Home | History | Annotate | Download | only in base
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This file is an internal atomic implementation, use atomicops.h instead.
      6 
      7 #ifndef V8_BASE_ATOMICOPS_INTERNALS_X86_GCC_H_
      8 #define V8_BASE_ATOMICOPS_INTERNALS_X86_GCC_H_
      9 
     10 namespace v8 {
     11 namespace base {
     12 
     13 // This struct is not part of the public API of this module; clients may not
     14 // use it.
     15 // Features of this x86.  Values may not be correct before main() is run,
     16 // but are set conservatively.
     17 struct AtomicOps_x86CPUFeatureStruct {
     18   bool has_amd_lock_mb_bug;  // Processor has AMD memory-barrier bug; do lfence
     19                              // after acquire compare-and-swap.
     20 #if !defined(__SSE2__)
     21   bool has_sse2;             // Processor has SSE2.
     22 #endif
     23 };
     24 extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures;
     25 
     26 #define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory")
     27 
     28 // 32-bit low-level operations on any platform.
     29 
     30 inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
     31                                          Atomic32 old_value,
     32                                          Atomic32 new_value) {
     33   Atomic32 prev;
     34   __asm__ __volatile__("lock; cmpxchgl %1,%2"
     35                        : "=a" (prev)
     36                        : "q" (new_value), "m" (*ptr), "0" (old_value)
     37                        : "memory");
     38   return prev;
     39 }
     40 
     41 inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
     42                                          Atomic32 new_value) {
     43   __asm__ __volatile__("xchgl %1,%0"  // The lock prefix is implicit for xchg.
     44                        : "=r" (new_value)
     45                        : "m" (*ptr), "0" (new_value)
     46                        : "memory");
     47   return new_value;  // Now it's the previous value.
     48 }
     49 
     50 inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
     51                                           Atomic32 increment) {
     52   Atomic32 temp = increment;
     53   __asm__ __volatile__("lock; xaddl %0,%1"
     54                        : "+r" (temp), "+m" (*ptr)
     55                        : : "memory");
     56   // temp now holds the old value of *ptr
     57   return temp + increment;
     58 }
     59 
     60 inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
     61                                         Atomic32 increment) {
     62   Atomic32 temp = increment;
     63   __asm__ __volatile__("lock; xaddl %0,%1"
     64                        : "+r" (temp), "+m" (*ptr)
     65                        : : "memory");
     66   // temp now holds the old value of *ptr
     67   if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
     68     __asm__ __volatile__("lfence" : : : "memory");
     69   }
     70   return temp + increment;
     71 }
     72 
     73 inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
     74                                        Atomic32 old_value,
     75                                        Atomic32 new_value) {
     76   Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
     77   if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
     78     __asm__ __volatile__("lfence" : : : "memory");
     79   }
     80   return x;
     81 }
     82 
     83 inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
     84                                        Atomic32 old_value,
     85                                        Atomic32 new_value) {
     86   return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
     87 }
     88 
     89 inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) {
     90   *ptr = value;
     91 }
     92 
     93 inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
     94   *ptr = value;
     95 }
     96 
     97 #if defined(__x86_64__) || defined(__SSE2__)
     98 
     99 // 64-bit implementations of memory barrier can be simpler, because it
    100 // "mfence" is guaranteed to exist.
    101 inline void MemoryBarrier() {
    102   __asm__ __volatile__("mfence" : : : "memory");
    103 }
    104 
    105 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
    106   *ptr = value;
    107   MemoryBarrier();
    108 }
    109 
    110 #else
    111 
    112 inline void MemoryBarrier() {
    113   if (AtomicOps_Internalx86CPUFeatures.has_sse2) {
    114     __asm__ __volatile__("mfence" : : : "memory");
    115   } else {  // mfence is faster but not present on PIII
    116     Atomic32 x = 0;
    117     NoBarrier_AtomicExchange(&x, 0);  // acts as a barrier on PIII
    118   }
    119 }
    120 
    121 inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
    122   if (AtomicOps_Internalx86CPUFeatures.has_sse2) {
    123     *ptr = value;
    124     __asm__ __volatile__("mfence" : : : "memory");
    125   } else {
    126     NoBarrier_AtomicExchange(ptr, value);
    127                           // acts as a barrier on PIII
    128   }
    129 }
    130 #endif
    131 
    132 inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
    133   ATOMICOPS_COMPILER_BARRIER();
    134   *ptr = value;  // An x86 store acts as a release barrier.
    135   // See comments in Atomic64 version of Release_Store(), below.
    136 }
    137 
    138 inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) {
    139   return *ptr;
    140 }
    141 
    142 inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
    143   return *ptr;
    144 }
    145 
    146 inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
    147   Atomic32 value = *ptr;  // An x86 load acts as a acquire barrier.
    148   // See comments in Atomic64 version of Release_Store(), below.
    149   ATOMICOPS_COMPILER_BARRIER();
    150   return value;
    151 }
    152 
    153 inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
    154   MemoryBarrier();
    155   return *ptr;
    156 }
    157 
    158 #if defined(__x86_64__) && defined(V8_HOST_ARCH_64_BIT)
    159 
    160 // 64-bit low-level operations on 64-bit platform.
    161 
    162 inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
    163                                          Atomic64 old_value,
    164                                          Atomic64 new_value) {
    165   Atomic64 prev;
    166   __asm__ __volatile__("lock; cmpxchgq %1,%2"
    167                        : "=a" (prev)
    168                        : "q" (new_value), "m" (*ptr), "0" (old_value)
    169                        : "memory");
    170   return prev;
    171 }
    172 
    173 inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
    174                                          Atomic64 new_value) {
    175   __asm__ __volatile__("xchgq %1,%0"  // The lock prefix is implicit for xchg.
    176                        : "=r" (new_value)
    177                        : "m" (*ptr), "0" (new_value)
    178                        : "memory");
    179   return new_value;  // Now it's the previous value.
    180 }
    181 
    182 inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
    183                                           Atomic64 increment) {
    184   Atomic64 temp = increment;
    185   __asm__ __volatile__("lock; xaddq %0,%1"
    186                        : "+r" (temp), "+m" (*ptr)
    187                        : : "memory");
    188   // temp now contains the previous value of *ptr
    189   return temp + increment;
    190 }
    191 
    192 inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
    193                                         Atomic64 increment) {
    194   Atomic64 temp = increment;
    195   __asm__ __volatile__("lock; xaddq %0,%1"
    196                        : "+r" (temp), "+m" (*ptr)
    197                        : : "memory");
    198   // temp now contains the previous value of *ptr
    199   if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
    200     __asm__ __volatile__("lfence" : : : "memory");
    201   }
    202   return temp + increment;
    203 }
    204 
    205 inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
    206   *ptr = value;
    207 }
    208 
    209 inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
    210   *ptr = value;
    211   MemoryBarrier();
    212 }
    213 
    214 inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
    215   ATOMICOPS_COMPILER_BARRIER();
    216 
    217   *ptr = value;  // An x86 store acts as a release barrier
    218                  // for current AMD/Intel chips as of Jan 2008.
    219                  // See also Acquire_Load(), below.
    220 
    221   // When new chips come out, check:
    222   //  IA-32 Intel Architecture Software Developer's Manual, Volume 3:
    223   //  System Programming Guide, Chatper 7: Multiple-processor management,
    224   //  Section 7.2, Memory Ordering.
    225   // Last seen at:
    226   //   http://developer.intel.com/design/pentium4/manuals/index_new.htm
    227   //
    228   // x86 stores/loads fail to act as barriers for a few instructions (clflush
    229   // maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are
    230   // not generated by the compiler, and are rare.  Users of these instructions
    231   // need to know about cache behaviour in any case since all of these involve
    232   // either flushing cache lines or non-temporal cache hints.
    233 }
    234 
    235 inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
    236   return *ptr;
    237 }
    238 
    239 inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
    240   Atomic64 value = *ptr;  // An x86 load acts as a acquire barrier,
    241                           // for current AMD/Intel chips as of Jan 2008.
    242                           // See also Release_Store(), above.
    243   ATOMICOPS_COMPILER_BARRIER();
    244   return value;
    245 }
    246 
    247 inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
    248   MemoryBarrier();
    249   return *ptr;
    250 }
    251 
    252 inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
    253                                        Atomic64 old_value,
    254                                        Atomic64 new_value) {
    255   Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
    256   if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
    257     __asm__ __volatile__("lfence" : : : "memory");
    258   }
    259   return x;
    260 }
    261 
    262 inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
    263                                        Atomic64 old_value,
    264                                        Atomic64 new_value) {
    265   return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
    266 }
    267 
    268 #endif  // defined(__x86_64__)
    269 
    270 } }  // namespace v8::base
    271 
    272 #undef ATOMICOPS_COMPILER_BARRIER
    273 
    274 #endif  // V8_BASE_ATOMICOPS_INTERNALS_X86_GCC_H_
    275