Home | History | Annotate | Download | only in neteq
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/audio_coding/neteq/merge.h"
     12 
     13 #include <assert.h>
     14 #include <string.h>  // memmove, memcpy, memset, size_t
     15 
     16 #include <algorithm>  // min, max
     17 
     18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     19 #include "webrtc/modules/audio_coding/neteq/audio_multi_vector.h"
     20 #include "webrtc/modules/audio_coding/neteq/dsp_helper.h"
     21 #include "webrtc/modules/audio_coding/neteq/expand.h"
     22 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
     23 #include "webrtc/system_wrappers/interface/scoped_ptr.h"
     24 
     25 namespace webrtc {
     26 
     27 int Merge::Process(int16_t* input, size_t input_length,
     28                    int16_t* external_mute_factor_array,
     29                    AudioMultiVector* output) {
     30   // TODO(hlundin): Change to an enumerator and skip assert.
     31   assert(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ ==  32000 ||
     32          fs_hz_ == 48000);
     33   assert(fs_hz_ <= kMaxSampleRate);  // Should not be possible.
     34 
     35   int old_length;
     36   int expand_period;
     37   // Get expansion data to overlap and mix with.
     38   int expanded_length = GetExpandedSignal(&old_length, &expand_period);
     39 
     40   // Transfer input signal to an AudioMultiVector.
     41   AudioMultiVector input_vector(num_channels_);
     42   input_vector.PushBackInterleaved(input, input_length);
     43   size_t input_length_per_channel = input_vector.Size();
     44   assert(input_length_per_channel == input_length / num_channels_);
     45 
     46   int16_t best_correlation_index = 0;
     47   size_t output_length = 0;
     48 
     49   for (size_t channel = 0; channel < num_channels_; ++channel) {
     50     int16_t* input_channel = &input_vector[channel][0];
     51     int16_t* expanded_channel = &expanded_[channel][0];
     52     int16_t expanded_max, input_max;
     53     int16_t new_mute_factor = SignalScaling(
     54         input_channel, static_cast<int>(input_length_per_channel),
     55         expanded_channel, &expanded_max, &input_max);
     56 
     57     // Adjust muting factor (product of "main" muting factor and expand muting
     58     // factor).
     59     int16_t* external_mute_factor = &external_mute_factor_array[channel];
     60     *external_mute_factor =
     61         (*external_mute_factor * expand_->MuteFactor(channel)) >> 14;
     62 
     63     // Update |external_mute_factor| if it is lower than |new_mute_factor|.
     64     if (new_mute_factor > *external_mute_factor) {
     65       *external_mute_factor = std::min(new_mute_factor,
     66                                        static_cast<int16_t>(16384));
     67     }
     68 
     69     if (channel == 0) {
     70       // Downsample, correlate, and find strongest correlation period for the
     71       // master (i.e., first) channel only.
     72       // Downsample to 4kHz sample rate.
     73       Downsample(input_channel, static_cast<int>(input_length_per_channel),
     74                  expanded_channel, expanded_length);
     75 
     76       // Calculate the lag of the strongest correlation period.
     77       best_correlation_index = CorrelateAndPeakSearch(
     78           expanded_max, input_max, old_length,
     79           static_cast<int>(input_length_per_channel), expand_period);
     80     }
     81 
     82     static const int kTempDataSize = 3600;
     83     int16_t temp_data[kTempDataSize];  // TODO(hlundin) Remove this.
     84     int16_t* decoded_output = temp_data + best_correlation_index;
     85 
     86     // Mute the new decoded data if needed (and unmute it linearly).
     87     // This is the overlapping part of expanded_signal.
     88     int interpolation_length = std::min(
     89         kMaxCorrelationLength * fs_mult_,
     90         expanded_length - best_correlation_index);
     91     interpolation_length = std::min(interpolation_length,
     92                                     static_cast<int>(input_length_per_channel));
     93     if (*external_mute_factor < 16384) {
     94       // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB,
     95       // and so on.
     96       int increment = 4194 / fs_mult_;
     97       *external_mute_factor = DspHelper::RampSignal(input_channel,
     98                                                     interpolation_length,
     99                                                     *external_mute_factor,
    100                                                     increment);
    101       DspHelper::UnmuteSignal(&input_channel[interpolation_length],
    102                               input_length_per_channel - interpolation_length,
    103                               external_mute_factor, increment,
    104                               &decoded_output[interpolation_length]);
    105     } else {
    106       // No muting needed.
    107       memmove(
    108           &decoded_output[interpolation_length],
    109           &input_channel[interpolation_length],
    110           sizeof(int16_t) * (input_length_per_channel - interpolation_length));
    111     }
    112 
    113     // Do overlap and mix linearly.
    114     int increment = 16384 / (interpolation_length + 1);  // In Q14.
    115     int16_t mute_factor = 16384 - increment;
    116     memmove(temp_data, expanded_channel,
    117             sizeof(int16_t) * best_correlation_index);
    118     DspHelper::CrossFade(&expanded_channel[best_correlation_index],
    119                          input_channel, interpolation_length,
    120                          &mute_factor, increment, decoded_output);
    121 
    122     output_length = best_correlation_index + input_length_per_channel;
    123     if (channel == 0) {
    124       assert(output->Empty());  // Output should be empty at this point.
    125       output->AssertSize(output_length);
    126     } else {
    127       assert(output->Size() == output_length);
    128     }
    129     memcpy(&(*output)[channel][0], temp_data,
    130            sizeof(temp_data[0]) * output_length);
    131   }
    132 
    133   // Copy back the first part of the data to |sync_buffer_| and remove it from
    134   // |output|.
    135   sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index());
    136   output->PopFront(old_length);
    137 
    138   // Return new added length. |old_length| samples were borrowed from
    139   // |sync_buffer_|.
    140   return static_cast<int>(output_length) - old_length;
    141 }
    142 
    143 int Merge::GetExpandedSignal(int* old_length, int* expand_period) {
    144   // Check how much data that is left since earlier.
    145   *old_length = static_cast<int>(sync_buffer_->FutureLength());
    146   // Should never be less than overlap_length.
    147   assert(*old_length >= static_cast<int>(expand_->overlap_length()));
    148   // Generate data to merge the overlap with using expand.
    149   expand_->SetParametersForMergeAfterExpand();
    150 
    151   if (*old_length >= 210 * kMaxSampleRate / 8000) {
    152     // TODO(hlundin): Write test case for this.
    153     // The number of samples available in the sync buffer is more than what fits
    154     // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples,
    155     // but shift them towards the end of the buffer. This is ok, since all of
    156     // the buffer will be expand data anyway, so as long as the beginning is
    157     // left untouched, we're fine.
    158     int16_t length_diff = *old_length - 210 * kMaxSampleRate / 8000;
    159     sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index());
    160     *old_length = 210 * kMaxSampleRate / 8000;
    161     // This is the truncated length.
    162   }
    163   // This assert should always be true thanks to the if statement above.
    164   assert(210 * kMaxSampleRate / 8000 - *old_length >= 0);
    165 
    166   AudioMultiVector expanded_temp(num_channels_);
    167   expand_->Process(&expanded_temp);
    168   *expand_period = static_cast<int>(expanded_temp.Size());  // Samples per
    169                                                             // channel.
    170 
    171   expanded_.Clear();
    172   // Copy what is left since earlier into the expanded vector.
    173   expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index());
    174   assert(expanded_.Size() == static_cast<size_t>(*old_length));
    175   assert(expanded_temp.Size() > 0);
    176   // Do "ugly" copy and paste from the expanded in order to generate more data
    177   // to correlate (but not interpolate) with.
    178   const int required_length = (120 + 80 + 2) * fs_mult_;
    179   if (expanded_.Size() < static_cast<size_t>(required_length)) {
    180     while (expanded_.Size() < static_cast<size_t>(required_length)) {
    181       // Append one more pitch period each time.
    182       expanded_.PushBack(expanded_temp);
    183     }
    184     // Trim the length to exactly |required_length|.
    185     expanded_.PopBack(expanded_.Size() - required_length);
    186   }
    187   assert(expanded_.Size() >= static_cast<size_t>(required_length));
    188   return required_length;
    189 }
    190 
    191 int16_t Merge::SignalScaling(const int16_t* input, int input_length,
    192                              const int16_t* expanded_signal,
    193                              int16_t* expanded_max, int16_t* input_max) const {
    194   // Adjust muting factor if new vector is more or less of the BGN energy.
    195   const int mod_input_length = std::min(64 * fs_mult_, input_length);
    196   *expanded_max = WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length);
    197   *input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length);
    198 
    199   // Calculate energy of expanded signal.
    200   // |log_fs_mult| is log2(fs_mult_), but is not exact for 48000 Hz.
    201   int log_fs_mult = 30 - WebRtcSpl_NormW32(fs_mult_);
    202   int expanded_shift = 6 + log_fs_mult
    203       - WebRtcSpl_NormW32(*expanded_max * *expanded_max);
    204   expanded_shift = std::max(expanded_shift, 0);
    205   int32_t energy_expanded = WebRtcSpl_DotProductWithScale(expanded_signal,
    206                                                           expanded_signal,
    207                                                           mod_input_length,
    208                                                           expanded_shift);
    209 
    210   // Calculate energy of input signal.
    211   int input_shift = 6 + log_fs_mult -
    212       WebRtcSpl_NormW32(*input_max * *input_max);
    213   input_shift = std::max(input_shift, 0);
    214   int32_t energy_input = WebRtcSpl_DotProductWithScale(input, input,
    215                                                        mod_input_length,
    216                                                        input_shift);
    217 
    218   // Align to the same Q-domain.
    219   if (input_shift > expanded_shift) {
    220     energy_expanded = energy_expanded >> (input_shift - expanded_shift);
    221   } else {
    222     energy_input = energy_input >> (expanded_shift - input_shift);
    223   }
    224 
    225   // Calculate muting factor to use for new frame.
    226   int16_t mute_factor;
    227   if (energy_input > energy_expanded) {
    228     // Normalize |energy_input| to 14 bits.
    229     int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17;
    230     energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift);
    231     // Put |energy_expanded| in a domain 14 higher, so that
    232     // energy_expanded / energy_input is in Q14.
    233     energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14);
    234     // Calculate sqrt(energy_expanded / energy_input) in Q14.
    235     mute_factor = WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14);
    236   } else {
    237     // Set to 1 (in Q14) when |expanded| has higher energy than |input|.
    238     mute_factor = 16384;
    239   }
    240 
    241   return mute_factor;
    242 }
    243 
    244 // TODO(hlundin): There are some parameter values in this method that seem
    245 // strange. Compare with Expand::Correlation.
    246 void Merge::Downsample(const int16_t* input, int input_length,
    247                        const int16_t* expanded_signal, int expanded_length) {
    248   const int16_t* filter_coefficients;
    249   int num_coefficients;
    250   int decimation_factor = fs_hz_ / 4000;
    251   static const int kCompensateDelay = 0;
    252   int length_limit = fs_hz_ / 100;  // 10 ms in samples.
    253   if (fs_hz_ == 8000) {
    254     filter_coefficients = DspHelper::kDownsample8kHzTbl;
    255     num_coefficients = 3;
    256   } else if (fs_hz_ == 16000) {
    257     filter_coefficients = DspHelper::kDownsample16kHzTbl;
    258     num_coefficients = 5;
    259   } else if (fs_hz_ == 32000) {
    260     filter_coefficients = DspHelper::kDownsample32kHzTbl;
    261     num_coefficients = 7;
    262   } else {  // fs_hz_ == 48000
    263     filter_coefficients = DspHelper::kDownsample48kHzTbl;
    264     num_coefficients = 7;
    265   }
    266   int signal_offset = num_coefficients - 1;
    267   WebRtcSpl_DownsampleFast(&expanded_signal[signal_offset],
    268                            expanded_length - signal_offset,
    269                            expanded_downsampled_, kExpandDownsampLength,
    270                            filter_coefficients, num_coefficients,
    271                            decimation_factor, kCompensateDelay);
    272   if (input_length <= length_limit) {
    273     // Not quite long enough, so we have to cheat a bit.
    274     int16_t temp_len = input_length - signal_offset;
    275     // TODO(hlundin): Should |downsamp_temp_len| be corrected for round-off
    276     // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor?
    277     int16_t downsamp_temp_len = temp_len / decimation_factor;
    278     WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len,
    279                              input_downsampled_, downsamp_temp_len,
    280                              filter_coefficients, num_coefficients,
    281                              decimation_factor, kCompensateDelay);
    282     memset(&input_downsampled_[downsamp_temp_len], 0,
    283            sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len));
    284   } else {
    285     WebRtcSpl_DownsampleFast(&input[signal_offset],
    286                              input_length - signal_offset, input_downsampled_,
    287                              kInputDownsampLength, filter_coefficients,
    288                              num_coefficients, decimation_factor,
    289                              kCompensateDelay);
    290   }
    291 }
    292 
    293 int16_t Merge::CorrelateAndPeakSearch(int16_t expanded_max, int16_t input_max,
    294                                       int start_position, int input_length,
    295                                       int expand_period) const {
    296   // Calculate correlation without any normalization.
    297   const int max_corr_length = kMaxCorrelationLength;
    298   int stop_position_downsamp = std::min(
    299       max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1);
    300   int16_t correlation_shift = 0;
    301   if (expanded_max * input_max > 26843546) {
    302     correlation_shift = 3;
    303   }
    304 
    305   int32_t correlation[kMaxCorrelationLength];
    306   WebRtcSpl_CrossCorrelation(correlation, input_downsampled_,
    307                              expanded_downsampled_, kInputDownsampLength,
    308                              stop_position_downsamp, correlation_shift, 1);
    309 
    310   // Normalize correlation to 14 bits and copy to a 16-bit array.
    311   const int pad_length = static_cast<int>(expand_->overlap_length() - 1);
    312   const int correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength;
    313   scoped_ptr<int16_t[]> correlation16(new int16_t[correlation_buffer_size]);
    314   memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t));
    315   int16_t* correlation_ptr = &correlation16[pad_length];
    316   int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation,
    317                                                      stop_position_downsamp);
    318   int16_t norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation));
    319   WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp,
    320                                    correlation, norm_shift);
    321 
    322   // Calculate allowed starting point for peak finding.
    323   // The peak location bestIndex must fulfill two criteria:
    324   // (1) w16_bestIndex + input_length <
    325   //     timestamps_per_call_ + expand_->overlap_length();
    326   // (2) w16_bestIndex + input_length < start_position.
    327   int start_index = timestamps_per_call_ +
    328       static_cast<int>(expand_->overlap_length());
    329   start_index = std::max(start_position, start_index);
    330   start_index = std::max(start_index - input_length, 0);
    331   // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.)
    332   int start_index_downsamp = start_index / (fs_mult_ * 2);
    333 
    334   // Calculate a modified |stop_position_downsamp| to account for the increased
    335   // start index |start_index_downsamp| and the effective array length.
    336   int modified_stop_pos =
    337       std::min(stop_position_downsamp,
    338                kMaxCorrelationLength + pad_length - start_index_downsamp);
    339   int best_correlation_index;
    340   int16_t best_correlation;
    341   static const int kNumCorrelationCandidates = 1;
    342   DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp],
    343                            modified_stop_pos, kNumCorrelationCandidates,
    344                            fs_mult_, &best_correlation_index,
    345                            &best_correlation);
    346   // Compensate for modified start index.
    347   best_correlation_index += start_index;
    348 
    349   // Ensure that underrun does not occur for 10ms case => we have to get at
    350   // least 10ms + overlap . (This should never happen thanks to the above
    351   // modification of peak-finding starting point.)
    352   while ((best_correlation_index + input_length) <
    353       static_cast<int>(timestamps_per_call_ + expand_->overlap_length()) ||
    354       best_correlation_index + input_length < start_position) {
    355     assert(false);  // Should never happen.
    356     best_correlation_index += expand_period;  // Jump one lag ahead.
    357   }
    358   return best_correlation_index;
    359 }
    360 
    361 int Merge::RequiredFutureSamples() {
    362   return static_cast<int>(fs_hz_ / 100 * num_channels_);  // 10 ms.
    363 }
    364 
    365 
    366 }  // namespace webrtc
    367