted");
   1789 }
   1790 
   1791 // We can either do byte marking, or whole word marking based on the following
   1792 // define.  char is as small as we can get, and word marking probably provides
   1793 // more than enough bits that we won't miss a corruption. Any sized integral
   1794 // type can be used, but we just define two examples.
   1795 
   1796 //  #define TCMALLOC_SMALL_VALIDATION
   1797 #if defined (TCMALLOC_SMALL_VALIDATION)
   1798 
   1799 typedef char MarkType;  // char saves memory... int is more complete.
   1800 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0x36);
   1801 
   1802 #else
   1803 
   1804 typedef int MarkType;  // char saves memory... int is more complete.
   1805 static const MarkType kAllocationMarkMask = static_cast<MarkType>(0xE1AB9536);
   1806 
   1807 #endif
   1808 
   1809 // TODO(jar): See if use of reference rather than pointer gets better inlining,
   1810 // or if macro is needed.  My fear is that taking address map preclude register
   1811 // allocation :-(.
   1812 inline static void AddRoomForMark(size_t* size) {
   1813   *size += sizeof(kAllocationMarkMask);
   1814 }
   1815 
   1816 inline static void ExcludeMarkFromSize(size_t* new_size) {
   1817   *new_size -= sizeof(kAllocationMarkMask);
   1818 }
   1819 
   1820 inline static size_t ExcludeSpaceForMark(size_t size) {
   1821   return size - sizeof(kAllocationMarkMask);  // Lie about size when asked.
   1822 }
   1823 
   1824 inline static MarkType* GetMarkLocation(void* ptr) {
   1825   size_t size = GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
   1826   ASSERT(size % sizeof(kAllocationMarkMask) == 0);
   1827   size_t last_index = (size / sizeof(kAllocationMarkMask)) - 1;
   1828   return static_cast<MarkType*>(ptr) + last_index;
   1829 }
   1830 
   1831 // We hash in the mark location plus the pointer so that we effectively mix in
   1832 // the size of the block.  This means that if a span is used for different sizes
   1833 // that the mark will be different. It would be good to hash in the size (which
   1834 // we effectively get by using both mark location and pointer), but even better
   1835 // would be to also include the class, as it concisely contains the entropy
   1836 // found in the size (when we don't have large allocation), and there is less
   1837 // risk of losing those bits to truncation. It would probably be good to combine
   1838 // the high bits of size (capturing info about large blocks) with the class
   1839 // (which is a 6 bit number).
   1840 inline static MarkType GetMarkValue(void* ptr, MarkType* mark) {
   1841   void* ptr2 = static_cast<void*>(mark);
   1842   size_t offset1 = static_cast<char*>(ptr) - static_cast<char*>(NULL);
   1843   size_t offset2 = static_cast<char*>(ptr2) - static_cast<char*>(NULL);
   1844   static const int kInvariantBits = 2;
   1845   ASSERT((offset1 >> kInvariantBits) << kInvariantBits == offset1);
   1846   // Note: low bits of both offsets are invariants due to alignment.  High bits
   1847   // of both offsets are the same (unless we have a large allocation).  Avoid
   1848   // XORing high bits together, as they will cancel for most small allocations.
   1849 
   1850   MarkType ret = kAllocationMarkMask;
   1851   // Using a little shift, we can safely XOR together both offsets.
   1852   ret ^= static_cast<MarkType>(offset1 >> kInvariantBits) ^
   1853          static_cast<MarkType>(offset2);
   1854   if (sizeof(ret) == 1) {
   1855     // Try to bring some high level bits into the mix.
   1856     ret += static_cast<MarkType>(offset1 >> 8) ^
   1857            static_cast<MarkType>(offset1 >> 16) ^
   1858            static_cast<MarkType>(offset1 >> 24) ;
   1859   }
   1860   // Hash in high bits on a 64 bit architecture.
   1861   if (sizeof(size_t) == 8 && sizeof(ret) == 4)
   1862     ret += offset1 >> 16;
   1863   if (ret == 0)
   1864     ret = kAllocationMarkMask;  // Avoid common pattern of all zeros.
   1865   return ret;
   1866 }
   1867 
   1868 // TODO(jar): Use the passed in TCmalloc Class Index to calculate mark location
   1869 // faster.  The current implementation calls general functions, which have to
   1870 // recalculate this in order to get the Class Size.  This is a slow and wasteful
   1871 // recomputation... but it is much more readable this way (for now).
   1872 static void ValidateAllocatedRegion(void* ptr, size_t cl) {
   1873   if (ptr == NULL) return;
   1874   MarkType* mark = GetMarkLocation(ptr);
   1875   MarkType allocated_mark = GetMarkValue(ptr, mark);
   1876   MarkType current_mark = *mark;
   1877 
   1878   if (current_mark == ~allocated_mark)
   1879     DieFromDoubleFree();
   1880   if (current_mark != allocated_mark)
   1881     DieFromMemoryCorruption();
   1882 #ifndef NDEBUG
   1883   // In debug mode, copy the mark into all the free'd region.
   1884   size_t class_size = static_cast<size_t>(reinterpret_cast<char*>(mark) -
   1885                                           reinterpret_cast<char*>(ptr));
   1886   memset(ptr, static_cast<char>(0x36), class_size);
   1887 #endif
   1888   *mark = ~allocated_mark;  //  Distinctively not allocated.
   1889 }
   1890 
   1891 static void MarkAllocatedRegion(void* ptr) {
   1892   if (ptr == NULL) return;
   1893   MarkType* mark = GetMarkLocation(ptr);
   1894   *mark = GetMarkValue(ptr, mark);
   1895 }
   1896 
   1897 #endif  // TCMALLOC_VALIDATION
   1898