Home | History | Annotate | Download | only in x87
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #if V8_TARGET_ARCH_X87
      8 
      9 #include "src/base/bits.h"
     10 #include "src/bootstrapper.h"
     11 #include "src/code-stubs.h"
     12 #include "src/codegen.h"
     13 #include "src/ic/handler-compiler.h"
     14 #include "src/ic/ic.h"
     15 #include "src/isolate.h"
     16 #include "src/jsregexp.h"
     17 #include "src/regexp-macro-assembler.h"
     18 #include "src/runtime.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 
     24 static void InitializeArrayConstructorDescriptor(
     25     Isolate* isolate, CodeStubDescriptor* descriptor,
     26     int constant_stack_parameter_count) {
     27   // register state
     28   // eax -- number of arguments
     29   // edi -- function
     30   // ebx -- allocation site with elements kind
     31   Address deopt_handler = Runtime::FunctionForId(
     32       Runtime::kArrayConstructor)->entry;
     33 
     34   if (constant_stack_parameter_count == 0) {
     35     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     36                            JS_FUNCTION_STUB_MODE);
     37   } else {
     38     descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
     39                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     40   }
     41 }
     42 
     43 
     44 static void InitializeInternalArrayConstructorDescriptor(
     45     Isolate* isolate, CodeStubDescriptor* descriptor,
     46     int constant_stack_parameter_count) {
     47   // register state
     48   // eax -- number of arguments
     49   // edi -- constructor function
     50   Address deopt_handler = Runtime::FunctionForId(
     51       Runtime::kInternalArrayConstructor)->entry;
     52 
     53   if (constant_stack_parameter_count == 0) {
     54     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
     55                            JS_FUNCTION_STUB_MODE);
     56   } else {
     57     descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
     58                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
     59   }
     60 }
     61 
     62 
     63 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
     64     CodeStubDescriptor* descriptor) {
     65   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
     66 }
     67 
     68 
     69 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
     70     CodeStubDescriptor* descriptor) {
     71   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
     72 }
     73 
     74 
     75 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
     76     CodeStubDescriptor* descriptor) {
     77   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
     78 }
     79 
     80 
     81 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
     82     CodeStubDescriptor* descriptor) {
     83   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
     84 }
     85 
     86 
     87 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
     88     CodeStubDescriptor* descriptor) {
     89   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
     90 }
     91 
     92 
     93 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
     94     CodeStubDescriptor* descriptor) {
     95   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
     96 }
     97 
     98 
     99 #define __ ACCESS_MASM(masm)
    100 
    101 
    102 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
    103                                                ExternalReference miss) {
    104   // Update the static counter each time a new code stub is generated.
    105   isolate()->counters()->code_stubs()->Increment();
    106 
    107   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
    108   int param_count = descriptor.GetEnvironmentParameterCount();
    109   {
    110     // Call the runtime system in a fresh internal frame.
    111     FrameScope scope(masm, StackFrame::INTERNAL);
    112     DCHECK(param_count == 0 ||
    113            eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
    114     // Push arguments
    115     for (int i = 0; i < param_count; ++i) {
    116       __ push(descriptor.GetEnvironmentParameterRegister(i));
    117     }
    118     __ CallExternalReference(miss, param_count);
    119   }
    120 
    121   __ ret(0);
    122 }
    123 
    124 
    125 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
    126   // We don't allow a GC during a store buffer overflow so there is no need to
    127   // store the registers in any particular way, but we do have to store and
    128   // restore them.
    129   __ pushad();
    130   if (save_doubles()) {
    131     // Save FPU stat in m108byte.
    132     __ sub(esp, Immediate(108));
    133     __ fnsave(Operand(esp, 0));
    134   }
    135   const int argument_count = 1;
    136 
    137   AllowExternalCallThatCantCauseGC scope(masm);
    138   __ PrepareCallCFunction(argument_count, ecx);
    139   __ mov(Operand(esp, 0 * kPointerSize),
    140          Immediate(ExternalReference::isolate_address(isolate())));
    141   __ CallCFunction(
    142       ExternalReference::store_buffer_overflow_function(isolate()),
    143       argument_count);
    144   if (save_doubles()) {
    145     // Restore FPU stat in m108byte.
    146     __ frstor(Operand(esp, 0));
    147     __ add(esp, Immediate(108));
    148   }
    149   __ popad();
    150   __ ret(0);
    151 }
    152 
    153 
    154 class FloatingPointHelper : public AllStatic {
    155  public:
    156   enum ArgLocation {
    157     ARGS_ON_STACK,
    158     ARGS_IN_REGISTERS
    159   };
    160 
    161   // Code pattern for loading a floating point value. Input value must
    162   // be either a smi or a heap number object (fp value). Requirements:
    163   // operand in register number. Returns operand as floating point number
    164   // on FPU stack.
    165   static void LoadFloatOperand(MacroAssembler* masm, Register number);
    166 
    167   // Test if operands are smi or number objects (fp). Requirements:
    168   // operand_1 in eax, operand_2 in edx; falls through on float
    169   // operands, jumps to the non_float label otherwise.
    170   static void CheckFloatOperands(MacroAssembler* masm,
    171                                  Label* non_float,
    172                                  Register scratch);
    173 };
    174 
    175 
    176 void DoubleToIStub::Generate(MacroAssembler* masm) {
    177   Register input_reg = this->source();
    178   Register final_result_reg = this->destination();
    179   DCHECK(is_truncating());
    180 
    181   Label check_negative, process_64_bits, done, done_no_stash;
    182 
    183   int double_offset = offset();
    184 
    185   // Account for return address and saved regs if input is esp.
    186   if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
    187 
    188   MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
    189   MemOperand exponent_operand(MemOperand(input_reg,
    190                                          double_offset + kDoubleSize / 2));
    191 
    192   Register scratch1;
    193   {
    194     Register scratch_candidates[3] = { ebx, edx, edi };
    195     for (int i = 0; i < 3; i++) {
    196       scratch1 = scratch_candidates[i];
    197       if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
    198     }
    199   }
    200   // Since we must use ecx for shifts below, use some other register (eax)
    201   // to calculate the result if ecx is the requested return register.
    202   Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
    203   // Save ecx if it isn't the return register and therefore volatile, or if it
    204   // is the return register, then save the temp register we use in its stead for
    205   // the result.
    206   Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
    207   __ push(scratch1);
    208   __ push(save_reg);
    209 
    210   bool stash_exponent_copy = !input_reg.is(esp);
    211   __ mov(scratch1, mantissa_operand);
    212   __ mov(ecx, exponent_operand);
    213   if (stash_exponent_copy) __ push(ecx);
    214 
    215   __ and_(ecx, HeapNumber::kExponentMask);
    216   __ shr(ecx, HeapNumber::kExponentShift);
    217   __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
    218   __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
    219   __ j(below, &process_64_bits);
    220 
    221   // Result is entirely in lower 32-bits of mantissa
    222   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
    223   __ sub(ecx, Immediate(delta));
    224   __ xor_(result_reg, result_reg);
    225   __ cmp(ecx, Immediate(31));
    226   __ j(above, &done);
    227   __ shl_cl(scratch1);
    228   __ jmp(&check_negative);
    229 
    230   __ bind(&process_64_bits);
    231   // Result must be extracted from shifted 32-bit mantissa
    232   __ sub(ecx, Immediate(delta));
    233   __ neg(ecx);
    234   if (stash_exponent_copy) {
    235     __ mov(result_reg, MemOperand(esp, 0));
    236   } else {
    237     __ mov(result_reg, exponent_operand);
    238   }
    239   __ and_(result_reg,
    240           Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
    241   __ add(result_reg,
    242          Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
    243   __ shrd(result_reg, scratch1);
    244   __ shr_cl(result_reg);
    245   __ test(ecx, Immediate(32));
    246   {
    247     Label skip_mov;
    248     __ j(equal, &skip_mov, Label::kNear);
    249     __ mov(scratch1, result_reg);
    250     __ bind(&skip_mov);
    251   }
    252 
    253   // If the double was negative, negate the integer result.
    254   __ bind(&check_negative);
    255   __ mov(result_reg, scratch1);
    256   __ neg(result_reg);
    257   if (stash_exponent_copy) {
    258     __ cmp(MemOperand(esp, 0), Immediate(0));
    259   } else {
    260     __ cmp(exponent_operand, Immediate(0));
    261   }
    262   {
    263     Label skip_mov;
    264     __ j(less_equal, &skip_mov, Label::kNear);
    265     __ mov(result_reg, scratch1);
    266     __ bind(&skip_mov);
    267   }
    268 
    269   // Restore registers
    270   __ bind(&done);
    271   if (stash_exponent_copy) {
    272     __ add(esp, Immediate(kDoubleSize / 2));
    273   }
    274   __ bind(&done_no_stash);
    275   if (!final_result_reg.is(result_reg)) {
    276     DCHECK(final_result_reg.is(ecx));
    277     __ mov(final_result_reg, result_reg);
    278   }
    279   __ pop(save_reg);
    280   __ pop(scratch1);
    281   __ ret(0);
    282 }
    283 
    284 
    285 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
    286                                            Register number) {
    287   Label load_smi, done;
    288 
    289   __ JumpIfSmi(number, &load_smi, Label::kNear);
    290   __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
    291   __ jmp(&done, Label::kNear);
    292 
    293   __ bind(&load_smi);
    294   __ SmiUntag(number);
    295   __ push(number);
    296   __ fild_s(Operand(esp, 0));
    297   __ pop(number);
    298 
    299   __ bind(&done);
    300 }
    301 
    302 
    303 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
    304                                              Label* non_float,
    305                                              Register scratch) {
    306   Label test_other, done;
    307   // Test if both operands are floats or smi -> scratch=k_is_float;
    308   // Otherwise scratch = k_not_float.
    309   __ JumpIfSmi(edx, &test_other, Label::kNear);
    310   __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
    311   Factory* factory = masm->isolate()->factory();
    312   __ cmp(scratch, factory->heap_number_map());
    313   __ j(not_equal, non_float);  // argument in edx is not a number -> NaN
    314 
    315   __ bind(&test_other);
    316   __ JumpIfSmi(eax, &done, Label::kNear);
    317   __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
    318   __ cmp(scratch, factory->heap_number_map());
    319   __ j(not_equal, non_float);  // argument in eax is not a number -> NaN
    320 
    321   // Fall-through: Both operands are numbers.
    322   __ bind(&done);
    323 }
    324 
    325 
    326 void MathPowStub::Generate(MacroAssembler* masm) {
    327   // No SSE2 support
    328   UNREACHABLE();
    329 }
    330 
    331 
    332 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
    333   Label miss;
    334   Register receiver = LoadDescriptor::ReceiverRegister();
    335 
    336   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax,
    337                                                           ebx, &miss);
    338   __ bind(&miss);
    339   PropertyAccessCompiler::TailCallBuiltin(
    340       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
    341 }
    342 
    343 
    344 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
    345   // Return address is on the stack.
    346   Label slow;
    347 
    348   Register receiver = LoadDescriptor::ReceiverRegister();
    349   Register key = LoadDescriptor::NameRegister();
    350   Register scratch = eax;
    351   DCHECK(!scratch.is(receiver) && !scratch.is(key));
    352 
    353   // Check that the key is an array index, that is Uint32.
    354   __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
    355   __ j(not_zero, &slow);
    356 
    357   // Everything is fine, call runtime.
    358   __ pop(scratch);
    359   __ push(receiver);  // receiver
    360   __ push(key);       // key
    361   __ push(scratch);   // return address
    362 
    363   // Perform tail call to the entry.
    364   ExternalReference ref = ExternalReference(
    365       IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
    366   __ TailCallExternalReference(ref, 2, 1);
    367 
    368   __ bind(&slow);
    369   PropertyAccessCompiler::TailCallBuiltin(
    370       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
    371 }
    372 
    373 
    374 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
    375   // The key is in edx and the parameter count is in eax.
    376   DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
    377   DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
    378 
    379   // The displacement is used for skipping the frame pointer on the
    380   // stack. It is the offset of the last parameter (if any) relative
    381   // to the frame pointer.
    382   static const int kDisplacement = 1 * kPointerSize;
    383 
    384   // Check that the key is a smi.
    385   Label slow;
    386   __ JumpIfNotSmi(edx, &slow, Label::kNear);
    387 
    388   // Check if the calling frame is an arguments adaptor frame.
    389   Label adaptor;
    390   __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    391   __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
    392   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    393   __ j(equal, &adaptor, Label::kNear);
    394 
    395   // Check index against formal parameters count limit passed in
    396   // through register eax. Use unsigned comparison to get negative
    397   // check for free.
    398   __ cmp(edx, eax);
    399   __ j(above_equal, &slow, Label::kNear);
    400 
    401   // Read the argument from the stack and return it.
    402   STATIC_ASSERT(kSmiTagSize == 1);
    403   STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
    404   __ lea(ebx, Operand(ebp, eax, times_2, 0));
    405   __ neg(edx);
    406   __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
    407   __ ret(0);
    408 
    409   // Arguments adaptor case: Check index against actual arguments
    410   // limit found in the arguments adaptor frame. Use unsigned
    411   // comparison to get negative check for free.
    412   __ bind(&adaptor);
    413   __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    414   __ cmp(edx, ecx);
    415   __ j(above_equal, &slow, Label::kNear);
    416 
    417   // Read the argument from the stack and return it.
    418   STATIC_ASSERT(kSmiTagSize == 1);
    419   STATIC_ASSERT(kSmiTag == 0);  // Shifting code depends on these.
    420   __ lea(ebx, Operand(ebx, ecx, times_2, 0));
    421   __ neg(edx);
    422   __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
    423   __ ret(0);
    424 
    425   // Slow-case: Handle non-smi or out-of-bounds access to arguments
    426   // by calling the runtime system.
    427   __ bind(&slow);
    428   __ pop(ebx);  // Return address.
    429   __ push(edx);
    430   __ push(ebx);
    431   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
    432 }
    433 
    434 
    435 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
    436   // esp[0] : return address
    437   // esp[4] : number of parameters
    438   // esp[8] : receiver displacement
    439   // esp[12] : function
    440 
    441   // Check if the calling frame is an arguments adaptor frame.
    442   Label runtime;
    443   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    444   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
    445   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    446   __ j(not_equal, &runtime, Label::kNear);
    447 
    448   // Patch the arguments.length and the parameters pointer.
    449   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    450   __ mov(Operand(esp, 1 * kPointerSize), ecx);
    451   __ lea(edx, Operand(edx, ecx, times_2,
    452               StandardFrameConstants::kCallerSPOffset));
    453   __ mov(Operand(esp, 2 * kPointerSize), edx);
    454 
    455   __ bind(&runtime);
    456   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
    457 }
    458 
    459 
    460 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
    461   // esp[0] : return address
    462   // esp[4] : number of parameters (tagged)
    463   // esp[8] : receiver displacement
    464   // esp[12] : function
    465 
    466   // ebx = parameter count (tagged)
    467   __ mov(ebx, Operand(esp, 1 * kPointerSize));
    468 
    469   // Check if the calling frame is an arguments adaptor frame.
    470   // TODO(rossberg): Factor out some of the bits that are shared with the other
    471   // Generate* functions.
    472   Label runtime;
    473   Label adaptor_frame, try_allocate;
    474   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    475   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
    476   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    477   __ j(equal, &adaptor_frame, Label::kNear);
    478 
    479   // No adaptor, parameter count = argument count.
    480   __ mov(ecx, ebx);
    481   __ jmp(&try_allocate, Label::kNear);
    482 
    483   // We have an adaptor frame. Patch the parameters pointer.
    484   __ bind(&adaptor_frame);
    485   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    486   __ lea(edx, Operand(edx, ecx, times_2,
    487                       StandardFrameConstants::kCallerSPOffset));
    488   __ mov(Operand(esp, 2 * kPointerSize), edx);
    489 
    490   // ebx = parameter count (tagged)
    491   // ecx = argument count (smi-tagged)
    492   // esp[4] = parameter count (tagged)
    493   // esp[8] = address of receiver argument
    494   // Compute the mapped parameter count = min(ebx, ecx) in ebx.
    495   __ cmp(ebx, ecx);
    496   __ j(less_equal, &try_allocate, Label::kNear);
    497   __ mov(ebx, ecx);
    498 
    499   __ bind(&try_allocate);
    500 
    501   // Save mapped parameter count.
    502   __ push(ebx);
    503 
    504   // Compute the sizes of backing store, parameter map, and arguments object.
    505   // 1. Parameter map, has 2 extra words containing context and backing store.
    506   const int kParameterMapHeaderSize =
    507       FixedArray::kHeaderSize + 2 * kPointerSize;
    508   Label no_parameter_map;
    509   __ test(ebx, ebx);
    510   __ j(zero, &no_parameter_map, Label::kNear);
    511   __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
    512   __ bind(&no_parameter_map);
    513 
    514   // 2. Backing store.
    515   __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
    516 
    517   // 3. Arguments object.
    518   __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
    519 
    520   // Do the allocation of all three objects in one go.
    521   __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
    522 
    523   // eax = address of new object(s) (tagged)
    524   // ecx = argument count (smi-tagged)
    525   // esp[0] = mapped parameter count (tagged)
    526   // esp[8] = parameter count (tagged)
    527   // esp[12] = address of receiver argument
    528   // Get the arguments map from the current native context into edi.
    529   Label has_mapped_parameters, instantiate;
    530   __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
    531   __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
    532   __ mov(ebx, Operand(esp, 0 * kPointerSize));
    533   __ test(ebx, ebx);
    534   __ j(not_zero, &has_mapped_parameters, Label::kNear);
    535   __ mov(
    536       edi,
    537       Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
    538   __ jmp(&instantiate, Label::kNear);
    539 
    540   __ bind(&has_mapped_parameters);
    541   __ mov(
    542       edi,
    543       Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
    544   __ bind(&instantiate);
    545 
    546   // eax = address of new object (tagged)
    547   // ebx = mapped parameter count (tagged)
    548   // ecx = argument count (smi-tagged)
    549   // edi = address of arguments map (tagged)
    550   // esp[0] = mapped parameter count (tagged)
    551   // esp[8] = parameter count (tagged)
    552   // esp[12] = address of receiver argument
    553   // Copy the JS object part.
    554   __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
    555   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
    556          masm->isolate()->factory()->empty_fixed_array());
    557   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
    558          masm->isolate()->factory()->empty_fixed_array());
    559 
    560   // Set up the callee in-object property.
    561   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
    562   __ mov(edx, Operand(esp, 4 * kPointerSize));
    563   __ AssertNotSmi(edx);
    564   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
    565                       Heap::kArgumentsCalleeIndex * kPointerSize),
    566          edx);
    567 
    568   // Use the length (smi tagged) and set that as an in-object property too.
    569   __ AssertSmi(ecx);
    570   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
    571   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
    572                       Heap::kArgumentsLengthIndex * kPointerSize),
    573          ecx);
    574 
    575   // Set up the elements pointer in the allocated arguments object.
    576   // If we allocated a parameter map, edi will point there, otherwise to the
    577   // backing store.
    578   __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
    579   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
    580 
    581   // eax = address of new object (tagged)
    582   // ebx = mapped parameter count (tagged)
    583   // ecx = argument count (tagged)
    584   // edi = address of parameter map or backing store (tagged)
    585   // esp[0] = mapped parameter count (tagged)
    586   // esp[8] = parameter count (tagged)
    587   // esp[12] = address of receiver argument
    588   // Free a register.
    589   __ push(eax);
    590 
    591   // Initialize parameter map. If there are no mapped arguments, we're done.
    592   Label skip_parameter_map;
    593   __ test(ebx, ebx);
    594   __ j(zero, &skip_parameter_map);
    595 
    596   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
    597          Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
    598   __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
    599   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
    600   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
    601   __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
    602   __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
    603 
    604   // Copy the parameter slots and the holes in the arguments.
    605   // We need to fill in mapped_parameter_count slots. They index the context,
    606   // where parameters are stored in reverse order, at
    607   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
    608   // The mapped parameter thus need to get indices
    609   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
    610   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
    611   // We loop from right to left.
    612   Label parameters_loop, parameters_test;
    613   __ push(ecx);
    614   __ mov(eax, Operand(esp, 2 * kPointerSize));
    615   __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
    616   __ add(ebx, Operand(esp, 4 * kPointerSize));
    617   __ sub(ebx, eax);
    618   __ mov(ecx, isolate()->factory()->the_hole_value());
    619   __ mov(edx, edi);
    620   __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
    621   // eax = loop variable (tagged)
    622   // ebx = mapping index (tagged)
    623   // ecx = the hole value
    624   // edx = address of parameter map (tagged)
    625   // edi = address of backing store (tagged)
    626   // esp[0] = argument count (tagged)
    627   // esp[4] = address of new object (tagged)
    628   // esp[8] = mapped parameter count (tagged)
    629   // esp[16] = parameter count (tagged)
    630   // esp[20] = address of receiver argument
    631   __ jmp(&parameters_test, Label::kNear);
    632 
    633   __ bind(&parameters_loop);
    634   __ sub(eax, Immediate(Smi::FromInt(1)));
    635   __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
    636   __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
    637   __ add(ebx, Immediate(Smi::FromInt(1)));
    638   __ bind(&parameters_test);
    639   __ test(eax, eax);
    640   __ j(not_zero, &parameters_loop, Label::kNear);
    641   __ pop(ecx);
    642 
    643   __ bind(&skip_parameter_map);
    644 
    645   // ecx = argument count (tagged)
    646   // edi = address of backing store (tagged)
    647   // esp[0] = address of new object (tagged)
    648   // esp[4] = mapped parameter count (tagged)
    649   // esp[12] = parameter count (tagged)
    650   // esp[16] = address of receiver argument
    651   // Copy arguments header and remaining slots (if there are any).
    652   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
    653          Immediate(isolate()->factory()->fixed_array_map()));
    654   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
    655 
    656   Label arguments_loop, arguments_test;
    657   __ mov(ebx, Operand(esp, 1 * kPointerSize));
    658   __ mov(edx, Operand(esp, 4 * kPointerSize));
    659   __ sub(edx, ebx);  // Is there a smarter way to do negative scaling?
    660   __ sub(edx, ebx);
    661   __ jmp(&arguments_test, Label::kNear);
    662 
    663   __ bind(&arguments_loop);
    664   __ sub(edx, Immediate(kPointerSize));
    665   __ mov(eax, Operand(edx, 0));
    666   __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
    667   __ add(ebx, Immediate(Smi::FromInt(1)));
    668 
    669   __ bind(&arguments_test);
    670   __ cmp(ebx, ecx);
    671   __ j(less, &arguments_loop, Label::kNear);
    672 
    673   // Restore.
    674   __ pop(eax);  // Address of arguments object.
    675   __ pop(ebx);  // Parameter count.
    676 
    677   // Return and remove the on-stack parameters.
    678   __ ret(3 * kPointerSize);
    679 
    680   // Do the runtime call to allocate the arguments object.
    681   __ bind(&runtime);
    682   __ pop(eax);  // Remove saved parameter count.
    683   __ mov(Operand(esp, 1 * kPointerSize), ecx);  // Patch argument count.
    684   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
    685 }
    686 
    687 
    688 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
    689   // esp[0] : return address
    690   // esp[4] : number of parameters
    691   // esp[8] : receiver displacement
    692   // esp[12] : function
    693 
    694   // Check if the calling frame is an arguments adaptor frame.
    695   Label adaptor_frame, try_allocate, runtime;
    696   __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
    697   __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
    698   __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
    699   __ j(equal, &adaptor_frame, Label::kNear);
    700 
    701   // Get the length from the frame.
    702   __ mov(ecx, Operand(esp, 1 * kPointerSize));
    703   __ jmp(&try_allocate, Label::kNear);
    704 
    705   // Patch the arguments.length and the parameters pointer.
    706   __ bind(&adaptor_frame);
    707   __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
    708   __ mov(Operand(esp, 1 * kPointerSize), ecx);
    709   __ lea(edx, Operand(edx, ecx, times_2,
    710                       StandardFrameConstants::kCallerSPOffset));
    711   __ mov(Operand(esp, 2 * kPointerSize), edx);
    712 
    713   // Try the new space allocation. Start out with computing the size of
    714   // the arguments object and the elements array.
    715   Label add_arguments_object;
    716   __ bind(&try_allocate);
    717   __ test(ecx, ecx);
    718   __ j(zero, &add_arguments_object, Label::kNear);
    719   __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
    720   __ bind(&add_arguments_object);
    721   __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
    722 
    723   // Do the allocation of both objects in one go.
    724   __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
    725 
    726   // Get the arguments map from the current native context.
    727   __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
    728   __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
    729   const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
    730   __ mov(edi, Operand(edi, offset));
    731 
    732   __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
    733   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
    734          masm->isolate()->factory()->empty_fixed_array());
    735   __ mov(FieldOperand(eax, JSObject::kElementsOffset),
    736          masm->isolate()->factory()->empty_fixed_array());
    737 
    738   // Get the length (smi tagged) and set that as an in-object property too.
    739   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
    740   __ mov(ecx, Operand(esp, 1 * kPointerSize));
    741   __ AssertSmi(ecx);
    742   __ mov(FieldOperand(eax, JSObject::kHeaderSize +
    743                       Heap::kArgumentsLengthIndex * kPointerSize),
    744          ecx);
    745 
    746   // If there are no actual arguments, we're done.
    747   Label done;
    748   __ test(ecx, ecx);
    749   __ j(zero, &done, Label::kNear);
    750 
    751   // Get the parameters pointer from the stack.
    752   __ mov(edx, Operand(esp, 2 * kPointerSize));
    753 
    754   // Set up the elements pointer in the allocated arguments object and
    755   // initialize the header in the elements fixed array.
    756   __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
    757   __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
    758   __ mov(FieldOperand(edi, FixedArray::kMapOffset),
    759          Immediate(isolate()->factory()->fixed_array_map()));
    760 
    761   __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
    762   // Untag the length for the loop below.
    763   __ SmiUntag(ecx);
    764 
    765   // Copy the fixed array slots.
    766   Label loop;
    767   __ bind(&loop);
    768   __ mov(ebx, Operand(edx, -1 * kPointerSize));  // Skip receiver.
    769   __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
    770   __ add(edi, Immediate(kPointerSize));
    771   __ sub(edx, Immediate(kPointerSize));
    772   __ dec(ecx);
    773   __ j(not_zero, &loop);
    774 
    775   // Return and remove the on-stack parameters.
    776   __ bind(&done);
    777   __ ret(3 * kPointerSize);
    778 
    779   // Do the runtime call to allocate the arguments object.
    780   __ bind(&runtime);
    781   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
    782 }
    783 
    784 
    785 void RegExpExecStub::Generate(MacroAssembler* masm) {
    786   // Just jump directly to runtime if native RegExp is not selected at compile
    787   // time or if regexp entry in generated code is turned off runtime switch or
    788   // at compilation.
    789 #ifdef V8_INTERPRETED_REGEXP
    790   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
    791 #else  // V8_INTERPRETED_REGEXP
    792 
    793   // Stack frame on entry.
    794   //  esp[0]: return address
    795   //  esp[4]: last_match_info (expected JSArray)
    796   //  esp[8]: previous index
    797   //  esp[12]: subject string
    798   //  esp[16]: JSRegExp object
    799 
    800   static const int kLastMatchInfoOffset = 1 * kPointerSize;
    801   static const int kPreviousIndexOffset = 2 * kPointerSize;
    802   static const int kSubjectOffset = 3 * kPointerSize;
    803   static const int kJSRegExpOffset = 4 * kPointerSize;
    804 
    805   Label runtime;
    806   Factory* factory = isolate()->factory();
    807 
    808   // Ensure that a RegExp stack is allocated.
    809   ExternalReference address_of_regexp_stack_memory_address =
    810       ExternalReference::address_of_regexp_stack_memory_address(isolate());
    811   ExternalReference address_of_regexp_stack_memory_size =
    812       ExternalReference::address_of_regexp_stack_memory_size(isolate());
    813   __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
    814   __ test(ebx, ebx);
    815   __ j(zero, &runtime);
    816 
    817   // Check that the first argument is a JSRegExp object.
    818   __ mov(eax, Operand(esp, kJSRegExpOffset));
    819   STATIC_ASSERT(kSmiTag == 0);
    820   __ JumpIfSmi(eax, &runtime);
    821   __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
    822   __ j(not_equal, &runtime);
    823 
    824   // Check that the RegExp has been compiled (data contains a fixed array).
    825   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
    826   if (FLAG_debug_code) {
    827     __ test(ecx, Immediate(kSmiTagMask));
    828     __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    829     __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
    830     __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
    831   }
    832 
    833   // ecx: RegExp data (FixedArray)
    834   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
    835   __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
    836   __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
    837   __ j(not_equal, &runtime);
    838 
    839   // ecx: RegExp data (FixedArray)
    840   // Check that the number of captures fit in the static offsets vector buffer.
    841   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
    842   // Check (number_of_captures + 1) * 2 <= offsets vector size
    843   // Or          number_of_captures * 2 <= offsets vector size - 2
    844   // Multiplying by 2 comes for free since edx is smi-tagged.
    845   STATIC_ASSERT(kSmiTag == 0);
    846   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
    847   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
    848   __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
    849   __ j(above, &runtime);
    850 
    851   // Reset offset for possibly sliced string.
    852   __ Move(edi, Immediate(0));
    853   __ mov(eax, Operand(esp, kSubjectOffset));
    854   __ JumpIfSmi(eax, &runtime);
    855   __ mov(edx, eax);  // Make a copy of the original subject string.
    856   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
    857   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
    858 
    859   // eax: subject string
    860   // edx: subject string
    861   // ebx: subject string instance type
    862   // ecx: RegExp data (FixedArray)
    863   // Handle subject string according to its encoding and representation:
    864   // (1) Sequential two byte?  If yes, go to (9).
    865   // (2) Sequential one byte?  If yes, go to (6).
    866   // (3) Anything but sequential or cons?  If yes, go to (7).
    867   // (4) Cons string.  If the string is flat, replace subject with first string.
    868   //     Otherwise bailout.
    869   // (5a) Is subject sequential two byte?  If yes, go to (9).
    870   // (5b) Is subject external?  If yes, go to (8).
    871   // (6) One byte sequential.  Load regexp code for one byte.
    872   // (E) Carry on.
    873   /// [...]
    874 
    875   // Deferred code at the end of the stub:
    876   // (7) Not a long external string?  If yes, go to (10).
    877   // (8) External string.  Make it, offset-wise, look like a sequential string.
    878   // (8a) Is the external string one byte?  If yes, go to (6).
    879   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
    880   // (10) Short external string or not a string?  If yes, bail out to runtime.
    881   // (11) Sliced string.  Replace subject with parent. Go to (5a).
    882 
    883   Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
    884         external_string /* 8 */, check_underlying /* 5a */,
    885         not_seq_nor_cons /* 7 */, check_code /* E */,
    886         not_long_external /* 10 */;
    887 
    888   // (1) Sequential two byte?  If yes, go to (9).
    889   __ and_(ebx, kIsNotStringMask |
    890                kStringRepresentationMask |
    891                kStringEncodingMask |
    892                kShortExternalStringMask);
    893   STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
    894   __ j(zero, &seq_two_byte_string);  // Go to (9).
    895 
    896   // (2) Sequential one byte?  If yes, go to (6).
    897   // Any other sequential string must be one byte.
    898   __ and_(ebx, Immediate(kIsNotStringMask |
    899                          kStringRepresentationMask |
    900                          kShortExternalStringMask));
    901   __ j(zero, &seq_one_byte_string, Label::kNear);  // Go to (6).
    902 
    903   // (3) Anything but sequential or cons?  If yes, go to (7).
    904   // We check whether the subject string is a cons, since sequential strings
    905   // have already been covered.
    906   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
    907   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
    908   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
    909   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
    910   __ cmp(ebx, Immediate(kExternalStringTag));
    911   __ j(greater_equal, &not_seq_nor_cons);  // Go to (7).
    912 
    913   // (4) Cons string.  Check that it's flat.
    914   // Replace subject with first string and reload instance type.
    915   __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
    916   __ j(not_equal, &runtime);
    917   __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
    918   __ bind(&check_underlying);
    919   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
    920   __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
    921 
    922   // (5a) Is subject sequential two byte?  If yes, go to (9).
    923   __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
    924   STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
    925   __ j(zero, &seq_two_byte_string);  // Go to (9).
    926   // (5b) Is subject external?  If yes, go to (8).
    927   __ test_b(ebx, kStringRepresentationMask);
    928   // The underlying external string is never a short external string.
    929   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
    930   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
    931   __ j(not_zero, &external_string);  // Go to (8).
    932 
    933   // eax: sequential subject string (or look-alike, external string)
    934   // edx: original subject string
    935   // ecx: RegExp data (FixedArray)
    936   // (6) One byte sequential.  Load regexp code for one byte.
    937   __ bind(&seq_one_byte_string);
    938   // Load previous index and check range before edx is overwritten.  We have
    939   // to use edx instead of eax here because it might have been only made to
    940   // look like a sequential string when it actually is an external string.
    941   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
    942   __ JumpIfNotSmi(ebx, &runtime);
    943   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
    944   __ j(above_equal, &runtime);
    945   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
    946   __ Move(ecx, Immediate(1));  // Type is one byte.
    947 
    948   // (E) Carry on.  String handling is done.
    949   __ bind(&check_code);
    950   // edx: irregexp code
    951   // Check that the irregexp code has been generated for the actual string
    952   // encoding. If it has, the field contains a code object otherwise it contains
    953   // a smi (code flushing support).
    954   __ JumpIfSmi(edx, &runtime);
    955 
    956   // eax: subject string
    957   // ebx: previous index (smi)
    958   // edx: code
    959   // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
    960   // All checks done. Now push arguments for native regexp code.
    961   Counters* counters = isolate()->counters();
    962   __ IncrementCounter(counters->regexp_entry_native(), 1);
    963 
    964   // Isolates: note we add an additional parameter here (isolate pointer).
    965   static const int kRegExpExecuteArguments = 9;
    966   __ EnterApiExitFrame(kRegExpExecuteArguments);
    967 
    968   // Argument 9: Pass current isolate address.
    969   __ mov(Operand(esp, 8 * kPointerSize),
    970       Immediate(ExternalReference::isolate_address(isolate())));
    971 
    972   // Argument 8: Indicate that this is a direct call from JavaScript.
    973   __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
    974 
    975   // Argument 7: Start (high end) of backtracking stack memory area.
    976   __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
    977   __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
    978   __ mov(Operand(esp, 6 * kPointerSize), esi);
    979 
    980   // Argument 6: Set the number of capture registers to zero to force global
    981   // regexps to behave as non-global.  This does not affect non-global regexps.
    982   __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
    983 
    984   // Argument 5: static offsets vector buffer.
    985   __ mov(Operand(esp, 4 * kPointerSize),
    986          Immediate(ExternalReference::address_of_static_offsets_vector(
    987              isolate())));
    988 
    989   // Argument 2: Previous index.
    990   __ SmiUntag(ebx);
    991   __ mov(Operand(esp, 1 * kPointerSize), ebx);
    992 
    993   // Argument 1: Original subject string.
    994   // The original subject is in the previous stack frame. Therefore we have to
    995   // use ebp, which points exactly to one pointer size below the previous esp.
    996   // (Because creating a new stack frame pushes the previous ebp onto the stack
    997   // and thereby moves up esp by one kPointerSize.)
    998   __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
    999   __ mov(Operand(esp, 0 * kPointerSize), esi);
   1000 
   1001   // esi: original subject string
   1002   // eax: underlying subject string
   1003   // ebx: previous index
   1004   // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
   1005   // edx: code
   1006   // Argument 4: End of string data
   1007   // Argument 3: Start of string data
   1008   // Prepare start and end index of the input.
   1009   // Load the length from the original sliced string if that is the case.
   1010   __ mov(esi, FieldOperand(esi, String::kLengthOffset));
   1011   __ add(esi, edi);  // Calculate input end wrt offset.
   1012   __ SmiUntag(edi);
   1013   __ add(ebx, edi);  // Calculate input start wrt offset.
   1014 
   1015   // ebx: start index of the input string
   1016   // esi: end index of the input string
   1017   Label setup_two_byte, setup_rest;
   1018   __ test(ecx, ecx);
   1019   __ j(zero, &setup_two_byte, Label::kNear);
   1020   __ SmiUntag(esi);
   1021   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
   1022   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
   1023   __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
   1024   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
   1025   __ jmp(&setup_rest, Label::kNear);
   1026 
   1027   __ bind(&setup_two_byte);
   1028   STATIC_ASSERT(kSmiTag == 0);
   1029   STATIC_ASSERT(kSmiTagSize == 1);  // esi is smi (powered by 2).
   1030   __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
   1031   __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Argument 4.
   1032   __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
   1033   __ mov(Operand(esp, 2 * kPointerSize), ecx);  // Argument 3.
   1034 
   1035   __ bind(&setup_rest);
   1036 
   1037   // Locate the code entry and call it.
   1038   __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1039   __ call(edx);
   1040 
   1041   // Drop arguments and come back to JS mode.
   1042   __ LeaveApiExitFrame(true);
   1043 
   1044   // Check the result.
   1045   Label success;
   1046   __ cmp(eax, 1);
   1047   // We expect exactly one result since we force the called regexp to behave
   1048   // as non-global.
   1049   __ j(equal, &success);
   1050   Label failure;
   1051   __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
   1052   __ j(equal, &failure);
   1053   __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
   1054   // If not exception it can only be retry. Handle that in the runtime system.
   1055   __ j(not_equal, &runtime);
   1056   // Result must now be exception. If there is no pending exception already a
   1057   // stack overflow (on the backtrack stack) was detected in RegExp code but
   1058   // haven't created the exception yet. Handle that in the runtime system.
   1059   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
   1060   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   1061                                       isolate());
   1062   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   1063   __ mov(eax, Operand::StaticVariable(pending_exception));
   1064   __ cmp(edx, eax);
   1065   __ j(equal, &runtime);
   1066   // For exception, throw the exception again.
   1067 
   1068   // Clear the pending exception variable.
   1069   __ mov(Operand::StaticVariable(pending_exception), edx);
   1070 
   1071   // Special handling of termination exceptions which are uncatchable
   1072   // by javascript code.
   1073   __ cmp(eax, factory->termination_exception());
   1074   Label throw_termination_exception;
   1075   __ j(equal, &throw_termination_exception, Label::kNear);
   1076 
   1077   // Handle normal exception by following handler chain.
   1078   __ Throw(eax);
   1079 
   1080   __ bind(&throw_termination_exception);
   1081   __ ThrowUncatchable(eax);
   1082 
   1083   __ bind(&failure);
   1084   // For failure to match, return null.
   1085   __ mov(eax, factory->null_value());
   1086   __ ret(4 * kPointerSize);
   1087 
   1088   // Load RegExp data.
   1089   __ bind(&success);
   1090   __ mov(eax, Operand(esp, kJSRegExpOffset));
   1091   __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
   1092   __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
   1093   // Calculate number of capture registers (number_of_captures + 1) * 2.
   1094   STATIC_ASSERT(kSmiTag == 0);
   1095   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   1096   __ add(edx, Immediate(2));  // edx was a smi.
   1097 
   1098   // edx: Number of capture registers
   1099   // Load last_match_info which is still known to be a fast case JSArray.
   1100   // Check that the fourth object is a JSArray object.
   1101   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
   1102   __ JumpIfSmi(eax, &runtime);
   1103   __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
   1104   __ j(not_equal, &runtime);
   1105   // Check that the JSArray is in fast case.
   1106   __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
   1107   __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
   1108   __ cmp(eax, factory->fixed_array_map());
   1109   __ j(not_equal, &runtime);
   1110   // Check that the last match info has space for the capture registers and the
   1111   // additional information.
   1112   __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
   1113   __ SmiUntag(eax);
   1114   __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
   1115   __ cmp(edx, eax);
   1116   __ j(greater, &runtime);
   1117 
   1118   // ebx: last_match_info backing store (FixedArray)
   1119   // edx: number of capture registers
   1120   // Store the capture count.
   1121   __ SmiTag(edx);  // Number of capture registers to smi.
   1122   __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
   1123   __ SmiUntag(edx);  // Number of capture registers back from smi.
   1124   // Store last subject and last input.
   1125   __ mov(eax, Operand(esp, kSubjectOffset));
   1126   __ mov(ecx, eax);
   1127   __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
   1128   __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
   1129                       kDontSaveFPRegs);
   1130   __ mov(eax, ecx);
   1131   __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
   1132   __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
   1133                       kDontSaveFPRegs);
   1134 
   1135   // Get the static offsets vector filled by the native regexp code.
   1136   ExternalReference address_of_static_offsets_vector =
   1137       ExternalReference::address_of_static_offsets_vector(isolate());
   1138   __ mov(ecx, Immediate(address_of_static_offsets_vector));
   1139 
   1140   // ebx: last_match_info backing store (FixedArray)
   1141   // ecx: offsets vector
   1142   // edx: number of capture registers
   1143   Label next_capture, done;
   1144   // Capture register counter starts from number of capture registers and
   1145   // counts down until wraping after zero.
   1146   __ bind(&next_capture);
   1147   __ sub(edx, Immediate(1));
   1148   __ j(negative, &done, Label::kNear);
   1149   // Read the value from the static offsets vector buffer.
   1150   __ mov(edi, Operand(ecx, edx, times_int_size, 0));
   1151   __ SmiTag(edi);
   1152   // Store the smi value in the last match info.
   1153   __ mov(FieldOperand(ebx,
   1154                       edx,
   1155                       times_pointer_size,
   1156                       RegExpImpl::kFirstCaptureOffset),
   1157                       edi);
   1158   __ jmp(&next_capture);
   1159   __ bind(&done);
   1160 
   1161   // Return last match info.
   1162   __ mov(eax, Operand(esp, kLastMatchInfoOffset));
   1163   __ ret(4 * kPointerSize);
   1164 
   1165   // Do the runtime call to execute the regexp.
   1166   __ bind(&runtime);
   1167   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
   1168 
   1169   // Deferred code for string handling.
   1170   // (7) Not a long external string?  If yes, go to (10).
   1171   __ bind(&not_seq_nor_cons);
   1172   // Compare flags are still set from (3).
   1173   __ j(greater, &not_long_external, Label::kNear);  // Go to (10).
   1174 
   1175   // (8) External string.  Short external strings have been ruled out.
   1176   __ bind(&external_string);
   1177   // Reload instance type.
   1178   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   1179   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   1180   if (FLAG_debug_code) {
   1181     // Assert that we do not have a cons or slice (indirect strings) here.
   1182     // Sequential strings have already been ruled out.
   1183     __ test_b(ebx, kIsIndirectStringMask);
   1184     __ Assert(zero, kExternalStringExpectedButNotFound);
   1185   }
   1186   __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
   1187   // Move the pointer so that offset-wise, it looks like a sequential string.
   1188   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   1189   __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   1190   STATIC_ASSERT(kTwoByteStringTag == 0);
   1191   // (8a) Is the external string one byte?  If yes, go to (6).
   1192   __ test_b(ebx, kStringEncodingMask);
   1193   __ j(not_zero, &seq_one_byte_string);  // Goto (6).
   1194 
   1195   // eax: sequential subject string (or look-alike, external string)
   1196   // edx: original subject string
   1197   // ecx: RegExp data (FixedArray)
   1198   // (9) Two byte sequential.  Load regexp code for one byte. Go to (E).
   1199   __ bind(&seq_two_byte_string);
   1200   // Load previous index and check range before edx is overwritten.  We have
   1201   // to use edx instead of eax here because it might have been only made to
   1202   // look like a sequential string when it actually is an external string.
   1203   __ mov(ebx, Operand(esp, kPreviousIndexOffset));
   1204   __ JumpIfNotSmi(ebx, &runtime);
   1205   __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
   1206   __ j(above_equal, &runtime);
   1207   __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
   1208   __ Move(ecx, Immediate(0));  // Type is two byte.
   1209   __ jmp(&check_code);  // Go to (E).
   1210 
   1211   // (10) Not a string or a short external string?  If yes, bail out to runtime.
   1212   __ bind(&not_long_external);
   1213   // Catch non-string subject or short external string.
   1214   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
   1215   __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
   1216   __ j(not_zero, &runtime);
   1217 
   1218   // (11) Sliced string.  Replace subject with parent.  Go to (5a).
   1219   // Load offset into edi and replace subject string with parent.
   1220   __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
   1221   __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
   1222   __ jmp(&check_underlying);  // Go to (5a).
   1223 #endif  // V8_INTERPRETED_REGEXP
   1224 }
   1225 
   1226 
   1227 static int NegativeComparisonResult(Condition cc) {
   1228   DCHECK(cc != equal);
   1229   DCHECK((cc == less) || (cc == less_equal)
   1230       || (cc == greater) || (cc == greater_equal));
   1231   return (cc == greater || cc == greater_equal) ? LESS : GREATER;
   1232 }
   1233 
   1234 
   1235 static void CheckInputType(MacroAssembler* masm, Register input,
   1236                            CompareICState::State expected, Label* fail) {
   1237   Label ok;
   1238   if (expected == CompareICState::SMI) {
   1239     __ JumpIfNotSmi(input, fail);
   1240   } else if (expected == CompareICState::NUMBER) {
   1241     __ JumpIfSmi(input, &ok);
   1242     __ cmp(FieldOperand(input, HeapObject::kMapOffset),
   1243            Immediate(masm->isolate()->factory()->heap_number_map()));
   1244     __ j(not_equal, fail);
   1245   }
   1246   // We could be strict about internalized/non-internalized here, but as long as
   1247   // hydrogen doesn't care, the stub doesn't have to care either.
   1248   __ bind(&ok);
   1249 }
   1250 
   1251 
   1252 static void BranchIfNotInternalizedString(MacroAssembler* masm,
   1253                                           Label* label,
   1254                                           Register object,
   1255                                           Register scratch) {
   1256   __ JumpIfSmi(object, label);
   1257   __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
   1258   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   1259   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   1260   __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   1261   __ j(not_zero, label);
   1262 }
   1263 
   1264 
   1265 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
   1266   Label check_unequal_objects;
   1267   Condition cc = GetCondition();
   1268 
   1269   Label miss;
   1270   CheckInputType(masm, edx, left(), &miss);
   1271   CheckInputType(masm, eax, right(), &miss);
   1272 
   1273   // Compare two smis.
   1274   Label non_smi, smi_done;
   1275   __ mov(ecx, edx);
   1276   __ or_(ecx, eax);
   1277   __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
   1278   __ sub(edx, eax);  // Return on the result of the subtraction.
   1279   __ j(no_overflow, &smi_done, Label::kNear);
   1280   __ not_(edx);  // Correct sign in case of overflow. edx is never 0 here.
   1281   __ bind(&smi_done);
   1282   __ mov(eax, edx);
   1283   __ ret(0);
   1284   __ bind(&non_smi);
   1285 
   1286   // NOTICE! This code is only reached after a smi-fast-case check, so
   1287   // it is certain that at least one operand isn't a smi.
   1288 
   1289   // Identical objects can be compared fast, but there are some tricky cases
   1290   // for NaN and undefined.
   1291   Label generic_heap_number_comparison;
   1292   {
   1293     Label not_identical;
   1294     __ cmp(eax, edx);
   1295     __ j(not_equal, &not_identical);
   1296 
   1297     if (cc != equal) {
   1298       // Check for undefined.  undefined OP undefined is false even though
   1299       // undefined == undefined.
   1300       Label check_for_nan;
   1301       __ cmp(edx, isolate()->factory()->undefined_value());
   1302       __ j(not_equal, &check_for_nan, Label::kNear);
   1303       __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1304       __ ret(0);
   1305       __ bind(&check_for_nan);
   1306     }
   1307 
   1308     // Test for NaN. Compare heap numbers in a general way,
   1309     // to hanlde NaNs correctly.
   1310     __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   1311            Immediate(isolate()->factory()->heap_number_map()));
   1312     __ j(equal, &generic_heap_number_comparison, Label::kNear);
   1313     if (cc != equal) {
   1314       // Call runtime on identical JSObjects.  Otherwise return equal.
   1315       __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1316       __ j(above_equal, &not_identical);
   1317     }
   1318     __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   1319     __ ret(0);
   1320 
   1321 
   1322     __ bind(&not_identical);
   1323   }
   1324 
   1325   // Strict equality can quickly decide whether objects are equal.
   1326   // Non-strict object equality is slower, so it is handled later in the stub.
   1327   if (cc == equal && strict()) {
   1328     Label slow;  // Fallthrough label.
   1329     Label not_smis;
   1330     // If we're doing a strict equality comparison, we don't have to do
   1331     // type conversion, so we generate code to do fast comparison for objects
   1332     // and oddballs. Non-smi numbers and strings still go through the usual
   1333     // slow-case code.
   1334     // If either is a Smi (we know that not both are), then they can only
   1335     // be equal if the other is a HeapNumber. If so, use the slow case.
   1336     STATIC_ASSERT(kSmiTag == 0);
   1337     DCHECK_EQ(0, Smi::FromInt(0));
   1338     __ mov(ecx, Immediate(kSmiTagMask));
   1339     __ and_(ecx, eax);
   1340     __ test(ecx, edx);
   1341     __ j(not_zero, &not_smis, Label::kNear);
   1342     // One operand is a smi.
   1343 
   1344     // Check whether the non-smi is a heap number.
   1345     STATIC_ASSERT(kSmiTagMask == 1);
   1346     // ecx still holds eax & kSmiTag, which is either zero or one.
   1347     __ sub(ecx, Immediate(0x01));
   1348     __ mov(ebx, edx);
   1349     __ xor_(ebx, eax);
   1350     __ and_(ebx, ecx);  // ebx holds either 0 or eax ^ edx.
   1351     __ xor_(ebx, eax);
   1352     // if eax was smi, ebx is now edx, else eax.
   1353 
   1354     // Check if the non-smi operand is a heap number.
   1355     __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
   1356            Immediate(isolate()->factory()->heap_number_map()));
   1357     // If heap number, handle it in the slow case.
   1358     __ j(equal, &slow, Label::kNear);
   1359     // Return non-equal (ebx is not zero)
   1360     __ mov(eax, ebx);
   1361     __ ret(0);
   1362 
   1363     __ bind(&not_smis);
   1364     // If either operand is a JSObject or an oddball value, then they are not
   1365     // equal since their pointers are different
   1366     // There is no test for undetectability in strict equality.
   1367 
   1368     // Get the type of the first operand.
   1369     // If the first object is a JS object, we have done pointer comparison.
   1370     Label first_non_object;
   1371     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
   1372     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1373     __ j(below, &first_non_object, Label::kNear);
   1374 
   1375     // Return non-zero (eax is not zero)
   1376     Label return_not_equal;
   1377     STATIC_ASSERT(kHeapObjectTag != 0);
   1378     __ bind(&return_not_equal);
   1379     __ ret(0);
   1380 
   1381     __ bind(&first_non_object);
   1382     // Check for oddballs: true, false, null, undefined.
   1383     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1384     __ j(equal, &return_not_equal);
   1385 
   1386     __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
   1387     __ j(above_equal, &return_not_equal);
   1388 
   1389     // Check for oddballs: true, false, null, undefined.
   1390     __ CmpInstanceType(ecx, ODDBALL_TYPE);
   1391     __ j(equal, &return_not_equal);
   1392 
   1393     // Fall through to the general case.
   1394     __ bind(&slow);
   1395   }
   1396 
   1397   // Generate the number comparison code.
   1398   Label non_number_comparison;
   1399   Label unordered;
   1400   __ bind(&generic_heap_number_comparison);
   1401   FloatingPointHelper::CheckFloatOperands(
   1402       masm, &non_number_comparison, ebx);
   1403   FloatingPointHelper::LoadFloatOperand(masm, eax);
   1404   FloatingPointHelper::LoadFloatOperand(masm, edx);
   1405   __ FCmp();
   1406 
   1407   // Don't base result on EFLAGS when a NaN is involved.
   1408   __ j(parity_even, &unordered, Label::kNear);
   1409 
   1410   Label below_label, above_label;
   1411   // Return a result of -1, 0, or 1, based on EFLAGS.
   1412   __ j(below, &below_label, Label::kNear);
   1413   __ j(above, &above_label, Label::kNear);
   1414 
   1415   __ Move(eax, Immediate(0));
   1416   __ ret(0);
   1417 
   1418   __ bind(&below_label);
   1419   __ mov(eax, Immediate(Smi::FromInt(-1)));
   1420   __ ret(0);
   1421 
   1422   __ bind(&above_label);
   1423   __ mov(eax, Immediate(Smi::FromInt(1)));
   1424   __ ret(0);
   1425 
   1426   // If one of the numbers was NaN, then the result is always false.
   1427   // The cc is never not-equal.
   1428   __ bind(&unordered);
   1429   DCHECK(cc != not_equal);
   1430   if (cc == less || cc == less_equal) {
   1431     __ mov(eax, Immediate(Smi::FromInt(1)));
   1432   } else {
   1433     __ mov(eax, Immediate(Smi::FromInt(-1)));
   1434   }
   1435   __ ret(0);
   1436 
   1437   // The number comparison code did not provide a valid result.
   1438   __ bind(&non_number_comparison);
   1439 
   1440   // Fast negative check for internalized-to-internalized equality.
   1441   Label check_for_strings;
   1442   if (cc == equal) {
   1443     BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
   1444     BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
   1445 
   1446     // We've already checked for object identity, so if both operands
   1447     // are internalized they aren't equal. Register eax already holds a
   1448     // non-zero value, which indicates not equal, so just return.
   1449     __ ret(0);
   1450   }
   1451 
   1452   __ bind(&check_for_strings);
   1453 
   1454   __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
   1455                                            &check_unequal_objects);
   1456 
   1457   // Inline comparison of one-byte strings.
   1458   if (cc == equal) {
   1459     StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
   1460   } else {
   1461     StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
   1462                                                     edi);
   1463   }
   1464 #ifdef DEBUG
   1465   __ Abort(kUnexpectedFallThroughFromStringComparison);
   1466 #endif
   1467 
   1468   __ bind(&check_unequal_objects);
   1469   if (cc == equal && !strict()) {
   1470     // Non-strict equality.  Objects are unequal if
   1471     // they are both JSObjects and not undetectable,
   1472     // and their pointers are different.
   1473     Label not_both_objects;
   1474     Label return_unequal;
   1475     // At most one is a smi, so we can test for smi by adding the two.
   1476     // A smi plus a heap object has the low bit set, a heap object plus
   1477     // a heap object has the low bit clear.
   1478     STATIC_ASSERT(kSmiTag == 0);
   1479     STATIC_ASSERT(kSmiTagMask == 1);
   1480     __ lea(ecx, Operand(eax, edx, times_1, 0));
   1481     __ test(ecx, Immediate(kSmiTagMask));
   1482     __ j(not_zero, &not_both_objects, Label::kNear);
   1483     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1484     __ j(below, &not_both_objects, Label::kNear);
   1485     __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
   1486     __ j(below, &not_both_objects, Label::kNear);
   1487     // We do not bail out after this point.  Both are JSObjects, and
   1488     // they are equal if and only if both are undetectable.
   1489     // The and of the undetectable flags is 1 if and only if they are equal.
   1490     __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
   1491               1 << Map::kIsUndetectable);
   1492     __ j(zero, &return_unequal, Label::kNear);
   1493     __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
   1494               1 << Map::kIsUndetectable);
   1495     __ j(zero, &return_unequal, Label::kNear);
   1496     // The objects are both undetectable, so they both compare as the value
   1497     // undefined, and are equal.
   1498     __ Move(eax, Immediate(EQUAL));
   1499     __ bind(&return_unequal);
   1500     // Return non-equal by returning the non-zero object pointer in eax,
   1501     // or return equal if we fell through to here.
   1502     __ ret(0);  // rax, rdx were pushed
   1503     __ bind(&not_both_objects);
   1504   }
   1505 
   1506   // Push arguments below the return address.
   1507   __ pop(ecx);
   1508   __ push(edx);
   1509   __ push(eax);
   1510 
   1511   // Figure out which native to call and setup the arguments.
   1512   Builtins::JavaScript builtin;
   1513   if (cc == equal) {
   1514     builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
   1515   } else {
   1516     builtin = Builtins::COMPARE;
   1517     __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
   1518   }
   1519 
   1520   // Restore return address on the stack.
   1521   __ push(ecx);
   1522 
   1523   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
   1524   // tagged as a small integer.
   1525   __ InvokeBuiltin(builtin, JUMP_FUNCTION);
   1526 
   1527   __ bind(&miss);
   1528   GenerateMiss(masm);
   1529 }
   1530 
   1531 
   1532 static void GenerateRecordCallTarget(MacroAssembler* masm) {
   1533   // Cache the called function in a feedback vector slot.  Cache states
   1534   // are uninitialized, monomorphic (indicated by a JSFunction), and
   1535   // megamorphic.
   1536   // eax : number of arguments to the construct function
   1537   // ebx : Feedback vector
   1538   // edx : slot in feedback vector (Smi)
   1539   // edi : the function to call
   1540   Isolate* isolate = masm->isolate();
   1541   Label initialize, done, miss, megamorphic, not_array_function;
   1542 
   1543   // Load the cache state into ecx.
   1544   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1545                            FixedArray::kHeaderSize));
   1546 
   1547   // A monomorphic cache hit or an already megamorphic state: invoke the
   1548   // function without changing the state.
   1549   __ cmp(ecx, edi);
   1550   __ j(equal, &done, Label::kFar);
   1551   __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1552   __ j(equal, &done, Label::kFar);
   1553 
   1554   if (!FLAG_pretenuring_call_new) {
   1555     // If we came here, we need to see if we are the array function.
   1556     // If we didn't have a matching function, and we didn't find the megamorph
   1557     // sentinel, then we have in the slot either some other function or an
   1558     // AllocationSite. Do a map check on the object in ecx.
   1559     Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
   1560     __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
   1561     __ j(not_equal, &miss);
   1562 
   1563     // Make sure the function is the Array() function
   1564     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1565     __ cmp(edi, ecx);
   1566     __ j(not_equal, &megamorphic);
   1567     __ jmp(&done, Label::kFar);
   1568   }
   1569 
   1570   __ bind(&miss);
   1571 
   1572   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
   1573   // megamorphic.
   1574   __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
   1575   __ j(equal, &initialize);
   1576   // MegamorphicSentinel is an immortal immovable object (undefined) so no
   1577   // write-barrier is needed.
   1578   __ bind(&megamorphic);
   1579   __ mov(
   1580       FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
   1581       Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1582   __ jmp(&done, Label::kFar);
   1583 
   1584   // An uninitialized cache is patched with the function or sentinel to
   1585   // indicate the ElementsKind if function is the Array constructor.
   1586   __ bind(&initialize);
   1587   if (!FLAG_pretenuring_call_new) {
   1588     // Make sure the function is the Array() function
   1589     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1590     __ cmp(edi, ecx);
   1591     __ j(not_equal, &not_array_function);
   1592 
   1593     // The target function is the Array constructor,
   1594     // Create an AllocationSite if we don't already have it, store it in the
   1595     // slot.
   1596     {
   1597       FrameScope scope(masm, StackFrame::INTERNAL);
   1598 
   1599       // Arguments register must be smi-tagged to call out.
   1600       __ SmiTag(eax);
   1601       __ push(eax);
   1602       __ push(edi);
   1603       __ push(edx);
   1604       __ push(ebx);
   1605 
   1606       CreateAllocationSiteStub create_stub(isolate);
   1607       __ CallStub(&create_stub);
   1608 
   1609       __ pop(ebx);
   1610       __ pop(edx);
   1611       __ pop(edi);
   1612       __ pop(eax);
   1613       __ SmiUntag(eax);
   1614     }
   1615     __ jmp(&done);
   1616 
   1617     __ bind(&not_array_function);
   1618   }
   1619 
   1620   __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   1621                       FixedArray::kHeaderSize),
   1622          edi);
   1623   // We won't need edx or ebx anymore, just save edi
   1624   __ push(edi);
   1625   __ push(ebx);
   1626   __ push(edx);
   1627   __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
   1628                       OMIT_SMI_CHECK);
   1629   __ pop(edx);
   1630   __ pop(ebx);
   1631   __ pop(edi);
   1632 
   1633   __ bind(&done);
   1634 }
   1635 
   1636 
   1637 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
   1638   // Do not transform the receiver for strict mode functions.
   1639   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1640   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
   1641             1 << SharedFunctionInfo::kStrictModeBitWithinByte);
   1642   __ j(not_equal, cont);
   1643 
   1644   // Do not transform the receiver for natives (shared already in ecx).
   1645   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
   1646             1 << SharedFunctionInfo::kNativeBitWithinByte);
   1647   __ j(not_equal, cont);
   1648 }
   1649 
   1650 
   1651 static void EmitSlowCase(Isolate* isolate,
   1652                          MacroAssembler* masm,
   1653                          int argc,
   1654                          Label* non_function) {
   1655   // Check for function proxy.
   1656   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
   1657   __ j(not_equal, non_function);
   1658   __ pop(ecx);
   1659   __ push(edi);  // put proxy as additional argument under return address
   1660   __ push(ecx);
   1661   __ Move(eax, Immediate(argc + 1));
   1662   __ Move(ebx, Immediate(0));
   1663   __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
   1664   {
   1665     Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
   1666     __ jmp(adaptor, RelocInfo::CODE_TARGET);
   1667   }
   1668 
   1669   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
   1670   // of the original receiver from the call site).
   1671   __ bind(non_function);
   1672   __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
   1673   __ Move(eax, Immediate(argc));
   1674   __ Move(ebx, Immediate(0));
   1675   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
   1676   Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
   1677   __ jmp(adaptor, RelocInfo::CODE_TARGET);
   1678 }
   1679 
   1680 
   1681 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
   1682   // Wrap the receiver and patch it back onto the stack.
   1683   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
   1684     __ push(edi);
   1685     __ push(eax);
   1686     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1687     __ pop(edi);
   1688   }
   1689   __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
   1690   __ jmp(cont);
   1691 }
   1692 
   1693 
   1694 static void CallFunctionNoFeedback(MacroAssembler* masm,
   1695                                    int argc, bool needs_checks,
   1696                                    bool call_as_method) {
   1697   // edi : the function to call
   1698   Label slow, non_function, wrap, cont;
   1699 
   1700   if (needs_checks) {
   1701     // Check that the function really is a JavaScript function.
   1702     __ JumpIfSmi(edi, &non_function);
   1703 
   1704     // Goto slow case if we do not have a function.
   1705     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   1706     __ j(not_equal, &slow);
   1707   }
   1708 
   1709   // Fast-case: Just invoke the function.
   1710   ParameterCount actual(argc);
   1711 
   1712   if (call_as_method) {
   1713     if (needs_checks) {
   1714       EmitContinueIfStrictOrNative(masm, &cont);
   1715     }
   1716 
   1717     // Load the receiver from the stack.
   1718     __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
   1719 
   1720     if (needs_checks) {
   1721       __ JumpIfSmi(eax, &wrap);
   1722 
   1723       __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1724       __ j(below, &wrap);
   1725     } else {
   1726       __ jmp(&wrap);
   1727     }
   1728 
   1729     __ bind(&cont);
   1730   }
   1731 
   1732   __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
   1733 
   1734   if (needs_checks) {
   1735     // Slow-case: Non-function called.
   1736     __ bind(&slow);
   1737     // (non_function is bound in EmitSlowCase)
   1738     EmitSlowCase(masm->isolate(), masm, argc, &non_function);
   1739   }
   1740 
   1741   if (call_as_method) {
   1742     __ bind(&wrap);
   1743     EmitWrapCase(masm, argc, &cont);
   1744   }
   1745 }
   1746 
   1747 
   1748 void CallFunctionStub::Generate(MacroAssembler* masm) {
   1749   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
   1750 }
   1751 
   1752 
   1753 void CallConstructStub::Generate(MacroAssembler* masm) {
   1754   // eax : number of arguments
   1755   // ebx : feedback vector
   1756   // edx : (only if ebx is not the megamorphic symbol) slot in feedback
   1757   //       vector (Smi)
   1758   // edi : constructor function
   1759   Label slow, non_function_call;
   1760 
   1761   // Check that function is not a smi.
   1762   __ JumpIfSmi(edi, &non_function_call);
   1763   // Check that function is a JSFunction.
   1764   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   1765   __ j(not_equal, &slow);
   1766 
   1767   if (RecordCallTarget()) {
   1768     GenerateRecordCallTarget(masm);
   1769 
   1770     if (FLAG_pretenuring_call_new) {
   1771       // Put the AllocationSite from the feedback vector into ebx.
   1772       // By adding kPointerSize we encode that we know the AllocationSite
   1773       // entry is at the feedback vector slot given by edx + 1.
   1774       __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   1775                                FixedArray::kHeaderSize + kPointerSize));
   1776     } else {
   1777       Label feedback_register_initialized;
   1778       // Put the AllocationSite from the feedback vector into ebx, or undefined.
   1779       __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
   1780                                FixedArray::kHeaderSize));
   1781       Handle<Map> allocation_site_map =
   1782           isolate()->factory()->allocation_site_map();
   1783       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   1784       __ j(equal, &feedback_register_initialized);
   1785       __ mov(ebx, isolate()->factory()->undefined_value());
   1786       __ bind(&feedback_register_initialized);
   1787     }
   1788 
   1789     __ AssertUndefinedOrAllocationSite(ebx);
   1790   }
   1791 
   1792   // Jump to the function-specific construct stub.
   1793   Register jmp_reg = ecx;
   1794   __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
   1795   __ mov(jmp_reg, FieldOperand(jmp_reg,
   1796                                SharedFunctionInfo::kConstructStubOffset));
   1797   __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
   1798   __ jmp(jmp_reg);
   1799 
   1800   // edi: called object
   1801   // eax: number of arguments
   1802   // ecx: object map
   1803   Label do_call;
   1804   __ bind(&slow);
   1805   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
   1806   __ j(not_equal, &non_function_call);
   1807   __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
   1808   __ jmp(&do_call);
   1809 
   1810   __ bind(&non_function_call);
   1811   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
   1812   __ bind(&do_call);
   1813   // Set expected number of arguments to zero (not changing eax).
   1814   __ Move(ebx, Immediate(0));
   1815   Handle<Code> arguments_adaptor =
   1816       isolate()->builtins()->ArgumentsAdaptorTrampoline();
   1817   __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
   1818 }
   1819 
   1820 
   1821 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
   1822   __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1823   __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
   1824   __ mov(vector, FieldOperand(vector,
   1825                               SharedFunctionInfo::kFeedbackVectorOffset));
   1826 }
   1827 
   1828 
   1829 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
   1830   // edi - function
   1831   // edx - slot id
   1832   Label miss;
   1833   int argc = arg_count();
   1834   ParameterCount actual(argc);
   1835 
   1836   EmitLoadTypeFeedbackVector(masm, ebx);
   1837 
   1838   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
   1839   __ cmp(edi, ecx);
   1840   __ j(not_equal, &miss);
   1841 
   1842   __ mov(eax, arg_count());
   1843   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1844                            FixedArray::kHeaderSize));
   1845 
   1846   // Verify that ecx contains an AllocationSite
   1847   Factory* factory = masm->isolate()->factory();
   1848   __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   1849          factory->allocation_site_map());
   1850   __ j(not_equal, &miss);
   1851 
   1852   __ mov(ebx, ecx);
   1853   ArrayConstructorStub stub(masm->isolate(), arg_count());
   1854   __ TailCallStub(&stub);
   1855 
   1856   __ bind(&miss);
   1857   GenerateMiss(masm);
   1858 
   1859   // The slow case, we need this no matter what to complete a call after a miss.
   1860   CallFunctionNoFeedback(masm,
   1861                          arg_count(),
   1862                          true,
   1863                          CallAsMethod());
   1864 
   1865   // Unreachable.
   1866   __ int3();
   1867 }
   1868 
   1869 
   1870 void CallICStub::Generate(MacroAssembler* masm) {
   1871   // edi - function
   1872   // edx - slot id
   1873   Isolate* isolate = masm->isolate();
   1874   Label extra_checks_or_miss, slow_start;
   1875   Label slow, non_function, wrap, cont;
   1876   Label have_js_function;
   1877   int argc = arg_count();
   1878   ParameterCount actual(argc);
   1879 
   1880   EmitLoadTypeFeedbackVector(masm, ebx);
   1881 
   1882   // The checks. First, does edi match the recorded monomorphic target?
   1883   __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
   1884                            FixedArray::kHeaderSize));
   1885   __ j(not_equal, &extra_checks_or_miss);
   1886 
   1887   __ bind(&have_js_function);
   1888   if (CallAsMethod()) {
   1889     EmitContinueIfStrictOrNative(masm, &cont);
   1890 
   1891     // Load the receiver from the stack.
   1892     __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
   1893 
   1894     __ JumpIfSmi(eax, &wrap);
   1895 
   1896     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
   1897     __ j(below, &wrap);
   1898 
   1899     __ bind(&cont);
   1900   }
   1901 
   1902   __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
   1903 
   1904   __ bind(&slow);
   1905   EmitSlowCase(isolate, masm, argc, &non_function);
   1906 
   1907   if (CallAsMethod()) {
   1908     __ bind(&wrap);
   1909     EmitWrapCase(masm, argc, &cont);
   1910   }
   1911 
   1912   __ bind(&extra_checks_or_miss);
   1913   Label miss;
   1914 
   1915   __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
   1916                            FixedArray::kHeaderSize));
   1917   __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1918   __ j(equal, &slow_start);
   1919   __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
   1920   __ j(equal, &miss);
   1921 
   1922   if (!FLAG_trace_ic) {
   1923     // We are going megamorphic. If the feedback is a JSFunction, it is fine
   1924     // to handle it here. More complex cases are dealt with in the runtime.
   1925     __ AssertNotSmi(ecx);
   1926     __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
   1927     __ j(not_equal, &miss);
   1928     __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
   1929                         FixedArray::kHeaderSize),
   1930            Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
   1931     __ jmp(&slow_start);
   1932   }
   1933 
   1934   // We are here because tracing is on or we are going monomorphic.
   1935   __ bind(&miss);
   1936   GenerateMiss(masm);
   1937 
   1938   // the slow case
   1939   __ bind(&slow_start);
   1940 
   1941   // Check that the function really is a JavaScript function.
   1942   __ JumpIfSmi(edi, &non_function);
   1943 
   1944   // Goto slow case if we do not have a function.
   1945   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
   1946   __ j(not_equal, &slow);
   1947   __ jmp(&have_js_function);
   1948 
   1949   // Unreachable
   1950   __ int3();
   1951 }
   1952 
   1953 
   1954 void CallICStub::GenerateMiss(MacroAssembler* masm) {
   1955   // Get the receiver of the function from the stack; 1 ~ return address.
   1956   __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize));
   1957 
   1958   {
   1959     FrameScope scope(masm, StackFrame::INTERNAL);
   1960 
   1961     // Push the receiver and the function and feedback info.
   1962     __ push(ecx);
   1963     __ push(edi);
   1964     __ push(ebx);
   1965     __ push(edx);
   1966 
   1967     // Call the entry.
   1968     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
   1969                                                : IC::kCallIC_Customization_Miss;
   1970 
   1971     ExternalReference miss = ExternalReference(IC_Utility(id),
   1972                                                masm->isolate());
   1973     __ CallExternalReference(miss, 4);
   1974 
   1975     // Move result to edi and exit the internal frame.
   1976     __ mov(edi, eax);
   1977   }
   1978 }
   1979 
   1980 
   1981 bool CEntryStub::NeedsImmovableCode() {
   1982   return false;
   1983 }
   1984 
   1985 
   1986 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
   1987   CEntryStub::GenerateAheadOfTime(isolate);
   1988   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
   1989   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
   1990   // It is important that the store buffer overflow stubs are generated first.
   1991   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
   1992   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
   1993   BinaryOpICStub::GenerateAheadOfTime(isolate);
   1994   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
   1995 }
   1996 
   1997 
   1998 void CodeStub::GenerateFPStubs(Isolate* isolate) {
   1999   CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
   2000   // Stubs might already be in the snapshot, detect that and don't regenerate,
   2001   // which would lead to code stub initialization state being messed up.
   2002   Code* save_doubles_code;
   2003   if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
   2004     save_doubles_code = *(save_doubles.GetCode());
   2005   }
   2006   isolate->set_fp_stubs_generated(true);
   2007 }
   2008 
   2009 
   2010 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
   2011   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
   2012   stub.GetCode();
   2013 }
   2014 
   2015 
   2016 void CEntryStub::Generate(MacroAssembler* masm) {
   2017   // eax: number of arguments including receiver
   2018   // ebx: pointer to C function  (C callee-saved)
   2019   // ebp: frame pointer  (restored after C call)
   2020   // esp: stack pointer  (restored after C call)
   2021   // esi: current context (C callee-saved)
   2022   // edi: JS function of the caller (C callee-saved)
   2023 
   2024   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2025 
   2026   // Enter the exit frame that transitions from JavaScript to C++.
   2027   __ EnterExitFrame(save_doubles());
   2028 
   2029   // ebx: pointer to C function  (C callee-saved)
   2030   // ebp: frame pointer  (restored after C call)
   2031   // esp: stack pointer  (restored after C call)
   2032   // edi: number of arguments including receiver  (C callee-saved)
   2033   // esi: pointer to the first argument (C callee-saved)
   2034 
   2035   // Result returned in eax, or eax+edx if result size is 2.
   2036 
   2037   // Check stack alignment.
   2038   if (FLAG_debug_code) {
   2039     __ CheckStackAlignment();
   2040   }
   2041 
   2042   // Call C function.
   2043   __ mov(Operand(esp, 0 * kPointerSize), edi);  // argc.
   2044   __ mov(Operand(esp, 1 * kPointerSize), esi);  // argv.
   2045   __ mov(Operand(esp, 2 * kPointerSize),
   2046          Immediate(ExternalReference::isolate_address(isolate())));
   2047   __ call(ebx);
   2048   // Result is in eax or edx:eax - do not destroy these registers!
   2049 
   2050   // Runtime functions should not return 'the hole'.  Allowing it to escape may
   2051   // lead to crashes in the IC code later.
   2052   if (FLAG_debug_code) {
   2053     Label okay;
   2054     __ cmp(eax, isolate()->factory()->the_hole_value());
   2055     __ j(not_equal, &okay, Label::kNear);
   2056     __ int3();
   2057     __ bind(&okay);
   2058   }
   2059 
   2060   // Check result for exception sentinel.
   2061   Label exception_returned;
   2062   __ cmp(eax, isolate()->factory()->exception());
   2063   __ j(equal, &exception_returned);
   2064 
   2065   ExternalReference pending_exception_address(
   2066       Isolate::kPendingExceptionAddress, isolate());
   2067 
   2068   // Check that there is no pending exception, otherwise we
   2069   // should have returned the exception sentinel.
   2070   if (FLAG_debug_code) {
   2071     __ push(edx);
   2072     __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2073     Label okay;
   2074     __ cmp(edx, Operand::StaticVariable(pending_exception_address));
   2075     // Cannot use check here as it attempts to generate call into runtime.
   2076     __ j(equal, &okay, Label::kNear);
   2077     __ int3();
   2078     __ bind(&okay);
   2079     __ pop(edx);
   2080   }
   2081 
   2082   // Exit the JavaScript to C++ exit frame.
   2083   __ LeaveExitFrame(save_doubles());
   2084   __ ret(0);
   2085 
   2086   // Handling of exception.
   2087   __ bind(&exception_returned);
   2088 
   2089   // Retrieve the pending exception.
   2090   __ mov(eax, Operand::StaticVariable(pending_exception_address));
   2091 
   2092   // Clear the pending exception.
   2093   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2094   __ mov(Operand::StaticVariable(pending_exception_address), edx);
   2095 
   2096   // Special handling of termination exceptions which are uncatchable
   2097   // by javascript code.
   2098   Label throw_termination_exception;
   2099   __ cmp(eax, isolate()->factory()->termination_exception());
   2100   __ j(equal, &throw_termination_exception);
   2101 
   2102   // Handle normal exception.
   2103   __ Throw(eax);
   2104 
   2105   __ bind(&throw_termination_exception);
   2106   __ ThrowUncatchable(eax);
   2107 }
   2108 
   2109 
   2110 void JSEntryStub::Generate(MacroAssembler* masm) {
   2111   Label invoke, handler_entry, exit;
   2112   Label not_outermost_js, not_outermost_js_2;
   2113 
   2114   ProfileEntryHookStub::MaybeCallEntryHook(masm);
   2115 
   2116   // Set up frame.
   2117   __ push(ebp);
   2118   __ mov(ebp, esp);
   2119 
   2120   // Push marker in two places.
   2121   int marker = type();
   2122   __ push(Immediate(Smi::FromInt(marker)));  // context slot
   2123   __ push(Immediate(Smi::FromInt(marker)));  // function slot
   2124   // Save callee-saved registers (C calling conventions).
   2125   __ push(edi);
   2126   __ push(esi);
   2127   __ push(ebx);
   2128 
   2129   // Save copies of the top frame descriptor on the stack.
   2130   ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
   2131   __ push(Operand::StaticVariable(c_entry_fp));
   2132 
   2133   // If this is the outermost JS call, set js_entry_sp value.
   2134   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
   2135   __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
   2136   __ j(not_equal, &not_outermost_js, Label::kNear);
   2137   __ mov(Operand::StaticVariable(js_entry_sp), ebp);
   2138   __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   2139   __ jmp(&invoke, Label::kNear);
   2140   __ bind(&not_outermost_js);
   2141   __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
   2142 
   2143   // Jump to a faked try block that does the invoke, with a faked catch
   2144   // block that sets the pending exception.
   2145   __ jmp(&invoke);
   2146   __ bind(&handler_entry);
   2147   handler_offset_ = handler_entry.pos();
   2148   // Caught exception: Store result (exception) in the pending exception
   2149   // field in the JSEnv and return a failure sentinel.
   2150   ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
   2151                                       isolate());
   2152   __ mov(Operand::StaticVariable(pending_exception), eax);
   2153   __ mov(eax, Immediate(isolate()->factory()->exception()));
   2154   __ jmp(&exit);
   2155 
   2156   // Invoke: Link this frame into the handler chain.  There's only one
   2157   // handler block in this code object, so its index is 0.
   2158   __ bind(&invoke);
   2159   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
   2160 
   2161   // Clear any pending exceptions.
   2162   __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
   2163   __ mov(Operand::StaticVariable(pending_exception), edx);
   2164 
   2165   // Fake a receiver (NULL).
   2166   __ push(Immediate(0));  // receiver
   2167 
   2168   // Invoke the function by calling through JS entry trampoline builtin and
   2169   // pop the faked function when we return. Notice that we cannot store a
   2170   // reference to the trampoline code directly in this stub, because the
   2171   // builtin stubs may not have been generated yet.
   2172   if (type() == StackFrame::ENTRY_CONSTRUCT) {
   2173     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
   2174                                       isolate());
   2175     __ mov(edx, Immediate(construct_entry));
   2176   } else {
   2177     ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
   2178     __ mov(edx, Immediate(entry));
   2179   }
   2180   __ mov(edx, Operand(edx, 0));  // deref address
   2181   __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
   2182   __ call(edx);
   2183 
   2184   // Unlink this frame from the handler chain.
   2185   __ PopTryHandler();
   2186 
   2187   __ bind(&exit);
   2188   // Check if the current stack frame is marked as the outermost JS frame.
   2189   __ pop(ebx);
   2190   __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
   2191   __ j(not_equal, &not_outermost_js_2);
   2192   __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
   2193   __ bind(&not_outermost_js_2);
   2194 
   2195   // Restore the top frame descriptor from the stack.
   2196   __ pop(Operand::StaticVariable(ExternalReference(
   2197       Isolate::kCEntryFPAddress, isolate())));
   2198 
   2199   // Restore callee-saved registers (C calling conventions).
   2200   __ pop(ebx);
   2201   __ pop(esi);
   2202   __ pop(edi);
   2203   __ add(esp, Immediate(2 * kPointerSize));  // remove markers
   2204 
   2205   // Restore frame pointer and return.
   2206   __ pop(ebp);
   2207   __ ret(0);
   2208 }
   2209 
   2210 
   2211 // Generate stub code for instanceof.
   2212 // This code can patch a call site inlined cache of the instance of check,
   2213 // which looks like this.
   2214 //
   2215 //   81 ff XX XX XX XX   cmp    edi, <the hole, patched to a map>
   2216 //   75 0a               jne    <some near label>
   2217 //   b8 XX XX XX XX      mov    eax, <the hole, patched to either true or false>
   2218 //
   2219 // If call site patching is requested the stack will have the delta from the
   2220 // return address to the cmp instruction just below the return address. This
   2221 // also means that call site patching can only take place with arguments in
   2222 // registers. TOS looks like this when call site patching is requested
   2223 //
   2224 //   esp[0] : return address
   2225 //   esp[4] : delta from return address to cmp instruction
   2226 //
   2227 void InstanceofStub::Generate(MacroAssembler* masm) {
   2228   // Call site inlining and patching implies arguments in registers.
   2229   DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
   2230 
   2231   // Fixed register usage throughout the stub.
   2232   Register object = eax;  // Object (lhs).
   2233   Register map = ebx;  // Map of the object.
   2234   Register function = edx;  // Function (rhs).
   2235   Register prototype = edi;  // Prototype of the function.
   2236   Register scratch = ecx;
   2237 
   2238   // Constants describing the call site code to patch.
   2239   static const int kDeltaToCmpImmediate = 2;
   2240   static const int kDeltaToMov = 8;
   2241   static const int kDeltaToMovImmediate = 9;
   2242   static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
   2243   static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
   2244   static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
   2245 
   2246   DCHECK_EQ(object.code(), InstanceofStub::left().code());
   2247   DCHECK_EQ(function.code(), InstanceofStub::right().code());
   2248 
   2249   // Get the object and function - they are always both needed.
   2250   Label slow, not_js_object;
   2251   if (!HasArgsInRegisters()) {
   2252     __ mov(object, Operand(esp, 2 * kPointerSize));
   2253     __ mov(function, Operand(esp, 1 * kPointerSize));
   2254   }
   2255 
   2256   // Check that the left hand is a JS object.
   2257   __ JumpIfSmi(object, &not_js_object);
   2258   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
   2259 
   2260   // If there is a call site cache don't look in the global cache, but do the
   2261   // real lookup and update the call site cache.
   2262   if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
   2263     // Look up the function and the map in the instanceof cache.
   2264     Label miss;
   2265     __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
   2266     __ j(not_equal, &miss, Label::kNear);
   2267     __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
   2268     __ j(not_equal, &miss, Label::kNear);
   2269     __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
   2270     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2271     __ bind(&miss);
   2272   }
   2273 
   2274   // Get the prototype of the function.
   2275   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
   2276 
   2277   // Check that the function prototype is a JS object.
   2278   __ JumpIfSmi(prototype, &slow);
   2279   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
   2280 
   2281   // Update the global instanceof or call site inlined cache with the current
   2282   // map and function. The cached answer will be set when it is known below.
   2283   if (!HasCallSiteInlineCheck()) {
   2284     __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
   2285     __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
   2286   } else {
   2287     // The constants for the code patching are based on no push instructions
   2288     // at the call site.
   2289     DCHECK(HasArgsInRegisters());
   2290     // Get return address and delta to inlined map check.
   2291     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2292     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2293     if (FLAG_debug_code) {
   2294       __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
   2295       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
   2296       __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
   2297       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
   2298     }
   2299     __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
   2300     __ mov(Operand(scratch, 0), map);
   2301   }
   2302 
   2303   // Loop through the prototype chain of the object looking for the function
   2304   // prototype.
   2305   __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
   2306   Label loop, is_instance, is_not_instance;
   2307   __ bind(&loop);
   2308   __ cmp(scratch, prototype);
   2309   __ j(equal, &is_instance, Label::kNear);
   2310   Factory* factory = isolate()->factory();
   2311   __ cmp(scratch, Immediate(factory->null_value()));
   2312   __ j(equal, &is_not_instance, Label::kNear);
   2313   __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   2314   __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
   2315   __ jmp(&loop);
   2316 
   2317   __ bind(&is_instance);
   2318   if (!HasCallSiteInlineCheck()) {
   2319     __ mov(eax, Immediate(0));
   2320     __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
   2321     if (ReturnTrueFalseObject()) {
   2322       __ mov(eax, factory->true_value());
   2323     }
   2324   } else {
   2325     // Get return address and delta to inlined map check.
   2326     __ mov(eax, factory->true_value());
   2327     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2328     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2329     if (FLAG_debug_code) {
   2330       __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
   2331       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2332     }
   2333     __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
   2334     if (!ReturnTrueFalseObject()) {
   2335       __ Move(eax, Immediate(0));
   2336     }
   2337   }
   2338   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2339 
   2340   __ bind(&is_not_instance);
   2341   if (!HasCallSiteInlineCheck()) {
   2342     __ mov(eax, Immediate(Smi::FromInt(1)));
   2343     __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
   2344     if (ReturnTrueFalseObject()) {
   2345       __ mov(eax, factory->false_value());
   2346     }
   2347   } else {
   2348     // Get return address and delta to inlined map check.
   2349     __ mov(eax, factory->false_value());
   2350     __ mov(scratch, Operand(esp, 0 * kPointerSize));
   2351     __ sub(scratch, Operand(esp, 1 * kPointerSize));
   2352     if (FLAG_debug_code) {
   2353       __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
   2354       __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
   2355     }
   2356     __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
   2357     if (!ReturnTrueFalseObject()) {
   2358       __ Move(eax, Immediate(Smi::FromInt(1)));
   2359     }
   2360   }
   2361   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2362 
   2363   Label object_not_null, object_not_null_or_smi;
   2364   __ bind(&not_js_object);
   2365   // Before null, smi and string value checks, check that the rhs is a function
   2366   // as for a non-function rhs an exception needs to be thrown.
   2367   __ JumpIfSmi(function, &slow, Label::kNear);
   2368   __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
   2369   __ j(not_equal, &slow, Label::kNear);
   2370 
   2371   // Null is not instance of anything.
   2372   __ cmp(object, factory->null_value());
   2373   __ j(not_equal, &object_not_null, Label::kNear);
   2374   if (ReturnTrueFalseObject()) {
   2375     __ mov(eax, factory->false_value());
   2376   } else {
   2377     __ Move(eax, Immediate(Smi::FromInt(1)));
   2378   }
   2379   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2380 
   2381   __ bind(&object_not_null);
   2382   // Smi values is not instance of anything.
   2383   __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
   2384   if (ReturnTrueFalseObject()) {
   2385     __ mov(eax, factory->false_value());
   2386   } else {
   2387     __ Move(eax, Immediate(Smi::FromInt(1)));
   2388   }
   2389   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2390 
   2391   __ bind(&object_not_null_or_smi);
   2392   // String values is not instance of anything.
   2393   Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
   2394   __ j(NegateCondition(is_string), &slow, Label::kNear);
   2395   if (ReturnTrueFalseObject()) {
   2396     __ mov(eax, factory->false_value());
   2397   } else {
   2398     __ Move(eax, Immediate(Smi::FromInt(1)));
   2399   }
   2400   __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2401 
   2402   // Slow-case: Go through the JavaScript implementation.
   2403   __ bind(&slow);
   2404   if (!ReturnTrueFalseObject()) {
   2405     // Tail call the builtin which returns 0 or 1.
   2406     if (HasArgsInRegisters()) {
   2407       // Push arguments below return address.
   2408       __ pop(scratch);
   2409       __ push(object);
   2410       __ push(function);
   2411       __ push(scratch);
   2412     }
   2413     __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
   2414   } else {
   2415     // Call the builtin and convert 0/1 to true/false.
   2416     {
   2417       FrameScope scope(masm, StackFrame::INTERNAL);
   2418       __ push(object);
   2419       __ push(function);
   2420       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
   2421     }
   2422     Label true_value, done;
   2423     __ test(eax, eax);
   2424     __ j(zero, &true_value, Label::kNear);
   2425     __ mov(eax, factory->false_value());
   2426     __ jmp(&done, Label::kNear);
   2427     __ bind(&true_value);
   2428     __ mov(eax, factory->true_value());
   2429     __ bind(&done);
   2430     __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
   2431   }
   2432 }
   2433 
   2434 
   2435 // -------------------------------------------------------------------------
   2436 // StringCharCodeAtGenerator
   2437 
   2438 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
   2439   // If the receiver is a smi trigger the non-string case.
   2440   STATIC_ASSERT(kSmiTag == 0);
   2441   __ JumpIfSmi(object_, receiver_not_string_);
   2442 
   2443   // Fetch the instance type of the receiver into result register.
   2444   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2445   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2446   // If the receiver is not a string trigger the non-string case.
   2447   __ test(result_, Immediate(kIsNotStringMask));
   2448   __ j(not_zero, receiver_not_string_);
   2449 
   2450   // If the index is non-smi trigger the non-smi case.
   2451   STATIC_ASSERT(kSmiTag == 0);
   2452   __ JumpIfNotSmi(index_, &index_not_smi_);
   2453   __ bind(&got_smi_index_);
   2454 
   2455   // Check for index out of range.
   2456   __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
   2457   __ j(above_equal, index_out_of_range_);
   2458 
   2459   __ SmiUntag(index_);
   2460 
   2461   Factory* factory = masm->isolate()->factory();
   2462   StringCharLoadGenerator::Generate(
   2463       masm, factory, object_, index_, result_, &call_runtime_);
   2464 
   2465   __ SmiTag(result_);
   2466   __ bind(&exit_);
   2467 }
   2468 
   2469 
   2470 void StringCharCodeAtGenerator::GenerateSlow(
   2471     MacroAssembler* masm,
   2472     const RuntimeCallHelper& call_helper) {
   2473   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
   2474 
   2475   // Index is not a smi.
   2476   __ bind(&index_not_smi_);
   2477   // If index is a heap number, try converting it to an integer.
   2478   __ CheckMap(index_,
   2479               masm->isolate()->factory()->heap_number_map(),
   2480               index_not_number_,
   2481               DONT_DO_SMI_CHECK);
   2482   call_helper.BeforeCall(masm);
   2483   __ push(object_);
   2484   __ push(index_);  // Consumed by runtime conversion function.
   2485   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
   2486     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
   2487   } else {
   2488     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
   2489     // NumberToSmi discards numbers that are not exact integers.
   2490     __ CallRuntime(Runtime::kNumberToSmi, 1);
   2491   }
   2492   if (!index_.is(eax)) {
   2493     // Save the conversion result before the pop instructions below
   2494     // have a chance to overwrite it.
   2495     __ mov(index_, eax);
   2496   }
   2497   __ pop(object_);
   2498   // Reload the instance type.
   2499   __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
   2500   __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
   2501   call_helper.AfterCall(masm);
   2502   // If index is still not a smi, it must be out of range.
   2503   STATIC_ASSERT(kSmiTag == 0);
   2504   __ JumpIfNotSmi(index_, index_out_of_range_);
   2505   // Otherwise, return to the fast path.
   2506   __ jmp(&got_smi_index_);
   2507 
   2508   // Call runtime. We get here when the receiver is a string and the
   2509   // index is a number, but the code of getting the actual character
   2510   // is too complex (e.g., when the string needs to be flattened).
   2511   __ bind(&call_runtime_);
   2512   call_helper.BeforeCall(masm);
   2513   __ push(object_);
   2514   __ SmiTag(index_);
   2515   __ push(index_);
   2516   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
   2517   if (!result_.is(eax)) {
   2518     __ mov(result_, eax);
   2519   }
   2520   call_helper.AfterCall(masm);
   2521   __ jmp(&exit_);
   2522 
   2523   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
   2524 }
   2525 
   2526 
   2527 // -------------------------------------------------------------------------
   2528 // StringCharFromCodeGenerator
   2529 
   2530 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
   2531   // Fast case of Heap::LookupSingleCharacterStringFromCode.
   2532   STATIC_ASSERT(kSmiTag == 0);
   2533   STATIC_ASSERT(kSmiShiftSize == 0);
   2534   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
   2535   __ test(code_,
   2536           Immediate(kSmiTagMask |
   2537                     ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
   2538   __ j(not_zero, &slow_case_);
   2539 
   2540   Factory* factory = masm->isolate()->factory();
   2541   __ Move(result_, Immediate(factory->single_character_string_cache()));
   2542   STATIC_ASSERT(kSmiTag == 0);
   2543   STATIC_ASSERT(kSmiTagSize == 1);
   2544   STATIC_ASSERT(kSmiShiftSize == 0);
   2545   // At this point code register contains smi tagged one byte char code.
   2546   __ mov(result_, FieldOperand(result_,
   2547                                code_, times_half_pointer_size,
   2548                                FixedArray::kHeaderSize));
   2549   __ cmp(result_, factory->undefined_value());
   2550   __ j(equal, &slow_case_);
   2551   __ bind(&exit_);
   2552 }
   2553 
   2554 
   2555 void StringCharFromCodeGenerator::GenerateSlow(
   2556     MacroAssembler* masm,
   2557     const RuntimeCallHelper& call_helper) {
   2558   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
   2559 
   2560   __ bind(&slow_case_);
   2561   call_helper.BeforeCall(masm);
   2562   __ push(code_);
   2563   __ CallRuntime(Runtime::kCharFromCode, 1);
   2564   if (!result_.is(eax)) {
   2565     __ mov(result_, eax);
   2566   }
   2567   call_helper.AfterCall(masm);
   2568   __ jmp(&exit_);
   2569 
   2570   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
   2571 }
   2572 
   2573 
   2574 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
   2575                                           Register dest,
   2576                                           Register src,
   2577                                           Register count,
   2578                                           Register scratch,
   2579                                           String::Encoding encoding) {
   2580   DCHECK(!scratch.is(dest));
   2581   DCHECK(!scratch.is(src));
   2582   DCHECK(!scratch.is(count));
   2583 
   2584   // Nothing to do for zero characters.
   2585   Label done;
   2586   __ test(count, count);
   2587   __ j(zero, &done);
   2588 
   2589   // Make count the number of bytes to copy.
   2590   if (encoding == String::TWO_BYTE_ENCODING) {
   2591     __ shl(count, 1);
   2592   }
   2593 
   2594   Label loop;
   2595   __ bind(&loop);
   2596   __ mov_b(scratch, Operand(src, 0));
   2597   __ mov_b(Operand(dest, 0), scratch);
   2598   __ inc(src);
   2599   __ inc(dest);
   2600   __ dec(count);
   2601   __ j(not_zero, &loop);
   2602 
   2603   __ bind(&done);
   2604 }
   2605 
   2606 
   2607 void SubStringStub::Generate(MacroAssembler* masm) {
   2608   Label runtime;
   2609 
   2610   // Stack frame on entry.
   2611   //  esp[0]: return address
   2612   //  esp[4]: to
   2613   //  esp[8]: from
   2614   //  esp[12]: string
   2615 
   2616   // Make sure first argument is a string.
   2617   __ mov(eax, Operand(esp, 3 * kPointerSize));
   2618   STATIC_ASSERT(kSmiTag == 0);
   2619   __ JumpIfSmi(eax, &runtime);
   2620   Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
   2621   __ j(NegateCondition(is_string), &runtime);
   2622 
   2623   // eax: string
   2624   // ebx: instance type
   2625 
   2626   // Calculate length of sub string using the smi values.
   2627   __ mov(ecx, Operand(esp, 1 * kPointerSize));  // To index.
   2628   __ JumpIfNotSmi(ecx, &runtime);
   2629   __ mov(edx, Operand(esp, 2 * kPointerSize));  // From index.
   2630   __ JumpIfNotSmi(edx, &runtime);
   2631   __ sub(ecx, edx);
   2632   __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
   2633   Label not_original_string;
   2634   // Shorter than original string's length: an actual substring.
   2635   __ j(below, &not_original_string, Label::kNear);
   2636   // Longer than original string's length or negative: unsafe arguments.
   2637   __ j(above, &runtime);
   2638   // Return original string.
   2639   Counters* counters = isolate()->counters();
   2640   __ IncrementCounter(counters->sub_string_native(), 1);
   2641   __ ret(3 * kPointerSize);
   2642   __ bind(&not_original_string);
   2643 
   2644   Label single_char;
   2645   __ cmp(ecx, Immediate(Smi::FromInt(1)));
   2646   __ j(equal, &single_char);
   2647 
   2648   // eax: string
   2649   // ebx: instance type
   2650   // ecx: sub string length (smi)
   2651   // edx: from index (smi)
   2652   // Deal with different string types: update the index if necessary
   2653   // and put the underlying string into edi.
   2654   Label underlying_unpacked, sliced_string, seq_or_external_string;
   2655   // If the string is not indirect, it can only be sequential or external.
   2656   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
   2657   STATIC_ASSERT(kIsIndirectStringMask != 0);
   2658   __ test(ebx, Immediate(kIsIndirectStringMask));
   2659   __ j(zero, &seq_or_external_string, Label::kNear);
   2660 
   2661   Factory* factory = isolate()->factory();
   2662   __ test(ebx, Immediate(kSlicedNotConsMask));
   2663   __ j(not_zero, &sliced_string, Label::kNear);
   2664   // Cons string.  Check whether it is flat, then fetch first part.
   2665   // Flat cons strings have an empty second part.
   2666   __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
   2667          factory->empty_string());
   2668   __ j(not_equal, &runtime);
   2669   __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
   2670   // Update instance type.
   2671   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   2672   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   2673   __ jmp(&underlying_unpacked, Label::kNear);
   2674 
   2675   __ bind(&sliced_string);
   2676   // Sliced string.  Fetch parent and adjust start index by offset.
   2677   __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
   2678   __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
   2679   // Update instance type.
   2680   __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
   2681   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   2682   __ jmp(&underlying_unpacked, Label::kNear);
   2683 
   2684   __ bind(&seq_or_external_string);
   2685   // Sequential or external string.  Just move string to the expected register.
   2686   __ mov(edi, eax);
   2687 
   2688   __ bind(&underlying_unpacked);
   2689 
   2690   if (FLAG_string_slices) {
   2691     Label copy_routine;
   2692     // edi: underlying subject string
   2693     // ebx: instance type of underlying subject string
   2694     // edx: adjusted start index (smi)
   2695     // ecx: length (smi)
   2696     __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
   2697     // Short slice.  Copy instead of slicing.
   2698     __ j(less, &copy_routine);
   2699     // Allocate new sliced string.  At this point we do not reload the instance
   2700     // type including the string encoding because we simply rely on the info
   2701     // provided by the original string.  It does not matter if the original
   2702     // string's encoding is wrong because we always have to recheck encoding of
   2703     // the newly created string's parent anyways due to externalized strings.
   2704     Label two_byte_slice, set_slice_header;
   2705     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
   2706     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
   2707     __ test(ebx, Immediate(kStringEncodingMask));
   2708     __ j(zero, &two_byte_slice, Label::kNear);
   2709     __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
   2710     __ jmp(&set_slice_header, Label::kNear);
   2711     __ bind(&two_byte_slice);
   2712     __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
   2713     __ bind(&set_slice_header);
   2714     __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
   2715     __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
   2716            Immediate(String::kEmptyHashField));
   2717     __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
   2718     __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
   2719     __ IncrementCounter(counters->sub_string_native(), 1);
   2720     __ ret(3 * kPointerSize);
   2721 
   2722     __ bind(&copy_routine);
   2723   }
   2724 
   2725   // edi: underlying subject string
   2726   // ebx: instance type of underlying subject string
   2727   // edx: adjusted start index (smi)
   2728   // ecx: length (smi)
   2729   // The subject string can only be external or sequential string of either
   2730   // encoding at this point.
   2731   Label two_byte_sequential, runtime_drop_two, sequential_string;
   2732   STATIC_ASSERT(kExternalStringTag != 0);
   2733   STATIC_ASSERT(kSeqStringTag == 0);
   2734   __ test_b(ebx, kExternalStringTag);
   2735   __ j(zero, &sequential_string);
   2736 
   2737   // Handle external string.
   2738   // Rule out short external strings.
   2739   STATIC_ASSERT(kShortExternalStringTag != 0);
   2740   __ test_b(ebx, kShortExternalStringMask);
   2741   __ j(not_zero, &runtime);
   2742   __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
   2743   // Move the pointer so that offset-wise, it looks like a sequential string.
   2744   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
   2745   __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2746 
   2747   __ bind(&sequential_string);
   2748   // Stash away (adjusted) index and (underlying) string.
   2749   __ push(edx);
   2750   __ push(edi);
   2751   __ SmiUntag(ecx);
   2752   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
   2753   __ test_b(ebx, kStringEncodingMask);
   2754   __ j(zero, &two_byte_sequential);
   2755 
   2756   // Sequential one byte string.  Allocate the result.
   2757   __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   2758 
   2759   // eax: result string
   2760   // ecx: result string length
   2761   // Locate first character of result.
   2762   __ mov(edi, eax);
   2763   __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
   2764   // Load string argument and locate character of sub string start.
   2765   __ pop(edx);
   2766   __ pop(ebx);
   2767   __ SmiUntag(ebx);
   2768   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
   2769 
   2770   // eax: result string
   2771   // ecx: result length
   2772   // edi: first character of result
   2773   // edx: character of sub string start
   2774   StringHelper::GenerateCopyCharacters(
   2775       masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
   2776   __ IncrementCounter(counters->sub_string_native(), 1);
   2777   __ ret(3 * kPointerSize);
   2778 
   2779   __ bind(&two_byte_sequential);
   2780   // Sequential two-byte string.  Allocate the result.
   2781   __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
   2782 
   2783   // eax: result string
   2784   // ecx: result string length
   2785   // Locate first character of result.
   2786   __ mov(edi, eax);
   2787   __ add(edi,
   2788          Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
   2789   // Load string argument and locate character of sub string start.
   2790   __ pop(edx);
   2791   __ pop(ebx);
   2792   // As from is a smi it is 2 times the value which matches the size of a two
   2793   // byte character.
   2794   STATIC_ASSERT(kSmiTag == 0);
   2795   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   2796   __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
   2797 
   2798   // eax: result string
   2799   // ecx: result length
   2800   // edi: first character of result
   2801   // edx: character of sub string start
   2802   StringHelper::GenerateCopyCharacters(
   2803       masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
   2804   __ IncrementCounter(counters->sub_string_native(), 1);
   2805   __ ret(3 * kPointerSize);
   2806 
   2807   // Drop pushed values on the stack before tail call.
   2808   __ bind(&runtime_drop_two);
   2809   __ Drop(2);
   2810 
   2811   // Just jump to runtime to create the sub string.
   2812   __ bind(&runtime);
   2813   __ TailCallRuntime(Runtime::kSubString, 3, 1);
   2814 
   2815   __ bind(&single_char);
   2816   // eax: string
   2817   // ebx: instance type
   2818   // ecx: sub string length (smi)
   2819   // edx: from index (smi)
   2820   StringCharAtGenerator generator(
   2821       eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
   2822   generator.GenerateFast(masm);
   2823   __ ret(3 * kPointerSize);
   2824   generator.SkipSlow(masm, &runtime);
   2825 }
   2826 
   2827 
   2828 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
   2829                                                    Register left,
   2830                                                    Register right,
   2831                                                    Register scratch1,
   2832                                                    Register scratch2) {
   2833   Register length = scratch1;
   2834 
   2835   // Compare lengths.
   2836   Label strings_not_equal, check_zero_length;
   2837   __ mov(length, FieldOperand(left, String::kLengthOffset));
   2838   __ cmp(length, FieldOperand(right, String::kLengthOffset));
   2839   __ j(equal, &check_zero_length, Label::kNear);
   2840   __ bind(&strings_not_equal);
   2841   __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
   2842   __ ret(0);
   2843 
   2844   // Check if the length is zero.
   2845   Label compare_chars;
   2846   __ bind(&check_zero_length);
   2847   STATIC_ASSERT(kSmiTag == 0);
   2848   __ test(length, length);
   2849   __ j(not_zero, &compare_chars, Label::kNear);
   2850   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2851   __ ret(0);
   2852 
   2853   // Compare characters.
   2854   __ bind(&compare_chars);
   2855   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
   2856                                   &strings_not_equal, Label::kNear);
   2857 
   2858   // Characters are equal.
   2859   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2860   __ ret(0);
   2861 }
   2862 
   2863 
   2864 void StringHelper::GenerateCompareFlatOneByteStrings(
   2865     MacroAssembler* masm, Register left, Register right, Register scratch1,
   2866     Register scratch2, Register scratch3) {
   2867   Counters* counters = masm->isolate()->counters();
   2868   __ IncrementCounter(counters->string_compare_native(), 1);
   2869 
   2870   // Find minimum length.
   2871   Label left_shorter;
   2872   __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
   2873   __ mov(scratch3, scratch1);
   2874   __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
   2875 
   2876   Register length_delta = scratch3;
   2877 
   2878   __ j(less_equal, &left_shorter, Label::kNear);
   2879   // Right string is shorter. Change scratch1 to be length of right string.
   2880   __ sub(scratch1, length_delta);
   2881   __ bind(&left_shorter);
   2882 
   2883   Register min_length = scratch1;
   2884 
   2885   // If either length is zero, just compare lengths.
   2886   Label compare_lengths;
   2887   __ test(min_length, min_length);
   2888   __ j(zero, &compare_lengths, Label::kNear);
   2889 
   2890   // Compare characters.
   2891   Label result_not_equal;
   2892   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
   2893                                   &result_not_equal, Label::kNear);
   2894 
   2895   // Compare lengths -  strings up to min-length are equal.
   2896   __ bind(&compare_lengths);
   2897   __ test(length_delta, length_delta);
   2898   Label length_not_equal;
   2899   __ j(not_zero, &length_not_equal, Label::kNear);
   2900 
   2901   // Result is EQUAL.
   2902   STATIC_ASSERT(EQUAL == 0);
   2903   STATIC_ASSERT(kSmiTag == 0);
   2904   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2905   __ ret(0);
   2906 
   2907   Label result_greater;
   2908   Label result_less;
   2909   __ bind(&length_not_equal);
   2910   __ j(greater, &result_greater, Label::kNear);
   2911   __ jmp(&result_less, Label::kNear);
   2912   __ bind(&result_not_equal);
   2913   __ j(above, &result_greater, Label::kNear);
   2914   __ bind(&result_less);
   2915 
   2916   // Result is LESS.
   2917   __ Move(eax, Immediate(Smi::FromInt(LESS)));
   2918   __ ret(0);
   2919 
   2920   // Result is GREATER.
   2921   __ bind(&result_greater);
   2922   __ Move(eax, Immediate(Smi::FromInt(GREATER)));
   2923   __ ret(0);
   2924 }
   2925 
   2926 
   2927 void StringHelper::GenerateOneByteCharsCompareLoop(
   2928     MacroAssembler* masm, Register left, Register right, Register length,
   2929     Register scratch, Label* chars_not_equal,
   2930     Label::Distance chars_not_equal_near) {
   2931   // Change index to run from -length to -1 by adding length to string
   2932   // start. This means that loop ends when index reaches zero, which
   2933   // doesn't need an additional compare.
   2934   __ SmiUntag(length);
   2935   __ lea(left,
   2936          FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
   2937   __ lea(right,
   2938          FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
   2939   __ neg(length);
   2940   Register index = length;  // index = -length;
   2941 
   2942   // Compare loop.
   2943   Label loop;
   2944   __ bind(&loop);
   2945   __ mov_b(scratch, Operand(left, index, times_1, 0));
   2946   __ cmpb(scratch, Operand(right, index, times_1, 0));
   2947   __ j(not_equal, chars_not_equal, chars_not_equal_near);
   2948   __ inc(index);
   2949   __ j(not_zero, &loop);
   2950 }
   2951 
   2952 
   2953 void StringCompareStub::Generate(MacroAssembler* masm) {
   2954   Label runtime;
   2955 
   2956   // Stack frame on entry.
   2957   //  esp[0]: return address
   2958   //  esp[4]: right string
   2959   //  esp[8]: left string
   2960 
   2961   __ mov(edx, Operand(esp, 2 * kPointerSize));  // left
   2962   __ mov(eax, Operand(esp, 1 * kPointerSize));  // right
   2963 
   2964   Label not_same;
   2965   __ cmp(edx, eax);
   2966   __ j(not_equal, &not_same, Label::kNear);
   2967   STATIC_ASSERT(EQUAL == 0);
   2968   STATIC_ASSERT(kSmiTag == 0);
   2969   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   2970   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
   2971   __ ret(2 * kPointerSize);
   2972 
   2973   __ bind(&not_same);
   2974 
   2975   // Check that both objects are sequential one-byte strings.
   2976   __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
   2977 
   2978   // Compare flat one-byte strings.
   2979   // Drop arguments from the stack.
   2980   __ pop(ecx);
   2981   __ add(esp, Immediate(2 * kPointerSize));
   2982   __ push(ecx);
   2983   StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
   2984                                                   edi);
   2985 
   2986   // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
   2987   // tagged as a small integer.
   2988   __ bind(&runtime);
   2989   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   2990 }
   2991 
   2992 
   2993 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
   2994   // ----------- S t a t e -------------
   2995   //  -- edx    : left
   2996   //  -- eax    : right
   2997   //  -- esp[0] : return address
   2998   // -----------------------------------
   2999 
   3000   // Load ecx with the allocation site.  We stick an undefined dummy value here
   3001   // and replace it with the real allocation site later when we instantiate this
   3002   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
   3003   __ mov(ecx, handle(isolate()->heap()->undefined_value()));
   3004 
   3005   // Make sure that we actually patched the allocation site.
   3006   if (FLAG_debug_code) {
   3007     __ test(ecx, Immediate(kSmiTagMask));
   3008     __ Assert(not_equal, kExpectedAllocationSite);
   3009     __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
   3010            isolate()->factory()->allocation_site_map());
   3011     __ Assert(equal, kExpectedAllocationSite);
   3012   }
   3013 
   3014   // Tail call into the stub that handles binary operations with allocation
   3015   // sites.
   3016   BinaryOpWithAllocationSiteStub stub(isolate(), state());
   3017   __ TailCallStub(&stub);
   3018 }
   3019 
   3020 
   3021 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
   3022   DCHECK(state() == CompareICState::SMI);
   3023   Label miss;
   3024   __ mov(ecx, edx);
   3025   __ or_(ecx, eax);
   3026   __ JumpIfNotSmi(ecx, &miss, Label::kNear);
   3027 
   3028   if (GetCondition() == equal) {
   3029     // For equality we do not care about the sign of the result.
   3030     __ sub(eax, edx);
   3031   } else {
   3032     Label done;
   3033     __ sub(edx, eax);
   3034     __ j(no_overflow, &done, Label::kNear);
   3035     // Correct sign of result in case of overflow.
   3036     __ not_(edx);
   3037     __ bind(&done);
   3038     __ mov(eax, edx);
   3039   }
   3040   __ ret(0);
   3041 
   3042   __ bind(&miss);
   3043   GenerateMiss(masm);
   3044 }
   3045 
   3046 
   3047 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
   3048   DCHECK(state() == CompareICState::NUMBER);
   3049 
   3050   Label generic_stub;
   3051   Label unordered, maybe_undefined1, maybe_undefined2;
   3052   Label miss;
   3053 
   3054   if (left() == CompareICState::SMI) {
   3055     __ JumpIfNotSmi(edx, &miss);
   3056   }
   3057   if (right() == CompareICState::SMI) {
   3058     __ JumpIfNotSmi(eax, &miss);
   3059   }
   3060 
   3061   // Inlining the double comparison and falling back to the general compare
   3062   // stub if NaN is involved or SSE2 or CMOV is unsupported.
   3063   __ mov(ecx, edx);
   3064   __ and_(ecx, eax);
   3065   __ JumpIfSmi(ecx, &generic_stub, Label::kNear);
   3066 
   3067   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   3068          isolate()->factory()->heap_number_map());
   3069   __ j(not_equal, &maybe_undefined1, Label::kNear);
   3070   __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
   3071          isolate()->factory()->heap_number_map());
   3072   __ j(not_equal, &maybe_undefined2, Label::kNear);
   3073 
   3074   __ bind(&unordered);
   3075   __ bind(&generic_stub);
   3076   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
   3077                      CompareICState::GENERIC, CompareICState::GENERIC);
   3078   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3079 
   3080   __ bind(&maybe_undefined1);
   3081   if (Token::IsOrderedRelationalCompareOp(op())) {
   3082     __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
   3083     __ j(not_equal, &miss);
   3084     __ JumpIfSmi(edx, &unordered);
   3085     __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
   3086     __ j(not_equal, &maybe_undefined2, Label::kNear);
   3087     __ jmp(&unordered);
   3088   }
   3089 
   3090   __ bind(&maybe_undefined2);
   3091   if (Token::IsOrderedRelationalCompareOp(op())) {
   3092     __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
   3093     __ j(equal, &unordered);
   3094   }
   3095 
   3096   __ bind(&miss);
   3097   GenerateMiss(masm);
   3098 }
   3099 
   3100 
   3101 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
   3102   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
   3103   DCHECK(GetCondition() == equal);
   3104 
   3105   // Registers containing left and right operands respectively.
   3106   Register left = edx;
   3107   Register right = eax;
   3108   Register tmp1 = ecx;
   3109   Register tmp2 = ebx;
   3110 
   3111   // Check that both operands are heap objects.
   3112   Label miss;
   3113   __ mov(tmp1, left);
   3114   STATIC_ASSERT(kSmiTag == 0);
   3115   __ and_(tmp1, right);
   3116   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   3117 
   3118   // Check that both operands are internalized strings.
   3119   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3120   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3121   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3122   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3123   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
   3124   __ or_(tmp1, tmp2);
   3125   __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
   3126   __ j(not_zero, &miss, Label::kNear);
   3127 
   3128   // Internalized strings are compared by identity.
   3129   Label done;
   3130   __ cmp(left, right);
   3131   // Make sure eax is non-zero. At this point input operands are
   3132   // guaranteed to be non-zero.
   3133   DCHECK(right.is(eax));
   3134   __ j(not_equal, &done, Label::kNear);
   3135   STATIC_ASSERT(EQUAL == 0);
   3136   STATIC_ASSERT(kSmiTag == 0);
   3137   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3138   __ bind(&done);
   3139   __ ret(0);
   3140 
   3141   __ bind(&miss);
   3142   GenerateMiss(masm);
   3143 }
   3144 
   3145 
   3146 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
   3147   DCHECK(state() == CompareICState::UNIQUE_NAME);
   3148   DCHECK(GetCondition() == equal);
   3149 
   3150   // Registers containing left and right operands respectively.
   3151   Register left = edx;
   3152   Register right = eax;
   3153   Register tmp1 = ecx;
   3154   Register tmp2 = ebx;
   3155 
   3156   // Check that both operands are heap objects.
   3157   Label miss;
   3158   __ mov(tmp1, left);
   3159   STATIC_ASSERT(kSmiTag == 0);
   3160   __ and_(tmp1, right);
   3161   __ JumpIfSmi(tmp1, &miss, Label::kNear);
   3162 
   3163   // Check that both operands are unique names. This leaves the instance
   3164   // types loaded in tmp1 and tmp2.
   3165   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3166   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3167   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3168   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3169 
   3170   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
   3171   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
   3172 
   3173   // Unique names are compared by identity.
   3174   Label done;
   3175   __ cmp(left, right);
   3176   // Make sure eax is non-zero. At this point input operands are
   3177   // guaranteed to be non-zero.
   3178   DCHECK(right.is(eax));
   3179   __ j(not_equal, &done, Label::kNear);
   3180   STATIC_ASSERT(EQUAL == 0);
   3181   STATIC_ASSERT(kSmiTag == 0);
   3182   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3183   __ bind(&done);
   3184   __ ret(0);
   3185 
   3186   __ bind(&miss);
   3187   GenerateMiss(masm);
   3188 }
   3189 
   3190 
   3191 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
   3192   DCHECK(state() == CompareICState::STRING);
   3193   Label miss;
   3194 
   3195   bool equality = Token::IsEqualityOp(op());
   3196 
   3197   // Registers containing left and right operands respectively.
   3198   Register left = edx;
   3199   Register right = eax;
   3200   Register tmp1 = ecx;
   3201   Register tmp2 = ebx;
   3202   Register tmp3 = edi;
   3203 
   3204   // Check that both operands are heap objects.
   3205   __ mov(tmp1, left);
   3206   STATIC_ASSERT(kSmiTag == 0);
   3207   __ and_(tmp1, right);
   3208   __ JumpIfSmi(tmp1, &miss);
   3209 
   3210   // Check that both operands are strings. This leaves the instance
   3211   // types loaded in tmp1 and tmp2.
   3212   __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
   3213   __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
   3214   __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
   3215   __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
   3216   __ mov(tmp3, tmp1);
   3217   STATIC_ASSERT(kNotStringTag != 0);
   3218   __ or_(tmp3, tmp2);
   3219   __ test(tmp3, Immediate(kIsNotStringMask));
   3220   __ j(not_zero, &miss);
   3221 
   3222   // Fast check for identical strings.
   3223   Label not_same;
   3224   __ cmp(left, right);
   3225   __ j(not_equal, &not_same, Label::kNear);
   3226   STATIC_ASSERT(EQUAL == 0);
   3227   STATIC_ASSERT(kSmiTag == 0);
   3228   __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
   3229   __ ret(0);
   3230 
   3231   // Handle not identical strings.
   3232   __ bind(&not_same);
   3233 
   3234   // Check that both strings are internalized. If they are, we're done
   3235   // because we already know they are not identical.  But in the case of
   3236   // non-equality compare, we still need to determine the order. We
   3237   // also know they are both strings.
   3238   if (equality) {
   3239     Label do_compare;
   3240     STATIC_ASSERT(kInternalizedTag == 0);
   3241     __ or_(tmp1, tmp2);
   3242     __ test(tmp1, Immediate(kIsNotInternalizedMask));
   3243     __ j(not_zero, &do_compare, Label::kNear);
   3244     // Make sure eax is non-zero. At this point input operands are
   3245     // guaranteed to be non-zero.
   3246     DCHECK(right.is(eax));
   3247     __ ret(0);
   3248     __ bind(&do_compare);
   3249   }
   3250 
   3251   // Check that both strings are sequential one-byte.
   3252   Label runtime;
   3253   __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
   3254 
   3255   // Compare flat one byte strings. Returns when done.
   3256   if (equality) {
   3257     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
   3258                                                   tmp2);
   3259   } else {
   3260     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
   3261                                                     tmp2, tmp3);
   3262   }
   3263 
   3264   // Handle more complex cases in runtime.
   3265   __ bind(&runtime);
   3266   __ pop(tmp1);  // Return address.
   3267   __ push(left);
   3268   __ push(right);
   3269   __ push(tmp1);
   3270   if (equality) {
   3271     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
   3272   } else {
   3273     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
   3274   }
   3275 
   3276   __ bind(&miss);
   3277   GenerateMiss(masm);
   3278 }
   3279 
   3280 
   3281 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
   3282   DCHECK(state() == CompareICState::OBJECT);
   3283   Label miss;
   3284   __ mov(ecx, edx);
   3285   __ and_(ecx, eax);
   3286   __ JumpIfSmi(ecx, &miss, Label::kNear);
   3287 
   3288   __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
   3289   __ j(not_equal, &miss, Label::kNear);
   3290   __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
   3291   __ j(not_equal, &miss, Label::kNear);
   3292 
   3293   DCHECK(GetCondition() == equal);
   3294   __ sub(eax, edx);
   3295   __ ret(0);
   3296 
   3297   __ bind(&miss);
   3298   GenerateMiss(masm);
   3299 }
   3300 
   3301 
   3302 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
   3303   Label miss;
   3304   __ mov(ecx, edx);
   3305   __ and_(ecx, eax);
   3306   __ JumpIfSmi(ecx, &miss, Label::kNear);
   3307 
   3308   __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
   3309   __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
   3310   __ cmp(ecx, known_map_);
   3311   __ j(not_equal, &miss, Label::kNear);
   3312   __ cmp(ebx, known_map_);
   3313   __ j(not_equal, &miss, Label::kNear);
   3314 
   3315   __ sub(eax, edx);
   3316   __ ret(0);
   3317 
   3318   __ bind(&miss);
   3319   GenerateMiss(masm);
   3320 }
   3321 
   3322 
   3323 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
   3324   {
   3325     // Call the runtime system in a fresh internal frame.
   3326     ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
   3327                                                isolate());
   3328     FrameScope scope(masm, StackFrame::INTERNAL);
   3329     __ push(edx);  // Preserve edx and eax.
   3330     __ push(eax);
   3331     __ push(edx);  // And also use them as the arguments.
   3332     __ push(eax);
   3333     __ push(Immediate(Smi::FromInt(op())));
   3334     __ CallExternalReference(miss, 3);
   3335     // Compute the entry point of the rewritten stub.
   3336     __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
   3337     __ pop(eax);
   3338     __ pop(edx);
   3339   }
   3340 
   3341   // Do a tail call to the rewritten stub.
   3342   __ jmp(edi);
   3343 }
   3344 
   3345 
   3346 // Helper function used to check that the dictionary doesn't contain
   3347 // the property. This function may return false negatives, so miss_label
   3348 // must always call a backup property check that is complete.
   3349 // This function is safe to call if the receiver has fast properties.
   3350 // Name must be a unique name and receiver must be a heap object.
   3351 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
   3352                                                       Label* miss,
   3353                                                       Label* done,
   3354                                                       Register properties,
   3355                                                       Handle<Name> name,
   3356                                                       Register r0) {
   3357   DCHECK(name->IsUniqueName());
   3358 
   3359   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3360   // not equal to the name and kProbes-th slot is not used (its name is the
   3361   // undefined value), it guarantees the hash table doesn't contain the
   3362   // property. It's true even if some slots represent deleted properties
   3363   // (their names are the hole value).
   3364   for (int i = 0; i < kInlinedProbes; i++) {
   3365     // Compute the masked index: (hash + i + i * i) & mask.
   3366     Register index = r0;
   3367     // Capacity is smi 2^n.
   3368     __ mov(index, FieldOperand(properties, kCapacityOffset));
   3369     __ dec(index);
   3370     __ and_(index,
   3371             Immediate(Smi::FromInt(name->Hash() +
   3372                                    NameDictionary::GetProbeOffset(i))));
   3373 
   3374     // Scale the index by multiplying by the entry size.
   3375     DCHECK(NameDictionary::kEntrySize == 3);
   3376     __ lea(index, Operand(index, index, times_2, 0));  // index *= 3.
   3377     Register entity_name = r0;
   3378     // Having undefined at this place means the name is not contained.
   3379     DCHECK_EQ(kSmiTagSize, 1);
   3380     __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
   3381                                 kElementsStartOffset - kHeapObjectTag));
   3382     __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
   3383     __ j(equal, done);
   3384 
   3385     // Stop if found the property.
   3386     __ cmp(entity_name, Handle<Name>(name));
   3387     __ j(equal, miss);
   3388 
   3389     Label good;
   3390     // Check for the hole and skip.
   3391     __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
   3392     __ j(equal, &good, Label::kNear);
   3393 
   3394     // Check if the entry name is not a unique name.
   3395     __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
   3396     __ JumpIfNotUniqueNameInstanceType(
   3397         FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
   3398     __ bind(&good);
   3399   }
   3400 
   3401   NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
   3402                                 NEGATIVE_LOOKUP);
   3403   __ push(Immediate(Handle<Object>(name)));
   3404   __ push(Immediate(name->Hash()));
   3405   __ CallStub(&stub);
   3406   __ test(r0, r0);
   3407   __ j(not_zero, miss);
   3408   __ jmp(done);
   3409 }
   3410 
   3411 
   3412 // Probe the name dictionary in the |elements| register. Jump to the
   3413 // |done| label if a property with the given name is found leaving the
   3414 // index into the dictionary in |r0|. Jump to the |miss| label
   3415 // otherwise.
   3416 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
   3417                                                       Label* miss,
   3418                                                       Label* done,
   3419                                                       Register elements,
   3420                                                       Register name,
   3421                                                       Register r0,
   3422                                                       Register r1) {
   3423   DCHECK(!elements.is(r0));
   3424   DCHECK(!elements.is(r1));
   3425   DCHECK(!name.is(r0));
   3426   DCHECK(!name.is(r1));
   3427 
   3428   __ AssertName(name);
   3429 
   3430   __ mov(r1, FieldOperand(elements, kCapacityOffset));
   3431   __ shr(r1, kSmiTagSize);  // convert smi to int
   3432   __ dec(r1);
   3433 
   3434   // Generate an unrolled loop that performs a few probes before
   3435   // giving up. Measurements done on Gmail indicate that 2 probes
   3436   // cover ~93% of loads from dictionaries.
   3437   for (int i = 0; i < kInlinedProbes; i++) {
   3438     // Compute the masked index: (hash + i + i * i) & mask.
   3439     __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   3440     __ shr(r0, Name::kHashShift);
   3441     if (i > 0) {
   3442       __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
   3443     }
   3444     __ and_(r0, r1);
   3445 
   3446     // Scale the index by multiplying by the entry size.
   3447     DCHECK(NameDictionary::kEntrySize == 3);
   3448     __ lea(r0, Operand(r0, r0, times_2, 0));  // r0 = r0 * 3
   3449 
   3450     // Check if the key is identical to the name.
   3451     __ cmp(name, Operand(elements,
   3452                          r0,
   3453                          times_4,
   3454                          kElementsStartOffset - kHeapObjectTag));
   3455     __ j(equal, done);
   3456   }
   3457 
   3458   NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
   3459                                 POSITIVE_LOOKUP);
   3460   __ push(name);
   3461   __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
   3462   __ shr(r0, Name::kHashShift);
   3463   __ push(r0);
   3464   __ CallStub(&stub);
   3465 
   3466   __ test(r1, r1);
   3467   __ j(zero, miss);
   3468   __ jmp(done);
   3469 }
   3470 
   3471 
   3472 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
   3473   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
   3474   // we cannot call anything that could cause a GC from this stub.
   3475   // Stack frame on entry:
   3476   //  esp[0 * kPointerSize]: return address.
   3477   //  esp[1 * kPointerSize]: key's hash.
   3478   //  esp[2 * kPointerSize]: key.
   3479   // Registers:
   3480   //  dictionary_: NameDictionary to probe.
   3481   //  result_: used as scratch.
   3482   //  index_: will hold an index of entry if lookup is successful.
   3483   //          might alias with result_.
   3484   // Returns:
   3485   //  result_ is zero if lookup failed, non zero otherwise.
   3486 
   3487   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
   3488 
   3489   Register scratch = result();
   3490 
   3491   __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
   3492   __ dec(scratch);
   3493   __ SmiUntag(scratch);
   3494   __ push(scratch);
   3495 
   3496   // If names of slots in range from 1 to kProbes - 1 for the hash value are
   3497   // not equal to the name and kProbes-th slot is not used (its name is the
   3498   // undefined value), it guarantees the hash table doesn't contain the
   3499   // property. It's true even if some slots represent deleted properties
   3500   // (their names are the null value).
   3501   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
   3502     // Compute the masked index: (hash + i + i * i) & mask.
   3503     __ mov(scratch, Operand(esp, 2 * kPointerSize));
   3504     if (i > 0) {
   3505       __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
   3506     }
   3507     __ and_(scratch, Operand(esp, 0));
   3508 
   3509     // Scale the index by multiplying by the entry size.
   3510     DCHECK(NameDictionary::kEntrySize == 3);
   3511     __ lea(index(), Operand(scratch, scratch, times_2, 0));  // index *= 3.
   3512 
   3513     // Having undefined at this place means the name is not contained.
   3514     DCHECK_EQ(kSmiTagSize, 1);
   3515     __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
   3516                             kElementsStartOffset - kHeapObjectTag));
   3517     __ cmp(scratch, isolate()->factory()->undefined_value());
   3518     __ j(equal, &not_in_dictionary);
   3519 
   3520     // Stop if found the property.
   3521     __ cmp(scratch, Operand(esp, 3 * kPointerSize));
   3522     __ j(equal, &in_dictionary);
   3523 
   3524     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
   3525       // If we hit a key that is not a unique name during negative
   3526       // lookup we have to bailout as this key might be equal to the
   3527       // key we are looking for.
   3528 
   3529       // Check if the entry name is not a unique name.
   3530       __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
   3531       __ JumpIfNotUniqueNameInstanceType(
   3532           FieldOperand(scratch, Map::kInstanceTypeOffset),
   3533           &maybe_in_dictionary);
   3534     }
   3535   }
   3536 
   3537   __ bind(&maybe_in_dictionary);
   3538   // If we are doing negative lookup then probing failure should be
   3539   // treated as a lookup success. For positive lookup probing failure
   3540   // should be treated as lookup failure.
   3541   if (mode() == POSITIVE_LOOKUP) {
   3542     __ mov(result(), Immediate(0));
   3543     __ Drop(1);
   3544     __ ret(2 * kPointerSize);
   3545   }
   3546 
   3547   __ bind(&in_dictionary);
   3548   __ mov(result(), Immediate(1));
   3549   __ Drop(1);
   3550   __ ret(2 * kPointerSize);
   3551 
   3552   __ bind(&not_in_dictionary);
   3553   __ mov(result(), Immediate(0));
   3554   __ Drop(1);
   3555   __ ret(2 * kPointerSize);
   3556 }
   3557 
   3558 
   3559 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
   3560     Isolate* isolate) {
   3561   StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
   3562   stub.GetCode();
   3563   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
   3564   stub2.GetCode();
   3565 }
   3566 
   3567 
   3568 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
   3569 // the value has just been written into the object, now this stub makes sure
   3570 // we keep the GC informed.  The word in the object where the value has been
   3571 // written is in the address register.
   3572 void RecordWriteStub::Generate(MacroAssembler* masm) {
   3573   Label skip_to_incremental_noncompacting;
   3574   Label skip_to_incremental_compacting;
   3575 
   3576   // The first two instructions are generated with labels so as to get the
   3577   // offset fixed up correctly by the bind(Label*) call.  We patch it back and
   3578   // forth between a compare instructions (a nop in this position) and the
   3579   // real branch when we start and stop incremental heap marking.
   3580   __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
   3581   __ jmp(&skip_to_incremental_compacting, Label::kFar);
   3582 
   3583   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3584     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3585                            MacroAssembler::kReturnAtEnd);
   3586   } else {
   3587     __ ret(0);
   3588   }
   3589 
   3590   __ bind(&skip_to_incremental_noncompacting);
   3591   GenerateIncremental(masm, INCREMENTAL);
   3592 
   3593   __ bind(&skip_to_incremental_compacting);
   3594   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
   3595 
   3596   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
   3597   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
   3598   masm->set_byte_at(0, kTwoByteNopInstruction);
   3599   masm->set_byte_at(2, kFiveByteNopInstruction);
   3600 }
   3601 
   3602 
   3603 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
   3604   regs_.Save(masm);
   3605 
   3606   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
   3607     Label dont_need_remembered_set;
   3608 
   3609     __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   3610     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
   3611                            regs_.scratch0(),
   3612                            &dont_need_remembered_set);
   3613 
   3614     __ CheckPageFlag(regs_.object(),
   3615                      regs_.scratch0(),
   3616                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
   3617                      not_zero,
   3618                      &dont_need_remembered_set);
   3619 
   3620     // First notify the incremental marker if necessary, then update the
   3621     // remembered set.
   3622     CheckNeedsToInformIncrementalMarker(
   3623         masm,
   3624         kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
   3625         mode);
   3626     InformIncrementalMarker(masm);
   3627     regs_.Restore(masm);
   3628     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3629                            MacroAssembler::kReturnAtEnd);
   3630 
   3631     __ bind(&dont_need_remembered_set);
   3632   }
   3633 
   3634   CheckNeedsToInformIncrementalMarker(
   3635       masm,
   3636       kReturnOnNoNeedToInformIncrementalMarker,
   3637       mode);
   3638   InformIncrementalMarker(masm);
   3639   regs_.Restore(masm);
   3640   __ ret(0);
   3641 }
   3642 
   3643 
   3644 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
   3645   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
   3646   int argument_count = 3;
   3647   __ PrepareCallCFunction(argument_count, regs_.scratch0());
   3648   __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
   3649   __ mov(Operand(esp, 1 * kPointerSize), regs_.address());  // Slot.
   3650   __ mov(Operand(esp, 2 * kPointerSize),
   3651          Immediate(ExternalReference::isolate_address(isolate())));
   3652 
   3653   AllowExternalCallThatCantCauseGC scope(masm);
   3654   __ CallCFunction(
   3655       ExternalReference::incremental_marking_record_write_function(isolate()),
   3656       argument_count);
   3657 
   3658   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
   3659 }
   3660 
   3661 
   3662 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
   3663     MacroAssembler* masm,
   3664     OnNoNeedToInformIncrementalMarker on_no_need,
   3665     Mode mode) {
   3666   Label object_is_black, need_incremental, need_incremental_pop_object;
   3667 
   3668   __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
   3669   __ and_(regs_.scratch0(), regs_.object());
   3670   __ mov(regs_.scratch1(),
   3671          Operand(regs_.scratch0(),
   3672                  MemoryChunk::kWriteBarrierCounterOffset));
   3673   __ sub(regs_.scratch1(), Immediate(1));
   3674   __ mov(Operand(regs_.scratch0(),
   3675                  MemoryChunk::kWriteBarrierCounterOffset),
   3676          regs_.scratch1());
   3677   __ j(negative, &need_incremental);
   3678 
   3679   // Let's look at the color of the object:  If it is not black we don't have
   3680   // to inform the incremental marker.
   3681   __ JumpIfBlack(regs_.object(),
   3682                  regs_.scratch0(),
   3683                  regs_.scratch1(),
   3684                  &object_is_black,
   3685                  Label::kNear);
   3686 
   3687   regs_.Restore(masm);
   3688   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3689     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3690                            MacroAssembler::kReturnAtEnd);
   3691   } else {
   3692     __ ret(0);
   3693   }
   3694 
   3695   __ bind(&object_is_black);
   3696 
   3697   // Get the value from the slot.
   3698   __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
   3699 
   3700   if (mode == INCREMENTAL_COMPACTION) {
   3701     Label ensure_not_white;
   3702 
   3703     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
   3704                      regs_.scratch1(),  // Scratch.
   3705                      MemoryChunk::kEvacuationCandidateMask,
   3706                      zero,
   3707                      &ensure_not_white,
   3708                      Label::kNear);
   3709 
   3710     __ CheckPageFlag(regs_.object(),
   3711                      regs_.scratch1(),  // Scratch.
   3712                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
   3713                      not_zero,
   3714                      &ensure_not_white,
   3715                      Label::kNear);
   3716 
   3717     __ jmp(&need_incremental);
   3718 
   3719     __ bind(&ensure_not_white);
   3720   }
   3721 
   3722   // We need an extra register for this, so we push the object register
   3723   // temporarily.
   3724   __ push(regs_.object());
   3725   __ EnsureNotWhite(regs_.scratch0(),  // The value.
   3726                     regs_.scratch1(),  // Scratch.
   3727                     regs_.object(),  // Scratch.
   3728                     &need_incremental_pop_object,
   3729                     Label::kNear);
   3730   __ pop(regs_.object());
   3731 
   3732   regs_.Restore(masm);
   3733   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
   3734     __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
   3735                            MacroAssembler::kReturnAtEnd);
   3736   } else {
   3737     __ ret(0);
   3738   }
   3739 
   3740   __ bind(&need_incremental_pop_object);
   3741   __ pop(regs_.object());
   3742 
   3743   __ bind(&need_incremental);
   3744 
   3745   // Fall through when we need to inform the incremental marker.
   3746 }
   3747 
   3748 
   3749 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
   3750   // ----------- S t a t e -------------
   3751   //  -- eax    : element value to store
   3752   //  -- ecx    : element index as smi
   3753   //  -- esp[0] : return address
   3754   //  -- esp[4] : array literal index in function
   3755   //  -- esp[8] : array literal
   3756   // clobbers ebx, edx, edi
   3757   // -----------------------------------
   3758 
   3759   Label element_done;
   3760   Label double_elements;
   3761   Label smi_element;
   3762   Label slow_elements;
   3763   Label slow_elements_from_double;
   3764   Label fast_elements;
   3765 
   3766   // Get array literal index, array literal and its map.
   3767   __ mov(edx, Operand(esp, 1 * kPointerSize));
   3768   __ mov(ebx, Operand(esp, 2 * kPointerSize));
   3769   __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
   3770 
   3771   __ CheckFastElements(edi, &double_elements);
   3772 
   3773   // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
   3774   __ JumpIfSmi(eax, &smi_element);
   3775   __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
   3776 
   3777   // Store into the array literal requires a elements transition. Call into
   3778   // the runtime.
   3779 
   3780   __ bind(&slow_elements);
   3781   __ pop(edi);  // Pop return address and remember to put back later for tail
   3782                 // call.
   3783   __ push(ebx);
   3784   __ push(ecx);
   3785   __ push(eax);
   3786   __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   3787   __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
   3788   __ push(edx);
   3789   __ push(edi);  // Return return address so that tail call returns to right
   3790                  // place.
   3791   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
   3792 
   3793   __ bind(&slow_elements_from_double);
   3794   __ pop(edx);
   3795   __ jmp(&slow_elements);
   3796 
   3797   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
   3798   __ bind(&fast_elements);
   3799   __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   3800   __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
   3801                            FixedArrayBase::kHeaderSize));
   3802   __ mov(Operand(ecx, 0), eax);
   3803   // Update the write barrier for the array store.
   3804   __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
   3805                  OMIT_SMI_CHECK);
   3806   __ ret(0);
   3807 
   3808   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
   3809   // and value is Smi.
   3810   __ bind(&smi_element);
   3811   __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   3812   __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
   3813                       FixedArrayBase::kHeaderSize), eax);
   3814   __ ret(0);
   3815 
   3816   // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
   3817   __ bind(&double_elements);
   3818 
   3819   __ push(edx);
   3820   __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
   3821   __ StoreNumberToDoubleElements(eax,
   3822                                  edx,
   3823                                  ecx,
   3824                                  edi,
   3825                                  &slow_elements_from_double,
   3826                                  false);
   3827   __ pop(edx);
   3828   __ ret(0);
   3829 }
   3830 
   3831 
   3832 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
   3833   CEntryStub ces(isolate(), 1, kSaveFPRegs);
   3834   __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
   3835   int parameter_count_offset =
   3836       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
   3837   __ mov(ebx, MemOperand(ebp, parameter_count_offset));
   3838   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
   3839   __ pop(ecx);
   3840   int additional_offset =
   3841       function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
   3842   __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
   3843   __ jmp(ecx);  // Return to IC Miss stub, continuation still on stack.
   3844 }
   3845 
   3846 
   3847 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3848   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   3849   VectorLoadStub stub(isolate(), state());
   3850   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3851 }
   3852 
   3853 
   3854 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
   3855   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
   3856   VectorKeyedLoadStub stub(isolate());
   3857   __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
   3858 }
   3859 
   3860 
   3861 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
   3862   if (masm->isolate()->function_entry_hook() != NULL) {
   3863     ProfileEntryHookStub stub(masm->isolate());
   3864     masm->CallStub(&stub);
   3865   }
   3866 }
   3867 
   3868 
   3869 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
   3870   // Save volatile registers.
   3871   const int kNumSavedRegisters = 3;
   3872   __ push(eax);
   3873   __ push(ecx);
   3874   __ push(edx);
   3875 
   3876   // Calculate and push the original stack pointer.
   3877   __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   3878   __ push(eax);
   3879 
   3880   // Retrieve our return address and use it to calculate the calling
   3881   // function's address.
   3882   __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
   3883   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
   3884   __ push(eax);
   3885 
   3886   // Call the entry hook.
   3887   DCHECK(isolate()->function_entry_hook() != NULL);
   3888   __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
   3889           RelocInfo::RUNTIME_ENTRY);
   3890   __ add(esp, Immediate(2 * kPointerSize));
   3891 
   3892   // Restore ecx.
   3893   __ pop(edx);
   3894   __ pop(ecx);
   3895   __ pop(eax);
   3896 
   3897   __ ret(0);
   3898 }
   3899 
   3900 
   3901 template<class T>
   3902 static void CreateArrayDispatch(MacroAssembler* masm,
   3903                                 AllocationSiteOverrideMode mode) {
   3904   if (mode == DISABLE_ALLOCATION_SITES) {
   3905     T stub(masm->isolate(),
   3906            GetInitialFastElementsKind(),
   3907            mode);
   3908     __ TailCallStub(&stub);
   3909   } else if (mode == DONT_OVERRIDE) {
   3910     int last_index = GetSequenceIndexFromFastElementsKind(
   3911         TERMINAL_FAST_ELEMENTS_KIND);
   3912     for (int i = 0; i <= last_index; ++i) {
   3913       Label next;
   3914       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3915       __ cmp(edx, kind);
   3916       __ j(not_equal, &next);
   3917       T stub(masm->isolate(), kind);
   3918       __ TailCallStub(&stub);
   3919       __ bind(&next);
   3920     }
   3921 
   3922     // If we reached this point there is a problem.
   3923     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   3924   } else {
   3925     UNREACHABLE();
   3926   }
   3927 }
   3928 
   3929 
   3930 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
   3931                                            AllocationSiteOverrideMode mode) {
   3932   // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
   3933   // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
   3934   // eax - number of arguments
   3935   // edi - constructor?
   3936   // esp[0] - return address
   3937   // esp[4] - last argument
   3938   Label normal_sequence;
   3939   if (mode == DONT_OVERRIDE) {
   3940     DCHECK(FAST_SMI_ELEMENTS == 0);
   3941     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
   3942     DCHECK(FAST_ELEMENTS == 2);
   3943     DCHECK(FAST_HOLEY_ELEMENTS == 3);
   3944     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
   3945     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
   3946 
   3947     // is the low bit set? If so, we are holey and that is good.
   3948     __ test_b(edx, 1);
   3949     __ j(not_zero, &normal_sequence);
   3950   }
   3951 
   3952   // look at the first argument
   3953   __ mov(ecx, Operand(esp, kPointerSize));
   3954   __ test(ecx, ecx);
   3955   __ j(zero, &normal_sequence);
   3956 
   3957   if (mode == DISABLE_ALLOCATION_SITES) {
   3958     ElementsKind initial = GetInitialFastElementsKind();
   3959     ElementsKind holey_initial = GetHoleyElementsKind(initial);
   3960 
   3961     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
   3962                                                   holey_initial,
   3963                                                   DISABLE_ALLOCATION_SITES);
   3964     __ TailCallStub(&stub_holey);
   3965 
   3966     __ bind(&normal_sequence);
   3967     ArraySingleArgumentConstructorStub stub(masm->isolate(),
   3968                                             initial,
   3969                                             DISABLE_ALLOCATION_SITES);
   3970     __ TailCallStub(&stub);
   3971   } else if (mode == DONT_OVERRIDE) {
   3972     // We are going to create a holey array, but our kind is non-holey.
   3973     // Fix kind and retry.
   3974     __ inc(edx);
   3975 
   3976     if (FLAG_debug_code) {
   3977       Handle<Map> allocation_site_map =
   3978           masm->isolate()->factory()->allocation_site_map();
   3979       __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
   3980       __ Assert(equal, kExpectedAllocationSite);
   3981     }
   3982 
   3983     // Save the resulting elements kind in type info. We can't just store r3
   3984     // in the AllocationSite::transition_info field because elements kind is
   3985     // restricted to a portion of the field...upper bits need to be left alone.
   3986     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   3987     __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
   3988            Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
   3989 
   3990     __ bind(&normal_sequence);
   3991     int last_index = GetSequenceIndexFromFastElementsKind(
   3992         TERMINAL_FAST_ELEMENTS_KIND);
   3993     for (int i = 0; i <= last_index; ++i) {
   3994       Label next;
   3995       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   3996       __ cmp(edx, kind);
   3997       __ j(not_equal, &next);
   3998       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
   3999       __ TailCallStub(&stub);
   4000       __ bind(&next);
   4001     }
   4002 
   4003     // If we reached this point there is a problem.
   4004     __ Abort(kUnexpectedElementsKindInArrayConstructor);
   4005   } else {
   4006     UNREACHABLE();
   4007   }
   4008 }
   4009 
   4010 
   4011 template<class T>
   4012 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
   4013   int to_index = GetSequenceIndexFromFastElementsKind(
   4014       TERMINAL_FAST_ELEMENTS_KIND);
   4015   for (int i = 0; i <= to_index; ++i) {
   4016     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
   4017     T stub(isolate, kind);
   4018     stub.GetCode();
   4019     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
   4020       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
   4021       stub1.GetCode();
   4022     }
   4023   }
   4024 }
   4025 
   4026 
   4027 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
   4028   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
   4029       isolate);
   4030   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
   4031       isolate);
   4032   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
   4033       isolate);
   4034 }
   4035 
   4036 
   4037 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
   4038     Isolate* isolate) {
   4039   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
   4040   for (int i = 0; i < 2; i++) {
   4041     // For internal arrays we only need a few things
   4042     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
   4043     stubh1.GetCode();
   4044     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
   4045     stubh2.GetCode();
   4046     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
   4047     stubh3.GetCode();
   4048   }
   4049 }
   4050 
   4051 
   4052 void ArrayConstructorStub::GenerateDispatchToArrayStub(
   4053     MacroAssembler* masm,
   4054     AllocationSiteOverrideMode mode) {
   4055   if (argument_count() == ANY) {
   4056     Label not_zero_case, not_one_case;
   4057     __ test(eax, eax);
   4058     __ j(not_zero, &not_zero_case);
   4059     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4060 
   4061     __ bind(&not_zero_case);
   4062     __ cmp(eax, 1);
   4063     __ j(greater, &not_one_case);
   4064     CreateArrayDispatchOneArgument(masm, mode);
   4065 
   4066     __ bind(&not_one_case);
   4067     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4068   } else if (argument_count() == NONE) {
   4069     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
   4070   } else if (argument_count() == ONE) {
   4071     CreateArrayDispatchOneArgument(masm, mode);
   4072   } else if (argument_count() == MORE_THAN_ONE) {
   4073     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
   4074   } else {
   4075     UNREACHABLE();
   4076   }
   4077 }
   4078 
   4079 
   4080 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
   4081   // ----------- S t a t e -------------
   4082   //  -- eax : argc (only if argument_count() == ANY)
   4083   //  -- ebx : AllocationSite or undefined
   4084   //  -- edi : constructor
   4085   //  -- esp[0] : return address
   4086   //  -- esp[4] : last argument
   4087   // -----------------------------------
   4088   if (FLAG_debug_code) {
   4089     // The array construct code is only set for the global and natives
   4090     // builtin Array functions which always have maps.
   4091 
   4092     // Initial map for the builtin Array function should be a map.
   4093     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4094     // Will both indicate a NULL and a Smi.
   4095     __ test(ecx, Immediate(kSmiTagMask));
   4096     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4097     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4098     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4099 
   4100     // We should either have undefined in ebx or a valid AllocationSite
   4101     __ AssertUndefinedOrAllocationSite(ebx);
   4102   }
   4103 
   4104   Label no_info;
   4105   // If the feedback vector is the undefined value call an array constructor
   4106   // that doesn't use AllocationSites.
   4107   __ cmp(ebx, isolate()->factory()->undefined_value());
   4108   __ j(equal, &no_info);
   4109 
   4110   // Only look at the lower 16 bits of the transition info.
   4111   __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
   4112   __ SmiUntag(edx);
   4113   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
   4114   __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
   4115   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
   4116 
   4117   __ bind(&no_info);
   4118   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
   4119 }
   4120 
   4121 
   4122 void InternalArrayConstructorStub::GenerateCase(
   4123     MacroAssembler* masm, ElementsKind kind) {
   4124   Label not_zero_case, not_one_case;
   4125   Label normal_sequence;
   4126 
   4127   __ test(eax, eax);
   4128   __ j(not_zero, &not_zero_case);
   4129   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
   4130   __ TailCallStub(&stub0);
   4131 
   4132   __ bind(&not_zero_case);
   4133   __ cmp(eax, 1);
   4134   __ j(greater, &not_one_case);
   4135 
   4136   if (IsFastPackedElementsKind(kind)) {
   4137     // We might need to create a holey array
   4138     // look at the first argument
   4139     __ mov(ecx, Operand(esp, kPointerSize));
   4140     __ test(ecx, ecx);
   4141     __ j(zero, &normal_sequence);
   4142 
   4143     InternalArraySingleArgumentConstructorStub
   4144         stub1_holey(isolate(), GetHoleyElementsKind(kind));
   4145     __ TailCallStub(&stub1_holey);
   4146   }
   4147 
   4148   __ bind(&normal_sequence);
   4149   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
   4150   __ TailCallStub(&stub1);
   4151 
   4152   __ bind(&not_one_case);
   4153   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
   4154   __ TailCallStub(&stubN);
   4155 }
   4156 
   4157 
   4158 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
   4159   // ----------- S t a t e -------------
   4160   //  -- eax : argc
   4161   //  -- edi : constructor
   4162   //  -- esp[0] : return address
   4163   //  -- esp[4] : last argument
   4164   // -----------------------------------
   4165 
   4166   if (FLAG_debug_code) {
   4167     // The array construct code is only set for the global and natives
   4168     // builtin Array functions which always have maps.
   4169 
   4170     // Initial map for the builtin Array function should be a map.
   4171     __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4172     // Will both indicate a NULL and a Smi.
   4173     __ test(ecx, Immediate(kSmiTagMask));
   4174     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
   4175     __ CmpObjectType(ecx, MAP_TYPE, ecx);
   4176     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
   4177   }
   4178 
   4179   // Figure out the right elements kind
   4180   __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   4181 
   4182   // Load the map's "bit field 2" into |result|. We only need the first byte,
   4183   // but the following masking takes care of that anyway.
   4184   __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
   4185   // Retrieve elements_kind from bit field 2.
   4186   __ DecodeField<Map::ElementsKindBits>(ecx);
   4187 
   4188   if (FLAG_debug_code) {
   4189     Label done;
   4190     __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4191     __ j(equal, &done);
   4192     __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
   4193     __ Assert(equal,
   4194               kInvalidElementsKindForInternalArrayOrInternalPackedArray);
   4195     __ bind(&done);
   4196   }
   4197 
   4198   Label fast_elements_case;
   4199   __ cmp(ecx, Immediate(FAST_ELEMENTS));
   4200   __ j(equal, &fast_elements_case);
   4201   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
   4202 
   4203   __ bind(&fast_elements_case);
   4204   GenerateCase(masm, FAST_ELEMENTS);
   4205 }
   4206 
   4207 
   4208 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
   4209   // ----------- S t a t e -------------
   4210   //  -- eax                 : callee
   4211   //  -- ebx                 : call_data
   4212   //  -- ecx                 : holder
   4213   //  -- edx                 : api_function_address
   4214   //  -- esi                 : context
   4215   //  --
   4216   //  -- esp[0]              : return address
   4217   //  -- esp[4]              : last argument
   4218   //  -- ...
   4219   //  -- esp[argc * 4]       : first argument
   4220   //  -- esp[(argc + 1) * 4] : receiver
   4221   // -----------------------------------
   4222 
   4223   Register callee = eax;
   4224   Register call_data = ebx;
   4225   Register holder = ecx;
   4226   Register api_function_address = edx;
   4227   Register return_address = edi;
   4228   Register context = esi;
   4229 
   4230   int argc = this->argc();
   4231   bool is_store = this->is_store();
   4232   bool call_data_undefined = this->call_data_undefined();
   4233 
   4234   typedef FunctionCallbackArguments FCA;
   4235 
   4236   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
   4237   STATIC_ASSERT(FCA::kCalleeIndex == 5);
   4238   STATIC_ASSERT(FCA::kDataIndex == 4);
   4239   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
   4240   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
   4241   STATIC_ASSERT(FCA::kIsolateIndex == 1);
   4242   STATIC_ASSERT(FCA::kHolderIndex == 0);
   4243   STATIC_ASSERT(FCA::kArgsLength == 7);
   4244 
   4245   __ pop(return_address);
   4246 
   4247   // context save
   4248   __ push(context);
   4249   // load context from callee
   4250   __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
   4251 
   4252   // callee
   4253   __ push(callee);
   4254 
   4255   // call data
   4256   __ push(call_data);
   4257 
   4258   Register scratch = call_data;
   4259   if (!call_data_undefined) {
   4260     // return value
   4261     __ push(Immediate(isolate()->factory()->undefined_value()));
   4262     // return value default
   4263     __ push(Immediate(isolate()->factory()->undefined_value()));
   4264   } else {
   4265     // return value
   4266     __ push(scratch);
   4267     // return value default
   4268     __ push(scratch);
   4269   }
   4270   // isolate
   4271   __ push(Immediate(reinterpret_cast<int>(isolate())));
   4272   // holder
   4273   __ push(holder);
   4274 
   4275   __ mov(scratch, esp);
   4276 
   4277   // return address
   4278   __ push(return_address);
   4279 
   4280   // API function gets reference to the v8::Arguments. If CPU profiler
   4281   // is enabled wrapper function will be called and we need to pass
   4282   // address of the callback as additional parameter, always allocate
   4283   // space for it.
   4284   const int kApiArgc = 1 + 1;
   4285 
   4286   // Allocate the v8::Arguments structure in the arguments' space since
   4287   // it's not controlled by GC.
   4288   const int kApiStackSpace = 4;
   4289 
   4290   __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
   4291 
   4292   // FunctionCallbackInfo::implicit_args_.
   4293   __ mov(ApiParameterOperand(2), scratch);
   4294   __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
   4295   // FunctionCallbackInfo::values_.
   4296   __ mov(ApiParameterOperand(3), scratch);
   4297   // FunctionCallbackInfo::length_.
   4298   __ Move(ApiParameterOperand(4), Immediate(argc));
   4299   // FunctionCallbackInfo::is_construct_call_.
   4300   __ Move(ApiParameterOperand(5), Immediate(0));
   4301 
   4302   // v8::InvocationCallback's argument.
   4303   __ lea(scratch, ApiParameterOperand(2));
   4304   __ mov(ApiParameterOperand(0), scratch);
   4305 
   4306   ExternalReference thunk_ref =
   4307       ExternalReference::invoke_function_callback(isolate());
   4308 
   4309   Operand context_restore_operand(ebp,
   4310                                   (2 + FCA::kContextSaveIndex) * kPointerSize);
   4311   // Stores return the first js argument
   4312   int return_value_offset = 0;
   4313   if (is_store) {
   4314     return_value_offset = 2 + FCA::kArgsLength;
   4315   } else {
   4316     return_value_offset = 2 + FCA::kReturnValueOffset;
   4317   }
   4318   Operand return_value_operand(ebp, return_value_offset * kPointerSize);
   4319   __ CallApiFunctionAndReturn(api_function_address,
   4320                               thunk_ref,
   4321                               ApiParameterOperand(1),
   4322                               argc + FCA::kArgsLength + 1,
   4323                               return_value_operand,
   4324                               &context_restore_operand);
   4325 }
   4326 
   4327 
   4328 void CallApiGetterStub::Generate(MacroAssembler* masm) {
   4329   // ----------- S t a t e -------------
   4330   //  -- esp[0]                  : return address
   4331   //  -- esp[4]                  : name
   4332   //  -- esp[8 - kArgsLength*4]  : PropertyCallbackArguments object
   4333   //  -- ...
   4334   //  -- edx                    : api_function_address
   4335   // -----------------------------------
   4336   DCHECK(edx.is(ApiGetterDescriptor::function_address()));
   4337 
   4338   // array for v8::Arguments::values_, handler for name and pointer
   4339   // to the values (it considered as smi in GC).
   4340   const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
   4341   // Allocate space for opional callback address parameter in case
   4342   // CPU profiler is active.
   4343   const int kApiArgc = 2 + 1;
   4344 
   4345   Register api_function_address = edx;
   4346   Register scratch = ebx;
   4347 
   4348   // load address of name
   4349   __ lea(scratch, Operand(esp, 1 * kPointerSize));
   4350 
   4351   __ PrepareCallApiFunction(kApiArgc);
   4352   __ mov(ApiParameterOperand(0), scratch);  // name.
   4353   __ add(scratch, Immediate(kPointerSize));
   4354   __ mov(ApiParameterOperand(1), scratch);  // arguments pointer.
   4355 
   4356   ExternalReference thunk_ref =
   4357       ExternalReference::invoke_accessor_getter_callback(isolate());
   4358 
   4359   __ CallApiFunctionAndReturn(api_function_address,
   4360                               thunk_ref,
   4361                               ApiParameterOperand(2),
   4362                               kStackSpace,
   4363                               Operand(ebp, 7 * kPointerSize),
   4364                               NULL);
   4365 }
   4366 
   4367 
   4368 #undef __
   4369 
   4370 } }  // namespace v8::internal
   4371 
   4372 #endif  // V8_TARGET_ARCH_X87
   4373