Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_ARM
      8 
      9 #include "src/base/bits.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/code-stubs.h"
     12 #include "src/codegen.h"
     13 #include "src/ic/handler-compiler.h"
     14 #include "src/ic/ic.h"
     15 #include "src/isolate.h"
     16 #include "src/jsregexp.h"
     17 #include "src/regexp-macro-assembler.h"
     18 #include "src/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 
     24 static void InitializeArrayConstructorDescriptor(
     25     Isolate* isolate, CodeStubDescriptor* descriptor,
     26     int constant_stack_parameter_count) {
     27   Address deopt_handler = Runtime::FunctionForId(
     28       Runtime::kArrayConstructor)->entry;
     29 
     30   if (constant_stack_parameter_count == 0) {
     31     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     32                            JS_FUNCTION_STUB_MODE);
     33   } else {
     34     descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
     35                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     36   }
     37 }
     38 
     39 
     40 static void InitializeInternalArrayConstructorDescriptor(
     41     Isolate* isolate, CodeStubDescriptor* descriptor,
     42     int constant_stack_parameter_count) {
     43   Address deopt_handler = Runtime::FunctionForId(
     44       Runtime::kInternalArrayConstructor)->entry;
     45 
     46   if (constant_stack_parameter_count == 0) {
     47     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     48                            JS_FUNCTION_STUB_MODE);
     49   } else {
     50     descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count,
     51                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     52   }
     53 }
     54 
     55 
     56 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
     57     CodeStubDescriptor* descriptor) {
     58   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
     59 }
     60 
     61 
     62 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
     63     CodeStubDescriptor* descriptor) {
     64   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
     65 }
     66 
     67 
     68 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
     69     CodeStubDescriptor* descriptor) {
     70   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
     71 }
     72 
     73 
     74 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
     75     CodeStubDescriptor* descriptor) {
     76   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
     77 }
     78 
     79 
     80 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
     81     CodeStubDescriptor* descriptor) {
     82   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
     83 }
     84 
     85 
     86 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
     87     CodeStubDescriptor* descriptor) {
     88   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
     89 }
     90 
     91 
     92 #define __ ACCESS_MASM(masm)
     93 
     94 
     95 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
     96                                           Label* slow,
     97                                           Condition cond);
     98 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
     99                                     Register lhs,
    100                                     Register rhs,
    101                                     Label* lhs_not_nan,
    102                                     Label* slow,
    103                                     bool strict);
    104 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    105                                            Register lhs,
    106                                            Register rhs);
    107 
    108 
    109 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
    110                                                ExternalReference miss) {
    111   // Update the static counter each time a new code stub is generated.
    112   isolate()->counters()->code_stubs()->Increment();
    113 
    114   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
    115   int param_count = descriptor.GetEnvironmentParameterCount();
    116   {
    117     // Call the runtime system in a fresh internal frame.
    118     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    119     DCHECK(param_count == 0 ||
    120            r0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
    121     // Push arguments
    122     for (int i = 0; i < param_count; ++i) {
    123       __ push(descriptor.GetEnvironmentParameterRegister(i));
    124     }
    125     __ CallExternalReference(miss, param_count);
    126   }
    127 
    128   __ Ret();
    129 }
    130 
    131 
    132 void DoubleToIStub::Generate(MacroAssembler* masm) {
    133   Label out_of_range, only_low, negate, done;
    134   Register input_reg = source();
    135   Register result_reg = destination();
    136   DCHECK(is_truncating());
    137 
    138   int double_offset = offset();
    139   // Account for saved regs if input is sp.
    140   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
    141 
    142   Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
    143   Register scratch_low =
    144       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
    145   Register scratch_high =
    146       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
    147   LowDwVfpRegister double_scratch = kScratchDoubleReg;
    148 
    149   __ Push(scratch_high, scratch_low, scratch);
    150 
    151   if (!skip_fastpath()) {
    152     // Load double input.
    153     __ vldr(double_scratch, MemOperand(input_reg, double_offset));
    154     __ vmov(scratch_low, scratch_high, double_scratch);
    155 
    156     // Do fast-path convert from double to int.
    157     __ vcvt_s32_f64(double_scratch.low(), double_scratch);
    158     __ vmov(result_reg, double_scratch.low());
    159 
    160     // If result is not saturated (0x7fffffff or 0x80000000), we are done.
    161     __ sub(scratch, result_reg, Operand(1));
    162     __ cmp(scratch, Operand(0x7ffffffe));
    163     __ b(lt, &done);
    164   } else {
    165     // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
    166     // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
    167     if (double_offset == 0) {
    168       __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
    169     } else {
    170       __ ldr(scratch_low, MemOperand(input_reg, double_offset));
    171       __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
    172     }
    173   }
    174 
    175   __ Ubfx(scratch, scratch_high,
    176          HeapNumber::kExponentShift, HeapNumber::kExponentBits);
    177   // Load scratch with exponent - 1. This is faster than loading
    178   // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
    179   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
    180   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
    181   // If exponent is greater than or equal to 84, the 32 less significant
    182   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
    183   // the result is 0.
    184   // Compare exponent with 84 (compare exponent - 1 with 83).
    185   __ cmp(scratch, Operand(83));
    186   __ b(ge, &out_of_range);
    187 
    188   // If we reach this code, 31 <= exponent <= 83.
    189   // So, we don't have to handle cases where 0 <= exponent <= 20 for
    190   // which we would need to shift right the high part of the mantissa.
    191   // Scratch contains exponent - 1.
    192   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
    193   __ rsb(scratch, scratch, Operand(51), SetCC);
    194   __ b(ls, &only_low);
    195   // 21 <= exponent <= 51, shift scratch_low and scratch_high
    196   // to generate the result.
    197   __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
    198   // Scratch contains: 52 - exponent.
    199   // We needs: exponent - 20.
    200   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
    201   __ rsb(scratch, scratch, Operand(32));
    202   __ Ubfx(result_reg, scratch_high,
    203           0, HeapNumber::kMantissaBitsInTopWord);
    204   // Set the implicit 1 before the mantissa part in scratch_high.
    205   __ orr(result_reg, result_reg,
    206          Operand(1 << HeapNumber::kMantissaBitsInTopWord));
    207   __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
    208   __ b(&negate);
    209 
    210   __ bind(&out_of_range);
    211   __ mov(result_reg, Operand::Zero());
    212   __ b(&done);
    213 
    214   __ bind(&only_low);
    215   // 52 <= exponent <= 83, shift only scratch_low.
    216   // On entry, scratch contains: 52 - exponent.
    217   __ rsb(scratch, scratch, Operand::Zero());
    218   __ mov(result_reg, Operand(scratch_low, LSL, scratch));
    219 
    220   __ bind(&negate);
    221   // If input was positive, scratch_high ASR 31 equals 0 and
    222   // scratch_high LSR 31 equals zero.
    223   // New result = (result eor 0) + 0 = result.
    224   // If the input was negative, we have to negate the result.
    225   // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
    226   // New result = (result eor 0xffffffff) + 1 = 0 - result.
    227   __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
    228   __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
    229 
    230   __ bind(&done);
    231 
    232   __ Pop(scratch_high, scratch_low, scratch);
    233   __ Ret();
    234 }
    235 
    236 
    237 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
    238     Isolate* isolate) {
    239   WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2);
    240   WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3);
    241   stub1.GetCode();
    242   stub2.GetCode();
    243 }
    244 
    245 
    246 // See comment for class.
    247 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
    248   Label max_negative_int;
    249   // the_int_ has the answer which is a signed int32 but not a Smi.
    250   // We test for the special value that has a different exponent.  This test
    251   // has the neat side effect of setting the flags according to the sign.
    252   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
    253   __ cmp(the_int(), Operand(0x80000000u));
    254   __ b(eq, &max_negative_int);
    255   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
    256   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
    257   uint32_t non_smi_exponent =
    258       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
    259   __ mov(scratch(), Operand(non_smi_exponent));
    260   // Set the sign bit in scratch_ if the value was negative.
    261   __ orr(scratch(), scratch(), Operand(HeapNumber::kSignMask), LeaveCC, cs);
    262   // Subtract from 0 if the value was negative.
    263   __ rsb(the_int(), the_int(), Operand::Zero(), LeaveCC, cs);
    264   // We should be masking the implict first digit of the mantissa away here,
    265   // but it just ends up combining harmlessly with the last digit of the
    266   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
    267   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
    268   DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
    269   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
    270   __ orr(scratch(), scratch(), Operand(the_int(), LSR, shift_distance));
    271   __ str(scratch(),
    272          FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
    273   __ mov(scratch(), Operand(the_int(), LSL, 32 - shift_distance));
    274   __ str(scratch(),
    275          FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
    276   __ Ret();
    277 
    278   __ bind(&max_negative_int);
    279   // The max negative int32 is stored as a positive number in the mantissa of
    280   // a double because it uses a sign bit instead of using two's complement.
    281   // The actual mantissa bits stored are all 0 because the implicit most
    282   // significant 1 bit is not stored.
    283   non_smi_exponent += 1 << HeapNumber::kExponentShift;
    284   __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
    285   __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
    286   __ mov(ip, Operand::Zero());
    287   __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
    288   __ Ret();
    289 }
    290 
    291 
    292 // Handle the case where the lhs and rhs are the same object.
    293 // Equality is almost reflexive (everything but NaN), so this is a test
    294 // for "identity and not NaN".
    295 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
    296                                           Label* slow,
    297                                           Condition cond) {
    298   Label not_identical;
    299   Label heap_number, return_equal;
    300   __ cmp(r0, r1);
    301   __ b(ne, &not_identical);
    302 
    303   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
    304   // so we do the second best thing - test it ourselves.
    305   // They are both equal and they are not both Smis so both of them are not
    306   // Smis.  If it's not a heap number, then return equal.
    307   if (cond == lt || cond == gt) {
    308     __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
    309     __ b(ge, slow);
    310   } else {
    311     __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
    312     __ b(eq, &heap_number);
    313     // Comparing JS objects with <=, >= is complicated.
    314     if (cond != eq) {
    315       __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
    316       __ b(ge, slow);
    317       // Normally here we fall through to return_equal, but undefined is
    318       // special: (undefined == undefined) == true, but
    319       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
    320       if (cond == le || cond == ge) {
    321         __ cmp(r4, Operand(ODDBALL_TYPE));
    322         __ b(ne, &return_equal);
    323         __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
    324         __ cmp(r0, r2);
    325         __ b(ne, &return_equal);
    326         if (cond == le) {
    327           // undefined <= undefined should fail.
    328           __ mov(r0, Operand(GREATER));
    329         } else  {
    330           // undefined >= undefined should fail.
    331           __ mov(r0, Operand(LESS));
    332         }
    333         __ Ret();
    334       }
    335     }
    336   }
    337 
    338   __ bind(&return_equal);
    339   if (cond == lt) {
    340     __ mov(r0, Operand(GREATER));  // Things aren't less than themselves.
    341   } else if (cond == gt) {
    342     __ mov(r0, Operand(LESS));     // Things aren't greater than themselves.
    343   } else {
    344     __ mov(r0, Operand(EQUAL));    // Things are <=, >=, ==, === themselves.
    345   }
    346   __ Ret();
    347 
    348   // For less and greater we don't have to check for NaN since the result of
    349   // x < x is false regardless.  For the others here is some code to check
    350   // for NaN.
    351   if (cond != lt && cond != gt) {
    352     __ bind(&heap_number);
    353     // It is a heap number, so return non-equal if it's NaN and equal if it's
    354     // not NaN.
    355 
    356     // The representation of NaN values has all exponent bits (52..62) set,
    357     // and not all mantissa bits (0..51) clear.
    358     // Read top bits of double representation (second word of value).
    359     __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
    360     // Test that exponent bits are all set.
    361     __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
    362     // NaNs have all-one exponents so they sign extend to -1.
    363     __ cmp(r3, Operand(-1));
    364     __ b(ne, &return_equal);
    365 
    366     // Shift out flag and all exponent bits, retaining only mantissa.
    367     __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
    368     // Or with all low-bits of mantissa.
    369     __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
    370     __ orr(r0, r3, Operand(r2), SetCC);
    371     // For equal we already have the right value in r0:  Return zero (equal)
    372     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
    373     // not (it's a NaN).  For <= and >= we need to load r0 with the failing
    374     // value if it's a NaN.
    375     if (cond != eq) {
    376       // All-zero means Infinity means equal.
    377       __ Ret(eq);
    378       if (cond == le) {
    379         __ mov(r0, Operand(GREATER));  // NaN <= NaN should fail.
    380       } else {
    381         __ mov(r0, Operand(LESS));     // NaN >= NaN should fail.
    382       }
    383     }
    384     __ Ret();
    385   }
    386   // No fall through here.
    387 
    388   __ bind(&not_identical);
    389 }
    390 
    391 
    392 // See comment at call site.
    393 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
    394                                     Register lhs,
    395                                     Register rhs,
    396                                     Label* lhs_not_nan,
    397                                     Label* slow,
    398                                     bool strict) {
    399   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    400          (lhs.is(r1) && rhs.is(r0)));
    401 
    402   Label rhs_is_smi;
    403   __ JumpIfSmi(rhs, &rhs_is_smi);
    404 
    405   // Lhs is a Smi.  Check whether the rhs is a heap number.
    406   __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
    407   if (strict) {
    408     // If rhs is not a number and lhs is a Smi then strict equality cannot
    409     // succeed.  Return non-equal
    410     // If rhs is r0 then there is already a non zero value in it.
    411     if (!rhs.is(r0)) {
    412       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
    413     }
    414     __ Ret(ne);
    415   } else {
    416     // Smi compared non-strictly with a non-Smi non-heap-number.  Call
    417     // the runtime.
    418     __ b(ne, slow);
    419   }
    420 
    421   // Lhs is a smi, rhs is a number.
    422   // Convert lhs to a double in d7.
    423   __ SmiToDouble(d7, lhs);
    424   // Load the double from rhs, tagged HeapNumber r0, to d6.
    425   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
    426 
    427   // We now have both loaded as doubles but we can skip the lhs nan check
    428   // since it's a smi.
    429   __ jmp(lhs_not_nan);
    430 
    431   __ bind(&rhs_is_smi);
    432   // Rhs is a smi.  Check whether the non-smi lhs is a heap number.
    433   __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
    434   if (strict) {
    435     // If lhs is not a number and rhs is a smi then strict equality cannot
    436     // succeed.  Return non-equal.
    437     // If lhs is r0 then there is already a non zero value in it.
    438     if (!lhs.is(r0)) {
    439       __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
    440     }
    441     __ Ret(ne);
    442   } else {
    443     // Smi compared non-strictly with a non-smi non-heap-number.  Call
    444     // the runtime.
    445     __ b(ne, slow);
    446   }
    447 
    448   // Rhs is a smi, lhs is a heap number.
    449   // Load the double from lhs, tagged HeapNumber r1, to d7.
    450   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
    451   // Convert rhs to a double in d6              .
    452   __ SmiToDouble(d6, rhs);
    453   // Fall through to both_loaded_as_doubles.
    454 }
    455 
    456 
    457 // See comment at call site.
    458 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
    459                                            Register lhs,
    460                                            Register rhs) {
    461     DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    462            (lhs.is(r1) && rhs.is(r0)));
    463 
    464     // If either operand is a JS object or an oddball value, then they are
    465     // not equal since their pointers are different.
    466     // There is no test for undetectability in strict equality.
    467     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
    468     Label first_non_object;
    469     // Get the type of the first operand into r2 and compare it with
    470     // FIRST_SPEC_OBJECT_TYPE.
    471     __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
    472     __ b(lt, &first_non_object);
    473 
    474     // Return non-zero (r0 is not zero)
    475     Label return_not_equal;
    476     __ bind(&return_not_equal);
    477     __ Ret();
    478 
    479     __ bind(&first_non_object);
    480     // Check for oddballs: true, false, null, undefined.
    481     __ cmp(r2, Operand(ODDBALL_TYPE));
    482     __ b(eq, &return_not_equal);
    483 
    484     __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
    485     __ b(ge, &return_not_equal);
    486 
    487     // Check for oddballs: true, false, null, undefined.
    488     __ cmp(r3, Operand(ODDBALL_TYPE));
    489     __ b(eq, &return_not_equal);
    490 
    491     // Now that we have the types we might as well check for
    492     // internalized-internalized.
    493     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    494     __ orr(r2, r2, Operand(r3));
    495     __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
    496     __ b(eq, &return_not_equal);
    497 }
    498 
    499 
    500 // See comment at call site.
    501 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
    502                                        Register lhs,
    503                                        Register rhs,
    504                                        Label* both_loaded_as_doubles,
    505                                        Label* not_heap_numbers,
    506                                        Label* slow) {
    507   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    508          (lhs.is(r1) && rhs.is(r0)));
    509 
    510   __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
    511   __ b(ne, not_heap_numbers);
    512   __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
    513   __ cmp(r2, r3);
    514   __ b(ne, slow);  // First was a heap number, second wasn't.  Go slow case.
    515 
    516   // Both are heap numbers.  Load them up then jump to the code we have
    517   // for that.
    518   __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
    519   __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
    520   __ jmp(both_loaded_as_doubles);
    521 }
    522 
    523 
    524 // Fast negative check for internalized-to-internalized equality.
    525 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
    526                                                      Register lhs,
    527                                                      Register rhs,
    528                                                      Label* possible_strings,
    529                                                      Label* not_both_strings) {
    530   DCHECK((lhs.is(r0) && rhs.is(r1)) ||
    531          (lhs.is(r1) && rhs.is(r0)));
    532 
    533   // r2 is object type of rhs.
    534   Label object_test;
    535   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
    536   __ tst(r2, Operand(kIsNotStringMask));
    537   __ b(ne, &object_test);
    538   __ tst(r2, Operand(kIsNotInternalizedMask));
    539   __ b(ne, possible_strings);
    540   __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
    541   __ b(ge, not_both_strings);
    542   __ tst(r3, Operand(kIsNotInternalizedMask));
    543   __ b(ne, possible_strings);
    544 
    545   // Both are internalized.  We already checked they weren't the same pointer
    546   // so they are not equal.
    547   __ mov(r0, Operand(NOT_EQUAL));
    548   __ Ret();
    549 
    550   __ bind(&object_test);
    551   __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
    552   __ b(lt, not_both_strings);
    553   __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
    554   __ b(lt, not_both_strings);
    555   // If both objects are undetectable, they are equal. Otherwise, they
    556   // are not equal, since they are different objects and an object is not
    557   // equal to undefined.
    558   __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
    559   __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
    560   __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
    561   __ and_(r0, r2, Operand(r3));
    562   __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
    563   __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
    564   __ Ret();
    565 }
    566 
    567 
    568 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
    569                                          Register scratch,
    570                                          CompareICState::State expected,
    571                                          Label* fail) {
    572   Label ok;
    573   if (expected == CompareICState::SMI) {
    574     __ JumpIfNotSmi(input, fail);
    575   } else if (expected == CompareICState::NUMBER) {
    576     __ JumpIfSmi(input, &ok);
    577     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
    578                 DONT_DO_SMI_CHECK);
    579   }
    580   // We could be strict about internalized/non-internalized here, but as long as
    581   // hydrogen doesn't care, the stub doesn't have to care either.
    582   __ bind(&ok);
    583 }
    584 
    585 
    586 // On entry r1 and r2 are the values to be compared.
    587 // On exit r0 is 0, positive or negative to indicate the result of
    588 // the comparison.
    589 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
    590   Register lhs = r1;
    591   Register rhs = r0;
    592   Condition cc = GetCondition();
    593 
    594   Label miss;
    595   CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss);
    596   CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss);
    597 
    598   Label slow;  // Call builtin.
    599   Label not_smis, both_loaded_as_doubles, lhs_not_nan;
    600 
    601   Label not_two_smis, smi_done;
    602   __ orr(r2, r1, r0);
    603   __ JumpIfNotSmi(r2, &not_two_smis);
    604   __ mov(r1, Operand(r1, ASR, 1));
    605   __ sub(r0, r1, Operand(r0, ASR, 1));
    606   __ Ret();
    607   __ bind(&not_two_smis);
    608 
    609   // NOTICE! This code is only reached after a smi-fast-case check, so
    610   // it is certain that at least one operand isn't a smi.
    611 
    612   // Handle the case where the objects are identical.  Either returns the answer
    613   // or goes to slow.  Only falls through if the objects were not identical.
    614   EmitIdenticalObjectComparison(masm, &slow, cc);
    615 
    616   // If either is a Smi (we know that not both are), then they can only
    617   // be strictly equal if the other is a HeapNumber.
    618   STATIC_ASSERT(kSmiTag == 0);
    619   DCHECK_EQ(0, Smi::FromInt(0));
    620   __ and_(r2, lhs, Operand(rhs));
    621   __ JumpIfNotSmi(r2, &not_smis);
    622   // One operand is a smi.  EmitSmiNonsmiComparison generates code that can:
    623   // 1) Return the answer.
    624   // 2) Go to slow.
    625   // 3) Fall through to both_loaded_as_doubles.
    626   // 4) Jump to lhs_not_nan.
    627   // In cases 3 and 4 we have found out we were dealing with a number-number
    628   // comparison.  If VFP3 is supported the double values of the numbers have
    629   // been loaded into d7 and d6.  Otherwise, the double values have been loaded
    630   // into r0, r1, r2, and r3.
    631   EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
    632 
    633   __ bind(&both_loaded_as_doubles);
    634   // The arguments have been converted to doubles and stored in d6 and d7, if
    635   // VFP3 is supported, or in r0, r1, r2, and r3.
    636   __ bind(&lhs_not_nan);
    637   Label no_nan;
    638   // ARMv7 VFP3 instructions to implement double precision comparison.
    639   __ VFPCompareAndSetFlags(d7, d6);
    640   Label nan;
    641   __ b(vs, &nan);
    642   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
    643   __ mov(r0, Operand(LESS), LeaveCC, lt);
    644   __ mov(r0, Operand(GREATER), LeaveCC, gt);
    645   __ Ret();
    646 
    647   __ bind(&nan);
    648   // If one of the sides was a NaN then the v flag is set.  Load r0 with
    649   // whatever it takes to make the comparison fail, since comparisons with NaN
    650   // always fail.
    651   if (cc == lt || cc == le) {
    652     __ mov(r0, Operand(GREATER));
    653   } else {
    654     __ mov(r0, Operand(LESS));
    655   }
    656   __ Ret();
    657 
    658   __ bind(&not_smis);
    659   // At this point we know we are dealing with two different objects,
    660   // and neither of them is a Smi.  The objects are in rhs_ and lhs_.
    661   if (strict()) {
    662     // This returns non-equal for some object types, or falls through if it
    663     // was not lucky.
    664     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
    665   }
    666 
    667   Label check_for_internalized_strings;
    668   Label flat_string_check;
    669   // Check for heap-number-heap-number comparison.  Can jump to slow case,
    670   // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
    671   // that case.  If the inputs are not doubles then jumps to
    672   // check_for_internalized_strings.
    673   // In this case r2 will contain the type of rhs_.  Never falls through.
    674   EmitCheckForTwoHeapNumbers(masm,
    675                              lhs,
    676                              rhs,
    677                              &both_loaded_as_doubles,
    678                              &check_for_internalized_strings,
    679                              &flat_string_check);
    680 
    681   __ bind(&check_for_internalized_strings);
    682   // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
    683   // internalized strings.
    684   if (cc == eq && !strict()) {
    685     // Returns an answer for two internalized strings or two detectable objects.
    686     // Otherwise jumps to string case or not both strings case.
    687     // Assumes that r2 is the type of rhs_ on entry.
    688     EmitCheckForInternalizedStringsOrObjects(
    689         masm, lhs, rhs, &flat_string_check, &slow);
    690   }
    691 
    692   // Check for both being sequential one-byte strings,
    693   // and inline if that is the case.
    694   __ bind(&flat_string_check);
    695 
    696   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow);
    697 
    698   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
    699                       r3);
    700   if (cc == eq) {
    701     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4);
    702   } else {
    703     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4,
    704                                                     r5);
    705   }
    706   // Never falls through to here.
    707 
    708   __ bind(&slow);
    709 
    710   __ Push(lhs, rhs);
    711   // Figure out which native to call and setup the arguments.
    712   Builtins::JavaScript native;
    713   if (cc == eq) {
    714     native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
    715   } else {
    716     native = Builtins::COMPARE;
    717     int ncr;  // NaN compare result
    718     if (cc == lt || cc == le) {
    719       ncr = GREATER;
    720     } else {
    721       DCHECK(cc == gt || cc == ge);  // remaining cases
    722       ncr = LESS;
    723     }
    724     __ mov(r0, Operand(Smi::FromInt(ncr)));
    725     __ push(r0);
    726   }
    727 
    728   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
    729   // tagged as a small integer.
    730   __ InvokeBuiltin(native, JUMP_FUNCTION);
    731 
    732   __ bind(&miss);
    733   GenerateMiss(masm);
    734 }
    735 
    736 
    737 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    738   // We don't allow a GC during a store buffer overflow so there is no need to
    739   // store the registers in any particular way, but we do have to store and
    740   // restore them.
    741   __ stm(db_w, sp, kCallerSaved | lr.bit());
    742 
    743   const Register scratch = r1;
    744 
    745   if (save_doubles()) {
    746     __ SaveFPRegs(sp, scratch);
    747   }
    748   const int argument_count = 1;
    749   const int fp_argument_count = 0;
    750 
    751   AllowExternalCallThatCantCauseGC scope(masm);
    752   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
    753   __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
    754   __ CallCFunction(
    755       ExternalReference::store_buffer_overflow_function(isolate()),
    756       argument_count);
    757   if (save_doubles()) {
    758     __ RestoreFPRegs(sp, scratch);
    759   }
    760   __ ldm(ia_w, sp, kCallerSaved | pc.bit());  // Also pop pc to get Ret(0).
    761 }
    762 
    763 
    764 void MathPowStub::Generate(MacroAssembler* masm) {
    765   const Register base = r1;
    766   const Register exponent = MathPowTaggedDescriptor::exponent();
    767   DCHECK(exponent.is(r2));
    768   const Register heapnumbermap = r5;
    769   const Register heapnumber = r0;
    770   const DwVfpRegister double_base = d0;
    771   const DwVfpRegister double_exponent = d1;
    772   const DwVfpRegister double_result = d2;
    773   const DwVfpRegister double_scratch = d3;
    774   const SwVfpRegister single_scratch = s6;
    775   const Register scratch = r9;
    776   const Register scratch2 = r4;
    777 
    778   Label call_runtime, done, int_exponent;
    779   if (exponent_type() == ON_STACK) {
    780     Label base_is_smi, unpack_exponent;
    781     // The exponent and base are supplied as arguments on the stack.
    782     // This can only happen if the stub is called from non-optimized code.
    783     // Load input parameters from stack to double registers.
    784     __ ldr(base, MemOperand(sp, 1 * kPointerSize));
    785     __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
    786 
    787     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
    788 
    789     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
    790     __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
    791     __ cmp(scratch, heapnumbermap);
    792     __ b(ne, &call_runtime);
    793 
    794     __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
    795     __ jmp(&unpack_exponent);
    796 
    797     __ bind(&base_is_smi);
    798     __ vmov(single_scratch, scratch);
    799     __ vcvt_f64_s32(double_base, single_scratch);
    800     __ bind(&unpack_exponent);
    801 
    802     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    803 
    804     __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
    805     __ cmp(scratch, heapnumbermap);
    806     __ b(ne, &call_runtime);
    807     __ vldr(double_exponent,
    808             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    809   } else if (exponent_type() == TAGGED) {
    810     // Base is already in double_base.
    811     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
    812 
    813     __ vldr(double_exponent,
    814             FieldMemOperand(exponent, HeapNumber::kValueOffset));
    815   }
    816 
    817   if (exponent_type() != INTEGER) {
    818     Label int_exponent_convert;
    819     // Detect integer exponents stored as double.
    820     __ vcvt_u32_f64(single_scratch, double_exponent);
    821     // We do not check for NaN or Infinity here because comparing numbers on
    822     // ARM correctly distinguishes NaNs.  We end up calling the built-in.
    823     __ vcvt_f64_u32(double_scratch, single_scratch);
    824     __ VFPCompareAndSetFlags(double_scratch, double_exponent);
    825     __ b(eq, &int_exponent_convert);
    826 
    827     if (exponent_type() == ON_STACK) {
    828       // Detect square root case.  Crankshaft detects constant +/-0.5 at
    829       // compile time and uses DoMathPowHalf instead.  We then skip this check
    830       // for non-constant cases of +/-0.5 as these hardly occur.
    831       Label not_plus_half;
    832 
    833       // Test for 0.5.
    834       __ vmov(double_scratch, 0.5, scratch);
    835       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
    836       __ b(ne, &not_plus_half);
    837 
    838       // Calculates square root of base.  Check for the special case of
    839       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
    840       __ vmov(double_scratch, -V8_INFINITY, scratch);
    841       __ VFPCompareAndSetFlags(double_base, double_scratch);
    842       __ vneg(double_result, double_scratch, eq);
    843       __ b(eq, &done);
    844 
    845       // Add +0 to convert -0 to +0.
    846       __ vadd(double_scratch, double_base, kDoubleRegZero);
    847       __ vsqrt(double_result, double_scratch);
    848       __ jmp(&done);
    849 
    850       __ bind(&not_plus_half);
    851       __ vmov(double_scratch, -0.5, scratch);
    852       __ VFPCompareAndSetFlags(double_exponent, double_scratch);
    853       __ b(ne, &call_runtime);
    854 
    855       // Calculates square root of base.  Check for the special case of
    856       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
    857       __ vmov(double_scratch, -V8_INFINITY, scratch);
    858       __ VFPCompareAndSetFlags(double_base, double_scratch);
    859       __ vmov(double_result, kDoubleRegZero, eq);
    860       __ b(eq, &done);
    861 
    862       // Add +0 to convert -0 to +0.
    863       __ vadd(double_scratch, double_base, kDoubleRegZero);
    864       __ vmov(double_result, 1.0, scratch);
    865       __ vsqrt(double_scratch, double_scratch);
    866       __ vdiv(double_result, double_result, double_scratch);
    867       __ jmp(&done);
    868     }
    869 
    870     __ push(lr);
    871     {
    872       AllowExternalCallThatCantCauseGC scope(masm);
    873       __ PrepareCallCFunction(0, 2, scratch);
    874       __ MovToFloatParameters(double_base, double_exponent);
    875       __ CallCFunction(
    876           ExternalReference::power_double_double_function(isolate()),
    877           0, 2);
    878     }
    879     __ pop(lr);
    880     __ MovFromFloatResult(double_result);
    881     __ jmp(&done);
    882 
    883     __ bind(&int_exponent_convert);
    884     __ vcvt_u32_f64(single_scratch, double_exponent);
    885     __ vmov(scratch, single_scratch);
    886   }
    887 
    888   // Calculate power with integer exponent.
    889   __ bind(&int_exponent);
    890 
    891   // Get two copies of exponent in the registers scratch and exponent.
    892   if (exponent_type() == INTEGER) {
    893     __ mov(scratch, exponent);
    894   } else {
    895     // Exponent has previously been stored into scratch as untagged integer.
    896     __ mov(exponent, scratch);
    897   }
    898   __ vmov(double_scratch, double_base);  // Back up base.
    899   __ vmov(double_result, 1.0, scratch2);
    900 
    901   // Get absolute value of exponent.
    902   __ cmp(scratch, Operand::Zero());
    903   __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
    904   __ sub(scratch, scratch2, scratch, LeaveCC, mi);
    905 
    906   Label while_true;
    907   __ bind(&while_true);
    908   __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
    909   __ vmul(double_result, double_result, double_scratch, cs);
    910   __ vmul(double_scratch, double_scratch, double_scratch, ne);
    911   __ b(ne, &while_true);
    912 
    913   __ cmp(exponent, Operand::Zero());
    914   __ b(ge, &done);
    915   __ vmov(double_scratch, 1.0, scratch);
    916   __ vdiv(double_result, double_scratch, double_result);
    917   // Test whether result is zero.  Bail out to check for subnormal result.
    918   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
    919   __ VFPCompareAndSetFlags(double_result, 0.0);
    920   __ b(ne, &done);
    921   // double_exponent may not containe the exponent value if the input was a
    922   // smi.  We set it with exponent value before bailing out.
    923   __ vmov(single_scratch, exponent);
    924   __ vcvt_f64_s32(double_exponent, single_scratch);
    925 
    926   // Returning or bailing out.
    927   Counters* counters = isolate()->counters();
    928   if (exponent_type() == ON_STACK) {
    929     // The arguments are still on the stack.
    930     __ bind(&call_runtime);
    931     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
    932 
    933     // The stub is called from non-optimized code, which expects the result
    934     // as heap number in exponent.
    935     __ bind(&done);
    936     __ AllocateHeapNumber(
    937         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
    938     __ vstr(double_result,
    939             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
    940     DCHECK(heapnumber.is(r0));
    941     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
    942     __ Ret(2);
    943   } else {
    944     __ push(lr);
    945     {
    946       AllowExternalCallThatCantCauseGC scope(masm);
    947       __ PrepareCallCFunction(0, 2, scratch);
    948       __ MovToFloatParameters(double_base, double_exponent);
    949       __ CallCFunction(
    950           ExternalReference::power_double_double_function(isolate()),
    951           0, 2);
    952     }
    953     __ pop(lr);
    954     __ MovFromFloatResult(double_result);
    955 
    956     __ bind(&done);
    957     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
    958     __ Ret();
    959   }
    960 }
    961 
    962 
    963 bool CEntryStub::NeedsImmovableCode() {
    964   return true;
    965 }
    966 
    967 
    968 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
    969   CEntryStub::GenerateAheadOfTime(isolate);
    970   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
    971   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
    972   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
    973   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
    974   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
    975   BinaryOpICStub::GenerateAheadOfTime(isolate);
    976   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
    977 }
    978 
    979 
    980 void CodeStub::GenerateFPStubs(Isolate* isolate) {
    981   // Generate if not already in cache.
    982   SaveFPRegsMode mode = kSaveFPRegs;
    983   CEntryStub(isolate, 1, mode).GetCode();
    984   StoreBufferOverflowStub(isolate, mode).GetCode();
    985   isolate->set_fp_stubs_generated(true);
    986 }
    987 
    988 
    989 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
    990   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
    991   stub.GetCode();
    992 }
    993 
    994 
    995 void CEntryStub::Generate(MacroAssembler* masm) {
    996   // Called from JavaScript; parameters are on stack as if calling JS function.
    997   // r0: number of arguments including receiver
    998   // r1: pointer to builtin function
    999   // fp: frame pointer  (restored after C call)
   1000   // sp: stack pointer  (restored as callee's sp after C call)
   1001   // cp: current context  (C callee-saved)
   1002 
   1003   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1004 
   1005   __ mov(r5, Operand(r1));
   1006 
   1007   // Compute the argv pointer in a callee-saved register.
   1008   __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
   1009   __ sub(r1, r1, Operand(kPointerSize));
   1010 
   1011   // Enter the exit frame that transitions from JavaScript to C++.
   1012   FrameScope scope(masm, StackFrame::MANUAL);
   1013   __ EnterExitFrame(save_doubles());
   1014 
   1015   // Store a copy of argc in callee-saved registers for later.
   1016   __ mov(r4, Operand(r0));
   1017 
   1018   // r0, r4: number of arguments including receiver  (C callee-saved)
   1019   // r1: pointer to the first argument (C callee-saved)
   1020   // r5: pointer to builtin function  (C callee-saved)
   1021 
   1022   // Result returned in r0 or r0+r1 by default.
   1023 
   1024 #if V8_HOST_ARCH_ARM
   1025   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   1026   int frame_alignment_mask = frame_alignment - 1;
   1027   if (FLAG_debug_code) {
   1028     if (frame_alignment > kPointerSize) {
   1029       Label alignment_as_expected;
   1030       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   1031       __ tst(sp, Operand(frame_alignment_mask));
   1032       __ b(eq, &alignment_as_expected);
   1033       // Don't use Check here, as it will call Runtime_Abort re-entering here.
   1034       __ stop("Unexpected alignment");
   1035       __ bind(&alignment_as_expected);
   1036     }
   1037   }
   1038 #endif
   1039 
   1040   // Call C built-in.
   1041   // r0 = argc, r1 = argv
   1042   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
   1043 
   1044   // To let the GC traverse the return address of the exit frames, we need to
   1045   // know where the return address is. The CEntryStub is unmovable, so
   1046   // we can store the address on the stack to be able to find it again and
   1047   // we never have to restore it, because it will not change.
   1048   // Compute the return address in lr to return to after the jump below. Pc is
   1049   // already at '+ 8' from the current instruction but return is after three
   1050   // instructions so add another 4 to pc to get the return address.
   1051   {
   1052     // Prevent literal pool emission before return address.
   1053     Assembler::BlockConstPoolScope block_const_pool(masm);
   1054     __ add(lr, pc, Operand(4));
   1055     __ str(lr, MemOperand(sp, 0));
   1056     __ Call(r5);
   1057   }
   1058 
   1059   __ VFPEnsureFPSCRState(r2);
   1060 
   1061   // Runtime functions should not return 'the hole'.  Allowing it to escape may
   1062   // lead to crashes in the IC code later.
   1063   if (FLAG_debug_code) {
   1064     Label okay;
   1065     __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
   1066     __ b(ne, &okay);
   1067     __ stop("The hole escaped");
   1068     __ bind(&okay);
   1069   }
   1070 
   1071   // Check result for exception sentinel.
   1072   Label exception_returned;
   1073   __ CompareRoot(r0, Heap::kExceptionRootIndex);
   1074   __ b(eq, &exception_returned);
   1075 
   1076   ExternalReference pending_exception_address(
   1077       Isolate::kPendingExceptionAddress, isolate());
   1078 
   1079   // Check that there is no pending exception, otherwise we
   1080   // should have returned the exception sentinel.
   1081   if (FLAG_debug_code) {
   1082     Label okay;
   1083     __ mov(r2, Operand(pending_exception_address));
   1084     __ ldr(r2, MemOperand(r2));
   1085     __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
   1086     // Cannot use check here as it attempts to generate call into runtime.
   1087     __ b(eq, &okay);
   1088     __ stop("Unexpected pending exception");
   1089     __ bind(&okay);
   1090   }
   1091 
   1092   // Exit C frame and return.
   1093   // r0:r1: result
   1094   // sp: stack pointer
   1095   // fp: frame pointer
   1096   // Callee-saved register r4 still holds argc.
   1097   __ LeaveExitFrame(save_doubles(), r4, true);
   1098   __ mov(pc, lr);
   1099 
   1100   // Handling of exception.
   1101   __ bind(&exception_returned);
   1102 
   1103   // Retrieve the pending exception.
   1104   __ mov(r2, Operand(pending_exception_address));
   1105   __ ldr(r0, MemOperand(r2));
   1106 
   1107   // Clear the pending exception.
   1108   __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
   1109   __ str(r3, MemOperand(r2));
   1110 
   1111   // Special handling of termination exceptions which are uncatchable
   1112   // by javascript code.
   1113   Label throw_termination_exception;
   1114   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
   1115   __ b(eq, &throw_termination_exception);
   1116 
   1117   // Handle normal exception.
   1118   __ Throw(r0);
   1119 
   1120   __ bind(&throw_termination_exception);
   1121   __ ThrowUncatchable(r0);
   1122 }
   1123 
   1124 
   1125 void JSEntryStub::Generate(MacroAssembler* masm) {
   1126   // r0: code entry
   1127   // r1: function
   1128   // r2: receiver
   1129   // r3: argc
   1130   // [sp+0]: argv
   1131 
   1132   Label invoke, handler_entry, exit;
   1133 
   1134   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   1135 
   1136   // Called from C, so do not pop argc and args on exit (preserve sp)
   1137   // No need to save register-passed args
   1138   // Save callee-saved registers (incl. cp and fp), sp, and lr
   1139   __ stm(db_w, sp, kCalleeSaved | lr.bit());
   1140 
   1141   // Save callee-saved vfp registers.
   1142   __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
   1143   // Set up the reserved register for 0.0.
   1144   __ vmov(kDoubleRegZero, 0.0);
   1145   __ VFPEnsureFPSCRState(r4);
   1146 
   1147   // Get address of argv, see stm above.
   1148   // r0: code entry
   1149   // r1: function
   1150   // r2: receiver
   1151   // r3: argc
   1152 
   1153   // Set up argv in r4.
   1154   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
   1155   offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
   1156   __ ldr(r4, MemOperand(sp, offset_to_argv));
   1157 
   1158   // Push a frame with special values setup to mark it as an entry frame.
   1159   // r0: code entry
   1160   // r1: function
   1161   // r2: receiver
   1162   // r3: argc
   1163   // r4: argv
   1164   int marker = type();
   1165   if (FLAG_enable_ool_constant_pool) {
   1166     __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array()));
   1167   }
   1168   __ mov(r7, Operand(Smi::FromInt(marker)));
   1169   __ mov(r6, Operand(Smi::FromInt(marker)));
   1170   __ mov(r5,
   1171          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   1172   __ ldr(r5, MemOperand(r5));
   1173   __ mov(ip, Operand(-1));  // Push a bad frame pointer to fail if it is used.
   1174   __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
   1175                    (FLAG_enable_ool_constant_pool ? r8.bit() : 0) |
   1176                    ip.bit());
   1177 
   1178   // Set up frame pointer for the frame to be pushed.
   1179   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
   1180 
   1181   // If this is the outermost JS call, set js_entry_sp value.
   1182   Label non_outermost_js;
   1183   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   1184   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
   1185   __ ldr(r6, MemOperand(r5));
   1186   __ cmp(r6, Operand::Zero());
   1187   __ b(ne, &non_outermost_js);
   1188   __ str(fp, MemOperand(r5));
   1189   __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1190   Label cont;
   1191   __ b(&cont);
   1192   __ bind(&non_outermost_js);
   1193   __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   1194   __ bind(&cont);
   1195   __ push(ip);
   1196 
   1197   // Jump to a faked try block that does the invoke, with a faked catch
   1198   // block that sets the pending exception.
   1199   __ jmp(&invoke);
   1200 
   1201   // Block literal pool emission whilst taking the position of the handler
   1202   // entry. This avoids making the assumption that literal pools are always
   1203   // emitted after an instruction is emitted, rather than before.
   1204   {
   1205     Assembler::BlockConstPoolScope block_const_pool(masm);
   1206     __ bind(&handler_entry);
   1207     handler_offset_ = handler_entry.pos();
   1208     // Caught exception: Store result (exception) in the pending exception
   1209     // field in the JSEnv and return a failure sentinel.  Coming in here the
   1210     // fp will be invalid because the PushTryHandler below sets it to 0 to
   1211     // signal the existence of the JSEntry frame.
   1212     __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1213                                          isolate())));
   1214   }
   1215   __ str(r0, MemOperand(ip));
   1216   __ LoadRoot(r0, Heap::kExceptionRootIndex);
   1217   __ b(&exit);
   1218 
   1219   // Invoke: Link this frame into the handler chain.  There's only one
   1220   // handler block in this code object, so its index is 0.
   1221   __ bind(&invoke);
   1222   // Must preserve r0-r4, r5-r6 are available.
   1223   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   1224   // If an exception not caught by another handler occurs, this handler
   1225   // returns control to the code after the bl(&invoke) above, which
   1226   // restores all kCalleeSaved registers (including cp and fp) to their
   1227   // saved values before returning a failure to C.
   1228 
   1229   // Clear any pending exceptions.
   1230   __ mov(r5, Operand(isolate()->factory()->the_hole_value()));
   1231   __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   1232                                        isolate())));
   1233   __ str(r5, MemOperand(ip));
   1234 
   1235   // Invoke the function by calling through JS entry trampoline builtin.
   1236   // Notice that we cannot store a reference to the trampoline code directly in
   1237   // this stub, because runtime stubs are not traversed when doing GC.
   1238 
   1239   // Expected registers by Builtins::JSEntryTrampoline
   1240   // r0: code entry
   1241   // r1: function
   1242   // r2: receiver
   1243   // r3: argc
   1244   // r4: argv
   1245   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   1246     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   1247                                       isolate());
   1248     __ mov(ip, Operand(construct_entry));
   1249   } else {
   1250     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   1251     __ mov(ip, Operand(entry));
   1252   }
   1253   __ ldr(ip, MemOperand(ip));  // deref address
   1254   __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
   1255 
   1256   // Branch and link to JSEntryTrampoline.
   1257   __ Call(ip);
   1258 
   1259   // Unlink this frame from the handler chain.
   1260   __ PopTryHandler();
   1261 
   1262   __ bind(&exit);  // r0 holds result
   1263   // Check if the current stack frame is marked as the outermost JS frame.
   1264   Label non_outermost_js_2;
   1265   __ pop(r5);
   1266   __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   1267   __ b(ne, &non_outermost_js_2);
   1268   __ mov(r6, Operand::Zero());
   1269   __ mov(r5, Operand(ExternalReference(js_entry_sp)));
   1270   __ str(r6, MemOperand(r5));
   1271   __ bind(&non_outermost_js_2);
   1272 
   1273   // Restore the top frame descriptors from the stack.
   1274   __ pop(r3);
   1275   __ mov(ip,
   1276          Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   1277   __ str(r3, MemOperand(ip));
   1278 
   1279   // Reset the stack to the callee saved registers.
   1280   __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
   1281 
   1282   // Restore callee-saved registers and return.
   1283 #ifdef DEBUG
   1284   if (FLAG_debug_code) {
   1285     __ mov(lr, Operand(pc));
   1286   }
   1287 #endif
   1288 
   1289   // Restore callee-saved vfp registers.
   1290   __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
   1291 
   1292   __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
   1293 }
   1294 
   1295 
   1296 // Uses registers r0 to r4.
   1297 // Expected input (depending on whether args are in registers or on the stack):
   1298 // * object: r0 or at sp + 1 * kPointerSize.
   1299 // * function: r1 or at sp.
   1300 //
   1301 // An inlined call site may have been generated before calling this stub.
   1302 // In this case the offset to the inline sites to patch are passed in r5 and r6.
   1303 // (See LCodeGen::DoInstanceOfKnownGlobal)
   1304 void InstanceofStub::Generate(MacroAssembler* masm) {
   1305   // Call site inlining and patching implies arguments in registers.
   1306   DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
   1307 
   1308   // Fixed register usage throughout the stub:
   1309   const Register object = r0;  // Object (lhs).
   1310   Register map = r3;  // Map of the object.
   1311   const Register function = r1;  // Function (rhs).
   1312   const Register prototype = r4;  // Prototype of the function.
   1313   const Register scratch = r2;
   1314 
   1315   Label slow, loop, is_instance, is_not_instance, not_js_object;
   1316 
   1317   if (!HasArgsInRegisters()) {
   1318     __ ldr(object, MemOperand(sp, 1 * kPointerSize));
   1319     __ ldr(function, MemOperand(sp, 0));
   1320   }
   1321 
   1322   // Check that the left hand is a JS object and load map.
   1323   __ JumpIfSmi(object, &not_js_object);
   1324   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
   1325 
   1326   // If there is a call site cache don't look in the global cache, but do the
   1327   // real lookup and update the call site cache.
   1328   if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
   1329     Label miss;
   1330     __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   1331     __ b(ne, &miss);
   1332     __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
   1333     __ b(ne, &miss);
   1334     __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
   1335     __ Ret(HasArgsInRegisters() ? 0 : 2);
   1336 
   1337     __ bind(&miss);
   1338   }
   1339 
   1340   // Get the prototype of the function.
   1341   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
   1342 
   1343   // Check that the function prototype is a JS object.
   1344   __ JumpIfSmi(prototype, &slow);
   1345   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
   1346 
   1347   // Update the global instanceof or call site inlined cache with the current
   1348   // map and function. The cached answer will be set when it is known below.
   1349   if (!HasCallSiteInlineCheck()) {
   1350     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
   1351     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
   1352   } else {
   1353     DCHECK(HasArgsInRegisters());
   1354     // Patch the (relocated) inlined map check.
   1355 
   1356     // The map_load_offset was stored in r5
   1357     //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
   1358     const Register map_load_offset = r5;
   1359     __ sub(r9, lr, map_load_offset);
   1360     // Get the map location in r5 and patch it.
   1361     __ GetRelocatedValueLocation(r9, map_load_offset, scratch);
   1362     __ ldr(map_load_offset, MemOperand(map_load_offset));
   1363     __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset));
   1364   }
   1365 
   1366   // Register mapping: r3 is object map and r4 is function prototype.
   1367   // Get prototype of object into r2.
   1368   __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
   1369 
   1370   // We don't need map any more. Use it as a scratch register.
   1371   Register scratch2 = map;
   1372   map = no_reg;
   1373 
   1374   // Loop through the prototype chain looking for the function prototype.
   1375   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
   1376   __ bind(&loop);
   1377   __ cmp(scratch, Operand(prototype));
   1378   __ b(eq, &is_instance);
   1379   __ cmp(scratch, scratch2);
   1380   __ b(eq, &is_not_instance);
   1381   __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
   1382   __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
   1383   __ jmp(&loop);
   1384   Factory* factory = isolate()->factory();
   1385 
   1386   __ bind(&is_instance);
   1387   if (!HasCallSiteInlineCheck()) {
   1388     __ mov(r0, Operand(Smi::FromInt(0)));
   1389     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
   1390     if (ReturnTrueFalseObject()) {
   1391       __ Move(r0, factory->true_value());
   1392     }
   1393   } else {
   1394     // Patch the call site to return true.
   1395     __ LoadRoot(r0, Heap::kTrueValueRootIndex);
   1396     // The bool_load_offset was stored in r6
   1397     //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
   1398     const Register bool_load_offset = r6;
   1399     __ sub(r9, lr, bool_load_offset);
   1400     // Get the boolean result location in scratch and patch it.
   1401     __ GetRelocatedValueLocation(r9, scratch, scratch2);
   1402     __ str(r0, MemOperand(scratch));
   1403 
   1404     if (!ReturnTrueFalseObject()) {
   1405       __ mov(r0, Operand(Smi::FromInt(0)));
   1406     }
   1407   }
   1408   __ Ret(HasArgsInRegisters() ? 0 : 2);
   1409 
   1410   __ bind(&is_not_instance);
   1411   if (!HasCallSiteInlineCheck()) {
   1412     __ mov(r0, Operand(Smi::FromInt(1)));
   1413     __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
   1414     if (ReturnTrueFalseObject()) {
   1415       __ Move(r0, factory->false_value());
   1416     }
   1417   } else {
   1418     // Patch the call site to return false.
   1419     __ LoadRoot(r0, Heap::kFalseValueRootIndex);
   1420     // The bool_load_offset was stored in r6
   1421     //   (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
   1422     const Register bool_load_offset = r6;
   1423     __ sub(r9, lr, bool_load_offset);
   1424     ;
   1425     // Get the boolean result location in scratch and patch it.
   1426     __ GetRelocatedValueLocation(r9, scratch, scratch2);
   1427     __ str(r0, MemOperand(scratch));
   1428 
   1429     if (!ReturnTrueFalseObject()) {
   1430       __ mov(r0, Operand(Smi::FromInt(1)));
   1431     }
   1432   }
   1433   __ Ret(HasArgsInRegisters() ? 0 : 2);
   1434 
   1435   Label object_not_null, object_not_null_or_smi;
   1436   __ bind(&not_js_object);
   1437   // Before null, smi and string value checks, check that the rhs is a function
   1438   // as for a non-function rhs an exception needs to be thrown.
   1439   __ JumpIfSmi(function, &slow);
   1440   __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
   1441   __ b(ne, &slow);
   1442 
   1443   // Null is not instance of anything.
   1444   __ cmp(scratch, Operand(isolate()->factory()->null_value()));
   1445   __ b(ne, &object_not_null);
   1446   if (ReturnTrueFalseObject()) {
   1447     __ Move(r0, factory->false_value());
   1448   } else {
   1449     __ mov(r0, Operand(Smi::FromInt(1)));
   1450   }
   1451   __ Ret(HasArgsInRegisters() ? 0 : 2);
   1452 
   1453   __ bind(&object_not_null);
   1454   // Smi values are not instances of anything.
   1455   __ JumpIfNotSmi(object, &object_not_null_or_smi);
   1456   if (ReturnTrueFalseObject()) {
   1457     __ Move(r0, factory->false_value());
   1458   } else {
   1459     __ mov(r0, Operand(Smi::FromInt(1)));
   1460   }
   1461   __ Ret(HasArgsInRegisters() ? 0 : 2);
   1462 
   1463   __ bind(&object_not_null_or_smi);
   1464   // String values are not instances of anything.
   1465   __ IsObjectJSStringType(object, scratch, &slow);
   1466   if (ReturnTrueFalseObject()) {
   1467     __ Move(r0, factory->false_value());
   1468   } else {
   1469     __ mov(r0, Operand(Smi::FromInt(1)));
   1470   }
   1471   __ Ret(HasArgsInRegisters() ? 0 : 2);
   1472 
   1473   // Slow-case.  Tail call builtin.
   1474   __ bind(&slow);
   1475   if (!ReturnTrueFalseObject()) {
   1476     if (HasArgsInRegisters()) {
   1477       __ Push(r0, r1);
   1478     }
   1479   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   1480   } else {
   1481     {
   1482       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   1483       __ Push(r0, r1);
   1484       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   1485     }
   1486     __ cmp(r0, Operand::Zero());
   1487     __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
   1488     __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
   1489     __ Ret(HasArgsInRegisters() ? 0 : 2);
   1490   }
   1491 }
   1492 
   1493 
   1494 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
   1495   Label miss;
   1496   Register receiver = LoadDescriptor::ReceiverRegister();
   1497 
   1498   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3,
   1499                                                           r4, &miss);
   1500   __ bind(&miss);
   1501   PropertyAccessCompiler::TailCallBuiltin(
   1502       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
   1503 }
   1504 
   1505 
   1506 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
   1507   // The displacement is the offset of the last parameter (if any)
   1508   // relative to the frame pointer.
   1509   const int kDisplacement =
   1510       StandardFrameConstants::kCallerSPOffset - kPointerSize;
   1511   DCHECK(r1.is(ArgumentsAccessReadDescriptor::index()));
   1512   DCHECK(r0.is(ArgumentsAccessReadDescriptor::parameter_count()));
   1513 
   1514   // Check that the key is a smi.
   1515   Label slow;
   1516   __ JumpIfNotSmi(r1, &slow);
   1517 
   1518   // Check if the calling frame is an arguments adaptor frame.
   1519   Label adaptor;
   1520   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1521   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
   1522   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1523   __ b(eq, &adaptor);
   1524 
   1525   // Check index against formal parameters count limit passed in
   1526   // through register r0. Use unsigned comparison to get negative
   1527   // check for free.
   1528   __ cmp(r1, r0);
   1529   __ b(hs, &slow);
   1530 
   1531   // Read the argument from the stack and return it.
   1532   __ sub(r3, r0, r1);
   1533   __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
   1534   __ ldr(r0, MemOperand(r3, kDisplacement));
   1535   __ Jump(lr);
   1536 
   1537   // Arguments adaptor case: Check index against actual arguments
   1538   // limit found in the arguments adaptor frame. Use unsigned
   1539   // comparison to get negative check for free.
   1540   __ bind(&adaptor);
   1541   __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1542   __ cmp(r1, r0);
   1543   __ b(cs, &slow);
   1544 
   1545   // Read the argument from the adaptor frame and return it.
   1546   __ sub(r3, r0, r1);
   1547   __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
   1548   __ ldr(r0, MemOperand(r3, kDisplacement));
   1549   __ Jump(lr);
   1550 
   1551   // Slow-case: Handle non-smi or out-of-bounds access to arguments
   1552   // by calling the runtime system.
   1553   __ bind(&slow);
   1554   __ push(r1);
   1555   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
   1556 }
   1557 
   1558 
   1559 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
   1560   // sp[0] : number of parameters
   1561   // sp[4] : receiver displacement
   1562   // sp[8] : function
   1563 
   1564   // Check if the calling frame is an arguments adaptor frame.
   1565   Label runtime;
   1566   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1567   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
   1568   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1569   __ b(ne, &runtime);
   1570 
   1571   // Patch the arguments.length and the parameters pointer in the current frame.
   1572   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1573   __ str(r2, MemOperand(sp, 0 * kPointerSize));
   1574   __ add(r3, r3, Operand(r2, LSL, 1));
   1575   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
   1576   __ str(r3, MemOperand(sp, 1 * kPointerSize));
   1577 
   1578   __ bind(&runtime);
   1579   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
   1580 }
   1581 
   1582 
   1583 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
   1584   // Stack layout:
   1585   //  sp[0] : number of parameters (tagged)
   1586   //  sp[4] : address of receiver argument
   1587   //  sp[8] : function
   1588   // Registers used over whole function:
   1589   //  r6 : allocated object (tagged)
   1590   //  r9 : mapped parameter count (tagged)
   1591 
   1592   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
   1593   // r1 = parameter count (tagged)
   1594 
   1595   // Check if the calling frame is an arguments adaptor frame.
   1596   Label runtime;
   1597   Label adaptor_frame, try_allocate;
   1598   __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1599   __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
   1600   __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1601   __ b(eq, &adaptor_frame);
   1602 
   1603   // No adaptor, parameter count = argument count.
   1604   __ mov(r2, r1);
   1605   __ b(&try_allocate);
   1606 
   1607   // We have an adaptor frame. Patch the parameters pointer.
   1608   __ bind(&adaptor_frame);
   1609   __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1610   __ add(r3, r3, Operand(r2, LSL, 1));
   1611   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
   1612   __ str(r3, MemOperand(sp, 1 * kPointerSize));
   1613 
   1614   // r1 = parameter count (tagged)
   1615   // r2 = argument count (tagged)
   1616   // Compute the mapped parameter count = min(r1, r2) in r1.
   1617   __ cmp(r1, Operand(r2));
   1618   __ mov(r1, Operand(r2), LeaveCC, gt);
   1619 
   1620   __ bind(&try_allocate);
   1621 
   1622   // Compute the sizes of backing store, parameter map, and arguments object.
   1623   // 1. Parameter map, has 2 extra words containing context and backing store.
   1624   const int kParameterMapHeaderSize =
   1625       FixedArray::kHeaderSize + 2 * kPointerSize;
   1626   // If there are no mapped parameters, we do not need the parameter_map.
   1627   __ cmp(r1, Operand(Smi::FromInt(0)));
   1628   __ mov(r9, Operand::Zero(), LeaveCC, eq);
   1629   __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
   1630   __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
   1631 
   1632   // 2. Backing store.
   1633   __ add(r9, r9, Operand(r2, LSL, 1));
   1634   __ add(r9, r9, Operand(FixedArray::kHeaderSize));
   1635 
   1636   // 3. Arguments object.
   1637   __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize));
   1638 
   1639   // Do the allocation of all three objects in one go.
   1640   __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
   1641 
   1642   // r0 = address of new object(s) (tagged)
   1643   // r2 = argument count (smi-tagged)
   1644   // Get the arguments boilerplate from the current native context into r4.
   1645   const int kNormalOffset =
   1646       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
   1647   const int kAliasedOffset =
   1648       Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
   1649 
   1650   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1651   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
   1652   __ cmp(r1, Operand::Zero());
   1653   __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
   1654   __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
   1655 
   1656   // r0 = address of new object (tagged)
   1657   // r1 = mapped parameter count (tagged)
   1658   // r2 = argument count (smi-tagged)
   1659   // r4 = address of arguments map (tagged)
   1660   __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
   1661   __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
   1662   __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
   1663   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
   1664 
   1665   // Set up the callee in-object property.
   1666   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
   1667   __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
   1668   __ AssertNotSmi(r3);
   1669   const int kCalleeOffset = JSObject::kHeaderSize +
   1670       Heap::kArgumentsCalleeIndex * kPointerSize;
   1671   __ str(r3, FieldMemOperand(r0, kCalleeOffset));
   1672 
   1673   // Use the length (smi tagged) and set that as an in-object property too.
   1674   __ AssertSmi(r2);
   1675   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1676   const int kLengthOffset = JSObject::kHeaderSize +
   1677       Heap::kArgumentsLengthIndex * kPointerSize;
   1678   __ str(r2, FieldMemOperand(r0, kLengthOffset));
   1679 
   1680   // Set up the elements pointer in the allocated arguments object.
   1681   // If we allocated a parameter map, r4 will point there, otherwise
   1682   // it will point to the backing store.
   1683   __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize));
   1684   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
   1685 
   1686   // r0 = address of new object (tagged)
   1687   // r1 = mapped parameter count (tagged)
   1688   // r2 = argument count (tagged)
   1689   // r4 = address of parameter map or backing store (tagged)
   1690   // Initialize parameter map. If there are no mapped arguments, we're done.
   1691   Label skip_parameter_map;
   1692   __ cmp(r1, Operand(Smi::FromInt(0)));
   1693   // Move backing store address to r3, because it is
   1694   // expected there when filling in the unmapped arguments.
   1695   __ mov(r3, r4, LeaveCC, eq);
   1696   __ b(eq, &skip_parameter_map);
   1697 
   1698   __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex);
   1699   __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
   1700   __ add(r6, r1, Operand(Smi::FromInt(2)));
   1701   __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
   1702   __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
   1703   __ add(r6, r4, Operand(r1, LSL, 1));
   1704   __ add(r6, r6, Operand(kParameterMapHeaderSize));
   1705   __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
   1706 
   1707   // Copy the parameter slots and the holes in the arguments.
   1708   // We need to fill in mapped_parameter_count slots. They index the context,
   1709   // where parameters are stored in reverse order, at
   1710   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
   1711   // The mapped parameter thus need to get indices
   1712   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
   1713   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
   1714   // We loop from right to left.
   1715   Label parameters_loop, parameters_test;
   1716   __ mov(r6, r1);
   1717   __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
   1718   __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
   1719   __ sub(r9, r9, Operand(r1));
   1720   __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
   1721   __ add(r3, r4, Operand(r6, LSL, 1));
   1722   __ add(r3, r3, Operand(kParameterMapHeaderSize));
   1723 
   1724   // r6 = loop variable (tagged)
   1725   // r1 = mapping index (tagged)
   1726   // r3 = address of backing store (tagged)
   1727   // r4 = address of parameter map (tagged), which is also the address of new
   1728   //      object + Heap::kSloppyArgumentsObjectSize (tagged)
   1729   // r0 = temporary scratch (a.o., for address calculation)
   1730   // r5 = the hole value
   1731   __ jmp(&parameters_test);
   1732 
   1733   __ bind(&parameters_loop);
   1734   __ sub(r6, r6, Operand(Smi::FromInt(1)));
   1735   __ mov(r0, Operand(r6, LSL, 1));
   1736   __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
   1737   __ str(r9, MemOperand(r4, r0));
   1738   __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
   1739   __ str(r5, MemOperand(r3, r0));
   1740   __ add(r9, r9, Operand(Smi::FromInt(1)));
   1741   __ bind(&parameters_test);
   1742   __ cmp(r6, Operand(Smi::FromInt(0)));
   1743   __ b(ne, &parameters_loop);
   1744 
   1745   // Restore r0 = new object (tagged)
   1746   __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize));
   1747 
   1748   __ bind(&skip_parameter_map);
   1749   // r0 = address of new object (tagged)
   1750   // r2 = argument count (tagged)
   1751   // r3 = address of backing store (tagged)
   1752   // r5 = scratch
   1753   // Copy arguments header and remaining slots (if there are any).
   1754   __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
   1755   __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
   1756   __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
   1757 
   1758   Label arguments_loop, arguments_test;
   1759   __ mov(r9, r1);
   1760   __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
   1761   __ sub(r4, r4, Operand(r9, LSL, 1));
   1762   __ jmp(&arguments_test);
   1763 
   1764   __ bind(&arguments_loop);
   1765   __ sub(r4, r4, Operand(kPointerSize));
   1766   __ ldr(r6, MemOperand(r4, 0));
   1767   __ add(r5, r3, Operand(r9, LSL, 1));
   1768   __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
   1769   __ add(r9, r9, Operand(Smi::FromInt(1)));
   1770 
   1771   __ bind(&arguments_test);
   1772   __ cmp(r9, Operand(r2));
   1773   __ b(lt, &arguments_loop);
   1774 
   1775   // Return and remove the on-stack parameters.
   1776   __ add(sp, sp, Operand(3 * kPointerSize));
   1777   __ Ret();
   1778 
   1779   // Do the runtime call to allocate the arguments object.
   1780   // r0 = address of new object (tagged)
   1781   // r2 = argument count (tagged)
   1782   __ bind(&runtime);
   1783   __ str(r2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
   1784   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
   1785 }
   1786 
   1787 
   1788 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
   1789   // Return address is in lr.
   1790   Label slow;
   1791 
   1792   Register receiver = LoadDescriptor::ReceiverRegister();
   1793   Register key = LoadDescriptor::NameRegister();
   1794 
   1795   // Check that the key is an array index, that is Uint32.
   1796   __ NonNegativeSmiTst(key);
   1797   __ b(ne, &slow);
   1798 
   1799   // Everything is fine, call runtime.
   1800   __ Push(receiver, key);  // Receiver, key.
   1801 
   1802   // Perform tail call to the entry.
   1803   __ TailCallExternalReference(
   1804       ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
   1805                         masm->isolate()),
   1806       2, 1);
   1807 
   1808   __ bind(&slow);
   1809   PropertyAccessCompiler::TailCallBuiltin(
   1810       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
   1811 }
   1812 
   1813 
   1814 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
   1815   // sp[0] : number of parameters
   1816   // sp[4] : receiver displacement
   1817   // sp[8] : function
   1818   // Check if the calling frame is an arguments adaptor frame.
   1819   Label adaptor_frame, try_allocate, runtime;
   1820   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
   1821   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
   1822   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1823   __ b(eq, &adaptor_frame);
   1824 
   1825   // Get the length from the frame.
   1826   __ ldr(r1, MemOperand(sp, 0));
   1827   __ b(&try_allocate);
   1828 
   1829   // Patch the arguments.length and the parameters pointer.
   1830   __ bind(&adaptor_frame);
   1831   __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1832   __ str(r1, MemOperand(sp, 0));
   1833   __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
   1834   __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
   1835   __ str(r3, MemOperand(sp, 1 * kPointerSize));
   1836 
   1837   // Try the new space allocation. Start out with computing the size
   1838   // of the arguments object and the elements array in words.
   1839   Label add_arguments_object;
   1840   __ bind(&try_allocate);
   1841   __ SmiUntag(r1, SetCC);
   1842   __ b(eq, &add_arguments_object);
   1843   __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
   1844   __ bind(&add_arguments_object);
   1845   __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
   1846 
   1847   // Do the allocation of both objects in one go.
   1848   __ Allocate(r1, r0, r2, r3, &runtime,
   1849               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
   1850 
   1851   // Get the arguments boilerplate from the current native context.
   1852   __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
   1853   __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
   1854   __ ldr(r4, MemOperand(
   1855                  r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
   1856 
   1857   __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
   1858   __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
   1859   __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
   1860   __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
   1861 
   1862   // Get the length (smi tagged) and set that as an in-object property too.
   1863   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
   1864   __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
   1865   __ AssertSmi(r1);
   1866   __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
   1867       Heap::kArgumentsLengthIndex * kPointerSize));
   1868 
   1869   // If there are no actual arguments, we're done.
   1870   Label done;
   1871   __ cmp(r1, Operand::Zero());
   1872   __ b(eq, &done);
   1873 
   1874   // Get the parameters pointer from the stack.
   1875   __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
   1876 
   1877   // Set up the elements pointer in the allocated arguments object and
   1878   // initialize the header in the elements fixed array.
   1879   __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize));
   1880   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
   1881   __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
   1882   __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
   1883   __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
   1884   __ SmiUntag(r1);
   1885 
   1886   // Copy the fixed array slots.
   1887   Label loop;
   1888   // Set up r4 to point to the first array slot.
   1889   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   1890   __ bind(&loop);
   1891   // Pre-decrement r2 with kPointerSize on each iteration.
   1892   // Pre-decrement in order to skip receiver.
   1893   __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
   1894   // Post-increment r4 with kPointerSize on each iteration.
   1895   __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
   1896   __ sub(r1, r1, Operand(1));
   1897   __ cmp(r1, Operand::Zero());
   1898   __ b(ne, &loop);
   1899 
   1900   // Return and remove the on-stack parameters.
   1901   __ bind(&done);
   1902   __ add(sp, sp, Operand(3 * kPointerSize));
   1903   __ Ret();
   1904 
   1905   // Do the runtime call to allocate the arguments object.
   1906   __ bind(&runtime);
   1907   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
   1908 }
   1909 
   1910 
   1911 void RegExpExecStub::Generate(MacroAssembler* masm) {
   1912   // Just jump directly to runtime if native RegExp is not selected at compile
   1913   // time or if regexp entry in generated code is turned off runtime switch or
   1914   // at compilation.
   1915 #ifdef V8_INTERPRETED_REGEXP
   1916   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   1917 #else  // V8_INTERPRETED_REGEXP
   1918 
   1919   // Stack frame on entry.
   1920   //  sp[0]: last_match_info (expected JSArray)
   1921   //  sp[4]: previous index
   1922   //  sp[8]: subject string
   1923   //  sp[12]: JSRegExp object
   1924 
   1925   const int kLastMatchInfoOffset = 0 * kPointerSize;
   1926   const int kPreviousIndexOffset = 1 * kPointerSize;
   1927   const int kSubjectOffset = 2 * kPointerSize;
   1928   const int kJSRegExpOffset = 3 * kPointerSize;
   1929 
   1930   Label runtime;
   1931   // Allocation of registers for this function. These are in callee save
   1932   // registers and will be preserved by the call to the native RegExp code, as
   1933   // this code is called using the normal C calling convention. When calling
   1934   // directly from generated code the native RegExp code will not do a GC and
   1935   // therefore the content of these registers are safe to use after the call.
   1936   Register subject = r4;
   1937   Register regexp_data = r5;
   1938   Register last_match_info_elements = no_reg;  // will be r6;
   1939 
   1940   // Ensure that a RegExp stack is allocated.
   1941   ExternalReference address_of_regexp_stack_memory_address =
   1942       ExternalReference::address_of_regexp_stack_memory_address(isolate());
   1943   ExternalReference address_of_regexp_stack_memory_size =
   1944       ExternalReference::address_of_regexp_stack_memory_size(isolate());
   1945   __ mov(r0, Operand(address_of_regexp_stack_memory_size));
   1946   __ ldr(r0, MemOperand(r0, 0));
   1947   __ cmp(r0, Operand::Zero());
   1948   __ b(eq, &runtime);
   1949 
   1950   // Check that the first argument is a JSRegExp object.
   1951   __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
   1952   __ JumpIfSmi(r0, &runtime);
   1953   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
   1954   __ b(ne, &runtime);
   1955 
   1956   // Check that the RegExp has been compiled (data contains a fixed array).
   1957   __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
   1958   if (FLAG_debug_code) {
   1959     __ SmiTst(regexp_data);
   1960     __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1961     __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
   1962     __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
   1963   }
   1964 
   1965   // regexp_data: RegExp data (FixedArray)
   1966   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
   1967   __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
   1968   __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
   1969   __ b(ne, &runtime);
   1970 
   1971   // regexp_data: RegExp data (FixedArray)
   1972   // Check that the number of captures fit in the static offsets vector buffer.
   1973   __ ldr(r2,
   1974          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   1975   // Check (number_of_captures + 1) * 2 <= offsets vector size
   1976   // Or          number_of_captures * 2 <= offsets vector size - 2
   1977   // Multiplying by 2 comes for free since r2 is smi-tagged.
   1978   STATIC_ASSERT(kSmiTag == 0);
   1979   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1980   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
   1981   __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
   1982   __ b(hi, &runtime);
   1983 
   1984   // Reset offset for possibly sliced string.
   1985   __ mov(r9, Operand::Zero());
   1986   __ ldr(subject, MemOperand(sp, kSubjectOffset));
   1987   __ JumpIfSmi(subject, &runtime);
   1988   __ mov(r3, subject);  // Make a copy of the original subject string.
   1989   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   1990   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   1991   // subject: subject string
   1992   // r3: subject string
   1993   // r0: subject string instance type
   1994   // regexp_data: RegExp data (FixedArray)
   1995   // Handle subject string according to its encoding and representation:
   1996   // (1) Sequential string?  If yes, go to (5).
   1997   // (2) Anything but sequential or cons?  If yes, go to (6).
   1998   // (3) Cons string.  If the string is flat, replace subject with first string.
   1999   //     Otherwise bailout.
   2000   // (4) Is subject external?  If yes, go to (7).
   2001   // (5) Sequential string.  Load regexp code according to encoding.
   2002   // (E) Carry on.
   2003   /// [...]
   2004 
   2005   // Deferred code at the end of the stub:
   2006   // (6) Not a long external string?  If yes, go to (8).
   2007   // (7) External string.  Make it, offset-wise, look like a sequential string.
   2008   //     Go to (5).
   2009   // (8) Short external string or not a string?  If yes, bail out to runtime.
   2010   // (9) Sliced string.  Replace subject with parent.  Go to (4).
   2011 
   2012   Label seq_string /* 5 */, external_string /* 7 */,
   2013         check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
   2014         not_long_external /* 8 */;
   2015 
   2016   // (1) Sequential string?  If yes, go to (5).
   2017   __ and_(r1,
   2018           r0,
   2019           Operand(kIsNotStringMask |
   2020                   kStringRepresentationMask |
   2021                   kShortExternalStringMask),
   2022           SetCC);
   2023   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
   2024   __ b(eq, &seq_string);  // Go to (5).
   2025 
   2026   // (2) Anything but sequential or cons?  If yes, go to (6).
   2027   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
   2028   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
   2029   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
   2030   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
   2031   __ cmp(r1, Operand(kExternalStringTag));
   2032   __ b(ge, &not_seq_nor_cons);  // Go to (6).
   2033 
   2034   // (3) Cons string.  Check that it's flat.
   2035   // Replace subject with first string and reload instance type.
   2036   __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
   2037   __ CompareRoot(r0, Heap::kempty_stringRootIndex);
   2038   __ b(ne, &runtime);
   2039   __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
   2040 
   2041   // (4) Is subject external?  If yes, go to (7).
   2042   __ bind(&check_underlying);
   2043   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2044   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   2045   STATIC_ASSERT(kSeqStringTag == 0);
   2046   __ tst(r0, Operand(kStringRepresentationMask));
   2047   // The underlying external string is never a short external string.
   2048   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
   2049   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
   2050   __ b(ne, &external_string);  // Go to (7).
   2051 
   2052   // (5) Sequential string.  Load regexp code according to encoding.
   2053   __ bind(&seq_string);
   2054   // subject: sequential subject string (or look-alike, external string)
   2055   // r3: original subject string
   2056   // Load previous index and check range before r3 is overwritten.  We have to
   2057   // use r3 instead of subject here because subject might have been only made
   2058   // to look like a sequential string when it actually is an external string.
   2059   __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
   2060   __ JumpIfNotSmi(r1, &runtime);
   2061   __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
   2062   __ cmp(r3, Operand(r1));
   2063   __ b(ls, &runtime);
   2064   __ SmiUntag(r1);
   2065 
   2066   STATIC_ASSERT(4 == kOneByteStringTag);
   2067   STATIC_ASSERT(kTwoByteStringTag == 0);
   2068   __ and_(r0, r0, Operand(kStringEncodingMask));
   2069   __ mov(r3, Operand(r0, ASR, 2), SetCC);
   2070   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset),
   2071          ne);
   2072   __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
   2073 
   2074   // (E) Carry on.  String handling is done.
   2075   // r6: irregexp code
   2076   // Check that the irregexp code has been generated for the actual string
   2077   // encoding. If it has, the field contains a code object otherwise it contains
   2078   // a smi (code flushing support).
   2079   __ JumpIfSmi(r6, &runtime);
   2080 
   2081   // r1: previous index
   2082   // r3: encoding of subject string (1 if one_byte, 0 if two_byte);
   2083   // r6: code
   2084   // subject: Subject string
   2085   // regexp_data: RegExp data (FixedArray)
   2086   // All checks done. Now push arguments for native regexp code.
   2087   __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
   2088 
   2089   // Isolates: note we add an additional parameter here (isolate pointer).
   2090   const int kRegExpExecuteArguments = 9;
   2091   const int kParameterRegisters = 4;
   2092   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
   2093 
   2094   // Stack pointer now points to cell where return address is to be written.
   2095   // Arguments are before that on the stack or in registers.
   2096 
   2097   // Argument 9 (sp[20]): Pass current isolate address.
   2098   __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
   2099   __ str(r0, MemOperand(sp, 5 * kPointerSize));
   2100 
   2101   // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
   2102   __ mov(r0, Operand(1));
   2103   __ str(r0, MemOperand(sp, 4 * kPointerSize));
   2104 
   2105   // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
   2106   __ mov(r0, Operand(address_of_regexp_stack_memory_address));
   2107   __ ldr(r0, MemOperand(r0, 0));
   2108   __ mov(r2, Operand(address_of_regexp_stack_memory_size));
   2109   __ ldr(r2, MemOperand(r2, 0));
   2110   __ add(r0, r0, Operand(r2));
   2111   __ str(r0, MemOperand(sp, 3 * kPointerSize));
   2112 
   2113   // Argument 6: Set the number of capture registers to zero to force global
   2114   // regexps to behave as non-global.  This does not affect non-global regexps.
   2115   __ mov(r0, Operand::Zero());
   2116   __ str(r0, MemOperand(sp, 2 * kPointerSize));
   2117 
   2118   // Argument 5 (sp[4]): static offsets vector buffer.
   2119   __ mov(r0,
   2120          Operand(ExternalReference::address_of_static_offsets_vector(
   2121              isolate())));
   2122   __ str(r0, MemOperand(sp, 1 * kPointerSize));
   2123 
   2124   // For arguments 4 and 3 get string length, calculate start of string data and
   2125   // calculate the shift of the index (0 for one-byte and 1 for two-byte).
   2126   __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
   2127   __ eor(r3, r3, Operand(1));
   2128   // Load the length from the original subject string from the previous stack
   2129   // frame. Therefore we have to use fp, which points exactly to two pointer
   2130   // sizes below the previous sp. (Because creating a new stack frame pushes
   2131   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
   2132   __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
   2133   // If slice offset is not 0, load the length from the original sliced string.
   2134   // Argument 4, r3: End of string data
   2135   // Argument 3, r2: Start of string data
   2136   // Prepare start and end index of the input.
   2137   __ add(r9, r7, Operand(r9, LSL, r3));
   2138   __ add(r2, r9, Operand(r1, LSL, r3));
   2139 
   2140   __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
   2141   __ SmiUntag(r7);
   2142   __ add(r3, r9, Operand(r7, LSL, r3));
   2143 
   2144   // Argument 2 (r1): Previous index.
   2145   // Already there
   2146 
   2147   // Argument 1 (r0): Subject string.
   2148   __ mov(r0, subject);
   2149 
   2150   // Locate the code entry and call it.
   2151   __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
   2152   DirectCEntryStub stub(isolate());
   2153   stub.GenerateCall(masm, r6);
   2154 
   2155   __ LeaveExitFrame(false, no_reg, true);
   2156 
   2157   last_match_info_elements = r6;
   2158 
   2159   // r0: result
   2160   // subject: subject string (callee saved)
   2161   // regexp_data: RegExp data (callee saved)
   2162   // last_match_info_elements: Last match info elements (callee saved)
   2163   // Check the result.
   2164   Label success;
   2165   __ cmp(r0, Operand(1));
   2166   // We expect exactly one result since we force the called regexp to behave
   2167   // as non-global.
   2168   __ b(eq, &success);
   2169   Label failure;
   2170   __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
   2171   __ b(eq, &failure);
   2172   __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
   2173   // If not exception it can only be retry. Handle that in the runtime system.
   2174   __ b(ne, &runtime);
   2175   // Result must now be exception. If there is no pending exception already a
   2176   // stack overflow (on the backtrack stack) was detected in RegExp code but
   2177   // haven't created the exception yet. Handle that in the runtime system.
   2178   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   2179   __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
   2180   __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
   2181                                        isolate())));
   2182   __ ldr(r0, MemOperand(r2, 0));
   2183   __ cmp(r0, r1);
   2184   __ b(eq, &runtime);
   2185 
   2186   __ str(r1, MemOperand(r2, 0));  // Clear pending exception.
   2187 
   2188   // Check if the exception is a termination. If so, throw as uncatchable.
   2189   __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
   2190 
   2191   Label termination_exception;
   2192   __ b(eq, &termination_exception);
   2193 
   2194   __ Throw(r0);
   2195 
   2196   __ bind(&termination_exception);
   2197   __ ThrowUncatchable(r0);
   2198 
   2199   __ bind(&failure);
   2200   // For failure and exception return null.
   2201   __ mov(r0, Operand(isolate()->factory()->null_value()));
   2202   __ add(sp, sp, Operand(4 * kPointerSize));
   2203   __ Ret();
   2204 
   2205   // Process the result from the native regexp code.
   2206   __ bind(&success);
   2207   __ ldr(r1,
   2208          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
   2209   // Calculate number of capture registers (number_of_captures + 1) * 2.
   2210   // Multiplying by 2 comes for free since r1 is smi-tagged.
   2211   STATIC_ASSERT(kSmiTag == 0);
   2212   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2213   __ add(r1, r1, Operand(2));  // r1 was a smi.
   2214 
   2215   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
   2216   __ JumpIfSmi(r0, &runtime);
   2217   __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
   2218   __ b(ne, &runtime);
   2219   // Check that the JSArray is in fast case.
   2220   __ ldr(last_match_info_elements,
   2221          FieldMemOperand(r0, JSArray::kElementsOffset));
   2222   __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
   2223   __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
   2224   __ b(ne, &runtime);
   2225   // Check that the last match info has space for the capture registers and the
   2226   // additional information.
   2227   __ ldr(r0,
   2228          FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
   2229   __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
   2230   __ cmp(r2, Operand::SmiUntag(r0));
   2231   __ b(gt, &runtime);
   2232 
   2233   // r1: number of capture registers
   2234   // r4: subject string
   2235   // Store the capture count.
   2236   __ SmiTag(r2, r1);
   2237   __ str(r2, FieldMemOperand(last_match_info_elements,
   2238                              RegExpImpl::kLastCaptureCountOffset));
   2239   // Store last subject and last input.
   2240   __ str(subject,
   2241          FieldMemOperand(last_match_info_elements,
   2242                          RegExpImpl::kLastSubjectOffset));
   2243   __ mov(r2, subject);
   2244   __ RecordWriteField(last_match_info_elements,
   2245                       RegExpImpl::kLastSubjectOffset,
   2246                       subject,
   2247                       r3,
   2248                       kLRHasNotBeenSaved,
   2249                       kDontSaveFPRegs);
   2250   __ mov(subject, r2);
   2251   __ str(subject,
   2252          FieldMemOperand(last_match_info_elements,
   2253                          RegExpImpl::kLastInputOffset));
   2254   __ RecordWriteField(last_match_info_elements,
   2255                       RegExpImpl::kLastInputOffset,
   2256                       subject,
   2257                       r3,
   2258                       kLRHasNotBeenSaved,
   2259                       kDontSaveFPRegs);
   2260 
   2261   // Get the static offsets vector filled by the native regexp code.
   2262   ExternalReference address_of_static_offsets_vector =
   2263       ExternalReference::address_of_static_offsets_vector(isolate());
   2264   __ mov(r2, Operand(address_of_static_offsets_vector));
   2265 
   2266   // r1: number of capture registers
   2267   // r2: offsets vector
   2268   Label next_capture, done;
   2269   // Capture register counter starts from number of capture registers and
   2270   // counts down until wraping after zero.
   2271   __ add(r0,
   2272          last_match_info_elements,
   2273          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
   2274   __ bind(&next_capture);
   2275   __ sub(r1, r1, Operand(1), SetCC);
   2276   __ b(mi, &done);
   2277   // Read the value from the static offsets vector buffer.
   2278   __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
   2279   // Store the smi value in the last match info.
   2280   __ SmiTag(r3);
   2281   __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
   2282   __ jmp(&next_capture);
   2283   __ bind(&done);
   2284 
   2285   // Return last match info.
   2286   __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
   2287   __ add(sp, sp, Operand(4 * kPointerSize));
   2288   __ Ret();
   2289 
   2290   // Do the runtime call to execute the regexp.
   2291   __ bind(&runtime);
   2292   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   2293 
   2294   // Deferred code for string handling.
   2295   // (6) Not a long external string?  If yes, go to (8).
   2296   __ bind(&not_seq_nor_cons);
   2297   // Compare flags are still set.
   2298   __ b(gt, &not_long_external);  // Go to (8).
   2299 
   2300   // (7) External string.  Make it, offset-wise, look like a sequential string.
   2301   __ bind(&external_string);
   2302   __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
   2303   __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
   2304   if (FLAG_debug_code) {
   2305     // Assert that we do not have a cons or slice (indirect strings) here.
   2306     // Sequential strings have already been ruled out.
   2307     __ tst(r0, Operand(kIsIndirectStringMask));
   2308     __ Assert(eq, kExternalStringExpectedButNotFound);
   2309   }
   2310   __ ldr(subject,
   2311          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
   2312   // Move the pointer so that offset-wise, it looks like a sequential string.
   2313   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2314   __ sub(subject,
   2315          subject,
   2316          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2317   __ jmp(&seq_string);    // Go to (5).
   2318 
   2319   // (8) Short external string or not a string?  If yes, bail out to runtime.
   2320   __ bind(&not_long_external);
   2321   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   2322   __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
   2323   __ b(ne, &runtime);
   2324 
   2325   // (9) Sliced string.  Replace subject with parent.  Go to (4).
   2326   // Load offset into r9 and replace subject string with parent.
   2327   __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
   2328   __ SmiUntag(r9);
   2329   __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
   2330   __ jmp(&check_underlying);  // Go to (4).
   2331 #endif  // V8_INTERPRETED_REGEXP
   2332 }
   2333 
   2334 
   2335 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   2336   // Cache the called function in a feedback vector slot.  Cache states
   2337   // are uninitialized, monomorphic (indicated by a JSFunction), and
   2338   // megamorphic.
   2339   // r0 : number of arguments to the construct function
   2340   // r1 : the function to call
   2341   // r2 : Feedback vector
   2342   // r3 : slot in feedback vector (Smi)
   2343   Label initialize, done, miss, megamorphic, not_array_function;
   2344 
   2345   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
   2346             masm->isolate()->heap()->megamorphic_symbol());
   2347   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
   2348             masm->isolate()->heap()->uninitialized_symbol());
   2349 
   2350   // Load the cache state into r4.
   2351   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
   2352   __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
   2353 
   2354   // A monomorphic cache hit or an already megamorphic state: invoke the
   2355   // function without changing the state.
   2356   __ cmp(r4, r1);
   2357   __ b(eq, &done);
   2358 
   2359   if (!FLAG_pretenuring_call_new) {
   2360     // If we came here, we need to see if we are the array function.
   2361     // If we didn't have a matching function, and we didn't find the megamorph
   2362     // sentinel, then we have in the slot either some other function or an
   2363     // AllocationSite. Do a map check on the object in ecx.
   2364     __ ldr(r5, FieldMemOperand(r4, 0));
   2365     __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
   2366     __ b(ne, &miss);
   2367 
   2368     // Make sure the function is the Array() function
   2369     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
   2370     __ cmp(r1, r4);
   2371     __ b(ne, &megamorphic);
   2372     __ jmp(&done);
   2373   }
   2374 
   2375   __ bind(&miss);
   2376 
   2377   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   2378   // megamorphic.
   2379   __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
   2380   __ b(eq, &initialize);
   2381   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   2382   // write-barrier is needed.
   2383   __ bind(&megamorphic);
   2384   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
   2385   __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
   2386   __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
   2387   __ jmp(&done);
   2388 
   2389   // An uninitialized cache is patched with the function
   2390   __ bind(&initialize);
   2391 
   2392   if (!FLAG_pretenuring_call_new) {
   2393     // Make sure the function is the Array() function
   2394     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
   2395     __ cmp(r1, r4);
   2396     __ b(ne, &not_array_function);
   2397 
   2398     // The target function is the Array constructor,
   2399     // Create an AllocationSite if we don't already have it, store it in the
   2400     // slot.
   2401     {
   2402       FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   2403 
   2404       // Arguments register must be smi-tagged to call out.
   2405       __ SmiTag(r0);
   2406       __ Push(r3, r2, r1, r0);
   2407 
   2408       CreateAllocationSiteStub create_stub(masm->isolate());
   2409       __ CallStub(&create_stub);
   2410 
   2411       __ Pop(r3, r2, r1, r0);
   2412       __ SmiUntag(r0);
   2413     }
   2414     __ b(&done);
   2415 
   2416     __ bind(&not_array_function);
   2417   }
   2418 
   2419   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
   2420   __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   2421   __ str(r1, MemOperand(r4, 0));
   2422 
   2423   __ Push(r4, r2, r1);
   2424   __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs,
   2425                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   2426   __ Pop(r4, r2, r1);
   2427 
   2428   __ bind(&done);
   2429 }
   2430 
   2431 
   2432 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
   2433   // Do not transform the receiver for strict mode functions.
   2434   __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
   2435   __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset));
   2436   __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
   2437                            kSmiTagSize)));
   2438   __ b(ne, cont);
   2439 
   2440   // Do not transform the receiver for native (Compilerhints already in r3).
   2441   __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
   2442   __ b(ne, cont);
   2443 }
   2444 
   2445 
   2446 static void EmitSlowCase(MacroAssembler* masm,
   2447                          int argc,
   2448                          Label* non_function) {
   2449   // Check for function proxy.
   2450   __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
   2451   __ b(ne, non_function);
   2452   __ push(r1);  // put proxy as additional argument
   2453   __ mov(r0, Operand(argc + 1, RelocInfo::NONE32));
   2454   __ mov(r2, Operand::Zero());
   2455   __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY);
   2456   {
   2457     Handle<Code> adaptor =
   2458         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
   2459     __ Jump(adaptor, RelocInfo::CODE_TARGET);
   2460   }
   2461 
   2462   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   2463   // of the original receiver from the call site).
   2464   __ bind(non_function);
   2465   __ str(r1, MemOperand(sp, argc * kPointerSize));
   2466   __ mov(r0, Operand(argc));  // Set up the number of arguments.
   2467   __ mov(r2, Operand::Zero());
   2468   __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION);
   2469   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   2470           RelocInfo::CODE_TARGET);
   2471 }
   2472 
   2473 
   2474 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
   2475   // Wrap the receiver and patch it back onto the stack.
   2476   { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
   2477     __ Push(r1, r3);
   2478     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   2479     __ pop(r1);
   2480   }
   2481   __ str(r0, MemOperand(sp, argc * kPointerSize));
   2482   __ jmp(cont);
   2483 }
   2484 
   2485 
   2486 static void CallFunctionNoFeedback(MacroAssembler* masm,
   2487                                    int argc, bool needs_checks,
   2488                                    bool call_as_method) {
   2489   // r1 : the function to call
   2490   Label slow, non_function, wrap, cont;
   2491 
   2492   if (needs_checks) {
   2493     // Check that the function is really a JavaScript function.
   2494     // r1: pushed function (to be verified)
   2495     __ JumpIfSmi(r1, &non_function);
   2496 
   2497     // Goto slow case if we do not have a function.
   2498     __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
   2499     __ b(ne, &slow);
   2500   }
   2501 
   2502   // Fast-case: Invoke the function now.
   2503   // r1: pushed function
   2504   ParameterCount actual(argc);
   2505 
   2506   if (call_as_method) {
   2507     if (needs_checks) {
   2508       EmitContinueIfStrictOrNative(masm, &cont);
   2509     }
   2510 
   2511     // Compute the receiver in sloppy mode.
   2512     __ ldr(r3, MemOperand(sp, argc * kPointerSize));
   2513 
   2514     if (needs_checks) {
   2515       __ JumpIfSmi(r3, &wrap);
   2516       __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
   2517       __ b(lt, &wrap);
   2518     } else {
   2519       __ jmp(&wrap);
   2520     }
   2521 
   2522     __ bind(&cont);
   2523   }
   2524 
   2525   __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
   2526 
   2527   if (needs_checks) {
   2528     // Slow-case: Non-function called.
   2529     __ bind(&slow);
   2530     EmitSlowCase(masm, argc, &non_function);
   2531   }
   2532 
   2533   if (call_as_method) {
   2534     __ bind(&wrap);
   2535     EmitWrapCase(masm, argc, &cont);
   2536   }
   2537 }
   2538 
   2539 
   2540 void CallFunctionStub::Generate(MacroAssembler* masm) {
   2541   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
   2542 }
   2543 
   2544 
   2545 void CallConstructStub::Generate(MacroAssembler* masm) {
   2546   // r0 : number of arguments
   2547   // r1 : the function to call
   2548   // r2 : feedback vector
   2549   // r3 : (only if r2 is not the megamorphic symbol) slot in feedback
   2550   //      vector (Smi)
   2551   Label slow, non_function_call;
   2552 
   2553   // Check that the function is not a smi.
   2554   __ JumpIfSmi(r1, &non_function_call);
   2555   // Check that the function is a JSFunction.
   2556   __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
   2557   __ b(ne, &slow);
   2558 
   2559   if (RecordCallTarget()) {
   2560     GenerateRecordCallTarget(masm);
   2561 
   2562     __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
   2563     if (FLAG_pretenuring_call_new) {
   2564       // Put the AllocationSite from the feedback vector into r2.
   2565       // By adding kPointerSize we encode that we know the AllocationSite
   2566       // entry is at the feedback vector slot given by r3 + 1.
   2567       __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize));
   2568     } else {
   2569       Label feedback_register_initialized;
   2570       // Put the AllocationSite from the feedback vector into r2, or undefined.
   2571       __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
   2572       __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
   2573       __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
   2574       __ b(eq, &feedback_register_initialized);
   2575       __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
   2576       __ bind(&feedback_register_initialized);
   2577     }
   2578 
   2579     __ AssertUndefinedOrAllocationSite(r2, r5);
   2580   }
   2581 
   2582   // Jump to the function-specific construct stub.
   2583   Register jmp_reg = r4;
   2584   __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
   2585   __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
   2586                                   SharedFunctionInfo::kConstructStubOffset));
   2587   __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
   2588 
   2589   // r0: number of arguments
   2590   // r1: called object
   2591   // r4: object type
   2592   Label do_call;
   2593   __ bind(&slow);
   2594   __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
   2595   __ b(ne, &non_function_call);
   2596   __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   2597   __ jmp(&do_call);
   2598 
   2599   __ bind(&non_function_call);
   2600   __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   2601   __ bind(&do_call);
   2602   // Set expected number of arguments to zero (not changing r0).
   2603   __ mov(r2, Operand::Zero());
   2604   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   2605           RelocInfo::CODE_TARGET);
   2606 }
   2607 
   2608 
   2609 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
   2610   __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   2611   __ ldr(vector, FieldMemOperand(vector,
   2612                                  JSFunction::kSharedFunctionInfoOffset));
   2613   __ ldr(vector, FieldMemOperand(vector,
   2614                                  SharedFunctionInfo::kFeedbackVectorOffset));
   2615 }
   2616 
   2617 
   2618 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
   2619   // r1 - function
   2620   // r3 - slot id
   2621   Label miss;
   2622   int argc = arg_count();
   2623   ParameterCount actual(argc);
   2624 
   2625   EmitLoadTypeFeedbackVector(masm, r2);
   2626 
   2627   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
   2628   __ cmp(r1, r4);
   2629   __ b(ne, &miss);
   2630 
   2631   __ mov(r0, Operand(arg_count()));
   2632   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
   2633   __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
   2634 
   2635   // Verify that r4 contains an AllocationSite
   2636   __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset));
   2637   __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
   2638   __ b(ne, &miss);
   2639 
   2640   __ mov(r2, r4);
   2641   ArrayConstructorStub stub(masm->isolate(), arg_count());
   2642   __ TailCallStub(&stub);
   2643 
   2644   __ bind(&miss);
   2645   GenerateMiss(masm);
   2646 
   2647   // The slow case, we need this no matter what to complete a call after a miss.
   2648   CallFunctionNoFeedback(masm,
   2649                          arg_count(),
   2650                          true,
   2651                          CallAsMethod());
   2652 
   2653   // Unreachable.
   2654   __ stop("Unexpected code address");
   2655 }
   2656 
   2657 
   2658 void CallICStub::Generate(MacroAssembler* masm) {
   2659   // r1 - function
   2660   // r3 - slot id (Smi)
   2661   Label extra_checks_or_miss, slow_start;
   2662   Label slow, non_function, wrap, cont;
   2663   Label have_js_function;
   2664   int argc = arg_count();
   2665   ParameterCount actual(argc);
   2666 
   2667   EmitLoadTypeFeedbackVector(masm, r2);
   2668 
   2669   // The checks. First, does r1 match the recorded monomorphic target?
   2670   __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
   2671   __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
   2672   __ cmp(r1, r4);
   2673   __ b(ne, &extra_checks_or_miss);
   2674 
   2675   __ bind(&have_js_function);
   2676   if (CallAsMethod()) {
   2677     EmitContinueIfStrictOrNative(masm, &cont);
   2678     // Compute the receiver in sloppy mode.
   2679     __ ldr(r3, MemOperand(sp, argc * kPointerSize));
   2680 
   2681     __ JumpIfSmi(r3, &wrap);
   2682     __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
   2683     __ b(lt, &wrap);
   2684 
   2685     __ bind(&cont);
   2686   }
   2687 
   2688   __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
   2689 
   2690   __ bind(&slow);
   2691   EmitSlowCase(masm, argc, &non_function);
   2692 
   2693   if (CallAsMethod()) {
   2694     __ bind(&wrap);
   2695     EmitWrapCase(masm, argc, &cont);
   2696   }
   2697 
   2698   __ bind(&extra_checks_or_miss);
   2699   Label miss;
   2700 
   2701   __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex);
   2702   __ b(eq, &slow_start);
   2703   __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
   2704   __ b(eq, &miss);
   2705 
   2706   if (!FLAG_trace_ic) {
   2707     // We are going megamorphic. If the feedback is a JSFunction, it is fine
   2708     // to handle it here. More complex cases are dealt with in the runtime.
   2709     __ AssertNotSmi(r4);
   2710     __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE);
   2711     __ b(ne, &miss);
   2712     __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
   2713     __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
   2714     __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
   2715     __ jmp(&slow_start);
   2716   }
   2717 
   2718   // We are here because tracing is on or we are going monomorphic.
   2719   __ bind(&miss);
   2720   GenerateMiss(masm);
   2721 
   2722   // the slow case
   2723   __ bind(&slow_start);
   2724   // Check that the function is really a JavaScript function.
   2725   // r1: pushed function (to be verified)
   2726   __ JumpIfSmi(r1, &non_function);
   2727 
   2728   // Goto slow case if we do not have a function.
   2729   __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
   2730   __ b(ne, &slow);
   2731   __ jmp(&have_js_function);
   2732 }
   2733 
   2734 
   2735 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   2736   // Get the receiver of the function from the stack; 1 ~ return address.
   2737   __ ldr(r4, MemOperand(sp, (arg_count() + 1) * kPointerSize));
   2738 
   2739   {
   2740     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   2741 
   2742     // Push the receiver and the function and feedback info.
   2743     __ Push(r4, r1, r2, r3);
   2744 
   2745     // Call the entry.
   2746     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
   2747                                                : IC::kCallIC_Customization_Miss;
   2748 
   2749     ExternalReference miss = ExternalReference(IC_Utility(id),
   2750                                                masm->isolate());
   2751     __ CallExternalReference(miss, 4);
   2752 
   2753     // Move result to edi and exit the internal frame.
   2754     __ mov(r1, r0);
   2755   }
   2756 }
   2757 
   2758 
   2759 // StringCharCodeAtGenerator
   2760 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2761   // If the receiver is a smi trigger the non-string case.
   2762   __ JumpIfSmi(object_, receiver_not_string_);
   2763 
   2764   // Fetch the instance type of the receiver into result register.
   2765   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2766   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2767   // If the receiver is not a string trigger the non-string case.
   2768   __ tst(result_, Operand(kIsNotStringMask));
   2769   __ b(ne, receiver_not_string_);
   2770 
   2771   // If the index is non-smi trigger the non-smi case.
   2772   __ JumpIfNotSmi(index_, &index_not_smi_);
   2773   __ bind(&got_smi_index_);
   2774 
   2775   // Check for index out of range.
   2776   __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
   2777   __ cmp(ip, Operand(index_));
   2778   __ b(ls, index_out_of_range_);
   2779 
   2780   __ SmiUntag(index_);
   2781 
   2782   StringCharLoadGenerator::Generate(masm,
   2783                                     object_,
   2784                                     index_,
   2785                                     result_,
   2786                                     &call_runtime_);
   2787 
   2788   __ SmiTag(result_);
   2789   __ bind(&exit_);
   2790 }
   2791 
   2792 
   2793 void StringCharCodeAtGenerator::GenerateSlow(
   2794     MacroAssembler* masm,
   2795     const RuntimeCallHelper& call_helper) {
   2796   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2797 
   2798   // Index is not a smi.
   2799   __ bind(&index_not_smi_);
   2800   // If index is a heap number, try converting it to an integer.
   2801   __ CheckMap(index_,
   2802               result_,
   2803               Heap::kHeapNumberMapRootIndex,
   2804               index_not_number_,
   2805               DONT_DO_SMI_CHECK);
   2806   call_helper.BeforeCall(masm);
   2807   __ push(object_);
   2808   __ push(index_);  // Consumed by runtime conversion function.
   2809   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   2810     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   2811   } else {
   2812     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   2813     // NumberToSmi discards numbers that are not exact integers.
   2814     __ CallRuntime(Runtime::kNumberToSmi, 1);
   2815   }
   2816   // Save the conversion result before the pop instructions below
   2817   // have a chance to overwrite it.
   2818   __ Move(index_, r0);
   2819   __ pop(object_);
   2820   // Reload the instance type.
   2821   __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
   2822   __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
   2823   call_helper.AfterCall(masm);
   2824   // If index is still not a smi, it must be out of range.
   2825   __ JumpIfNotSmi(index_, index_out_of_range_);
   2826   // Otherwise, return to the fast path.
   2827   __ jmp(&got_smi_index_);
   2828 
   2829   // Call runtime. We get here when the receiver is a string and the
   2830   // index is a number, but the code of getting the actual character
   2831   // is too complex (e.g., when the string needs to be flattened).
   2832   __ bind(&call_runtime_);
   2833   call_helper.BeforeCall(masm);
   2834   __ SmiTag(index_);
   2835   __ Push(object_, index_);
   2836   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
   2837   __ Move(result_, r0);
   2838   call_helper.AfterCall(masm);
   2839   __ jmp(&exit_);
   2840 
   2841   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2842 }
   2843 
   2844 
   2845 // -------------------------------------------------------------------------
   2846 // StringCharFromCodeGenerator
   2847 
   2848 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2849   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2850   STATIC_ASSERT(kSmiTag == 0);
   2851   STATIC_ASSERT(kSmiShiftSize == 0);
   2852   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
   2853   __ tst(code_,
   2854          Operand(kSmiTagMask |
   2855                  ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
   2856   __ b(ne, &slow_case_);
   2857 
   2858   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
   2859   // At this point code register contains smi tagged one-byte char code.
   2860   __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
   2861   __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
   2862   __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
   2863   __ b(eq, &slow_case_);
   2864   __ bind(&exit_);
   2865 }
   2866 
   2867 
   2868 void StringCharFromCodeGenerator::GenerateSlow(
   2869     MacroAssembler* masm,
   2870     const RuntimeCallHelper& call_helper) {
   2871   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2872 
   2873   __ bind(&slow_case_);
   2874   call_helper.BeforeCall(masm);
   2875   __ push(code_);
   2876   __ CallRuntime(Runtime::kCharFromCode, 1);
   2877   __ Move(result_, r0);
   2878   call_helper.AfterCall(masm);
   2879   __ jmp(&exit_);
   2880 
   2881   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2882 }
   2883 
   2884 
   2885 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
   2886 
   2887 
   2888 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2889                                           Register dest,
   2890                                           Register src,
   2891                                           Register count,
   2892                                           Register scratch,
   2893                                           String::Encoding encoding) {
   2894   if (FLAG_debug_code) {
   2895     // Check that destination is word aligned.
   2896     __ tst(dest, Operand(kPointerAlignmentMask));
   2897     __ Check(eq, kDestinationOfCopyNotAligned);
   2898   }
   2899 
   2900   // Assumes word reads and writes are little endian.
   2901   // Nothing to do for zero characters.
   2902   Label done;
   2903   if (encoding == String::TWO_BYTE_ENCODING) {
   2904     __ add(count, count, Operand(count), SetCC);
   2905   }
   2906 
   2907   Register limit = count;  // Read until dest equals this.
   2908   __ add(limit, dest, Operand(count));
   2909 
   2910   Label loop_entry, loop;
   2911   // Copy bytes from src to dest until dest hits limit.
   2912   __ b(&loop_entry);
   2913   __ bind(&loop);
   2914   __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt);
   2915   __ strb(scratch, MemOperand(dest, 1, PostIndex));
   2916   __ bind(&loop_entry);
   2917   __ cmp(dest, Operand(limit));
   2918   __ b(lt, &loop);
   2919 
   2920   __ bind(&done);
   2921 }
   2922 
   2923 
   2924 void SubStringStub::Generate(MacroAssembler* masm) {
   2925   Label runtime;
   2926 
   2927   // Stack frame on entry.
   2928   //  lr: return address
   2929   //  sp[0]: to
   2930   //  sp[4]: from
   2931   //  sp[8]: string
   2932 
   2933   // This stub is called from the native-call %_SubString(...), so
   2934   // nothing can be assumed about the arguments. It is tested that:
   2935   //  "string" is a sequential string,
   2936   //  both "from" and "to" are smis, and
   2937   //  0 <= from <= to <= string.length.
   2938   // If any of these assumptions fail, we call the runtime system.
   2939 
   2940   const int kToOffset = 0 * kPointerSize;
   2941   const int kFromOffset = 1 * kPointerSize;
   2942   const int kStringOffset = 2 * kPointerSize;
   2943 
   2944   __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
   2945   STATIC_ASSERT(kFromOffset == kToOffset + 4);
   2946   STATIC_ASSERT(kSmiTag == 0);
   2947   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2948 
   2949   // Arithmetic shift right by one un-smi-tags. In this case we rotate right
   2950   // instead because we bail out on non-smi values: ROR and ASR are equivalent
   2951   // for smis but they set the flags in a way that's easier to optimize.
   2952   __ mov(r2, Operand(r2, ROR, 1), SetCC);
   2953   __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
   2954   // If either to or from had the smi tag bit set, then C is set now, and N
   2955   // has the same value: we rotated by 1, so the bottom bit is now the top bit.
   2956   // We want to bailout to runtime here if From is negative.  In that case, the
   2957   // next instruction is not executed and we fall through to bailing out to
   2958   // runtime.
   2959   // Executed if both r2 and r3 are untagged integers.
   2960   __ sub(r2, r2, Operand(r3), SetCC, cc);
   2961   // One of the above un-smis or the above SUB could have set N==1.
   2962   __ b(mi, &runtime);  // Either "from" or "to" is not an smi, or from > to.
   2963 
   2964   // Make sure first argument is a string.
   2965   __ ldr(r0, MemOperand(sp, kStringOffset));
   2966   __ JumpIfSmi(r0, &runtime);
   2967   Condition is_string = masm->IsObjectStringType(r0, r1);
   2968   __ b(NegateCondition(is_string), &runtime);
   2969 
   2970   Label single_char;
   2971   __ cmp(r2, Operand(1));
   2972   __ b(eq, &single_char);
   2973 
   2974   // Short-cut for the case of trivial substring.
   2975   Label return_r0;
   2976   // r0: original string
   2977   // r2: result string length
   2978   __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
   2979   __ cmp(r2, Operand(r4, ASR, 1));
   2980   // Return original string.
   2981   __ b(eq, &return_r0);
   2982   // Longer than original string's length or negative: unsafe arguments.
   2983   __ b(hi, &runtime);
   2984   // Shorter than original string's length: an actual substring.
   2985 
   2986   // Deal with different string types: update the index if necessary
   2987   // and put the underlying string into r5.
   2988   // r0: original string
   2989   // r1: instance type
   2990   // r2: length
   2991   // r3: from index (untagged)
   2992   Label underlying_unpacked, sliced_string, seq_or_external_string;
   2993   // If the string is not indirect, it can only be sequential or external.
   2994   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   2995   STATIC_ASSERT(kIsIndirectStringMask != 0);
   2996   __ tst(r1, Operand(kIsIndirectStringMask));
   2997   __ b(eq, &seq_or_external_string);
   2998 
   2999   __ tst(r1, Operand(kSlicedNotConsMask));
   3000   __ b(ne, &sliced_string);
   3001   // Cons string.  Check whether it is flat, then fetch first part.
   3002   __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
   3003   __ CompareRoot(r5, Heap::kempty_stringRootIndex);
   3004   __ b(ne, &runtime);
   3005   __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
   3006   // Update instance type.
   3007   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
   3008   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
   3009   __ jmp(&underlying_unpacked);
   3010 
   3011   __ bind(&sliced_string);
   3012   // Sliced string.  Fetch parent and correct start index by offset.
   3013   __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
   3014   __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
   3015   __ add(r3, r3, Operand(r4, ASR, 1));  // Add offset to index.
   3016   // Update instance type.
   3017   __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
   3018   __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
   3019   __ jmp(&underlying_unpacked);
   3020 
   3021   __ bind(&seq_or_external_string);
   3022   // Sequential or external string.  Just move string to the expected register.
   3023   __ mov(r5, r0);
   3024 
   3025   __ bind(&underlying_unpacked);
   3026 
   3027   if (FLAG_string_slices) {
   3028     Label copy_routine;
   3029     // r5: underlying subject string
   3030     // r1: instance type of underlying subject string
   3031     // r2: length
   3032     // r3: adjusted start index (untagged)
   3033     __ cmp(r2, Operand(SlicedString::kMinLength));
   3034     // Short slice.  Copy instead of slicing.
   3035     __ b(lt, &copy_routine);
   3036     // Allocate new sliced string.  At this point we do not reload the instance
   3037     // type including the string encoding because we simply rely on the info
   3038     // provided by the original string.  It does not matter if the original
   3039     // string's encoding is wrong because we always have to recheck encoding of
   3040     // the newly created string's parent anyways due to externalized strings.
   3041     Label two_byte_slice, set_slice_header;
   3042     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   3043     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   3044     __ tst(r1, Operand(kStringEncodingMask));
   3045     __ b(eq, &two_byte_slice);
   3046     __ AllocateOneByteSlicedString(r0, r2, r6, r4, &runtime);
   3047     __ jmp(&set_slice_header);
   3048     __ bind(&two_byte_slice);
   3049     __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
   3050     __ bind(&set_slice_header);
   3051     __ mov(r3, Operand(r3, LSL, 1));
   3052     __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
   3053     __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
   3054     __ jmp(&return_r0);
   3055 
   3056     __ bind(&copy_routine);
   3057   }
   3058 
   3059   // r5: underlying subject string
   3060   // r1: instance type of underlying subject string
   3061   // r2: length
   3062   // r3: adjusted start index (untagged)
   3063   Label two_byte_sequential, sequential_string, allocate_result;
   3064   STATIC_ASSERT(kExternalStringTag != 0);
   3065   STATIC_ASSERT(kSeqStringTag == 0);
   3066   __ tst(r1, Operand(kExternalStringTag));
   3067   __ b(eq, &sequential_string);
   3068 
   3069   // Handle external string.
   3070   // Rule out short external strings.
   3071   STATIC_ASSERT(kShortExternalStringTag != 0);
   3072   __ tst(r1, Operand(kShortExternalStringTag));
   3073   __ b(ne, &runtime);
   3074   __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
   3075   // r5 already points to the first character of underlying string.
   3076   __ jmp(&allocate_result);
   3077 
   3078   __ bind(&sequential_string);
   3079   // Locate first character of underlying subject string.
   3080   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   3081   __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3082 
   3083   __ bind(&allocate_result);
   3084   // Sequential acii string.  Allocate the result.
   3085   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   3086   __ tst(r1, Operand(kStringEncodingMask));
   3087   __ b(eq, &two_byte_sequential);
   3088 
   3089   // Allocate and copy the resulting one-byte string.
   3090   __ AllocateOneByteString(r0, r2, r4, r6, r1, &runtime);
   3091 
   3092   // Locate first character of substring to copy.
   3093   __ add(r5, r5, r3);
   3094   // Locate first character of result.
   3095   __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3096 
   3097   // r0: result string
   3098   // r1: first character of result string
   3099   // r2: result string length
   3100   // r5: first character of substring to copy
   3101   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3102   StringHelper::GenerateCopyCharacters(
   3103       masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING);
   3104   __ jmp(&return_r0);
   3105 
   3106   // Allocate and copy the resulting two-byte string.
   3107   __ bind(&two_byte_sequential);
   3108   __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
   3109 
   3110   // Locate first character of substring to copy.
   3111   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   3112   __ add(r5, r5, Operand(r3, LSL, 1));
   3113   // Locate first character of result.
   3114   __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   3115 
   3116   // r0: result string.
   3117   // r1: first character of result.
   3118   // r2: result length.
   3119   // r5: first character of substring to copy.
   3120   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3121   StringHelper::GenerateCopyCharacters(
   3122       masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING);
   3123 
   3124   __ bind(&return_r0);
   3125   Counters* counters = isolate()->counters();
   3126   __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
   3127   __ Drop(3);
   3128   __ Ret();
   3129 
   3130   // Just jump to runtime to create the sub string.
   3131   __ bind(&runtime);
   3132   __ TailCallRuntime(Runtime::kSubString, 3, 1);
   3133 
   3134   __ bind(&single_char);
   3135   // r0: original string
   3136   // r1: instance type
   3137   // r2: length
   3138   // r3: from index (untagged)
   3139   __ SmiTag(r3, r3);
   3140   StringCharAtGenerator generator(
   3141       r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
   3142   generator.GenerateFast(masm);
   3143   __ Drop(3);
   3144   __ Ret();
   3145   generator.SkipSlow(masm, &runtime);
   3146 }
   3147 
   3148 
   3149 void StringHelper::GenerateFlatOneByteStringEquals(
   3150     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3151     Register scratch2, Register scratch3) {
   3152   Register length = scratch1;
   3153 
   3154   // Compare lengths.
   3155   Label strings_not_equal, check_zero_length;
   3156   __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
   3157   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
   3158   __ cmp(length, scratch2);
   3159   __ b(eq, &check_zero_length);
   3160   __ bind(&strings_not_equal);
   3161   __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
   3162   __ Ret();
   3163 
   3164   // Check if the length is zero.
   3165   Label compare_chars;
   3166   __ bind(&check_zero_length);
   3167   STATIC_ASSERT(kSmiTag == 0);
   3168   __ cmp(length, Operand::Zero());
   3169   __ b(ne, &compare_chars);
   3170   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   3171   __ Ret();
   3172 
   3173   // Compare characters.
   3174   __ bind(&compare_chars);
   3175   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
   3176                                   &strings_not_equal);
   3177 
   3178   // Characters are equal.
   3179   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   3180   __ Ret();
   3181 }
   3182 
   3183 
   3184 void StringHelper::GenerateCompareFlatOneByteStrings(
   3185     MacroAssembler* masm, Register left, Register right, Register scratch1,
   3186     Register scratch2, Register scratch3, Register scratch4) {
   3187   Label result_not_equal, compare_lengths;
   3188   // Find minimum length and length difference.
   3189   __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
   3190   __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
   3191   __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
   3192   Register length_delta = scratch3;
   3193   __ mov(scratch1, scratch2, LeaveCC, gt);
   3194   Register min_length = scratch1;
   3195   STATIC_ASSERT(kSmiTag == 0);
   3196   __ cmp(min_length, Operand::Zero());
   3197   __ b(eq, &compare_lengths);
   3198 
   3199   // Compare loop.
   3200   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   3201                                   scratch4, &result_not_equal);
   3202 
   3203   // Compare lengths - strings up to min-length are equal.
   3204   __ bind(&compare_lengths);
   3205   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
   3206   // Use length_delta as result if it's zero.
   3207   __ mov(r0, Operand(length_delta), SetCC);
   3208   __ bind(&result_not_equal);
   3209   // Conditionally update the result based either on length_delta or
   3210   // the last comparion performed in the loop above.
   3211   __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
   3212   __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
   3213   __ Ret();
   3214 }
   3215 
   3216 
   3217 void StringHelper::GenerateOneByteCharsCompareLoop(
   3218     MacroAssembler* masm, Register left, Register right, Register length,
   3219     Register scratch1, Register scratch2, Label* chars_not_equal) {
   3220   // Change index to run from -length to -1 by adding length to string
   3221   // start. This means that loop ends when index reaches zero, which
   3222   // doesn't need an additional compare.
   3223   __ SmiUntag(length);
   3224   __ add(scratch1, length,
   3225          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   3226   __ add(left, left, Operand(scratch1));
   3227   __ add(right, right, Operand(scratch1));
   3228   __ rsb(length, length, Operand::Zero());
   3229   Register index = length;  // index = -length;
   3230 
   3231   // Compare loop.
   3232   Label loop;
   3233   __ bind(&loop);
   3234   __ ldrb(scratch1, MemOperand(left, index));
   3235   __ ldrb(scratch2, MemOperand(right, index));
   3236   __ cmp(scratch1, scratch2);
   3237   __ b(ne, chars_not_equal);
   3238   __ add(index, index, Operand(1), SetCC);
   3239   __ b(ne, &loop);
   3240 }
   3241 
   3242 
   3243 void StringCompareStub::Generate(MacroAssembler* masm) {
   3244   Label runtime;
   3245 
   3246   Counters* counters = isolate()->counters();
   3247 
   3248   // Stack frame on entry.
   3249   //  sp[0]: right string
   3250   //  sp[4]: left string
   3251   __ Ldrd(r0 , r1, MemOperand(sp));  // Load right in r0, left in r1.
   3252 
   3253   Label not_same;
   3254   __ cmp(r0, r1);
   3255   __ b(ne, &not_same);
   3256   STATIC_ASSERT(EQUAL == 0);
   3257   STATIC_ASSERT(kSmiTag == 0);
   3258   __ mov(r0, Operand(Smi::FromInt(EQUAL)));
   3259   __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
   3260   __ add(sp, sp, Operand(2 * kPointerSize));
   3261   __ Ret();
   3262 
   3263   __ bind(&not_same);
   3264 
   3265   // Check that both objects are sequential one-byte strings.
   3266   __ JumpIfNotBothSequentialOneByteStrings(r1, r0, r2, r3, &runtime);
   3267 
   3268   // Compare flat one-byte strings natively. Remove arguments from stack first.
   3269   __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
   3270   __ add(sp, sp, Operand(2 * kPointerSize));
   3271   StringHelper::GenerateCompareFlatOneByteStrings(masm, r1, r0, r2, r3, r4, r5);
   3272 
   3273   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
   3274   // tagged as a small integer.
   3275   __ bind(&runtime);
   3276   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3277 }
   3278 
   3279 
   3280 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   3281   // ----------- S t a t e -------------
   3282   //  -- r1    : left
   3283   //  -- r0    : right
   3284   //  -- lr    : return address
   3285   // -----------------------------------
   3286 
   3287   // Load r2 with the allocation site.  We stick an undefined dummy value here
   3288   // and replace it with the real allocation site later when we instantiate this
   3289   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3290   __ Move(r2, handle(isolate()->heap()->undefined_value()));
   3291 
   3292   // Make sure that we actually patched the allocation site.
   3293   if (FLAG_debug_code) {
   3294     __ tst(r2, Operand(kSmiTagMask));
   3295     __ Assert(ne, kExpectedAllocationSite);
   3296     __ push(r2);
   3297     __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
   3298     __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
   3299     __ cmp(r2, ip);
   3300     __ pop(r2);
   3301     __ Assert(eq, kExpectedAllocationSite);
   3302   }
   3303 
   3304   // Tail call into the stub that handles binary operations with allocation
   3305   // sites.
   3306   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   3307   __ TailCallStub(&stub);
   3308 }
   3309 
   3310 
   3311 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   3312   DCHECK(state() == CompareICState::SMI);
   3313   Label miss;
   3314   __ orr(r2, r1, r0);
   3315   __ JumpIfNotSmi(r2, &miss);
   3316 
   3317   if (GetCondition() == eq) {
   3318     // For equality we do not care about the sign of the result.
   3319     __ sub(r0, r0, r1, SetCC);
   3320   } else {
   3321     // Untag before subtracting to avoid handling overflow.
   3322     __ SmiUntag(r1);
   3323     __ sub(r0, r1, Operand::SmiUntag(r0));
   3324   }
   3325   __ Ret();
   3326 
   3327   __ bind(&miss);
   3328   GenerateMiss(masm);
   3329 }
   3330 
   3331 
   3332 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   3333   DCHECK(state() == CompareICState::NUMBER);
   3334 
   3335   Label generic_stub;
   3336   Label unordered, maybe_undefined1, maybe_undefined2;
   3337   Label miss;
   3338 
   3339   if (left() == CompareICState::SMI) {
   3340     __ JumpIfNotSmi(r1, &miss);
   3341   }
   3342   if (right() == CompareICState::SMI) {
   3343     __ JumpIfNotSmi(r0, &miss);
   3344   }
   3345 
   3346   // Inlining the double comparison and falling back to the general compare
   3347   // stub if NaN is involved.
   3348   // Load left and right operand.
   3349   Label done, left, left_smi, right_smi;
   3350   __ JumpIfSmi(r0, &right_smi);
   3351   __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
   3352               DONT_DO_SMI_CHECK);
   3353   __ sub(r2, r0, Operand(kHeapObjectTag));
   3354   __ vldr(d1, r2, HeapNumber::kValueOffset);
   3355   __ b(&left);
   3356   __ bind(&right_smi);
   3357   __ SmiToDouble(d1, r0);
   3358 
   3359   __ bind(&left);
   3360   __ JumpIfSmi(r1, &left_smi);
   3361   __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
   3362               DONT_DO_SMI_CHECK);
   3363   __ sub(r2, r1, Operand(kHeapObjectTag));
   3364   __ vldr(d0, r2, HeapNumber::kValueOffset);
   3365   __ b(&done);
   3366   __ bind(&left_smi);
   3367   __ SmiToDouble(d0, r1);
   3368 
   3369   __ bind(&done);
   3370   // Compare operands.
   3371   __ VFPCompareAndSetFlags(d0, d1);
   3372 
   3373   // Don't base result on status bits when a NaN is involved.
   3374   __ b(vs, &unordered);
   3375 
   3376   // Return a result of -1, 0, or 1, based on status bits.
   3377   __ mov(r0, Operand(EQUAL), LeaveCC, eq);
   3378   __ mov(r0, Operand(LESS), LeaveCC, lt);
   3379   __ mov(r0, Operand(GREATER), LeaveCC, gt);
   3380   __ Ret();
   3381 
   3382   __ bind(&unordered);
   3383   __ bind(&generic_stub);
   3384   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   3385                      CompareICState::GENERIC, CompareICState::GENERIC);
   3386   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   3387 
   3388   __ bind(&maybe_undefined1);
   3389   if (Token::IsOrderedRelationalCompareOp(op())) {
   3390     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
   3391     __ b(ne, &miss);
   3392     __ JumpIfSmi(r1, &unordered);
   3393     __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
   3394     __ b(ne, &maybe_undefined2);
   3395     __ jmp(&unordered);
   3396   }
   3397 
   3398   __ bind(&maybe_undefined2);
   3399   if (Token::IsOrderedRelationalCompareOp(op())) {
   3400     __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
   3401     __ b(eq, &unordered);
   3402   }
   3403 
   3404   __ bind(&miss);
   3405   GenerateMiss(masm);
   3406 }
   3407 
   3408 
   3409 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3410   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   3411   Label miss;
   3412 
   3413   // Registers containing left and right operands respectively.
   3414   Register left = r1;
   3415   Register right = r0;
   3416   Register tmp1 = r2;
   3417   Register tmp2 = r3;
   3418 
   3419   // Check that both operands are heap objects.
   3420   __ JumpIfEitherSmi(left, right, &miss);
   3421 
   3422   // Check that both operands are internalized strings.
   3423   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3424   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3425   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3426   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3427   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3428   __ orr(tmp1, tmp1, Operand(tmp2));
   3429   __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
   3430   __ b(ne, &miss);
   3431 
   3432   // Internalized strings are compared by identity.
   3433   __ cmp(left, right);
   3434   // Make sure r0 is non-zero. At this point input operands are
   3435   // guaranteed to be non-zero.
   3436   DCHECK(right.is(r0));
   3437   STATIC_ASSERT(EQUAL == 0);
   3438   STATIC_ASSERT(kSmiTag == 0);
   3439   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   3440   __ Ret();
   3441 
   3442   __ bind(&miss);
   3443   GenerateMiss(masm);
   3444 }
   3445 
   3446 
   3447 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   3448   DCHECK(state() == CompareICState::UNIQUE_NAME);
   3449   DCHECK(GetCondition() == eq);
   3450   Label miss;
   3451 
   3452   // Registers containing left and right operands respectively.
   3453   Register left = r1;
   3454   Register right = r0;
   3455   Register tmp1 = r2;
   3456   Register tmp2 = r3;
   3457 
   3458   // Check that both operands are heap objects.
   3459   __ JumpIfEitherSmi(left, right, &miss);
   3460 
   3461   // Check that both operands are unique names. This leaves the instance
   3462   // types loaded in tmp1 and tmp2.
   3463   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3464   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3465   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3466   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3467 
   3468   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
   3469   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
   3470 
   3471   // Unique names are compared by identity.
   3472   __ cmp(left, right);
   3473   // Make sure r0 is non-zero. At this point input operands are
   3474   // guaranteed to be non-zero.
   3475   DCHECK(right.is(r0));
   3476   STATIC_ASSERT(EQUAL == 0);
   3477   STATIC_ASSERT(kSmiTag == 0);
   3478   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   3479   __ Ret();
   3480 
   3481   __ bind(&miss);
   3482   GenerateMiss(masm);
   3483 }
   3484 
   3485 
   3486 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3487   DCHECK(state() == CompareICState::STRING);
   3488   Label miss;
   3489 
   3490   bool equality = Token::IsEqualityOp(op());
   3491 
   3492   // Registers containing left and right operands respectively.
   3493   Register left = r1;
   3494   Register right = r0;
   3495   Register tmp1 = r2;
   3496   Register tmp2 = r3;
   3497   Register tmp3 = r4;
   3498   Register tmp4 = r5;
   3499 
   3500   // Check that both operands are heap objects.
   3501   __ JumpIfEitherSmi(left, right, &miss);
   3502 
   3503   // Check that both operands are strings. This leaves the instance
   3504   // types loaded in tmp1 and tmp2.
   3505   __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
   3506   __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
   3507   __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
   3508   __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
   3509   STATIC_ASSERT(kNotStringTag != 0);
   3510   __ orr(tmp3, tmp1, tmp2);
   3511   __ tst(tmp3, Operand(kIsNotStringMask));
   3512   __ b(ne, &miss);
   3513 
   3514   // Fast check for identical strings.
   3515   __ cmp(left, right);
   3516   STATIC_ASSERT(EQUAL == 0);
   3517   STATIC_ASSERT(kSmiTag == 0);
   3518   __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
   3519   __ Ret(eq);
   3520 
   3521   // Handle not identical strings.
   3522 
   3523   // Check that both strings are internalized strings. If they are, we're done
   3524   // because we already know they are not identical. We know they are both
   3525   // strings.
   3526   if (equality) {
   3527     DCHECK(GetCondition() == eq);
   3528     STATIC_ASSERT(kInternalizedTag == 0);
   3529     __ orr(tmp3, tmp1, Operand(tmp2));
   3530     __ tst(tmp3, Operand(kIsNotInternalizedMask));
   3531     // Make sure r0 is non-zero. At this point input operands are
   3532     // guaranteed to be non-zero.
   3533     DCHECK(right.is(r0));
   3534     __ Ret(eq);
   3535   }
   3536 
   3537   // Check that both strings are sequential one-byte.
   3538   Label runtime;
   3539   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
   3540                                                     &runtime);
   3541 
   3542   // Compare flat one-byte strings. Returns when done.
   3543   if (equality) {
   3544     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
   3545                                                   tmp3);
   3546   } else {
   3547     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   3548                                                     tmp2, tmp3, tmp4);
   3549   }
   3550 
   3551   // Handle more complex cases in runtime.
   3552   __ bind(&runtime);
   3553   __ Push(left, right);
   3554   if (equality) {
   3555     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   3556   } else {
   3557     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3558   }
   3559 
   3560   __ bind(&miss);
   3561   GenerateMiss(masm);
   3562 }
   3563 
   3564 
   3565 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
   3566   DCHECK(state() == CompareICState::OBJECT);
   3567   Label miss;
   3568   __ and_(r2, r1, Operand(r0));
   3569   __ JumpIfSmi(r2, &miss);
   3570 
   3571   __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
   3572   __ b(ne, &miss);
   3573   __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
   3574   __ b(ne, &miss);
   3575 
   3576   DCHECK(GetCondition() == eq);
   3577   __ sub(r0, r0, Operand(r1));
   3578   __ Ret();
   3579 
   3580   __ bind(&miss);
   3581   GenerateMiss(masm);
   3582 }
   3583 
   3584 
   3585 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
   3586   Label miss;
   3587   __ and_(r2, r1, Operand(r0));
   3588   __ JumpIfSmi(r2, &miss);
   3589   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
   3590   __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
   3591   __ cmp(r2, Operand(known_map_));
   3592   __ b(ne, &miss);
   3593   __ cmp(r3, Operand(known_map_));
   3594   __ b(ne, &miss);
   3595 
   3596   __ sub(r0, r0, Operand(r1));
   3597   __ Ret();
   3598 
   3599   __ bind(&miss);
   3600   GenerateMiss(masm);
   3601 }
   3602 
   3603 
   3604 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3605   {
   3606     // Call the runtime system in a fresh internal frame.
   3607     ExternalReference miss =
   3608         ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
   3609 
   3610     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
   3611     __ Push(r1, r0);
   3612     __ Push(lr, r1, r0);
   3613     __ mov(ip, Operand(Smi::FromInt(op())));
   3614     __ push(ip);
   3615     __ CallExternalReference(miss, 3);
   3616     // Compute the entry point of the rewritten stub.
   3617     __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
   3618     // Restore registers.
   3619     __ pop(lr);
   3620     __ Pop(r1, r0);
   3621   }
   3622 
   3623   __ Jump(r2);
   3624 }
   3625 
   3626 
   3627 void DirectCEntryStub::Generate(MacroAssembler* masm) {
   3628   // Place the return address on the stack, making the call
   3629   // GC safe. The RegExp backend also relies on this.
   3630   __ str(lr, MemOperand(sp, 0));
   3631   __ blx(ip);  // Call the C++ function.
   3632   __ VFPEnsureFPSCRState(r2);
   3633   __ ldr(pc, MemOperand(sp, 0));
   3634 }
   3635 
   3636 
   3637 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
   3638                                     Register target) {
   3639   intptr_t code =
   3640       reinterpret_cast<intptr_t>(GetCode().location());
   3641   __ Move(ip, target);
   3642   __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
   3643   __ blx(lr);  // Call the stub.
   3644 }
   3645 
   3646 
   3647 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3648                                                       Label* miss,
   3649                                                       Label* done,
   3650                                                       Register receiver,
   3651                                                       Register properties,
   3652                                                       Handle<Name> name,
   3653                                                       Register scratch0) {
   3654   DCHECK(name->IsUniqueName());
   3655   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3656   // not equal to the name and kProbes-th slot is not used (its name is the
   3657   // undefined value), it guarantees the hash table doesn't contain the
   3658   // property. It's true even if some slots represent deleted properties
   3659   // (their names are the hole value).
   3660   for (int i = 0; i < kInlinedProbes; i++) {
   3661     // scratch0 points to properties hash.
   3662     // Compute the masked index: (hash + i + i * i) & mask.
   3663     Register index = scratch0;
   3664     // Capacity is smi 2^n.
   3665     __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
   3666     __ sub(index, index, Operand(1));
   3667     __ and_(index, index, Operand(
   3668         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
   3669 
   3670     // Scale the index by multiplying by the entry size.
   3671     DCHECK(NameDictionary::kEntrySize == 3);
   3672     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
   3673 
   3674     Register entity_name = scratch0;
   3675     // Having undefined at this place means the name is not contained.
   3676     DCHECK_EQ(kSmiTagSize, 1);
   3677     Register tmp = properties;
   3678     __ add(tmp, properties, Operand(index, LSL, 1));
   3679     __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
   3680 
   3681     DCHECK(!tmp.is(entity_name));
   3682     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
   3683     __ cmp(entity_name, tmp);
   3684     __ b(eq, done);
   3685 
   3686     // Load the hole ready for use below:
   3687     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
   3688 
   3689     // Stop if found the property.
   3690     __ cmp(entity_name, Operand(Handle<Name>(name)));
   3691     __ b(eq, miss);
   3692 
   3693     Label good;
   3694     __ cmp(entity_name, tmp);
   3695     __ b(eq, &good);
   3696 
   3697     // Check if the entry name is not a unique name.
   3698     __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
   3699     __ ldrb(entity_name,
   3700             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
   3701     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
   3702     __ bind(&good);
   3703 
   3704     // Restore the properties.
   3705     __ ldr(properties,
   3706            FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3707   }
   3708 
   3709   const int spill_mask =
   3710       (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
   3711        r2.bit() | r1.bit() | r0.bit());
   3712 
   3713   __ stm(db_w, sp, spill_mask);
   3714   __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
   3715   __ mov(r1, Operand(Handle<Name>(name)));
   3716   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
   3717   __ CallStub(&stub);
   3718   __ cmp(r0, Operand::Zero());
   3719   __ ldm(ia_w, sp, spill_mask);
   3720 
   3721   __ b(eq, done);
   3722   __ b(ne, miss);
   3723 }
   3724 
   3725 
   3726 // Probe the name dictionary in the |elements| register. Jump to the
   3727 // |done| label if a property with the given name is found. Jump to
   3728 // the |miss| label otherwise.
   3729 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
   3730 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3731                                                       Label* miss,
   3732                                                       Label* done,
   3733                                                       Register elements,
   3734                                                       Register name,
   3735                                                       Register scratch1,
   3736                                                       Register scratch2) {
   3737   DCHECK(!elements.is(scratch1));
   3738   DCHECK(!elements.is(scratch2));
   3739   DCHECK(!name.is(scratch1));
   3740   DCHECK(!name.is(scratch2));
   3741 
   3742   __ AssertName(name);
   3743 
   3744   // Compute the capacity mask.
   3745   __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
   3746   __ SmiUntag(scratch1);
   3747   __ sub(scratch1, scratch1, Operand(1));
   3748 
   3749   // Generate an unrolled loop that performs a few probes before
   3750   // giving up. Measurements done on Gmail indicate that 2 probes
   3751   // cover ~93% of loads from dictionaries.
   3752   for (int i = 0; i < kInlinedProbes; i++) {
   3753     // Compute the masked index: (hash + i + i * i) & mask.
   3754     __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
   3755     if (i > 0) {
   3756       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   3757       // the hash in a separate instruction. The value hash + i + i * i is right
   3758       // shifted in the following and instruction.
   3759       DCHECK(NameDictionary::GetProbeOffset(i) <
   3760              1 << (32 - Name::kHashFieldOffset));
   3761       __ add(scratch2, scratch2, Operand(
   3762           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   3763     }
   3764     __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
   3765 
   3766     // Scale the index by multiplying by the element size.
   3767     DCHECK(NameDictionary::kEntrySize == 3);
   3768     // scratch2 = scratch2 * 3.
   3769     __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
   3770 
   3771     // Check if the key is identical to the name.
   3772     __ add(scratch2, elements, Operand(scratch2, LSL, 2));
   3773     __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
   3774     __ cmp(name, Operand(ip));
   3775     __ b(eq, done);
   3776   }
   3777 
   3778   const int spill_mask =
   3779       (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
   3780        r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
   3781       ~(scratch1.bit() | scratch2.bit());
   3782 
   3783   __ stm(db_w, sp, spill_mask);
   3784   if (name.is(r0)) {
   3785     DCHECK(!elements.is(r1));
   3786     __ Move(r1, name);
   3787     __ Move(r0, elements);
   3788   } else {
   3789     __ Move(r0, elements);
   3790     __ Move(r1, name);
   3791   }
   3792   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
   3793   __ CallStub(&stub);
   3794   __ cmp(r0, Operand::Zero());
   3795   __ mov(scratch2, Operand(r2));
   3796   __ ldm(ia_w, sp, spill_mask);
   3797 
   3798   __ b(ne, done);
   3799   __ b(eq, miss);
   3800 }
   3801 
   3802 
   3803 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   3804   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   3805   // we cannot call anything that could cause a GC from this stub.
   3806   // Registers:
   3807   //  result: NameDictionary to probe
   3808   //  r1: key
   3809   //  dictionary: NameDictionary to probe.
   3810   //  index: will hold an index of entry if lookup is successful.
   3811   //         might alias with result_.
   3812   // Returns:
   3813   //  result_ is zero if lookup failed, non zero otherwise.
   3814 
   3815   Register result = r0;
   3816   Register dictionary = r0;
   3817   Register key = r1;
   3818   Register index = r2;
   3819   Register mask = r3;
   3820   Register hash = r4;
   3821   Register undefined = r5;
   3822   Register entry_key = r6;
   3823 
   3824   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   3825 
   3826   __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
   3827   __ SmiUntag(mask);
   3828   __ sub(mask, mask, Operand(1));
   3829 
   3830   __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
   3831 
   3832   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
   3833 
   3834   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   3835     // Compute the masked index: (hash + i + i * i) & mask.
   3836     // Capacity is smi 2^n.
   3837     if (i > 0) {
   3838       // Add the probe offset (i + i * i) left shifted to avoid right shifting
   3839       // the hash in a separate instruction. The value hash + i + i * i is right
   3840       // shifted in the following and instruction.
   3841       DCHECK(NameDictionary::GetProbeOffset(i) <
   3842              1 << (32 - Name::kHashFieldOffset));
   3843       __ add(index, hash, Operand(
   3844           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
   3845     } else {
   3846       __ mov(index, Operand(hash));
   3847     }
   3848     __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
   3849 
   3850     // Scale the index by multiplying by the entry size.
   3851     DCHECK(NameDictionary::kEntrySize == 3);
   3852     __ add(index, index, Operand(index, LSL, 1));  // index *= 3.
   3853 
   3854     DCHECK_EQ(kSmiTagSize, 1);
   3855     __ add(index, dictionary, Operand(index, LSL, 2));
   3856     __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
   3857 
   3858     // Having undefined at this place means the name is not contained.
   3859     __ cmp(entry_key, Operand(undefined));
   3860     __ b(eq, &not_in_dictionary);
   3861 
   3862     // Stop if found the property.
   3863     __ cmp(entry_key, Operand(key));
   3864     __ b(eq, &in_dictionary);
   3865 
   3866     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   3867       // Check if the entry name is not a unique name.
   3868       __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
   3869       __ ldrb(entry_key,
   3870               FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
   3871       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
   3872     }
   3873   }
   3874 
   3875   __ bind(&maybe_in_dictionary);
   3876   // If we are doing negative lookup then probing failure should be
   3877   // treated as a lookup success. For positive lookup probing failure
   3878   // should be treated as lookup failure.
   3879   if (mode() == POSITIVE_LOOKUP) {
   3880     __ mov(result, Operand::Zero());
   3881     __ Ret();
   3882   }
   3883 
   3884   __ bind(&in_dictionary);
   3885   __ mov(result, Operand(1));
   3886   __ Ret();
   3887 
   3888   __ bind(&not_in_dictionary);
   3889   __ mov(result, Operand::Zero());
   3890   __ Ret();
   3891 }
   3892 
   3893 
   3894 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   3895     Isolate* isolate) {
   3896   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
   3897   stub1.GetCode();
   3898   // Hydrogen code stubs need stub2 at snapshot time.
   3899   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   3900   stub2.GetCode();
   3901 }
   3902 
   3903 
   3904 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   3905 // the value has just been written into the object, now this stub makes sure
   3906 // we keep the GC informed.  The word in the object where the value has been
   3907 // written is in the address register.
   3908 void RecordWriteStub::Generate(MacroAssembler* masm) {
   3909   Label skip_to_incremental_noncompacting;
   3910   Label skip_to_incremental_compacting;
   3911 
   3912   // The first two instructions are generated with labels so as to get the
   3913   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   3914   // forth between a compare instructions (a nop in this position) and the
   3915   // real branch when we start and stop incremental heap marking.
   3916   // See RecordWriteStub::Patch for details.
   3917   {
   3918     // Block literal pool emission, as the position of these two instructions
   3919     // is assumed by the patching code.
   3920     Assembler::BlockConstPoolScope block_const_pool(masm);
   3921     __ b(&skip_to_incremental_noncompacting);
   3922     __ b(&skip_to_incremental_compacting);
   3923   }
   3924 
   3925   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3926     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3927                            MacroAssembler::kReturnAtEnd);
   3928   }
   3929   __ Ret();
   3930 
   3931   __ bind(&skip_to_incremental_noncompacting);
   3932   GenerateIncremental(masm, INCREMENTAL);
   3933 
   3934   __ bind(&skip_to_incremental_compacting);
   3935   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   3936 
   3937   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   3938   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   3939   DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
   3940   DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
   3941   PatchBranchIntoNop(masm, 0);
   3942   PatchBranchIntoNop(masm, Assembler::kInstrSize);
   3943 }
   3944 
   3945 
   3946 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   3947   regs_.Save(masm);
   3948 
   3949   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3950     Label dont_need_remembered_set;
   3951 
   3952     __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
   3953     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   3954                            regs_.scratch0(),
   3955                            &dont_need_remembered_set);
   3956 
   3957     __ CheckPageFlag(regs_.object(),
   3958                      regs_.scratch0(),
   3959                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   3960                      ne,
   3961                      &dont_need_remembered_set);
   3962 
   3963     // First notify the incremental marker if necessary, then update the
   3964     // remembered set.
   3965     CheckNeedsToInformIncrementalMarker(
   3966         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
   3967     InformIncrementalMarker(masm);
   3968     regs_.Restore(masm);
   3969     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3970                            MacroAssembler::kReturnAtEnd);
   3971 
   3972     __ bind(&dont_need_remembered_set);
   3973   }
   3974 
   3975   CheckNeedsToInformIncrementalMarker(
   3976       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
   3977   InformIncrementalMarker(masm);
   3978   regs_.Restore(masm);
   3979   __ Ret();
   3980 }
   3981 
   3982 
   3983 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3984   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3985   int argument_count = 3;
   3986   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   3987   Register address =
   3988       r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
   3989   DCHECK(!address.is(regs_.object()));
   3990   DCHECK(!address.is(r0));
   3991   __ Move(address, regs_.address());
   3992   __ Move(r0, regs_.object());
   3993   __ Move(r1, address);
   3994   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
   3995 
   3996   AllowExternalCallThatCantCauseGC scope(masm);
   3997   __ CallCFunction(
   3998       ExternalReference::incremental_marking_record_write_function(isolate()),
   3999       argument_count);
   4000   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   4001 }
   4002 
   4003 
   4004 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   4005     MacroAssembler* masm,
   4006     OnNoNeedToInformIncrementalMarker on_no_need,
   4007     Mode mode) {
   4008   Label on_black;
   4009   Label need_incremental;
   4010   Label need_incremental_pop_scratch;
   4011 
   4012   __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
   4013   __ ldr(regs_.scratch1(),
   4014          MemOperand(regs_.scratch0(),
   4015                     MemoryChunk::kWriteBarrierCounterOffset));
   4016   __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
   4017   __ str(regs_.scratch1(),
   4018          MemOperand(regs_.scratch0(),
   4019                     MemoryChunk::kWriteBarrierCounterOffset));
   4020   __ b(mi, &need_incremental);
   4021 
   4022   // Let's look at the color of the object:  If it is not black we don't have
   4023   // to inform the incremental marker.
   4024   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
   4025 
   4026   regs_.Restore(masm);
   4027   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4028     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   4029                            MacroAssembler::kReturnAtEnd);
   4030   } else {
   4031     __ Ret();
   4032   }
   4033 
   4034   __ bind(&on_black);
   4035 
   4036   // Get the value from the slot.
   4037   __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
   4038 
   4039   if (mode == INCREMENTAL_COMPACTION) {
   4040     Label ensure_not_white;
   4041 
   4042     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   4043                      regs_.scratch1(),  // Scratch.
   4044                      MemoryChunk::kEvacuationCandidateMask,
   4045                      eq,
   4046                      &ensure_not_white);
   4047 
   4048     __ CheckPageFlag(regs_.object(),
   4049                      regs_.scratch1(),  // Scratch.
   4050                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   4051                      eq,
   4052                      &need_incremental);
   4053 
   4054     __ bind(&ensure_not_white);
   4055   }
   4056 
   4057   // We need extra registers for this, so we push the object and the address
   4058   // register temporarily.
   4059   __ Push(regs_.object(), regs_.address());
   4060   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   4061                     regs_.scratch1(),  // Scratch.
   4062                     regs_.object(),  // Scratch.
   4063                     regs_.address(),  // Scratch.
   4064                     &need_incremental_pop_scratch);
   4065   __ Pop(regs_.object(), regs_.address());
   4066 
   4067   regs_.Restore(masm);
   4068   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   4069     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   4070                            MacroAssembler::kReturnAtEnd);
   4071   } else {
   4072     __ Ret();
   4073   }
   4074 
   4075   __ bind(&need_incremental_pop_scratch);
   4076   __ Pop(regs_.object(), regs_.address());
   4077 
   4078   __ bind(&need_incremental);
   4079 
   4080   // Fall through when we need to inform the incremental marker.
   4081 }
   4082 
   4083 
   4084 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   4085   // ----------- S t a t e -------------
   4086   //  -- r0    : element value to store
   4087   //  -- r3    : element index as smi
   4088   //  -- sp[0] : array literal index in function as smi
   4089   //  -- sp[4] : array literal
   4090   // clobbers r1, r2, r4
   4091   // -----------------------------------
   4092 
   4093   Label element_done;
   4094   Label double_elements;
   4095   Label smi_element;
   4096   Label slow_elements;
   4097   Label fast_elements;
   4098 
   4099   // Get array literal index, array literal and its map.
   4100   __ ldr(r4, MemOperand(sp, 0 * kPointerSize));
   4101   __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
   4102   __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
   4103 
   4104   __ CheckFastElements(r2, r5, &double_elements);
   4105   // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
   4106   __ JumpIfSmi(r0, &smi_element);
   4107   __ CheckFastSmiElements(r2, r5, &fast_elements);
   4108 
   4109   // Store into the array literal requires a elements transition. Call into
   4110   // the runtime.
   4111   __ bind(&slow_elements);
   4112   // call.
   4113   __ Push(r1, r3, r0);
   4114   __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
   4115   __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
   4116   __ Push(r5, r4);
   4117   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   4118 
   4119   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
   4120   __ bind(&fast_elements);
   4121   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
   4122   __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
   4123   __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   4124   __ str(r0, MemOperand(r6, 0));
   4125   // Update the write barrier for the array store.
   4126   __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
   4127                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
   4128   __ Ret();
   4129 
   4130   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
   4131   // and value is Smi.
   4132   __ bind(&smi_element);
   4133   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
   4134   __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
   4135   __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
   4136   __ Ret();
   4137 
   4138   // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
   4139   __ bind(&double_elements);
   4140   __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
   4141   __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
   4142   __ Ret();
   4143 }
   4144 
   4145 
   4146 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   4147   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   4148   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
   4149   int parameter_count_offset =
   4150       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   4151   __ ldr(r1, MemOperand(fp, parameter_count_offset));
   4152   if (function_mode() == JS_FUNCTION_STUB_MODE) {
   4153     __ add(r1, r1, Operand(1));
   4154   }
   4155   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   4156   __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
   4157   __ add(sp, sp, r1);
   4158   __ Ret();
   4159 }
   4160 
   4161 
   4162 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4163   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4164   VectorLoadStub stub(isolate(), state());
   4165   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   4166 }
   4167 
   4168 
   4169 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   4170   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   4171   VectorKeyedLoadStub stub(isolate());
   4172   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
   4173 }
   4174 
   4175 
   4176 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   4177   if (masm->isolate()->function_entry_hook() != NULL) {
   4178     ProfileEntryHookStub stub(masm->isolate());
   4179     int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize;
   4180     PredictableCodeSizeScope predictable(masm, code_size);
   4181     __ push(lr);
   4182     __ CallStub(&stub);
   4183     __ pop(lr);
   4184   }
   4185 }
   4186 
   4187 
   4188 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   4189   // The entry hook is a "push lr" instruction, followed by a call.
   4190   const int32_t kReturnAddressDistanceFromFunctionStart =
   4191       3 * Assembler::kInstrSize;
   4192 
   4193   // This should contain all kCallerSaved registers.
   4194   const RegList kSavedRegs =
   4195       1 <<  0 |  // r0
   4196       1 <<  1 |  // r1
   4197       1 <<  2 |  // r2
   4198       1 <<  3 |  // r3
   4199       1 <<  5 |  // r5
   4200       1 <<  9;   // r9
   4201   // We also save lr, so the count here is one higher than the mask indicates.
   4202   const int32_t kNumSavedRegs = 7;
   4203 
   4204   DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
   4205 
   4206   // Save all caller-save registers as this may be called from anywhere.
   4207   __ stm(db_w, sp, kSavedRegs | lr.bit());
   4208 
   4209   // Compute the function's address for the first argument.
   4210   __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
   4211 
   4212   // The caller's return address is above the saved temporaries.
   4213   // Grab that for the second argument to the hook.
   4214   __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
   4215 
   4216   // Align the stack if necessary.
   4217   int frame_alignment = masm->ActivationFrameAlignment();
   4218   if (frame_alignment > kPointerSize) {
   4219     __ mov(r5, sp);
   4220     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
   4221     __ and_(sp, sp, Operand(-frame_alignment));
   4222   }
   4223 
   4224 #if V8_HOST_ARCH_ARM
   4225   int32_t entry_hook =
   4226       reinterpret_cast<int32_t>(isolate()->function_entry_hook());
   4227   __ mov(ip, Operand(entry_hook));
   4228 #else
   4229   // Under the simulator we need to indirect the entry hook through a
   4230   // trampoline function at a known address.
   4231   // It additionally takes an isolate as a third parameter
   4232   __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
   4233 
   4234   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
   4235   __ mov(ip, Operand(ExternalReference(&dispatcher,
   4236                                        ExternalReference::BUILTIN_CALL,
   4237                                        isolate())));
   4238 #endif
   4239   __ Call(ip);
   4240 
   4241   // Restore the stack pointer if needed.
   4242   if (frame_alignment > kPointerSize) {
   4243     __ mov(sp, r5);
   4244   }
   4245 
   4246   // Also pop pc to get Ret(0).
   4247   __ ldm(ia_w, sp, kSavedRegs | pc.bit());
   4248 }
   4249 
   4250 
   4251 template<class T>
   4252 static void CreateArrayDispatch(MacroAssembler* masm,
   4253                                 AllocationSiteOverrideMode mode) {
   4254   if (mode == DISABLE_ALLOCATION_SITES) {
   4255     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
   4256     __ TailCallStub(&stub);
   4257   } else if (mode == DONT_OVERRIDE) {
   4258     int last_index = GetSequenceIndexFromFastElementsKind(
   4259         TERMINAL_FAST_ELEMENTS_KIND);
   4260     for (int i = 0; i <= last_index; ++i) {
   4261       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4262       __ cmp(r3, Operand(kind));
   4263       T stub(masm->isolate(), kind);
   4264       __ TailCallStub(&stub, eq);
   4265     }
   4266 
   4267     // If we reached this point there is a problem.
   4268     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4269   } else {
   4270     UNREACHABLE();
   4271   }
   4272 }
   4273 
   4274 
   4275 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   4276                                            AllocationSiteOverrideMode mode) {
   4277   // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   4278   // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
   4279   // r0 - number of arguments
   4280   // r1 - constructor?
   4281   // sp[0] - last argument
   4282   Label normal_sequence;
   4283   if (mode == DONT_OVERRIDE) {
   4284     DCHECK(FAST_SMI_ELEMENTS == 0);
   4285     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
   4286     DCHECK(FAST_ELEMENTS == 2);
   4287     DCHECK(FAST_HOLEY_ELEMENTS == 3);
   4288     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
   4289     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   4290 
   4291     // is the low bit set? If so, we are holey and that is good.
   4292     __ tst(r3, Operand(1));
   4293     __ b(ne, &normal_sequence);
   4294   }
   4295 
   4296   // look at the first argument
   4297   __ ldr(r5, MemOperand(sp, 0));
   4298   __ cmp(r5, Operand::Zero());
   4299   __ b(eq, &normal_sequence);
   4300 
   4301   if (mode == DISABLE_ALLOCATION_SITES) {
   4302     ElementsKind initial = GetInitialFastElementsKind();
   4303     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   4304 
   4305     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   4306                                                   holey_initial,
   4307                                                   DISABLE_ALLOCATION_SITES);
   4308     __ TailCallStub(&stub_holey);
   4309 
   4310     __ bind(&normal_sequence);
   4311     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   4312                                             initial,
   4313                                             DISABLE_ALLOCATION_SITES);
   4314     __ TailCallStub(&stub);
   4315   } else if (mode == DONT_OVERRIDE) {
   4316     // We are going to create a holey array, but our kind is non-holey.
   4317     // Fix kind and retry (only if we have an allocation site in the slot).
   4318     __ add(r3, r3, Operand(1));
   4319 
   4320     if (FLAG_debug_code) {
   4321       __ ldr(r5, FieldMemOperand(r2, 0));
   4322       __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
   4323       __ Assert(eq, kExpectedAllocationSite);
   4324     }
   4325 
   4326     // Save the resulting elements kind in type info. We can't just store r3
   4327     // in the AllocationSite::transition_info field because elements kind is
   4328     // restricted to a portion of the field...upper bits need to be left alone.
   4329     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4330     __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
   4331     __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
   4332     __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
   4333 
   4334     __ bind(&normal_sequence);
   4335     int last_index = GetSequenceIndexFromFastElementsKind(
   4336         TERMINAL_FAST_ELEMENTS_KIND);
   4337     for (int i = 0; i <= last_index; ++i) {
   4338       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4339       __ cmp(r3, Operand(kind));
   4340       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   4341       __ TailCallStub(&stub, eq);
   4342     }
   4343 
   4344     // If we reached this point there is a problem.
   4345     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4346   } else {
   4347     UNREACHABLE();
   4348   }
   4349 }
   4350 
   4351 
   4352 template<class T>
   4353 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4354   int to_index = GetSequenceIndexFromFastElementsKind(
   4355       TERMINAL_FAST_ELEMENTS_KIND);
   4356   for (int i = 0; i <= to_index; ++i) {
   4357     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4358     T stub(isolate, kind);
   4359     stub.GetCode();
   4360     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4361       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4362       stub1.GetCode();
   4363     }
   4364   }
   4365 }
   4366 
   4367 
   4368 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4369   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4370       isolate);
   4371   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4372       isolate);
   4373   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4374       isolate);
   4375 }
   4376 
   4377 
   4378 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4379     Isolate* isolate) {
   4380   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4381   for (int i = 0; i < 2; i++) {
   4382     // For internal arrays we only need a few things
   4383     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4384     stubh1.GetCode();
   4385     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4386     stubh2.GetCode();
   4387     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4388     stubh3.GetCode();
   4389   }
   4390 }
   4391 
   4392 
   4393 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4394     MacroAssembler* masm,
   4395     AllocationSiteOverrideMode mode) {
   4396   if (argument_count() == ANY) {
   4397     Label not_zero_case, not_one_case;
   4398     __ tst(r0, r0);
   4399     __ b(ne, &not_zero_case);
   4400     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4401 
   4402     __ bind(&not_zero_case);
   4403     __ cmp(r0, Operand(1));
   4404     __ b(gt, &not_one_case);
   4405     CreateArrayDispatchOneArgument(masm, mode);
   4406 
   4407     __ bind(&not_one_case);
   4408     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4409   } else if (argument_count() == NONE) {
   4410     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4411   } else if (argument_count() == ONE) {
   4412     CreateArrayDispatchOneArgument(masm, mode);
   4413   } else if (argument_count() == MORE_THAN_ONE) {
   4414     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4415   } else {
   4416     UNREACHABLE();
   4417   }
   4418 }
   4419 
   4420 
   4421 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4422   // ----------- S t a t e -------------
   4423   //  -- r0 : argc (only if argument_count() == ANY)
   4424   //  -- r1 : constructor
   4425   //  -- r2 : AllocationSite or undefined
   4426   //  -- sp[0] : return address
   4427   //  -- sp[4] : last argument
   4428   // -----------------------------------
   4429 
   4430   if (FLAG_debug_code) {
   4431     // The array construct code is only set for the global and natives
   4432     // builtin Array functions which always have maps.
   4433 
   4434     // Initial map for the builtin Array function should be a map.
   4435     __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
   4436     // Will both indicate a NULL and a Smi.
   4437     __ tst(r4, Operand(kSmiTagMask));
   4438     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
   4439     __ CompareObjectType(r4, r4, r5, MAP_TYPE);
   4440     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
   4441 
   4442     // We should either have undefined in r2 or a valid AllocationSite
   4443     __ AssertUndefinedOrAllocationSite(r2, r4);
   4444   }
   4445 
   4446   Label no_info;
   4447   // Get the elements kind and case on that.
   4448   __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
   4449   __ b(eq, &no_info);
   4450 
   4451   __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
   4452   __ SmiUntag(r3);
   4453   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4454   __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
   4455   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4456 
   4457   __ bind(&no_info);
   4458   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4459 }
   4460 
   4461 
   4462 void InternalArrayConstructorStub::GenerateCase(
   4463     MacroAssembler* masm, ElementsKind kind) {
   4464   __ cmp(r0, Operand(1));
   4465 
   4466   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4467   __ TailCallStub(&stub0, lo);
   4468 
   4469   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   4470   __ TailCallStub(&stubN, hi);
   4471 
   4472   if (IsFastPackedElementsKind(kind)) {
   4473     // We might need to create a holey array
   4474     // look at the first argument
   4475     __ ldr(r3, MemOperand(sp, 0));
   4476     __ cmp(r3, Operand::Zero());
   4477 
   4478     InternalArraySingleArgumentConstructorStub
   4479         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4480     __ TailCallStub(&stub1_holey, ne);
   4481   }
   4482 
   4483   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4484   __ TailCallStub(&stub1);
   4485 }
   4486 
   4487 
   4488 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4489   // ----------- S t a t e -------------
   4490   //  -- r0 : argc
   4491   //  -- r1 : constructor
   4492   //  -- sp[0] : return address
   4493   //  -- sp[4] : last argument
   4494   // -----------------------------------
   4495 
   4496   if (FLAG_debug_code) {
   4497     // The array construct code is only set for the global and natives
   4498     // builtin Array functions which always have maps.
   4499 
   4500     // Initial map for the builtin Array function should be a map.
   4501     __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
   4502     // Will both indicate a NULL and a Smi.
   4503     __ tst(r3, Operand(kSmiTagMask));
   4504     __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
   4505     __ CompareObjectType(r3, r3, r4, MAP_TYPE);
   4506     __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
   4507   }
   4508 
   4509   // Figure out the right elements kind
   4510   __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
   4511   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4512   // but the following bit field extraction takes care of that anyway.
   4513   __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
   4514   // Retrieve elements_kind from bit field 2.
   4515   __ DecodeField<Map::ElementsKindBits>(r3);
   4516 
   4517   if (FLAG_debug_code) {
   4518     Label done;
   4519     __ cmp(r3, Operand(FAST_ELEMENTS));
   4520     __ b(eq, &done);
   4521     __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
   4522     __ Assert(eq,
   4523               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4524     __ bind(&done);
   4525   }
   4526 
   4527   Label fast_elements_case;
   4528   __ cmp(r3, Operand(FAST_ELEMENTS));
   4529   __ b(eq, &fast_elements_case);
   4530   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4531 
   4532   __ bind(&fast_elements_case);
   4533   GenerateCase(masm, FAST_ELEMENTS);
   4534 }
   4535 
   4536 
   4537 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   4538   // ----------- S t a t e -------------
   4539   //  -- r0                  : callee
   4540   //  -- r4                  : call_data
   4541   //  -- r2                  : holder
   4542   //  -- r1                  : api_function_address
   4543   //  -- cp                  : context
   4544   //  --
   4545   //  -- sp[0]               : last argument
   4546   //  -- ...
   4547   //  -- sp[(argc - 1)* 4]   : first argument
   4548   //  -- sp[argc * 4]        : receiver
   4549   // -----------------------------------
   4550 
   4551   Register callee = r0;
   4552   Register call_data = r4;
   4553   Register holder = r2;
   4554   Register api_function_address = r1;
   4555   Register context = cp;
   4556 
   4557   int argc = this->argc();
   4558   bool is_store = this->is_store();
   4559   bool call_data_undefined = this->call_data_undefined();
   4560 
   4561   typedef FunctionCallbackArguments FCA;
   4562 
   4563   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   4564   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   4565   STATIC_ASSERT(FCA::kDataIndex == 4);
   4566   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   4567   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   4568   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   4569   STATIC_ASSERT(FCA::kHolderIndex == 0);
   4570   STATIC_ASSERT(FCA::kArgsLength == 7);
   4571 
   4572   // context save
   4573   __ push(context);
   4574   // load context from callee
   4575   __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
   4576 
   4577   // callee
   4578   __ push(callee);
   4579 
   4580   // call data
   4581   __ push(call_data);
   4582 
   4583   Register scratch = call_data;
   4584   if (!call_data_undefined) {
   4585     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
   4586   }
   4587   // return value
   4588   __ push(scratch);
   4589   // return value default
   4590   __ push(scratch);
   4591   // isolate
   4592   __ mov(scratch,
   4593          Operand(ExternalReference::isolate_address(isolate())));
   4594   __ push(scratch);
   4595   // holder
   4596   __ push(holder);
   4597 
   4598   // Prepare arguments.
   4599   __ mov(scratch, sp);
   4600 
   4601   // Allocate the v8::Arguments structure in the arguments' space since
   4602   // it's not controlled by GC.
   4603   const int kApiStackSpace = 4;
   4604 
   4605   FrameScope frame_scope(masm, StackFrame::MANUAL);
   4606   __ EnterExitFrame(false, kApiStackSpace);
   4607 
   4608   DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
   4609   // r0 = FunctionCallbackInfo&
   4610   // Arguments is after the return address.
   4611   __ add(r0, sp, Operand(1 * kPointerSize));
   4612   // FunctionCallbackInfo::implicit_args_
   4613   __ str(scratch, MemOperand(r0, 0 * kPointerSize));
   4614   // FunctionCallbackInfo::values_
   4615   __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
   4616   __ str(ip, MemOperand(r0, 1 * kPointerSize));
   4617   // FunctionCallbackInfo::length_ = argc
   4618   __ mov(ip, Operand(argc));
   4619   __ str(ip, MemOperand(r0, 2 * kPointerSize));
   4620   // FunctionCallbackInfo::is_construct_call = 0
   4621   __ mov(ip, Operand::Zero());
   4622   __ str(ip, MemOperand(r0, 3 * kPointerSize));
   4623 
   4624   const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
   4625   ExternalReference thunk_ref =
   4626       ExternalReference::invoke_function_callback(isolate());
   4627 
   4628   AllowExternalCallThatCantCauseGC scope(masm);
   4629   MemOperand context_restore_operand(
   4630       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
   4631   // Stores return the first js argument
   4632   int return_value_offset = 0;
   4633   if (is_store) {
   4634     return_value_offset = 2 + FCA::kArgsLength;
   4635   } else {
   4636     return_value_offset = 2 + FCA::kReturnValueOffset;
   4637   }
   4638   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
   4639 
   4640   __ CallApiFunctionAndReturn(api_function_address,
   4641                               thunk_ref,
   4642                               kStackUnwindSpace,
   4643                               return_value_operand,
   4644                               &context_restore_operand);
   4645 }
   4646 
   4647 
   4648 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   4649   // ----------- S t a t e -------------
   4650   //  -- sp[0]                  : name
   4651   //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
   4652   //  -- ...
   4653   //  -- r2                     : api_function_address
   4654   // -----------------------------------
   4655 
   4656   Register api_function_address = ApiGetterDescriptor::function_address();
   4657   DCHECK(api_function_address.is(r2));
   4658 
   4659   __ mov(r0, sp);  // r0 = Handle<Name>
   4660   __ add(r1, r0, Operand(1 * kPointerSize));  // r1 = PCA
   4661 
   4662   const int kApiStackSpace = 1;
   4663   FrameScope frame_scope(masm, StackFrame::MANUAL);
   4664   __ EnterExitFrame(false, kApiStackSpace);
   4665 
   4666   // Create PropertyAccessorInfo instance on the stack above the exit frame with
   4667   // r1 (internal::Object** args_) as the data.
   4668   __ str(r1, MemOperand(sp, 1 * kPointerSize));
   4669   __ add(r1, sp, Operand(1 * kPointerSize));  // r1 = AccessorInfo&
   4670 
   4671   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
   4672 
   4673   ExternalReference thunk_ref =
   4674       ExternalReference::invoke_accessor_getter_callback(isolate());
   4675   __ CallApiFunctionAndReturn(api_function_address,
   4676                               thunk_ref,
   4677                               kStackUnwindSpace,
   4678                               MemOperand(fp, 6 * kPointerSize),
   4679                               NULL);
   4680 }
   4681 
   4682 
   4683 #undef __
   4684 
   4685 } }  // namespace v8::internal
   4686 
   4687 #endif  // V8_TARGET_ARCH_ARM
   4688