Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_IA32
      8 
      9 #include "src/codegen.h"
     10 #include "src/deoptimizer.h"
     11 #include "src/full-codegen.h"
     12 #include "src/safepoint-table.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 const int Deoptimizer::table_entry_size_ = 10;
     18 
     19 
     20 int Deoptimizer::patch_size() {
     21   return Assembler::kCallInstructionLength;
     22 }
     23 
     24 
     25 void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
     26   Isolate* isolate = code->GetIsolate();
     27   HandleScope scope(isolate);
     28 
     29   // Compute the size of relocation information needed for the code
     30   // patching in Deoptimizer::DeoptimizeFunction.
     31   int min_reloc_size = 0;
     32   int prev_pc_offset = 0;
     33   DeoptimizationInputData* deopt_data =
     34       DeoptimizationInputData::cast(code->deoptimization_data());
     35   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
     36     int pc_offset = deopt_data->Pc(i)->value();
     37     if (pc_offset == -1) continue;
     38     DCHECK_GE(pc_offset, prev_pc_offset);
     39     int pc_delta = pc_offset - prev_pc_offset;
     40     // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
     41     // if encodable with small pc delta encoding and up to 6 bytes
     42     // otherwise.
     43     if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
     44       min_reloc_size += 2;
     45     } else {
     46       min_reloc_size += 6;
     47     }
     48     prev_pc_offset = pc_offset;
     49   }
     50 
     51   // If the relocation information is not big enough we create a new
     52   // relocation info object that is padded with comments to make it
     53   // big enough for lazy doptimization.
     54   int reloc_length = code->relocation_info()->length();
     55   if (min_reloc_size > reloc_length) {
     56     int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
     57     // Padding needed.
     58     int min_padding = min_reloc_size - reloc_length;
     59     // Number of comments needed to take up at least that much space.
     60     int additional_comments =
     61         (min_padding + comment_reloc_size - 1) / comment_reloc_size;
     62     // Actual padding size.
     63     int padding = additional_comments * comment_reloc_size;
     64     // Allocate new relocation info and copy old relocation to the end
     65     // of the new relocation info array because relocation info is
     66     // written and read backwards.
     67     Factory* factory = isolate->factory();
     68     Handle<ByteArray> new_reloc =
     69         factory->NewByteArray(reloc_length + padding, TENURED);
     70     MemCopy(new_reloc->GetDataStartAddress() + padding,
     71             code->relocation_info()->GetDataStartAddress(), reloc_length);
     72     // Create a relocation writer to write the comments in the padding
     73     // space. Use position 0 for everything to ensure short encoding.
     74     RelocInfoWriter reloc_info_writer(
     75         new_reloc->GetDataStartAddress() + padding, 0);
     76     intptr_t comment_string
     77         = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
     78     RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
     79     for (int i = 0; i < additional_comments; ++i) {
     80 #ifdef DEBUG
     81       byte* pos_before = reloc_info_writer.pos();
     82 #endif
     83       reloc_info_writer.Write(&rinfo);
     84       DCHECK(RelocInfo::kMinRelocCommentSize ==
     85              pos_before - reloc_info_writer.pos());
     86     }
     87     // Replace relocation information on the code object.
     88     code->set_relocation_info(*new_reloc);
     89   }
     90 }
     91 
     92 
     93 void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
     94   Address code_start_address = code->instruction_start();
     95 
     96   if (FLAG_zap_code_space) {
     97     // Fail hard and early if we enter this code object again.
     98     byte* pointer = code->FindCodeAgeSequence();
     99     if (pointer != NULL) {
    100       pointer += kNoCodeAgeSequenceLength;
    101     } else {
    102       pointer = code->instruction_start();
    103     }
    104     CodePatcher patcher(pointer, 1);
    105     patcher.masm()->int3();
    106 
    107     DeoptimizationInputData* data =
    108         DeoptimizationInputData::cast(code->deoptimization_data());
    109     int osr_offset = data->OsrPcOffset()->value();
    110     if (osr_offset > 0) {
    111       CodePatcher osr_patcher(code->instruction_start() + osr_offset, 1);
    112       osr_patcher.masm()->int3();
    113     }
    114   }
    115 
    116   // We will overwrite the code's relocation info in-place. Relocation info
    117   // is written backward. The relocation info is the payload of a byte
    118   // array.  Later on we will slide this to the start of the byte array and
    119   // create a filler object in the remaining space.
    120   ByteArray* reloc_info = code->relocation_info();
    121   Address reloc_end_address = reloc_info->address() + reloc_info->Size();
    122   RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
    123 
    124   // Since the call is a relative encoding, write new
    125   // reloc info.  We do not need any of the existing reloc info because the
    126   // existing code will not be used again (we zap it in debug builds).
    127   //
    128   // Emit call to lazy deoptimization at all lazy deopt points.
    129   DeoptimizationInputData* deopt_data =
    130       DeoptimizationInputData::cast(code->deoptimization_data());
    131 #ifdef DEBUG
    132   Address prev_call_address = NULL;
    133 #endif
    134   // For each LLazyBailout instruction insert a call to the corresponding
    135   // deoptimization entry.
    136   for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    137     if (deopt_data->Pc(i)->value() == -1) continue;
    138     // Patch lazy deoptimization entry.
    139     Address call_address = code_start_address + deopt_data->Pc(i)->value();
    140     CodePatcher patcher(call_address, patch_size());
    141     Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
    142     patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
    143     // We use RUNTIME_ENTRY for deoptimization bailouts.
    144     RelocInfo rinfo(call_address + 1,  // 1 after the call opcode.
    145                     RelocInfo::RUNTIME_ENTRY,
    146                     reinterpret_cast<intptr_t>(deopt_entry),
    147                     NULL);
    148     reloc_info_writer.Write(&rinfo);
    149     DCHECK_GE(reloc_info_writer.pos(),
    150               reloc_info->address() + ByteArray::kHeaderSize);
    151     DCHECK(prev_call_address == NULL ||
    152            call_address >= prev_call_address + patch_size());
    153     DCHECK(call_address + patch_size() <= code->instruction_end());
    154 #ifdef DEBUG
    155     prev_call_address = call_address;
    156 #endif
    157   }
    158 
    159   // Move the relocation info to the beginning of the byte array.
    160   int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
    161   MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
    162 
    163   // The relocation info is in place, update the size.
    164   reloc_info->set_length(new_reloc_size);
    165 
    166   // Handle the junk part after the new relocation info. We will create
    167   // a non-live object in the extra space at the end of the former reloc info.
    168   Address junk_address = reloc_info->address() + reloc_info->Size();
    169   DCHECK(junk_address <= reloc_end_address);
    170   isolate->heap()->CreateFillerObjectAt(junk_address,
    171                                         reloc_end_address - junk_address);
    172 }
    173 
    174 
    175 void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
    176   // Set the register values. The values are not important as there are no
    177   // callee saved registers in JavaScript frames, so all registers are
    178   // spilled. Registers ebp and esp are set to the correct values though.
    179 
    180   for (int i = 0; i < Register::kNumRegisters; i++) {
    181     input_->SetRegister(i, i * 4);
    182   }
    183   input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
    184   input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
    185   for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; i++) {
    186     input_->SetDoubleRegister(i, 0.0);
    187   }
    188 
    189   // Fill the frame content from the actual data on the frame.
    190   for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
    191     input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
    192   }
    193 }
    194 
    195 
    196 void Deoptimizer::SetPlatformCompiledStubRegisters(
    197     FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
    198   intptr_t handler =
    199       reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
    200   int params = descriptor->GetHandlerParameterCount();
    201   output_frame->SetRegister(eax.code(), params);
    202   output_frame->SetRegister(ebx.code(), handler);
    203 }
    204 
    205 
    206 void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
    207   for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
    208     double double_value = input_->GetDoubleRegister(i);
    209     output_frame->SetDoubleRegister(i, double_value);
    210   }
    211 }
    212 
    213 
    214 bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
    215   int parameter_count = function->shared()->formal_parameter_count() + 1;
    216   unsigned input_frame_size = input_->GetFrameSize();
    217   unsigned alignment_state_offset =
    218       input_frame_size - parameter_count * kPointerSize -
    219       StandardFrameConstants::kFixedFrameSize -
    220       kPointerSize;
    221   DCHECK(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
    222       JavaScriptFrameConstants::kLocal0Offset);
    223   int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
    224   return (alignment_state == kAlignmentPaddingPushed);
    225 }
    226 
    227 
    228 #define __ masm()->
    229 
    230 void Deoptimizer::EntryGenerator::Generate() {
    231   GeneratePrologue();
    232 
    233   // Save all general purpose registers before messing with them.
    234   const int kNumberOfRegisters = Register::kNumRegisters;
    235 
    236   const int kDoubleRegsSize = kDoubleSize *
    237                               XMMRegister::kMaxNumAllocatableRegisters;
    238   __ sub(esp, Immediate(kDoubleRegsSize));
    239   for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
    240     XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
    241     int offset = i * kDoubleSize;
    242     __ movsd(Operand(esp, offset), xmm_reg);
    243   }
    244 
    245   __ pushad();
    246 
    247   const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
    248                                       kDoubleRegsSize;
    249 
    250   // Get the bailout id from the stack.
    251   __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
    252 
    253   // Get the address of the location in the code object
    254   // and compute the fp-to-sp delta in register edx.
    255   __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
    256   __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
    257 
    258   __ sub(edx, ebp);
    259   __ neg(edx);
    260 
    261   // Allocate a new deoptimizer object.
    262   __ PrepareCallCFunction(6, eax);
    263   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
    264   __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
    265   __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
    266   __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
    267   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
    268   __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
    269   __ mov(Operand(esp, 5 * kPointerSize),
    270          Immediate(ExternalReference::isolate_address(isolate())));
    271   {
    272     AllowExternalCallThatCantCauseGC scope(masm());
    273     __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
    274   }
    275 
    276   // Preserve deoptimizer object in register eax and get the input
    277   // frame descriptor pointer.
    278   __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
    279 
    280   // Fill in the input registers.
    281   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    282     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    283     __ pop(Operand(ebx, offset));
    284   }
    285 
    286   int double_regs_offset = FrameDescription::double_registers_offset();
    287   // Fill in the double input registers.
    288   for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
    289     int dst_offset = i * kDoubleSize + double_regs_offset;
    290     int src_offset = i * kDoubleSize;
    291     __ movsd(xmm0, Operand(esp, src_offset));
    292     __ movsd(Operand(ebx, dst_offset), xmm0);
    293   }
    294 
    295   // Clear FPU all exceptions.
    296   // TODO(ulan): Find out why the TOP register is not zero here in some cases,
    297   // and check that the generated code never deoptimizes with unbalanced stack.
    298   __ fnclex();
    299 
    300   // Remove the bailout id, return address and the double registers.
    301   __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
    302 
    303   // Compute a pointer to the unwinding limit in register ecx; that is
    304   // the first stack slot not part of the input frame.
    305   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
    306   __ add(ecx, esp);
    307 
    308   // Unwind the stack down to - but not including - the unwinding
    309   // limit and copy the contents of the activation frame to the input
    310   // frame description.
    311   __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
    312   Label pop_loop_header;
    313   __ jmp(&pop_loop_header);
    314   Label pop_loop;
    315   __ bind(&pop_loop);
    316   __ pop(Operand(edx, 0));
    317   __ add(edx, Immediate(sizeof(uint32_t)));
    318   __ bind(&pop_loop_header);
    319   __ cmp(ecx, esp);
    320   __ j(not_equal, &pop_loop);
    321 
    322   // Compute the output frame in the deoptimizer.
    323   __ push(eax);
    324   __ PrepareCallCFunction(1, ebx);
    325   __ mov(Operand(esp, 0 * kPointerSize), eax);
    326   {
    327     AllowExternalCallThatCantCauseGC scope(masm());
    328     __ CallCFunction(
    329         ExternalReference::compute_output_frames_function(isolate()), 1);
    330   }
    331   __ pop(eax);
    332 
    333   // If frame was dynamically aligned, pop padding.
    334   Label no_padding;
    335   __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
    336          Immediate(0));
    337   __ j(equal, &no_padding);
    338   __ pop(ecx);
    339   if (FLAG_debug_code) {
    340     __ cmp(ecx, Immediate(kAlignmentZapValue));
    341     __ Assert(equal, kAlignmentMarkerExpected);
    342   }
    343   __ bind(&no_padding);
    344 
    345   // Replace the current frame with the output frames.
    346   Label outer_push_loop, inner_push_loop,
    347       outer_loop_header, inner_loop_header;
    348   // Outer loop state: eax = current FrameDescription**, edx = one past the
    349   // last FrameDescription**.
    350   __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
    351   __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
    352   __ lea(edx, Operand(eax, edx, times_4, 0));
    353   __ jmp(&outer_loop_header);
    354   __ bind(&outer_push_loop);
    355   // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
    356   __ mov(ebx, Operand(eax, 0));
    357   __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
    358   __ jmp(&inner_loop_header);
    359   __ bind(&inner_push_loop);
    360   __ sub(ecx, Immediate(sizeof(uint32_t)));
    361   __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
    362   __ bind(&inner_loop_header);
    363   __ test(ecx, ecx);
    364   __ j(not_zero, &inner_push_loop);
    365   __ add(eax, Immediate(kPointerSize));
    366   __ bind(&outer_loop_header);
    367   __ cmp(eax, edx);
    368   __ j(below, &outer_push_loop);
    369 
    370   // In case of a failed STUB, we have to restore the XMM registers.
    371   for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
    372     XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
    373     int src_offset = i * kDoubleSize + double_regs_offset;
    374     __ movsd(xmm_reg, Operand(ebx, src_offset));
    375   }
    376 
    377   // Push state, pc, and continuation from the last output frame.
    378   __ push(Operand(ebx, FrameDescription::state_offset()));
    379   __ push(Operand(ebx, FrameDescription::pc_offset()));
    380   __ push(Operand(ebx, FrameDescription::continuation_offset()));
    381 
    382 
    383   // Push the registers from the last output frame.
    384   for (int i = 0; i < kNumberOfRegisters; i++) {
    385     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    386     __ push(Operand(ebx, offset));
    387   }
    388 
    389   // Restore the registers from the stack.
    390   __ popad();
    391 
    392   // Return to the continuation point.
    393   __ ret(0);
    394 }
    395 
    396 
    397 void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
    398   // Create a sequence of deoptimization entries.
    399   Label done;
    400   for (int i = 0; i < count(); i++) {
    401     int start = masm()->pc_offset();
    402     USE(start);
    403     __ push_imm32(i);
    404     __ jmp(&done);
    405     DCHECK(masm()->pc_offset() - start == table_entry_size_);
    406   }
    407   __ bind(&done);
    408 }
    409 
    410 
    411 void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
    412   SetFrameSlot(offset, value);
    413 }
    414 
    415 
    416 void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
    417   SetFrameSlot(offset, value);
    418 }
    419 
    420 
    421 void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
    422   // No out-of-line constant pool support.
    423   UNREACHABLE();
    424 }
    425 
    426 
    427 #undef __
    428 
    429 
    430 } }  // namespace v8::internal
    431 
    432 #endif  // V8_TARGET_ARCH_IA32
    433