Home | History | Annotate | Download | only in cctest
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <stdlib.h>
     29 
     30 #ifdef __linux__
     31 #include <errno.h>
     32 #include <fcntl.h>
     33 #include <sys/stat.h>
     34 #include <sys/types.h>
     35 #include <unistd.h>
     36 #endif
     37 
     38 #include <utility>
     39 
     40 #include "src/v8.h"
     41 
     42 #include "src/full-codegen.h"
     43 #include "src/global-handles.h"
     44 #include "src/snapshot.h"
     45 #include "test/cctest/cctest.h"
     46 
     47 using namespace v8::internal;
     48 
     49 
     50 TEST(MarkingDeque) {
     51   CcTest::InitializeVM();
     52   int mem_size = 20 * kPointerSize;
     53   byte* mem = NewArray<byte>(20*kPointerSize);
     54   Address low = reinterpret_cast<Address>(mem);
     55   Address high = low + mem_size;
     56   MarkingDeque s;
     57   s.Initialize(low, high);
     58 
     59   Address original_address = reinterpret_cast<Address>(&s);
     60   Address current_address = original_address;
     61   while (!s.IsFull()) {
     62     s.PushBlack(HeapObject::FromAddress(current_address));
     63     current_address += kPointerSize;
     64   }
     65 
     66   while (!s.IsEmpty()) {
     67     Address value = s.Pop()->address();
     68     current_address -= kPointerSize;
     69     CHECK_EQ(current_address, value);
     70   }
     71 
     72   CHECK_EQ(original_address, current_address);
     73   DeleteArray(mem);
     74 }
     75 
     76 
     77 TEST(Promotion) {
     78   CcTest::InitializeVM();
     79   TestHeap* heap = CcTest::test_heap();
     80   heap->ConfigureHeap(1, 1, 1, 0);
     81 
     82   v8::HandleScope sc(CcTest::isolate());
     83 
     84   // Allocate a fixed array in the new space.
     85   int array_length =
     86       (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
     87       (4 * kPointerSize);
     88   Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
     89   Handle<FixedArray> array(FixedArray::cast(obj));
     90 
     91   // Array should be in the new space.
     92   CHECK(heap->InSpace(*array, NEW_SPACE));
     93 
     94   // Call mark compact GC, so array becomes an old object.
     95   heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
     96   heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask);
     97 
     98   // Array now sits in the old space
     99   CHECK(heap->InSpace(*array, OLD_POINTER_SPACE));
    100 }
    101 
    102 
    103 TEST(NoPromotion) {
    104   CcTest::InitializeVM();
    105   TestHeap* heap = CcTest::test_heap();
    106   heap->ConfigureHeap(1, 1, 1, 0);
    107 
    108   v8::HandleScope sc(CcTest::isolate());
    109 
    110   // Allocate a big fixed array in the new space.
    111   int array_length =
    112       (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
    113       (2 * kPointerSize);
    114   Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
    115   Handle<FixedArray> array(FixedArray::cast(obj));
    116 
    117   // Array should be in the new space.
    118   CHECK(heap->InSpace(*array, NEW_SPACE));
    119 
    120   // Simulate a full old space to make promotion fail.
    121   SimulateFullSpace(heap->old_pointer_space());
    122 
    123   // Call mark compact GC, and it should pass.
    124   heap->CollectGarbage(OLD_POINTER_SPACE);
    125 }
    126 
    127 
    128 TEST(MarkCompactCollector) {
    129   FLAG_incremental_marking = false;
    130   CcTest::InitializeVM();
    131   Isolate* isolate = CcTest::i_isolate();
    132   TestHeap* heap = CcTest::test_heap();
    133   Factory* factory = isolate->factory();
    134 
    135   v8::HandleScope sc(CcTest::isolate());
    136   Handle<GlobalObject> global(isolate->context()->global_object());
    137 
    138   // call mark-compact when heap is empty
    139   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1");
    140 
    141   // keep allocating garbage in new space until it fails
    142   const int arraysize = 100;
    143   AllocationResult allocation;
    144   do {
    145     allocation = heap->AllocateFixedArray(arraysize);
    146   } while (!allocation.IsRetry());
    147   heap->CollectGarbage(NEW_SPACE, "trigger 2");
    148   heap->AllocateFixedArray(arraysize).ToObjectChecked();
    149 
    150   // keep allocating maps until it fails
    151   do {
    152     allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
    153   } while (!allocation.IsRetry());
    154   heap->CollectGarbage(MAP_SPACE, "trigger 3");
    155   heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
    156 
    157   { HandleScope scope(isolate);
    158     // allocate a garbage
    159     Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
    160     Handle<JSFunction> function = factory->NewFunction(func_name);
    161     JSReceiver::SetProperty(global, func_name, function, SLOPPY).Check();
    162 
    163     factory->NewJSObject(function);
    164   }
    165 
    166   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4");
    167 
    168   { HandleScope scope(isolate);
    169     Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
    170     v8::Maybe<bool> maybe = JSReceiver::HasOwnProperty(global, func_name);
    171     CHECK(maybe.has_value);
    172     CHECK(maybe.value);
    173     Handle<Object> func_value =
    174         Object::GetProperty(global, func_name).ToHandleChecked();
    175     CHECK(func_value->IsJSFunction());
    176     Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
    177     Handle<JSObject> obj = factory->NewJSObject(function);
    178 
    179     Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
    180     JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check();
    181     Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
    182     Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
    183     JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check();
    184   }
    185 
    186   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5");
    187 
    188   { HandleScope scope(isolate);
    189     Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
    190     v8::Maybe<bool> maybe = JSReceiver::HasOwnProperty(global, obj_name);
    191     CHECK(maybe.has_value);
    192     CHECK(maybe.value);
    193     Handle<Object> object =
    194         Object::GetProperty(global, obj_name).ToHandleChecked();
    195     CHECK(object->IsJSObject());
    196     Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
    197     CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
    198              Smi::FromInt(23));
    199   }
    200 }
    201 
    202 
    203 // TODO(1600): compaction of map space is temporary removed from GC.
    204 #if 0
    205 static Handle<Map> CreateMap(Isolate* isolate) {
    206   return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
    207 }
    208 
    209 
    210 TEST(MapCompact) {
    211   FLAG_max_map_space_pages = 16;
    212   CcTest::InitializeVM();
    213   Isolate* isolate = CcTest::i_isolate();
    214   Factory* factory = isolate->factory();
    215 
    216   {
    217     v8::HandleScope sc;
    218     // keep allocating maps while pointers are still encodable and thus
    219     // mark compact is permitted.
    220     Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
    221     do {
    222       Handle<Map> map = CreateMap();
    223       map->set_prototype(*root);
    224       root = factory->NewJSObjectFromMap(map);
    225     } while (CcTest::heap()->map_space()->MapPointersEncodable());
    226   }
    227   // Now, as we don't have any handles to just allocated maps, we should
    228   // be able to trigger map compaction.
    229   // To give an additional chance to fail, try to force compaction which
    230   // should be impossible right now.
    231   CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
    232   // And now map pointers should be encodable again.
    233   CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
    234 }
    235 #endif
    236 
    237 
    238 static int NumberOfWeakCalls = 0;
    239 static void WeakPointerCallback(
    240     const v8::WeakCallbackData<v8::Value, void>& data) {
    241   std::pair<v8::Persistent<v8::Value>*, int>* p =
    242       reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
    243           data.GetParameter());
    244   DCHECK_EQ(1234, p->second);
    245   NumberOfWeakCalls++;
    246   p->first->Reset();
    247 }
    248 
    249 
    250 TEST(ObjectGroups) {
    251   FLAG_incremental_marking = false;
    252   CcTest::InitializeVM();
    253   GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
    254   TestHeap* heap = CcTest::test_heap();
    255   NumberOfWeakCalls = 0;
    256   v8::HandleScope handle_scope(CcTest::isolate());
    257 
    258   Handle<Object> g1s1 =
    259       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    260   Handle<Object> g1s2 =
    261       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    262   Handle<Object> g1c1 =
    263       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    264   std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
    265   GlobalHandles::MakeWeak(g1s1.location(),
    266                           reinterpret_cast<void*>(&g1s1_and_id),
    267                           &WeakPointerCallback);
    268   std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
    269   GlobalHandles::MakeWeak(g1s2.location(),
    270                           reinterpret_cast<void*>(&g1s2_and_id),
    271                           &WeakPointerCallback);
    272   std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
    273   GlobalHandles::MakeWeak(g1c1.location(),
    274                           reinterpret_cast<void*>(&g1c1_and_id),
    275                           &WeakPointerCallback);
    276 
    277   Handle<Object> g2s1 =
    278       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    279   Handle<Object> g2s2 =
    280     global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    281   Handle<Object> g2c1 =
    282     global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
    283   std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
    284   GlobalHandles::MakeWeak(g2s1.location(),
    285                           reinterpret_cast<void*>(&g2s1_and_id),
    286                           &WeakPointerCallback);
    287   std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
    288   GlobalHandles::MakeWeak(g2s2.location(),
    289                           reinterpret_cast<void*>(&g2s2_and_id),
    290                           &WeakPointerCallback);
    291   std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
    292   GlobalHandles::MakeWeak(g2c1.location(),
    293                           reinterpret_cast<void*>(&g2c1_and_id),
    294                           &WeakPointerCallback);
    295 
    296   Handle<Object> root = global_handles->Create(*g1s1);  // make a root.
    297 
    298   // Connect group 1 and 2, make a cycle.
    299   Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
    300   Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
    301 
    302   {
    303     Object** g1_objects[] = { g1s1.location(), g1s2.location() };
    304     Object** g2_objects[] = { g2s1.location(), g2s2.location() };
    305     global_handles->AddObjectGroup(g1_objects, 2, NULL);
    306     global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
    307                                  g1c1.location());
    308     global_handles->AddObjectGroup(g2_objects, 2, NULL);
    309     global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
    310                                  g2c1.location());
    311   }
    312   // Do a full GC
    313   heap->CollectGarbage(OLD_POINTER_SPACE);
    314 
    315   // All object should be alive.
    316   CHECK_EQ(0, NumberOfWeakCalls);
    317 
    318   // Weaken the root.
    319   std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
    320   GlobalHandles::MakeWeak(root.location(),
    321                           reinterpret_cast<void*>(&root_and_id),
    322                           &WeakPointerCallback);
    323   // But make children strong roots---all the objects (except for children)
    324   // should be collectable now.
    325   global_handles->ClearWeakness(g1c1.location());
    326   global_handles->ClearWeakness(g2c1.location());
    327 
    328   // Groups are deleted, rebuild groups.
    329   {
    330     Object** g1_objects[] = { g1s1.location(), g1s2.location() };
    331     Object** g2_objects[] = { g2s1.location(), g2s2.location() };
    332     global_handles->AddObjectGroup(g1_objects, 2, NULL);
    333     global_handles->SetReference(Handle<HeapObject>::cast(g1s1).location(),
    334                                  g1c1.location());
    335     global_handles->AddObjectGroup(g2_objects, 2, NULL);
    336     global_handles->SetReference(Handle<HeapObject>::cast(g2s1).location(),
    337                                  g2c1.location());
    338   }
    339 
    340   heap->CollectGarbage(OLD_POINTER_SPACE);
    341 
    342   // All objects should be gone. 5 global handles in total.
    343   CHECK_EQ(5, NumberOfWeakCalls);
    344 
    345   // And now make children weak again and collect them.
    346   GlobalHandles::MakeWeak(g1c1.location(),
    347                           reinterpret_cast<void*>(&g1c1_and_id),
    348                           &WeakPointerCallback);
    349   GlobalHandles::MakeWeak(g2c1.location(),
    350                           reinterpret_cast<void*>(&g2c1_and_id),
    351                           &WeakPointerCallback);
    352 
    353   heap->CollectGarbage(OLD_POINTER_SPACE);
    354   CHECK_EQ(7, NumberOfWeakCalls);
    355 }
    356 
    357 
    358 class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
    359  public:
    360   TestRetainedObjectInfo() : has_been_disposed_(false) {}
    361 
    362   bool has_been_disposed() { return has_been_disposed_; }
    363 
    364   virtual void Dispose() {
    365     DCHECK(!has_been_disposed_);
    366     has_been_disposed_ = true;
    367   }
    368 
    369   virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
    370     return other == this;
    371   }
    372 
    373   virtual intptr_t GetHash() { return 0; }
    374 
    375   virtual const char* GetLabel() { return "whatever"; }
    376 
    377  private:
    378   bool has_been_disposed_;
    379 };
    380 
    381 
    382 TEST(EmptyObjectGroups) {
    383   CcTest::InitializeVM();
    384   GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
    385 
    386   v8::HandleScope handle_scope(CcTest::isolate());
    387 
    388   TestRetainedObjectInfo info;
    389   global_handles->AddObjectGroup(NULL, 0, &info);
    390   DCHECK(info.has_been_disposed());
    391 }
    392 
    393 
    394 #if defined(__has_feature)
    395 #if __has_feature(address_sanitizer)
    396 #define V8_WITH_ASAN 1
    397 #endif
    398 #endif
    399 
    400 
    401 // Here is a memory use test that uses /proc, and is therefore Linux-only.  We
    402 // do not care how much memory the simulator uses, since it is only there for
    403 // debugging purposes. Testing with ASAN doesn't make sense, either.
    404 #if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
    405 
    406 
    407 static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
    408   char* end_address = buffer + *position;
    409   uintptr_t result = strtoul(buffer + *position, &end_address, base);
    410   CHECK(result != ULONG_MAX || errno != ERANGE);
    411   CHECK(end_address > buffer + *position);
    412   *position = end_address - buffer;
    413   return result;
    414 }
    415 
    416 
    417 // The memory use computed this way is not entirely accurate and depends on
    418 // the way malloc allocates memory.  That's why the memory use may seem to
    419 // increase even though the sum of the allocated object sizes decreases.  It
    420 // also means that the memory use depends on the kernel and stdlib.
    421 static intptr_t MemoryInUse() {
    422   intptr_t memory_use = 0;
    423 
    424   int fd = open("/proc/self/maps", O_RDONLY);
    425   if (fd < 0) return -1;
    426 
    427   const int kBufSize = 10000;
    428   char buffer[kBufSize];
    429   int length = read(fd, buffer, kBufSize);
    430   intptr_t line_start = 0;
    431   CHECK_LT(length, kBufSize);  // Make the buffer bigger.
    432   CHECK_GT(length, 0);  // We have to find some data in the file.
    433   while (line_start < length) {
    434     if (buffer[line_start] == '\n') {
    435       line_start++;
    436       continue;
    437     }
    438     intptr_t position = line_start;
    439     uintptr_t start = ReadLong(buffer, &position, 16);
    440     CHECK_EQ(buffer[position++], '-');
    441     uintptr_t end = ReadLong(buffer, &position, 16);
    442     CHECK_EQ(buffer[position++], ' ');
    443     CHECK(buffer[position] == '-' || buffer[position] == 'r');
    444     bool read_permission = (buffer[position++] == 'r');
    445     CHECK(buffer[position] == '-' || buffer[position] == 'w');
    446     bool write_permission = (buffer[position++] == 'w');
    447     CHECK(buffer[position] == '-' || buffer[position] == 'x');
    448     bool execute_permission = (buffer[position++] == 'x');
    449     CHECK(buffer[position] == '-' || buffer[position] == 'p');
    450     bool private_mapping = (buffer[position++] == 'p');
    451     CHECK_EQ(buffer[position++], ' ');
    452     uintptr_t offset = ReadLong(buffer, &position, 16);
    453     USE(offset);
    454     CHECK_EQ(buffer[position++], ' ');
    455     uintptr_t major = ReadLong(buffer, &position, 16);
    456     USE(major);
    457     CHECK_EQ(buffer[position++], ':');
    458     uintptr_t minor = ReadLong(buffer, &position, 16);
    459     USE(minor);
    460     CHECK_EQ(buffer[position++], ' ');
    461     uintptr_t inode = ReadLong(buffer, &position, 10);
    462     while (position < length && buffer[position] != '\n') position++;
    463     if ((read_permission || write_permission || execute_permission) &&
    464         private_mapping && inode == 0) {
    465       memory_use += (end - start);
    466     }
    467 
    468     line_start = position;
    469   }
    470   close(fd);
    471   return memory_use;
    472 }
    473 
    474 
    475 intptr_t ShortLivingIsolate() {
    476   v8::Isolate* isolate = v8::Isolate::New();
    477   { v8::Isolate::Scope isolate_scope(isolate);
    478     v8::Locker lock(isolate);
    479     v8::HandleScope handle_scope(isolate);
    480     v8::Local<v8::Context> context = v8::Context::New(isolate);
    481     CHECK(!context.IsEmpty());
    482   }
    483   isolate->Dispose();
    484   return MemoryInUse();
    485 }
    486 
    487 
    488 TEST(RegressJoinThreadsOnIsolateDeinit) {
    489   intptr_t size_limit = ShortLivingIsolate() * 2;
    490   for (int i = 0; i < 10; i++) {
    491     CHECK_GT(size_limit, ShortLivingIsolate());
    492   }
    493 }
    494 
    495 #endif  // __linux__ and !USE_SIMULATOR
    496