Home | History | Annotate | Download | only in AST
      1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Decl subclasses.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTLambda.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/Attr.h"
     19 #include "clang/AST/DeclCXX.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/ExprCXX.h"
     24 #include "clang/AST/PrettyPrinter.h"
     25 #include "clang/AST/Stmt.h"
     26 #include "clang/AST/TypeLoc.h"
     27 #include "clang/Basic/Builtins.h"
     28 #include "clang/Basic/IdentifierTable.h"
     29 #include "clang/Basic/Module.h"
     30 #include "clang/Basic/Specifiers.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include <algorithm>
     34 
     35 using namespace clang;
     36 
     37 Decl *clang::getPrimaryMergedDecl(Decl *D) {
     38   return D->getASTContext().getPrimaryMergedDecl(D);
     39 }
     40 
     41 //===----------------------------------------------------------------------===//
     42 // NamedDecl Implementation
     43 //===----------------------------------------------------------------------===//
     44 
     45 // Visibility rules aren't rigorously externally specified, but here
     46 // are the basic principles behind what we implement:
     47 //
     48 // 1. An explicit visibility attribute is generally a direct expression
     49 // of the user's intent and should be honored.  Only the innermost
     50 // visibility attribute applies.  If no visibility attribute applies,
     51 // global visibility settings are considered.
     52 //
     53 // 2. There is one caveat to the above: on or in a template pattern,
     54 // an explicit visibility attribute is just a default rule, and
     55 // visibility can be decreased by the visibility of template
     56 // arguments.  But this, too, has an exception: an attribute on an
     57 // explicit specialization or instantiation causes all the visibility
     58 // restrictions of the template arguments to be ignored.
     59 //
     60 // 3. A variable that does not otherwise have explicit visibility can
     61 // be restricted by the visibility of its type.
     62 //
     63 // 4. A visibility restriction is explicit if it comes from an
     64 // attribute (or something like it), not a global visibility setting.
     65 // When emitting a reference to an external symbol, visibility
     66 // restrictions are ignored unless they are explicit.
     67 //
     68 // 5. When computing the visibility of a non-type, including a
     69 // non-type member of a class, only non-type visibility restrictions
     70 // are considered: the 'visibility' attribute, global value-visibility
     71 // settings, and a few special cases like __private_extern.
     72 //
     73 // 6. When computing the visibility of a type, including a type member
     74 // of a class, only type visibility restrictions are considered:
     75 // the 'type_visibility' attribute and global type-visibility settings.
     76 // However, a 'visibility' attribute counts as a 'type_visibility'
     77 // attribute on any declaration that only has the former.
     78 //
     79 // The visibility of a "secondary" entity, like a template argument,
     80 // is computed using the kind of that entity, not the kind of the
     81 // primary entity for which we are computing visibility.  For example,
     82 // the visibility of a specialization of either of these templates:
     83 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
     84 //   template <class T, bool (&compare)(T, X)> class matcher;
     85 // is restricted according to the type visibility of the argument 'T',
     86 // the type visibility of 'bool(&)(T,X)', and the value visibility of
     87 // the argument function 'compare'.  That 'has_match' is a value
     88 // and 'matcher' is a type only matters when looking for attributes
     89 // and settings from the immediate context.
     90 
     91 const unsigned IgnoreExplicitVisibilityBit = 2;
     92 const unsigned IgnoreAllVisibilityBit = 4;
     93 
     94 /// Kinds of LV computation.  The linkage side of the computation is
     95 /// always the same, but different things can change how visibility is
     96 /// computed.
     97 enum LVComputationKind {
     98   /// Do an LV computation for, ultimately, a type.
     99   /// Visibility may be restricted by type visibility settings and
    100   /// the visibility of template arguments.
    101   LVForType = NamedDecl::VisibilityForType,
    102 
    103   /// Do an LV computation for, ultimately, a non-type declaration.
    104   /// Visibility may be restricted by value visibility settings and
    105   /// the visibility of template arguments.
    106   LVForValue = NamedDecl::VisibilityForValue,
    107 
    108   /// Do an LV computation for, ultimately, a type that already has
    109   /// some sort of explicit visibility.  Visibility may only be
    110   /// restricted by the visibility of template arguments.
    111   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
    112 
    113   /// Do an LV computation for, ultimately, a non-type declaration
    114   /// that already has some sort of explicit visibility.  Visibility
    115   /// may only be restricted by the visibility of template arguments.
    116   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
    117 
    118   /// Do an LV computation when we only care about the linkage.
    119   LVForLinkageOnly =
    120       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
    121 };
    122 
    123 /// Does this computation kind permit us to consider additional
    124 /// visibility settings from attributes and the like?
    125 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
    126   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
    127 }
    128 
    129 /// Given an LVComputationKind, return one of the same type/value sort
    130 /// that records that it already has explicit visibility.
    131 static LVComputationKind
    132 withExplicitVisibilityAlready(LVComputationKind oldKind) {
    133   LVComputationKind newKind =
    134     static_cast<LVComputationKind>(unsigned(oldKind) |
    135                                    IgnoreExplicitVisibilityBit);
    136   assert(oldKind != LVForType          || newKind == LVForExplicitType);
    137   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
    138   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
    139   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
    140   return newKind;
    141 }
    142 
    143 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
    144                                                   LVComputationKind kind) {
    145   assert(!hasExplicitVisibilityAlready(kind) &&
    146          "asking for explicit visibility when we shouldn't be");
    147   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
    148 }
    149 
    150 /// Is the given declaration a "type" or a "value" for the purposes of
    151 /// visibility computation?
    152 static bool usesTypeVisibility(const NamedDecl *D) {
    153   return isa<TypeDecl>(D) ||
    154          isa<ClassTemplateDecl>(D) ||
    155          isa<ObjCInterfaceDecl>(D);
    156 }
    157 
    158 /// Does the given declaration have member specialization information,
    159 /// and if so, is it an explicit specialization?
    160 template <class T> static typename
    161 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
    162 isExplicitMemberSpecialization(const T *D) {
    163   if (const MemberSpecializationInfo *member =
    164         D->getMemberSpecializationInfo()) {
    165     return member->isExplicitSpecialization();
    166   }
    167   return false;
    168 }
    169 
    170 /// For templates, this question is easier: a member template can't be
    171 /// explicitly instantiated, so there's a single bit indicating whether
    172 /// or not this is an explicit member specialization.
    173 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
    174   return D->isMemberSpecialization();
    175 }
    176 
    177 /// Given a visibility attribute, return the explicit visibility
    178 /// associated with it.
    179 template <class T>
    180 static Visibility getVisibilityFromAttr(const T *attr) {
    181   switch (attr->getVisibility()) {
    182   case T::Default:
    183     return DefaultVisibility;
    184   case T::Hidden:
    185     return HiddenVisibility;
    186   case T::Protected:
    187     return ProtectedVisibility;
    188   }
    189   llvm_unreachable("bad visibility kind");
    190 }
    191 
    192 /// Return the explicit visibility of the given declaration.
    193 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
    194                                     NamedDecl::ExplicitVisibilityKind kind) {
    195   // If we're ultimately computing the visibility of a type, look for
    196   // a 'type_visibility' attribute before looking for 'visibility'.
    197   if (kind == NamedDecl::VisibilityForType) {
    198     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
    199       return getVisibilityFromAttr(A);
    200     }
    201   }
    202 
    203   // If this declaration has an explicit visibility attribute, use it.
    204   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
    205     return getVisibilityFromAttr(A);
    206   }
    207 
    208   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
    209   // implies visibility(default).
    210   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
    211     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
    212       if (A->getPlatform()->getName().equals("macosx"))
    213         return DefaultVisibility;
    214   }
    215 
    216   return None;
    217 }
    218 
    219 static LinkageInfo
    220 getLVForType(const Type &T, LVComputationKind computation) {
    221   if (computation == LVForLinkageOnly)
    222     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
    223   return T.getLinkageAndVisibility();
    224 }
    225 
    226 /// \brief Get the most restrictive linkage for the types in the given
    227 /// template parameter list.  For visibility purposes, template
    228 /// parameters are part of the signature of a template.
    229 static LinkageInfo
    230 getLVForTemplateParameterList(const TemplateParameterList *Params,
    231                               LVComputationKind computation) {
    232   LinkageInfo LV;
    233   for (const NamedDecl *P : *Params) {
    234     // Template type parameters are the most common and never
    235     // contribute to visibility, pack or not.
    236     if (isa<TemplateTypeParmDecl>(P))
    237       continue;
    238 
    239     // Non-type template parameters can be restricted by the value type, e.g.
    240     //   template <enum X> class A { ... };
    241     // We have to be careful here, though, because we can be dealing with
    242     // dependent types.
    243     if (const NonTypeTemplateParmDecl *NTTP =
    244             dyn_cast<NonTypeTemplateParmDecl>(P)) {
    245       // Handle the non-pack case first.
    246       if (!NTTP->isExpandedParameterPack()) {
    247         if (!NTTP->getType()->isDependentType()) {
    248           LV.merge(getLVForType(*NTTP->getType(), computation));
    249         }
    250         continue;
    251       }
    252 
    253       // Look at all the types in an expanded pack.
    254       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
    255         QualType type = NTTP->getExpansionType(i);
    256         if (!type->isDependentType())
    257           LV.merge(type->getLinkageAndVisibility());
    258       }
    259       continue;
    260     }
    261 
    262     // Template template parameters can be restricted by their
    263     // template parameters, recursively.
    264     const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
    265 
    266     // Handle the non-pack case first.
    267     if (!TTP->isExpandedParameterPack()) {
    268       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
    269                                              computation));
    270       continue;
    271     }
    272 
    273     // Look at all expansions in an expanded pack.
    274     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
    275            i != n; ++i) {
    276       LV.merge(getLVForTemplateParameterList(
    277           TTP->getExpansionTemplateParameters(i), computation));
    278     }
    279   }
    280 
    281   return LV;
    282 }
    283 
    284 /// getLVForDecl - Get the linkage and visibility for the given declaration.
    285 static LinkageInfo getLVForDecl(const NamedDecl *D,
    286                                 LVComputationKind computation);
    287 
    288 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
    289   const Decl *Ret = nullptr;
    290   const DeclContext *DC = D->getDeclContext();
    291   while (DC->getDeclKind() != Decl::TranslationUnit) {
    292     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
    293       Ret = cast<Decl>(DC);
    294     DC = DC->getParent();
    295   }
    296   return Ret;
    297 }
    298 
    299 /// \brief Get the most restrictive linkage for the types and
    300 /// declarations in the given template argument list.
    301 ///
    302 /// Note that we don't take an LVComputationKind because we always
    303 /// want to honor the visibility of template arguments in the same way.
    304 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
    305                                                 LVComputationKind computation) {
    306   LinkageInfo LV;
    307 
    308   for (const TemplateArgument &Arg : Args) {
    309     switch (Arg.getKind()) {
    310     case TemplateArgument::Null:
    311     case TemplateArgument::Integral:
    312     case TemplateArgument::Expression:
    313       continue;
    314 
    315     case TemplateArgument::Type:
    316       LV.merge(getLVForType(*Arg.getAsType(), computation));
    317       continue;
    318 
    319     case TemplateArgument::Declaration:
    320       if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
    321         assert(!usesTypeVisibility(ND));
    322         LV.merge(getLVForDecl(ND, computation));
    323       }
    324       continue;
    325 
    326     case TemplateArgument::NullPtr:
    327       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
    328       continue;
    329 
    330     case TemplateArgument::Template:
    331     case TemplateArgument::TemplateExpansion:
    332       if (TemplateDecl *Template =
    333               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
    334         LV.merge(getLVForDecl(Template, computation));
    335       continue;
    336 
    337     case TemplateArgument::Pack:
    338       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
    339       continue;
    340     }
    341     llvm_unreachable("bad template argument kind");
    342   }
    343 
    344   return LV;
    345 }
    346 
    347 static LinkageInfo
    348 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
    349                              LVComputationKind computation) {
    350   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
    351 }
    352 
    353 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
    354                         const FunctionTemplateSpecializationInfo *specInfo) {
    355   // Include visibility from the template parameters and arguments
    356   // only if this is not an explicit instantiation or specialization
    357   // with direct explicit visibility.  (Implicit instantiations won't
    358   // have a direct attribute.)
    359   if (!specInfo->isExplicitInstantiationOrSpecialization())
    360     return true;
    361 
    362   return !fn->hasAttr<VisibilityAttr>();
    363 }
    364 
    365 /// Merge in template-related linkage and visibility for the given
    366 /// function template specialization.
    367 ///
    368 /// We don't need a computation kind here because we can assume
    369 /// LVForValue.
    370 ///
    371 /// \param[out] LV the computation to use for the parent
    372 static void
    373 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
    374                 const FunctionTemplateSpecializationInfo *specInfo,
    375                 LVComputationKind computation) {
    376   bool considerVisibility =
    377     shouldConsiderTemplateVisibility(fn, specInfo);
    378 
    379   // Merge information from the template parameters.
    380   FunctionTemplateDecl *temp = specInfo->getTemplate();
    381   LinkageInfo tempLV =
    382     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    383   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    384 
    385   // Merge information from the template arguments.
    386   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
    387   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    388   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
    389 }
    390 
    391 /// Does the given declaration have a direct visibility attribute
    392 /// that would match the given rules?
    393 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
    394                                          LVComputationKind computation) {
    395   switch (computation) {
    396   case LVForType:
    397   case LVForExplicitType:
    398     if (D->hasAttr<TypeVisibilityAttr>())
    399       return true;
    400     // fallthrough
    401   case LVForValue:
    402   case LVForExplicitValue:
    403     if (D->hasAttr<VisibilityAttr>())
    404       return true;
    405     return false;
    406   case LVForLinkageOnly:
    407     return false;
    408   }
    409   llvm_unreachable("bad visibility computation kind");
    410 }
    411 
    412 /// Should we consider visibility associated with the template
    413 /// arguments and parameters of the given class template specialization?
    414 static bool shouldConsiderTemplateVisibility(
    415                                  const ClassTemplateSpecializationDecl *spec,
    416                                  LVComputationKind computation) {
    417   // Include visibility from the template parameters and arguments
    418   // only if this is not an explicit instantiation or specialization
    419   // with direct explicit visibility (and note that implicit
    420   // instantiations won't have a direct attribute).
    421   //
    422   // Furthermore, we want to ignore template parameters and arguments
    423   // for an explicit specialization when computing the visibility of a
    424   // member thereof with explicit visibility.
    425   //
    426   // This is a bit complex; let's unpack it.
    427   //
    428   // An explicit class specialization is an independent, top-level
    429   // declaration.  As such, if it or any of its members has an
    430   // explicit visibility attribute, that must directly express the
    431   // user's intent, and we should honor it.  The same logic applies to
    432   // an explicit instantiation of a member of such a thing.
    433 
    434   // Fast path: if this is not an explicit instantiation or
    435   // specialization, we always want to consider template-related
    436   // visibility restrictions.
    437   if (!spec->isExplicitInstantiationOrSpecialization())
    438     return true;
    439 
    440   // This is the 'member thereof' check.
    441   if (spec->isExplicitSpecialization() &&
    442       hasExplicitVisibilityAlready(computation))
    443     return false;
    444 
    445   return !hasDirectVisibilityAttribute(spec, computation);
    446 }
    447 
    448 /// Merge in template-related linkage and visibility for the given
    449 /// class template specialization.
    450 static void mergeTemplateLV(LinkageInfo &LV,
    451                             const ClassTemplateSpecializationDecl *spec,
    452                             LVComputationKind computation) {
    453   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
    454 
    455   // Merge information from the template parameters, but ignore
    456   // visibility if we're only considering template arguments.
    457 
    458   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
    459   LinkageInfo tempLV =
    460     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    461   LV.mergeMaybeWithVisibility(tempLV,
    462            considerVisibility && !hasExplicitVisibilityAlready(computation));
    463 
    464   // Merge information from the template arguments.  We ignore
    465   // template-argument visibility if we've got an explicit
    466   // instantiation with a visibility attribute.
    467   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
    468   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    469   if (considerVisibility)
    470     LV.mergeVisibility(argsLV);
    471   LV.mergeExternalVisibility(argsLV);
    472 }
    473 
    474 /// Should we consider visibility associated with the template
    475 /// arguments and parameters of the given variable template
    476 /// specialization? As usual, follow class template specialization
    477 /// logic up to initialization.
    478 static bool shouldConsiderTemplateVisibility(
    479                                  const VarTemplateSpecializationDecl *spec,
    480                                  LVComputationKind computation) {
    481   // Include visibility from the template parameters and arguments
    482   // only if this is not an explicit instantiation or specialization
    483   // with direct explicit visibility (and note that implicit
    484   // instantiations won't have a direct attribute).
    485   if (!spec->isExplicitInstantiationOrSpecialization())
    486     return true;
    487 
    488   // An explicit variable specialization is an independent, top-level
    489   // declaration.  As such, if it has an explicit visibility attribute,
    490   // that must directly express the user's intent, and we should honor
    491   // it.
    492   if (spec->isExplicitSpecialization() &&
    493       hasExplicitVisibilityAlready(computation))
    494     return false;
    495 
    496   return !hasDirectVisibilityAttribute(spec, computation);
    497 }
    498 
    499 /// Merge in template-related linkage and visibility for the given
    500 /// variable template specialization. As usual, follow class template
    501 /// specialization logic up to initialization.
    502 static void mergeTemplateLV(LinkageInfo &LV,
    503                             const VarTemplateSpecializationDecl *spec,
    504                             LVComputationKind computation) {
    505   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
    506 
    507   // Merge information from the template parameters, but ignore
    508   // visibility if we're only considering template arguments.
    509 
    510   VarTemplateDecl *temp = spec->getSpecializedTemplate();
    511   LinkageInfo tempLV =
    512     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    513   LV.mergeMaybeWithVisibility(tempLV,
    514            considerVisibility && !hasExplicitVisibilityAlready(computation));
    515 
    516   // Merge information from the template arguments.  We ignore
    517   // template-argument visibility if we've got an explicit
    518   // instantiation with a visibility attribute.
    519   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
    520   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
    521   if (considerVisibility)
    522     LV.mergeVisibility(argsLV);
    523   LV.mergeExternalVisibility(argsLV);
    524 }
    525 
    526 static bool useInlineVisibilityHidden(const NamedDecl *D) {
    527   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
    528   const LangOptions &Opts = D->getASTContext().getLangOpts();
    529   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
    530     return false;
    531 
    532   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
    533   if (!FD)
    534     return false;
    535 
    536   TemplateSpecializationKind TSK = TSK_Undeclared;
    537   if (FunctionTemplateSpecializationInfo *spec
    538       = FD->getTemplateSpecializationInfo()) {
    539     TSK = spec->getTemplateSpecializationKind();
    540   } else if (MemberSpecializationInfo *MSI =
    541              FD->getMemberSpecializationInfo()) {
    542     TSK = MSI->getTemplateSpecializationKind();
    543   }
    544 
    545   const FunctionDecl *Def = nullptr;
    546   // InlineVisibilityHidden only applies to definitions, and
    547   // isInlined() only gives meaningful answers on definitions
    548   // anyway.
    549   return TSK != TSK_ExplicitInstantiationDeclaration &&
    550     TSK != TSK_ExplicitInstantiationDefinition &&
    551     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
    552 }
    553 
    554 template <typename T> static bool isFirstInExternCContext(T *D) {
    555   const T *First = D->getFirstDecl();
    556   return First->isInExternCContext();
    557 }
    558 
    559 static bool isSingleLineLanguageLinkage(const Decl &D) {
    560   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
    561     if (!SD->hasBraces())
    562       return true;
    563   return false;
    564 }
    565 
    566 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
    567                                               LVComputationKind computation) {
    568   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
    569          "Not a name having namespace scope");
    570   ASTContext &Context = D->getASTContext();
    571 
    572   // C++ [basic.link]p3:
    573   //   A name having namespace scope (3.3.6) has internal linkage if it
    574   //   is the name of
    575   //     - an object, reference, function or function template that is
    576   //       explicitly declared static; or,
    577   // (This bullet corresponds to C99 6.2.2p3.)
    578   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    579     // Explicitly declared static.
    580     if (Var->getStorageClass() == SC_Static)
    581       return LinkageInfo::internal();
    582 
    583     // - a non-volatile object or reference that is explicitly declared const
    584     //   or constexpr and neither explicitly declared extern nor previously
    585     //   declared to have external linkage; or (there is no equivalent in C99)
    586     if (Context.getLangOpts().CPlusPlus &&
    587         Var->getType().isConstQualified() &&
    588         !Var->getType().isVolatileQualified()) {
    589       const VarDecl *PrevVar = Var->getPreviousDecl();
    590       if (PrevVar)
    591         return getLVForDecl(PrevVar, computation);
    592 
    593       if (Var->getStorageClass() != SC_Extern &&
    594           Var->getStorageClass() != SC_PrivateExtern &&
    595           !isSingleLineLanguageLinkage(*Var))
    596         return LinkageInfo::internal();
    597     }
    598 
    599     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
    600          PrevVar = PrevVar->getPreviousDecl()) {
    601       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
    602           Var->getStorageClass() == SC_None)
    603         return PrevVar->getLinkageAndVisibility();
    604       // Explicitly declared static.
    605       if (PrevVar->getStorageClass() == SC_Static)
    606         return LinkageInfo::internal();
    607     }
    608   } else if (const FunctionDecl *Function = D->getAsFunction()) {
    609     // C++ [temp]p4:
    610     //   A non-member function template can have internal linkage; any
    611     //   other template name shall have external linkage.
    612 
    613     // Explicitly declared static.
    614     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
    615       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
    616   }
    617   //   - a data member of an anonymous union.
    618   assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!");
    619   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
    620 
    621   if (D->isInAnonymousNamespace()) {
    622     const VarDecl *Var = dyn_cast<VarDecl>(D);
    623     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
    624     if ((!Var || !isFirstInExternCContext(Var)) &&
    625         (!Func || !isFirstInExternCContext(Func)))
    626       return LinkageInfo::uniqueExternal();
    627   }
    628 
    629   // Set up the defaults.
    630 
    631   // C99 6.2.2p5:
    632   //   If the declaration of an identifier for an object has file
    633   //   scope and no storage-class specifier, its linkage is
    634   //   external.
    635   LinkageInfo LV;
    636 
    637   if (!hasExplicitVisibilityAlready(computation)) {
    638     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
    639       LV.mergeVisibility(*Vis, true);
    640     } else {
    641       // If we're declared in a namespace with a visibility attribute,
    642       // use that namespace's visibility, and it still counts as explicit.
    643       for (const DeclContext *DC = D->getDeclContext();
    644            !isa<TranslationUnitDecl>(DC);
    645            DC = DC->getParent()) {
    646         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
    647         if (!ND) continue;
    648         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
    649           LV.mergeVisibility(*Vis, true);
    650           break;
    651         }
    652       }
    653     }
    654 
    655     // Add in global settings if the above didn't give us direct visibility.
    656     if (!LV.isVisibilityExplicit()) {
    657       // Use global type/value visibility as appropriate.
    658       Visibility globalVisibility;
    659       if (computation == LVForValue) {
    660         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
    661       } else {
    662         assert(computation == LVForType);
    663         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
    664       }
    665       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
    666 
    667       // If we're paying attention to global visibility, apply
    668       // -finline-visibility-hidden if this is an inline method.
    669       if (useInlineVisibilityHidden(D))
    670         LV.mergeVisibility(HiddenVisibility, true);
    671     }
    672   }
    673 
    674   // C++ [basic.link]p4:
    675 
    676   //   A name having namespace scope has external linkage if it is the
    677   //   name of
    678   //
    679   //     - an object or reference, unless it has internal linkage; or
    680   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
    681     // GCC applies the following optimization to variables and static
    682     // data members, but not to functions:
    683     //
    684     // Modify the variable's LV by the LV of its type unless this is
    685     // C or extern "C".  This follows from [basic.link]p9:
    686     //   A type without linkage shall not be used as the type of a
    687     //   variable or function with external linkage unless
    688     //    - the entity has C language linkage, or
    689     //    - the entity is declared within an unnamed namespace, or
    690     //    - the entity is not used or is defined in the same
    691     //      translation unit.
    692     // and [basic.link]p10:
    693     //   ...the types specified by all declarations referring to a
    694     //   given variable or function shall be identical...
    695     // C does not have an equivalent rule.
    696     //
    697     // Ignore this if we've got an explicit attribute;  the user
    698     // probably knows what they're doing.
    699     //
    700     // Note that we don't want to make the variable non-external
    701     // because of this, but unique-external linkage suits us.
    702     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
    703       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
    704       if (TypeLV.getLinkage() != ExternalLinkage)
    705         return LinkageInfo::uniqueExternal();
    706       if (!LV.isVisibilityExplicit())
    707         LV.mergeVisibility(TypeLV);
    708     }
    709 
    710     if (Var->getStorageClass() == SC_PrivateExtern)
    711       LV.mergeVisibility(HiddenVisibility, true);
    712 
    713     // Note that Sema::MergeVarDecl already takes care of implementing
    714     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
    715     // to do it here.
    716 
    717     // As per function and class template specializations (below),
    718     // consider LV for the template and template arguments.  We're at file
    719     // scope, so we do not need to worry about nested specializations.
    720     if (const VarTemplateSpecializationDecl *spec
    721               = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
    722       mergeTemplateLV(LV, spec, computation);
    723     }
    724 
    725   //     - a function, unless it has internal linkage; or
    726   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
    727     // In theory, we can modify the function's LV by the LV of its
    728     // type unless it has C linkage (see comment above about variables
    729     // for justification).  In practice, GCC doesn't do this, so it's
    730     // just too painful to make work.
    731 
    732     if (Function->getStorageClass() == SC_PrivateExtern)
    733       LV.mergeVisibility(HiddenVisibility, true);
    734 
    735     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
    736     // merging storage classes and visibility attributes, so we don't have to
    737     // look at previous decls in here.
    738 
    739     // In C++, then if the type of the function uses a type with
    740     // unique-external linkage, it's not legally usable from outside
    741     // this translation unit.  However, we should use the C linkage
    742     // rules instead for extern "C" declarations.
    743     if (Context.getLangOpts().CPlusPlus &&
    744         !Function->isInExternCContext()) {
    745       // Only look at the type-as-written. If this function has an auto-deduced
    746       // return type, we can't compute the linkage of that type because it could
    747       // require looking at the linkage of this function, and we don't need this
    748       // for correctness because the type is not part of the function's
    749       // signature.
    750       // FIXME: This is a hack. We should be able to solve this circularity and
    751       // the one in getLVForClassMember for Functions some other way.
    752       QualType TypeAsWritten = Function->getType();
    753       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
    754         TypeAsWritten = TSI->getType();
    755       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
    756         return LinkageInfo::uniqueExternal();
    757     }
    758 
    759     // Consider LV from the template and the template arguments.
    760     // We're at file scope, so we do not need to worry about nested
    761     // specializations.
    762     if (FunctionTemplateSpecializationInfo *specInfo
    763                                = Function->getTemplateSpecializationInfo()) {
    764       mergeTemplateLV(LV, Function, specInfo, computation);
    765     }
    766 
    767   //     - a named class (Clause 9), or an unnamed class defined in a
    768   //       typedef declaration in which the class has the typedef name
    769   //       for linkage purposes (7.1.3); or
    770   //     - a named enumeration (7.2), or an unnamed enumeration
    771   //       defined in a typedef declaration in which the enumeration
    772   //       has the typedef name for linkage purposes (7.1.3); or
    773   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
    774     // Unnamed tags have no linkage.
    775     if (!Tag->hasNameForLinkage())
    776       return LinkageInfo::none();
    777 
    778     // If this is a class template specialization, consider the
    779     // linkage of the template and template arguments.  We're at file
    780     // scope, so we do not need to worry about nested specializations.
    781     if (const ClassTemplateSpecializationDecl *spec
    782           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
    783       mergeTemplateLV(LV, spec, computation);
    784     }
    785 
    786   //     - an enumerator belonging to an enumeration with external linkage;
    787   } else if (isa<EnumConstantDecl>(D)) {
    788     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
    789                                       computation);
    790     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
    791       return LinkageInfo::none();
    792     LV.merge(EnumLV);
    793 
    794   //     - a template, unless it is a function template that has
    795   //       internal linkage (Clause 14);
    796   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    797     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
    798     LinkageInfo tempLV =
    799       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    800     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    801 
    802   //     - a namespace (7.3), unless it is declared within an unnamed
    803   //       namespace.
    804   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
    805     return LV;
    806 
    807   // By extension, we assign external linkage to Objective-C
    808   // interfaces.
    809   } else if (isa<ObjCInterfaceDecl>(D)) {
    810     // fallout
    811 
    812   // Everything not covered here has no linkage.
    813   } else {
    814     return LinkageInfo::none();
    815   }
    816 
    817   // If we ended up with non-external linkage, visibility should
    818   // always be default.
    819   if (LV.getLinkage() != ExternalLinkage)
    820     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
    821 
    822   return LV;
    823 }
    824 
    825 static LinkageInfo getLVForClassMember(const NamedDecl *D,
    826                                        LVComputationKind computation) {
    827   // Only certain class members have linkage.  Note that fields don't
    828   // really have linkage, but it's convenient to say they do for the
    829   // purposes of calculating linkage of pointer-to-data-member
    830   // template arguments.
    831   //
    832   // Templates also don't officially have linkage, but since we ignore
    833   // the C++ standard and look at template arguments when determining
    834   // linkage and visibility of a template specialization, we might hit
    835   // a template template argument that way. If we do, we need to
    836   // consider its linkage.
    837   if (!(isa<CXXMethodDecl>(D) ||
    838         isa<VarDecl>(D) ||
    839         isa<FieldDecl>(D) ||
    840         isa<IndirectFieldDecl>(D) ||
    841         isa<TagDecl>(D) ||
    842         isa<TemplateDecl>(D)))
    843     return LinkageInfo::none();
    844 
    845   LinkageInfo LV;
    846 
    847   // If we have an explicit visibility attribute, merge that in.
    848   if (!hasExplicitVisibilityAlready(computation)) {
    849     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
    850       LV.mergeVisibility(*Vis, true);
    851     // If we're paying attention to global visibility, apply
    852     // -finline-visibility-hidden if this is an inline method.
    853     //
    854     // Note that we do this before merging information about
    855     // the class visibility.
    856     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
    857       LV.mergeVisibility(HiddenVisibility, true);
    858   }
    859 
    860   // If this class member has an explicit visibility attribute, the only
    861   // thing that can change its visibility is the template arguments, so
    862   // only look for them when processing the class.
    863   LVComputationKind classComputation = computation;
    864   if (LV.isVisibilityExplicit())
    865     classComputation = withExplicitVisibilityAlready(computation);
    866 
    867   LinkageInfo classLV =
    868     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
    869   // If the class already has unique-external linkage, we can't improve.
    870   if (classLV.getLinkage() == UniqueExternalLinkage)
    871     return LinkageInfo::uniqueExternal();
    872 
    873   if (!isExternallyVisible(classLV.getLinkage()))
    874     return LinkageInfo::none();
    875 
    876 
    877   // Otherwise, don't merge in classLV yet, because in certain cases
    878   // we need to completely ignore the visibility from it.
    879 
    880   // Specifically, if this decl exists and has an explicit attribute.
    881   const NamedDecl *explicitSpecSuppressor = nullptr;
    882 
    883   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
    884     // If the type of the function uses a type with unique-external
    885     // linkage, it's not legally usable from outside this translation unit.
    886     // But only look at the type-as-written. If this function has an auto-deduced
    887     // return type, we can't compute the linkage of that type because it could
    888     // require looking at the linkage of this function, and we don't need this
    889     // for correctness because the type is not part of the function's
    890     // signature.
    891     // FIXME: This is a hack. We should be able to solve this circularity and the
    892     // one in getLVForNamespaceScopeDecl for Functions some other way.
    893     {
    894       QualType TypeAsWritten = MD->getType();
    895       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
    896         TypeAsWritten = TSI->getType();
    897       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
    898         return LinkageInfo::uniqueExternal();
    899     }
    900     // If this is a method template specialization, use the linkage for
    901     // the template parameters and arguments.
    902     if (FunctionTemplateSpecializationInfo *spec
    903            = MD->getTemplateSpecializationInfo()) {
    904       mergeTemplateLV(LV, MD, spec, computation);
    905       if (spec->isExplicitSpecialization()) {
    906         explicitSpecSuppressor = MD;
    907       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
    908         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
    909       }
    910     } else if (isExplicitMemberSpecialization(MD)) {
    911       explicitSpecSuppressor = MD;
    912     }
    913 
    914   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
    915     if (const ClassTemplateSpecializationDecl *spec
    916         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
    917       mergeTemplateLV(LV, spec, computation);
    918       if (spec->isExplicitSpecialization()) {
    919         explicitSpecSuppressor = spec;
    920       } else {
    921         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
    922         if (isExplicitMemberSpecialization(temp)) {
    923           explicitSpecSuppressor = temp->getTemplatedDecl();
    924         }
    925       }
    926     } else if (isExplicitMemberSpecialization(RD)) {
    927       explicitSpecSuppressor = RD;
    928     }
    929 
    930   // Static data members.
    931   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
    932     if (const VarTemplateSpecializationDecl *spec
    933         = dyn_cast<VarTemplateSpecializationDecl>(VD))
    934       mergeTemplateLV(LV, spec, computation);
    935 
    936     // Modify the variable's linkage by its type, but ignore the
    937     // type's visibility unless it's a definition.
    938     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
    939     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
    940       LV.mergeVisibility(typeLV);
    941     LV.mergeExternalVisibility(typeLV);
    942 
    943     if (isExplicitMemberSpecialization(VD)) {
    944       explicitSpecSuppressor = VD;
    945     }
    946 
    947   // Template members.
    948   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
    949     bool considerVisibility =
    950       (!LV.isVisibilityExplicit() &&
    951        !classLV.isVisibilityExplicit() &&
    952        !hasExplicitVisibilityAlready(computation));
    953     LinkageInfo tempLV =
    954       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
    955     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
    956 
    957     if (const RedeclarableTemplateDecl *redeclTemp =
    958           dyn_cast<RedeclarableTemplateDecl>(temp)) {
    959       if (isExplicitMemberSpecialization(redeclTemp)) {
    960         explicitSpecSuppressor = temp->getTemplatedDecl();
    961       }
    962     }
    963   }
    964 
    965   // We should never be looking for an attribute directly on a template.
    966   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
    967 
    968   // If this member is an explicit member specialization, and it has
    969   // an explicit attribute, ignore visibility from the parent.
    970   bool considerClassVisibility = true;
    971   if (explicitSpecSuppressor &&
    972       // optimization: hasDVA() is true only with explicit visibility.
    973       LV.isVisibilityExplicit() &&
    974       classLV.getVisibility() != DefaultVisibility &&
    975       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
    976     considerClassVisibility = false;
    977   }
    978 
    979   // Finally, merge in information from the class.
    980   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
    981   return LV;
    982 }
    983 
    984 void NamedDecl::anchor() { }
    985 
    986 static LinkageInfo computeLVForDecl(const NamedDecl *D,
    987                                     LVComputationKind computation);
    988 
    989 bool NamedDecl::isLinkageValid() const {
    990   if (!hasCachedLinkage())
    991     return true;
    992 
    993   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
    994          getCachedLinkage();
    995 }
    996 
    997 Linkage NamedDecl::getLinkageInternal() const {
    998   // We don't care about visibility here, so ask for the cheapest
    999   // possible visibility analysis.
   1000   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
   1001 }
   1002 
   1003 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
   1004   LVComputationKind computation =
   1005     (usesTypeVisibility(this) ? LVForType : LVForValue);
   1006   return getLVForDecl(this, computation);
   1007 }
   1008 
   1009 static Optional<Visibility>
   1010 getExplicitVisibilityAux(const NamedDecl *ND,
   1011                          NamedDecl::ExplicitVisibilityKind kind,
   1012                          bool IsMostRecent) {
   1013   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
   1014 
   1015   // Check the declaration itself first.
   1016   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
   1017     return V;
   1018 
   1019   // If this is a member class of a specialization of a class template
   1020   // and the corresponding decl has explicit visibility, use that.
   1021   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
   1022     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
   1023     if (InstantiatedFrom)
   1024       return getVisibilityOf(InstantiatedFrom, kind);
   1025   }
   1026 
   1027   // If there wasn't explicit visibility there, and this is a
   1028   // specialization of a class template, check for visibility
   1029   // on the pattern.
   1030   if (const ClassTemplateSpecializationDecl *spec
   1031         = dyn_cast<ClassTemplateSpecializationDecl>(ND))
   1032     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
   1033                            kind);
   1034 
   1035   // Use the most recent declaration.
   1036   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
   1037     const NamedDecl *MostRecent = ND->getMostRecentDecl();
   1038     if (MostRecent != ND)
   1039       return getExplicitVisibilityAux(MostRecent, kind, true);
   1040   }
   1041 
   1042   if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
   1043     if (Var->isStaticDataMember()) {
   1044       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
   1045       if (InstantiatedFrom)
   1046         return getVisibilityOf(InstantiatedFrom, kind);
   1047     }
   1048 
   1049     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
   1050       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
   1051                              kind);
   1052 
   1053     return None;
   1054   }
   1055   // Also handle function template specializations.
   1056   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
   1057     // If the function is a specialization of a template with an
   1058     // explicit visibility attribute, use that.
   1059     if (FunctionTemplateSpecializationInfo *templateInfo
   1060           = fn->getTemplateSpecializationInfo())
   1061       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
   1062                              kind);
   1063 
   1064     // If the function is a member of a specialization of a class template
   1065     // and the corresponding decl has explicit visibility, use that.
   1066     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
   1067     if (InstantiatedFrom)
   1068       return getVisibilityOf(InstantiatedFrom, kind);
   1069 
   1070     return None;
   1071   }
   1072 
   1073   // The visibility of a template is stored in the templated decl.
   1074   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
   1075     return getVisibilityOf(TD->getTemplatedDecl(), kind);
   1076 
   1077   return None;
   1078 }
   1079 
   1080 Optional<Visibility>
   1081 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
   1082   return getExplicitVisibilityAux(this, kind, false);
   1083 }
   1084 
   1085 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
   1086                                    LVComputationKind computation) {
   1087   // This lambda has its linkage/visibility determined by its owner.
   1088   if (ContextDecl) {
   1089     if (isa<ParmVarDecl>(ContextDecl))
   1090       DC = ContextDecl->getDeclContext()->getRedeclContext();
   1091     else
   1092       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
   1093   }
   1094 
   1095   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
   1096     return getLVForDecl(ND, computation);
   1097 
   1098   return LinkageInfo::external();
   1099 }
   1100 
   1101 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
   1102                                      LVComputationKind computation) {
   1103   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
   1104     if (Function->isInAnonymousNamespace() &&
   1105         !Function->isInExternCContext())
   1106       return LinkageInfo::uniqueExternal();
   1107 
   1108     // This is a "void f();" which got merged with a file static.
   1109     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
   1110       return LinkageInfo::internal();
   1111 
   1112     LinkageInfo LV;
   1113     if (!hasExplicitVisibilityAlready(computation)) {
   1114       if (Optional<Visibility> Vis =
   1115               getExplicitVisibility(Function, computation))
   1116         LV.mergeVisibility(*Vis, true);
   1117     }
   1118 
   1119     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
   1120     // merging storage classes and visibility attributes, so we don't have to
   1121     // look at previous decls in here.
   1122 
   1123     return LV;
   1124   }
   1125 
   1126   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
   1127     if (Var->hasExternalStorage()) {
   1128       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
   1129         return LinkageInfo::uniqueExternal();
   1130 
   1131       LinkageInfo LV;
   1132       if (Var->getStorageClass() == SC_PrivateExtern)
   1133         LV.mergeVisibility(HiddenVisibility, true);
   1134       else if (!hasExplicitVisibilityAlready(computation)) {
   1135         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
   1136           LV.mergeVisibility(*Vis, true);
   1137       }
   1138 
   1139       if (const VarDecl *Prev = Var->getPreviousDecl()) {
   1140         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
   1141         if (PrevLV.getLinkage())
   1142           LV.setLinkage(PrevLV.getLinkage());
   1143         LV.mergeVisibility(PrevLV);
   1144       }
   1145 
   1146       return LV;
   1147     }
   1148 
   1149     if (!Var->isStaticLocal())
   1150       return LinkageInfo::none();
   1151   }
   1152 
   1153   ASTContext &Context = D->getASTContext();
   1154   if (!Context.getLangOpts().CPlusPlus)
   1155     return LinkageInfo::none();
   1156 
   1157   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
   1158   if (!OuterD)
   1159     return LinkageInfo::none();
   1160 
   1161   LinkageInfo LV;
   1162   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
   1163     if (!BD->getBlockManglingNumber())
   1164       return LinkageInfo::none();
   1165 
   1166     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
   1167                          BD->getBlockManglingContextDecl(), computation);
   1168   } else {
   1169     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
   1170     if (!FD->isInlined() &&
   1171         FD->getTemplateSpecializationKind() == TSK_Undeclared)
   1172       return LinkageInfo::none();
   1173 
   1174     LV = getLVForDecl(FD, computation);
   1175   }
   1176   if (!isExternallyVisible(LV.getLinkage()))
   1177     return LinkageInfo::none();
   1178   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
   1179                      LV.isVisibilityExplicit());
   1180 }
   1181 
   1182 static inline const CXXRecordDecl*
   1183 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
   1184   const CXXRecordDecl *Ret = Record;
   1185   while (Record && Record->isLambda()) {
   1186     Ret = Record;
   1187     if (!Record->getParent()) break;
   1188     // Get the Containing Class of this Lambda Class
   1189     Record = dyn_cast_or_null<CXXRecordDecl>(
   1190       Record->getParent()->getParent());
   1191   }
   1192   return Ret;
   1193 }
   1194 
   1195 static LinkageInfo computeLVForDecl(const NamedDecl *D,
   1196                                     LVComputationKind computation) {
   1197   // Objective-C: treat all Objective-C declarations as having external
   1198   // linkage.
   1199   switch (D->getKind()) {
   1200     default:
   1201       break;
   1202     case Decl::ParmVar:
   1203       return LinkageInfo::none();
   1204     case Decl::TemplateTemplateParm: // count these as external
   1205     case Decl::NonTypeTemplateParm:
   1206     case Decl::ObjCAtDefsField:
   1207     case Decl::ObjCCategory:
   1208     case Decl::ObjCCategoryImpl:
   1209     case Decl::ObjCCompatibleAlias:
   1210     case Decl::ObjCImplementation:
   1211     case Decl::ObjCMethod:
   1212     case Decl::ObjCProperty:
   1213     case Decl::ObjCPropertyImpl:
   1214     case Decl::ObjCProtocol:
   1215       return LinkageInfo::external();
   1216 
   1217     case Decl::CXXRecord: {
   1218       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
   1219       if (Record->isLambda()) {
   1220         if (!Record->getLambdaManglingNumber()) {
   1221           // This lambda has no mangling number, so it's internal.
   1222           return LinkageInfo::internal();
   1223         }
   1224 
   1225         // This lambda has its linkage/visibility determined:
   1226         //  - either by the outermost lambda if that lambda has no mangling
   1227         //    number.
   1228         //  - or by the parent of the outer most lambda
   1229         // This prevents infinite recursion in settings such as nested lambdas
   1230         // used in NSDMI's, for e.g.
   1231         //  struct L {
   1232         //    int t{};
   1233         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
   1234         //  };
   1235         const CXXRecordDecl *OuterMostLambda =
   1236             getOutermostEnclosingLambda(Record);
   1237         if (!OuterMostLambda->getLambdaManglingNumber())
   1238           return LinkageInfo::internal();
   1239 
   1240         return getLVForClosure(
   1241                   OuterMostLambda->getDeclContext()->getRedeclContext(),
   1242                   OuterMostLambda->getLambdaContextDecl(), computation);
   1243       }
   1244 
   1245       break;
   1246     }
   1247   }
   1248 
   1249   // Handle linkage for namespace-scope names.
   1250   if (D->getDeclContext()->getRedeclContext()->isFileContext())
   1251     return getLVForNamespaceScopeDecl(D, computation);
   1252 
   1253   // C++ [basic.link]p5:
   1254   //   In addition, a member function, static data member, a named
   1255   //   class or enumeration of class scope, or an unnamed class or
   1256   //   enumeration defined in a class-scope typedef declaration such
   1257   //   that the class or enumeration has the typedef name for linkage
   1258   //   purposes (7.1.3), has external linkage if the name of the class
   1259   //   has external linkage.
   1260   if (D->getDeclContext()->isRecord())
   1261     return getLVForClassMember(D, computation);
   1262 
   1263   // C++ [basic.link]p6:
   1264   //   The name of a function declared in block scope and the name of
   1265   //   an object declared by a block scope extern declaration have
   1266   //   linkage. If there is a visible declaration of an entity with
   1267   //   linkage having the same name and type, ignoring entities
   1268   //   declared outside the innermost enclosing namespace scope, the
   1269   //   block scope declaration declares that same entity and receives
   1270   //   the linkage of the previous declaration. If there is more than
   1271   //   one such matching entity, the program is ill-formed. Otherwise,
   1272   //   if no matching entity is found, the block scope entity receives
   1273   //   external linkage.
   1274   if (D->getDeclContext()->isFunctionOrMethod())
   1275     return getLVForLocalDecl(D, computation);
   1276 
   1277   // C++ [basic.link]p6:
   1278   //   Names not covered by these rules have no linkage.
   1279   return LinkageInfo::none();
   1280 }
   1281 
   1282 namespace clang {
   1283 class LinkageComputer {
   1284 public:
   1285   static LinkageInfo getLVForDecl(const NamedDecl *D,
   1286                                   LVComputationKind computation) {
   1287     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
   1288       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
   1289 
   1290     LinkageInfo LV = computeLVForDecl(D, computation);
   1291     if (D->hasCachedLinkage())
   1292       assert(D->getCachedLinkage() == LV.getLinkage());
   1293 
   1294     D->setCachedLinkage(LV.getLinkage());
   1295 
   1296 #ifndef NDEBUG
   1297     // In C (because of gnu inline) and in c++ with microsoft extensions an
   1298     // static can follow an extern, so we can have two decls with different
   1299     // linkages.
   1300     const LangOptions &Opts = D->getASTContext().getLangOpts();
   1301     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
   1302       return LV;
   1303 
   1304     // We have just computed the linkage for this decl. By induction we know
   1305     // that all other computed linkages match, check that the one we just
   1306     // computed also does.
   1307     NamedDecl *Old = nullptr;
   1308     for (auto I : D->redecls()) {
   1309       NamedDecl *T = cast<NamedDecl>(I);
   1310       if (T == D)
   1311         continue;
   1312       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
   1313         Old = T;
   1314         break;
   1315       }
   1316     }
   1317     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
   1318 #endif
   1319 
   1320     return LV;
   1321   }
   1322 };
   1323 }
   1324 
   1325 static LinkageInfo getLVForDecl(const NamedDecl *D,
   1326                                 LVComputationKind computation) {
   1327   return clang::LinkageComputer::getLVForDecl(D, computation);
   1328 }
   1329 
   1330 std::string NamedDecl::getQualifiedNameAsString() const {
   1331   std::string QualName;
   1332   llvm::raw_string_ostream OS(QualName);
   1333   printQualifiedName(OS, getASTContext().getPrintingPolicy());
   1334   return OS.str();
   1335 }
   1336 
   1337 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
   1338   printQualifiedName(OS, getASTContext().getPrintingPolicy());
   1339 }
   1340 
   1341 void NamedDecl::printQualifiedName(raw_ostream &OS,
   1342                                    const PrintingPolicy &P) const {
   1343   const DeclContext *Ctx = getDeclContext();
   1344 
   1345   if (Ctx->isFunctionOrMethod()) {
   1346     printName(OS);
   1347     return;
   1348   }
   1349 
   1350   typedef SmallVector<const DeclContext *, 8> ContextsTy;
   1351   ContextsTy Contexts;
   1352 
   1353   // Collect contexts.
   1354   while (Ctx && isa<NamedDecl>(Ctx)) {
   1355     Contexts.push_back(Ctx);
   1356     Ctx = Ctx->getParent();
   1357   }
   1358 
   1359   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
   1360        I != E; ++I) {
   1361     if (const ClassTemplateSpecializationDecl *Spec
   1362           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
   1363       OS << Spec->getName();
   1364       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
   1365       TemplateSpecializationType::PrintTemplateArgumentList(OS,
   1366                                                             TemplateArgs.data(),
   1367                                                             TemplateArgs.size(),
   1368                                                             P);
   1369     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
   1370       if (P.SuppressUnwrittenScope &&
   1371           (ND->isAnonymousNamespace() || ND->isInline()))
   1372         continue;
   1373       if (ND->isAnonymousNamespace())
   1374         OS << "(anonymous namespace)";
   1375       else
   1376         OS << *ND;
   1377     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
   1378       if (!RD->getIdentifier())
   1379         OS << "(anonymous " << RD->getKindName() << ')';
   1380       else
   1381         OS << *RD;
   1382     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
   1383       const FunctionProtoType *FT = nullptr;
   1384       if (FD->hasWrittenPrototype())
   1385         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
   1386 
   1387       OS << *FD << '(';
   1388       if (FT) {
   1389         unsigned NumParams = FD->getNumParams();
   1390         for (unsigned i = 0; i < NumParams; ++i) {
   1391           if (i)
   1392             OS << ", ";
   1393           OS << FD->getParamDecl(i)->getType().stream(P);
   1394         }
   1395 
   1396         if (FT->isVariadic()) {
   1397           if (NumParams > 0)
   1398             OS << ", ";
   1399           OS << "...";
   1400         }
   1401       }
   1402       OS << ')';
   1403     } else {
   1404       OS << *cast<NamedDecl>(*I);
   1405     }
   1406     OS << "::";
   1407   }
   1408 
   1409   if (getDeclName())
   1410     OS << *this;
   1411   else
   1412     OS << "(anonymous)";
   1413 }
   1414 
   1415 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
   1416                                      const PrintingPolicy &Policy,
   1417                                      bool Qualified) const {
   1418   if (Qualified)
   1419     printQualifiedName(OS, Policy);
   1420   else
   1421     printName(OS);
   1422 }
   1423 
   1424 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
   1425   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
   1426 
   1427   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
   1428   // We want to keep it, unless it nominates same namespace.
   1429   if (getKind() == Decl::UsingDirective) {
   1430     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
   1431              ->getOriginalNamespace() ==
   1432            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
   1433              ->getOriginalNamespace();
   1434   }
   1435 
   1436   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
   1437     // For function declarations, we keep track of redeclarations.
   1438     return FD->getPreviousDecl() == OldD;
   1439 
   1440   // For function templates, the underlying function declarations are linked.
   1441   if (const FunctionTemplateDecl *FunctionTemplate
   1442         = dyn_cast<FunctionTemplateDecl>(this))
   1443     if (const FunctionTemplateDecl *OldFunctionTemplate
   1444           = dyn_cast<FunctionTemplateDecl>(OldD))
   1445       return FunctionTemplate->getTemplatedDecl()
   1446                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
   1447 
   1448   // For method declarations, we keep track of redeclarations.
   1449   if (isa<ObjCMethodDecl>(this))
   1450     return false;
   1451 
   1452   // FIXME: Is this correct if one of the decls comes from an inline namespace?
   1453   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
   1454     return true;
   1455 
   1456   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
   1457     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
   1458            cast<UsingShadowDecl>(OldD)->getTargetDecl();
   1459 
   1460   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
   1461     ASTContext &Context = getASTContext();
   1462     return Context.getCanonicalNestedNameSpecifier(
   1463                                      cast<UsingDecl>(this)->getQualifier()) ==
   1464            Context.getCanonicalNestedNameSpecifier(
   1465                                         cast<UsingDecl>(OldD)->getQualifier());
   1466   }
   1467 
   1468   if (isa<UnresolvedUsingValueDecl>(this) &&
   1469       isa<UnresolvedUsingValueDecl>(OldD)) {
   1470     ASTContext &Context = getASTContext();
   1471     return Context.getCanonicalNestedNameSpecifier(
   1472                       cast<UnresolvedUsingValueDecl>(this)->getQualifier()) ==
   1473            Context.getCanonicalNestedNameSpecifier(
   1474                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
   1475   }
   1476 
   1477   // A typedef of an Objective-C class type can replace an Objective-C class
   1478   // declaration or definition, and vice versa.
   1479   // FIXME: Is this correct if one of the decls comes from an inline namespace?
   1480   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
   1481       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
   1482     return true;
   1483 
   1484   // For non-function declarations, if the declarations are of the
   1485   // same kind and have the same parent then this must be a redeclaration,
   1486   // or semantic analysis would not have given us the new declaration.
   1487   // Note that inline namespaces can give us two declarations with the same
   1488   // name and kind in the same scope but different contexts.
   1489   return this->getKind() == OldD->getKind() &&
   1490          this->getDeclContext()->getRedeclContext()->Equals(
   1491              OldD->getDeclContext()->getRedeclContext());
   1492 }
   1493 
   1494 bool NamedDecl::hasLinkage() const {
   1495   return getFormalLinkage() != NoLinkage;
   1496 }
   1497 
   1498 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
   1499   NamedDecl *ND = this;
   1500   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
   1501     ND = UD->getTargetDecl();
   1502 
   1503   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
   1504     return AD->getClassInterface();
   1505 
   1506   return ND;
   1507 }
   1508 
   1509 bool NamedDecl::isCXXInstanceMember() const {
   1510   if (!isCXXClassMember())
   1511     return false;
   1512 
   1513   const NamedDecl *D = this;
   1514   if (isa<UsingShadowDecl>(D))
   1515     D = cast<UsingShadowDecl>(D)->getTargetDecl();
   1516 
   1517   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
   1518     return true;
   1519   if (const CXXMethodDecl *MD =
   1520           dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
   1521     return MD->isInstance();
   1522   return false;
   1523 }
   1524 
   1525 //===----------------------------------------------------------------------===//
   1526 // DeclaratorDecl Implementation
   1527 //===----------------------------------------------------------------------===//
   1528 
   1529 template <typename DeclT>
   1530 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
   1531   if (decl->getNumTemplateParameterLists() > 0)
   1532     return decl->getTemplateParameterList(0)->getTemplateLoc();
   1533   else
   1534     return decl->getInnerLocStart();
   1535 }
   1536 
   1537 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
   1538   TypeSourceInfo *TSI = getTypeSourceInfo();
   1539   if (TSI) return TSI->getTypeLoc().getBeginLoc();
   1540   return SourceLocation();
   1541 }
   1542 
   1543 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   1544   if (QualifierLoc) {
   1545     // Make sure the extended decl info is allocated.
   1546     if (!hasExtInfo()) {
   1547       // Save (non-extended) type source info pointer.
   1548       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1549       // Allocate external info struct.
   1550       DeclInfo = new (getASTContext()) ExtInfo;
   1551       // Restore savedTInfo into (extended) decl info.
   1552       getExtInfo()->TInfo = savedTInfo;
   1553     }
   1554     // Set qualifier info.
   1555     getExtInfo()->QualifierLoc = QualifierLoc;
   1556   } else {
   1557     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   1558     if (hasExtInfo()) {
   1559       if (getExtInfo()->NumTemplParamLists == 0) {
   1560         // Save type source info pointer.
   1561         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
   1562         // Deallocate the extended decl info.
   1563         getASTContext().Deallocate(getExtInfo());
   1564         // Restore savedTInfo into (non-extended) decl info.
   1565         DeclInfo = savedTInfo;
   1566       }
   1567       else
   1568         getExtInfo()->QualifierLoc = QualifierLoc;
   1569     }
   1570   }
   1571 }
   1572 
   1573 void
   1574 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
   1575                                               unsigned NumTPLists,
   1576                                               TemplateParameterList **TPLists) {
   1577   assert(NumTPLists > 0);
   1578   // Make sure the extended decl info is allocated.
   1579   if (!hasExtInfo()) {
   1580     // Save (non-extended) type source info pointer.
   1581     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
   1582     // Allocate external info struct.
   1583     DeclInfo = new (getASTContext()) ExtInfo;
   1584     // Restore savedTInfo into (extended) decl info.
   1585     getExtInfo()->TInfo = savedTInfo;
   1586   }
   1587   // Set the template parameter lists info.
   1588   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   1589 }
   1590 
   1591 SourceLocation DeclaratorDecl::getOuterLocStart() const {
   1592   return getTemplateOrInnerLocStart(this);
   1593 }
   1594 
   1595 namespace {
   1596 
   1597 // Helper function: returns true if QT is or contains a type
   1598 // having a postfix component.
   1599 bool typeIsPostfix(clang::QualType QT) {
   1600   while (true) {
   1601     const Type* T = QT.getTypePtr();
   1602     switch (T->getTypeClass()) {
   1603     default:
   1604       return false;
   1605     case Type::Pointer:
   1606       QT = cast<PointerType>(T)->getPointeeType();
   1607       break;
   1608     case Type::BlockPointer:
   1609       QT = cast<BlockPointerType>(T)->getPointeeType();
   1610       break;
   1611     case Type::MemberPointer:
   1612       QT = cast<MemberPointerType>(T)->getPointeeType();
   1613       break;
   1614     case Type::LValueReference:
   1615     case Type::RValueReference:
   1616       QT = cast<ReferenceType>(T)->getPointeeType();
   1617       break;
   1618     case Type::PackExpansion:
   1619       QT = cast<PackExpansionType>(T)->getPattern();
   1620       break;
   1621     case Type::Paren:
   1622     case Type::ConstantArray:
   1623     case Type::DependentSizedArray:
   1624     case Type::IncompleteArray:
   1625     case Type::VariableArray:
   1626     case Type::FunctionProto:
   1627     case Type::FunctionNoProto:
   1628       return true;
   1629     }
   1630   }
   1631 }
   1632 
   1633 } // namespace
   1634 
   1635 SourceRange DeclaratorDecl::getSourceRange() const {
   1636   SourceLocation RangeEnd = getLocation();
   1637   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   1638     // If the declaration has no name or the type extends past the name take the
   1639     // end location of the type.
   1640     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
   1641       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   1642   }
   1643   return SourceRange(getOuterLocStart(), RangeEnd);
   1644 }
   1645 
   1646 void
   1647 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
   1648                                              unsigned NumTPLists,
   1649                                              TemplateParameterList **TPLists) {
   1650   assert((NumTPLists == 0 || TPLists != nullptr) &&
   1651          "Empty array of template parameters with positive size!");
   1652 
   1653   // Free previous template parameters (if any).
   1654   if (NumTemplParamLists > 0) {
   1655     Context.Deallocate(TemplParamLists);
   1656     TemplParamLists = nullptr;
   1657     NumTemplParamLists = 0;
   1658   }
   1659   // Set info on matched template parameter lists (if any).
   1660   if (NumTPLists > 0) {
   1661     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
   1662     NumTemplParamLists = NumTPLists;
   1663     for (unsigned i = NumTPLists; i-- > 0; )
   1664       TemplParamLists[i] = TPLists[i];
   1665   }
   1666 }
   1667 
   1668 //===----------------------------------------------------------------------===//
   1669 // VarDecl Implementation
   1670 //===----------------------------------------------------------------------===//
   1671 
   1672 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
   1673   switch (SC) {
   1674   case SC_None:                 break;
   1675   case SC_Auto:                 return "auto";
   1676   case SC_Extern:               return "extern";
   1677   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
   1678   case SC_PrivateExtern:        return "__private_extern__";
   1679   case SC_Register:             return "register";
   1680   case SC_Static:               return "static";
   1681   }
   1682 
   1683   llvm_unreachable("Invalid storage class");
   1684 }
   1685 
   1686 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
   1687                  SourceLocation StartLoc, SourceLocation IdLoc,
   1688                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
   1689                  StorageClass SC)
   1690     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
   1691       redeclarable_base(C), Init() {
   1692   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
   1693                 "VarDeclBitfields too large!");
   1694   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
   1695                 "ParmVarDeclBitfields too large!");
   1696   AllBits = 0;
   1697   VarDeclBits.SClass = SC;
   1698   // Everything else is implicitly initialized to false.
   1699 }
   1700 
   1701 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
   1702                          SourceLocation StartL, SourceLocation IdL,
   1703                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
   1704                          StorageClass S) {
   1705   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
   1706 }
   1707 
   1708 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1709   return new (C, ID)
   1710       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
   1711               QualType(), nullptr, SC_None);
   1712 }
   1713 
   1714 void VarDecl::setStorageClass(StorageClass SC) {
   1715   assert(isLegalForVariable(SC));
   1716   VarDeclBits.SClass = SC;
   1717 }
   1718 
   1719 VarDecl::TLSKind VarDecl::getTLSKind() const {
   1720   switch (VarDeclBits.TSCSpec) {
   1721   case TSCS_unspecified:
   1722     if (hasAttr<ThreadAttr>())
   1723       return TLS_Static;
   1724     return TLS_None;
   1725   case TSCS___thread: // Fall through.
   1726   case TSCS__Thread_local:
   1727       return TLS_Static;
   1728   case TSCS_thread_local:
   1729     return TLS_Dynamic;
   1730   }
   1731   llvm_unreachable("Unknown thread storage class specifier!");
   1732 }
   1733 
   1734 SourceRange VarDecl::getSourceRange() const {
   1735   if (const Expr *Init = getInit()) {
   1736     SourceLocation InitEnd = Init->getLocEnd();
   1737     // If Init is implicit, ignore its source range and fallback on
   1738     // DeclaratorDecl::getSourceRange() to handle postfix elements.
   1739     if (InitEnd.isValid() && InitEnd != getLocation())
   1740       return SourceRange(getOuterLocStart(), InitEnd);
   1741   }
   1742   return DeclaratorDecl::getSourceRange();
   1743 }
   1744 
   1745 template<typename T>
   1746 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
   1747   // C++ [dcl.link]p1: All function types, function names with external linkage,
   1748   // and variable names with external linkage have a language linkage.
   1749   if (!D.hasExternalFormalLinkage())
   1750     return NoLanguageLinkage;
   1751 
   1752   // Language linkage is a C++ concept, but saying that everything else in C has
   1753   // C language linkage fits the implementation nicely.
   1754   ASTContext &Context = D.getASTContext();
   1755   if (!Context.getLangOpts().CPlusPlus)
   1756     return CLanguageLinkage;
   1757 
   1758   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
   1759   // language linkage of the names of class members and the function type of
   1760   // class member functions.
   1761   const DeclContext *DC = D.getDeclContext();
   1762   if (DC->isRecord())
   1763     return CXXLanguageLinkage;
   1764 
   1765   // If the first decl is in an extern "C" context, any other redeclaration
   1766   // will have C language linkage. If the first one is not in an extern "C"
   1767   // context, we would have reported an error for any other decl being in one.
   1768   if (isFirstInExternCContext(&D))
   1769     return CLanguageLinkage;
   1770   return CXXLanguageLinkage;
   1771 }
   1772 
   1773 template<typename T>
   1774 static bool isDeclExternC(const T &D) {
   1775   // Since the context is ignored for class members, they can only have C++
   1776   // language linkage or no language linkage.
   1777   const DeclContext *DC = D.getDeclContext();
   1778   if (DC->isRecord()) {
   1779     assert(D.getASTContext().getLangOpts().CPlusPlus);
   1780     return false;
   1781   }
   1782 
   1783   return D.getLanguageLinkage() == CLanguageLinkage;
   1784 }
   1785 
   1786 LanguageLinkage VarDecl::getLanguageLinkage() const {
   1787   return getDeclLanguageLinkage(*this);
   1788 }
   1789 
   1790 bool VarDecl::isExternC() const {
   1791   return isDeclExternC(*this);
   1792 }
   1793 
   1794 bool VarDecl::isInExternCContext() const {
   1795   return getLexicalDeclContext()->isExternCContext();
   1796 }
   1797 
   1798 bool VarDecl::isInExternCXXContext() const {
   1799   return getLexicalDeclContext()->isExternCXXContext();
   1800 }
   1801 
   1802 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
   1803 
   1804 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
   1805   ASTContext &C) const
   1806 {
   1807   // C++ [basic.def]p2:
   1808   //   A declaration is a definition unless [...] it contains the 'extern'
   1809   //   specifier or a linkage-specification and neither an initializer [...],
   1810   //   it declares a static data member in a class declaration [...].
   1811   // C++1y [temp.expl.spec]p15:
   1812   //   An explicit specialization of a static data member or an explicit
   1813   //   specialization of a static data member template is a definition if the
   1814   //   declaration includes an initializer; otherwise, it is a declaration.
   1815   //
   1816   // FIXME: How do you declare (but not define) a partial specialization of
   1817   // a static data member template outside the containing class?
   1818   if (isStaticDataMember()) {
   1819     if (isOutOfLine() &&
   1820         (hasInit() ||
   1821          // If the first declaration is out-of-line, this may be an
   1822          // instantiation of an out-of-line partial specialization of a variable
   1823          // template for which we have not yet instantiated the initializer.
   1824          (getFirstDecl()->isOutOfLine()
   1825               ? getTemplateSpecializationKind() == TSK_Undeclared
   1826               : getTemplateSpecializationKind() !=
   1827                     TSK_ExplicitSpecialization) ||
   1828          isa<VarTemplatePartialSpecializationDecl>(this)))
   1829       return Definition;
   1830     else
   1831       return DeclarationOnly;
   1832   }
   1833   // C99 6.7p5:
   1834   //   A definition of an identifier is a declaration for that identifier that
   1835   //   [...] causes storage to be reserved for that object.
   1836   // Note: that applies for all non-file-scope objects.
   1837   // C99 6.9.2p1:
   1838   //   If the declaration of an identifier for an object has file scope and an
   1839   //   initializer, the declaration is an external definition for the identifier
   1840   if (hasInit())
   1841     return Definition;
   1842 
   1843   if (hasAttr<AliasAttr>())
   1844     return Definition;
   1845 
   1846   // A variable template specialization (other than a static data member
   1847   // template or an explicit specialization) is a declaration until we
   1848   // instantiate its initializer.
   1849   if (isa<VarTemplateSpecializationDecl>(this) &&
   1850       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
   1851     return DeclarationOnly;
   1852 
   1853   if (hasExternalStorage())
   1854     return DeclarationOnly;
   1855 
   1856   // [dcl.link] p7:
   1857   //   A declaration directly contained in a linkage-specification is treated
   1858   //   as if it contains the extern specifier for the purpose of determining
   1859   //   the linkage of the declared name and whether it is a definition.
   1860   if (isSingleLineLanguageLinkage(*this))
   1861     return DeclarationOnly;
   1862 
   1863   // C99 6.9.2p2:
   1864   //   A declaration of an object that has file scope without an initializer,
   1865   //   and without a storage class specifier or the scs 'static', constitutes
   1866   //   a tentative definition.
   1867   // No such thing in C++.
   1868   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
   1869     return TentativeDefinition;
   1870 
   1871   // What's left is (in C, block-scope) declarations without initializers or
   1872   // external storage. These are definitions.
   1873   return Definition;
   1874 }
   1875 
   1876 VarDecl *VarDecl::getActingDefinition() {
   1877   DefinitionKind Kind = isThisDeclarationADefinition();
   1878   if (Kind != TentativeDefinition)
   1879     return nullptr;
   1880 
   1881   VarDecl *LastTentative = nullptr;
   1882   VarDecl *First = getFirstDecl();
   1883   for (auto I : First->redecls()) {
   1884     Kind = I->isThisDeclarationADefinition();
   1885     if (Kind == Definition)
   1886       return nullptr;
   1887     else if (Kind == TentativeDefinition)
   1888       LastTentative = I;
   1889   }
   1890   return LastTentative;
   1891 }
   1892 
   1893 VarDecl *VarDecl::getDefinition(ASTContext &C) {
   1894   VarDecl *First = getFirstDecl();
   1895   for (auto I : First->redecls()) {
   1896     if (I->isThisDeclarationADefinition(C) == Definition)
   1897       return I;
   1898   }
   1899   return nullptr;
   1900 }
   1901 
   1902 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
   1903   DefinitionKind Kind = DeclarationOnly;
   1904 
   1905   const VarDecl *First = getFirstDecl();
   1906   for (auto I : First->redecls()) {
   1907     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
   1908     if (Kind == Definition)
   1909       break;
   1910   }
   1911 
   1912   return Kind;
   1913 }
   1914 
   1915 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
   1916   for (auto I : redecls()) {
   1917     if (auto Expr = I->getInit()) {
   1918       D = I;
   1919       return Expr;
   1920     }
   1921   }
   1922   return nullptr;
   1923 }
   1924 
   1925 bool VarDecl::isOutOfLine() const {
   1926   if (Decl::isOutOfLine())
   1927     return true;
   1928 
   1929   if (!isStaticDataMember())
   1930     return false;
   1931 
   1932   // If this static data member was instantiated from a static data member of
   1933   // a class template, check whether that static data member was defined
   1934   // out-of-line.
   1935   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
   1936     return VD->isOutOfLine();
   1937 
   1938   return false;
   1939 }
   1940 
   1941 VarDecl *VarDecl::getOutOfLineDefinition() {
   1942   if (!isStaticDataMember())
   1943     return nullptr;
   1944 
   1945   for (auto RD : redecls()) {
   1946     if (RD->getLexicalDeclContext()->isFileContext())
   1947       return RD;
   1948   }
   1949 
   1950   return nullptr;
   1951 }
   1952 
   1953 void VarDecl::setInit(Expr *I) {
   1954   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
   1955     Eval->~EvaluatedStmt();
   1956     getASTContext().Deallocate(Eval);
   1957   }
   1958 
   1959   Init = I;
   1960 }
   1961 
   1962 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
   1963   const LangOptions &Lang = C.getLangOpts();
   1964 
   1965   if (!Lang.CPlusPlus)
   1966     return false;
   1967 
   1968   // In C++11, any variable of reference type can be used in a constant
   1969   // expression if it is initialized by a constant expression.
   1970   if (Lang.CPlusPlus11 && getType()->isReferenceType())
   1971     return true;
   1972 
   1973   // Only const objects can be used in constant expressions in C++. C++98 does
   1974   // not require the variable to be non-volatile, but we consider this to be a
   1975   // defect.
   1976   if (!getType().isConstQualified() || getType().isVolatileQualified())
   1977     return false;
   1978 
   1979   // In C++, const, non-volatile variables of integral or enumeration types
   1980   // can be used in constant expressions.
   1981   if (getType()->isIntegralOrEnumerationType())
   1982     return true;
   1983 
   1984   // Additionally, in C++11, non-volatile constexpr variables can be used in
   1985   // constant expressions.
   1986   return Lang.CPlusPlus11 && isConstexpr();
   1987 }
   1988 
   1989 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
   1990 /// form, which contains extra information on the evaluated value of the
   1991 /// initializer.
   1992 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
   1993   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
   1994   if (!Eval) {
   1995     Stmt *S = Init.get<Stmt *>();
   1996     // Note: EvaluatedStmt contains an APValue, which usually holds
   1997     // resources not allocated from the ASTContext.  We need to do some
   1998     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
   1999     // where we can detect whether there's anything to clean up or not.
   2000     Eval = new (getASTContext()) EvaluatedStmt;
   2001     Eval->Value = S;
   2002     Init = Eval;
   2003   }
   2004   return Eval;
   2005 }
   2006 
   2007 APValue *VarDecl::evaluateValue() const {
   2008   SmallVector<PartialDiagnosticAt, 8> Notes;
   2009   return evaluateValue(Notes);
   2010 }
   2011 
   2012 namespace {
   2013 // Destroy an APValue that was allocated in an ASTContext.
   2014 void DestroyAPValue(void* UntypedValue) {
   2015   static_cast<APValue*>(UntypedValue)->~APValue();
   2016 }
   2017 } // namespace
   2018 
   2019 APValue *VarDecl::evaluateValue(
   2020     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   2021   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   2022 
   2023   // We only produce notes indicating why an initializer is non-constant the
   2024   // first time it is evaluated. FIXME: The notes won't always be emitted the
   2025   // first time we try evaluation, so might not be produced at all.
   2026   if (Eval->WasEvaluated)
   2027     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
   2028 
   2029   const Expr *Init = cast<Expr>(Eval->Value);
   2030   assert(!Init->isValueDependent());
   2031 
   2032   if (Eval->IsEvaluating) {
   2033     // FIXME: Produce a diagnostic for self-initialization.
   2034     Eval->CheckedICE = true;
   2035     Eval->IsICE = false;
   2036     return nullptr;
   2037   }
   2038 
   2039   Eval->IsEvaluating = true;
   2040 
   2041   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
   2042                                             this, Notes);
   2043 
   2044   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
   2045   // or that it's empty (so that there's nothing to clean up) if evaluation
   2046   // failed.
   2047   if (!Result)
   2048     Eval->Evaluated = APValue();
   2049   else if (Eval->Evaluated.needsCleanup())
   2050     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
   2051 
   2052   Eval->IsEvaluating = false;
   2053   Eval->WasEvaluated = true;
   2054 
   2055   // In C++11, we have determined whether the initializer was a constant
   2056   // expression as a side-effect.
   2057   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
   2058     Eval->CheckedICE = true;
   2059     Eval->IsICE = Result && Notes.empty();
   2060   }
   2061 
   2062   return Result ? &Eval->Evaluated : nullptr;
   2063 }
   2064 
   2065 bool VarDecl::checkInitIsICE() const {
   2066   // Initializers of weak variables are never ICEs.
   2067   if (isWeak())
   2068     return false;
   2069 
   2070   EvaluatedStmt *Eval = ensureEvaluatedStmt();
   2071   if (Eval->CheckedICE)
   2072     // We have already checked whether this subexpression is an
   2073     // integral constant expression.
   2074     return Eval->IsICE;
   2075 
   2076   const Expr *Init = cast<Expr>(Eval->Value);
   2077   assert(!Init->isValueDependent());
   2078 
   2079   // In C++11, evaluate the initializer to check whether it's a constant
   2080   // expression.
   2081   if (getASTContext().getLangOpts().CPlusPlus11) {
   2082     SmallVector<PartialDiagnosticAt, 8> Notes;
   2083     evaluateValue(Notes);
   2084     return Eval->IsICE;
   2085   }
   2086 
   2087   // It's an ICE whether or not the definition we found is
   2088   // out-of-line.  See DR 721 and the discussion in Clang PR
   2089   // 6206 for details.
   2090 
   2091   if (Eval->CheckingICE)
   2092     return false;
   2093   Eval->CheckingICE = true;
   2094 
   2095   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
   2096   Eval->CheckingICE = false;
   2097   Eval->CheckedICE = true;
   2098   return Eval->IsICE;
   2099 }
   2100 
   2101 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
   2102   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2103     return cast<VarDecl>(MSI->getInstantiatedFrom());
   2104 
   2105   return nullptr;
   2106 }
   2107 
   2108 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
   2109   if (const VarTemplateSpecializationDecl *Spec =
   2110           dyn_cast<VarTemplateSpecializationDecl>(this))
   2111     return Spec->getSpecializationKind();
   2112 
   2113   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2114     return MSI->getTemplateSpecializationKind();
   2115 
   2116   return TSK_Undeclared;
   2117 }
   2118 
   2119 SourceLocation VarDecl::getPointOfInstantiation() const {
   2120   if (const VarTemplateSpecializationDecl *Spec =
   2121           dyn_cast<VarTemplateSpecializationDecl>(this))
   2122     return Spec->getPointOfInstantiation();
   2123 
   2124   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   2125     return MSI->getPointOfInstantiation();
   2126 
   2127   return SourceLocation();
   2128 }
   2129 
   2130 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
   2131   return getASTContext().getTemplateOrSpecializationInfo(this)
   2132       .dyn_cast<VarTemplateDecl *>();
   2133 }
   2134 
   2135 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
   2136   getASTContext().setTemplateOrSpecializationInfo(this, Template);
   2137 }
   2138 
   2139 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
   2140   if (isStaticDataMember())
   2141     // FIXME: Remove ?
   2142     // return getASTContext().getInstantiatedFromStaticDataMember(this);
   2143     return getASTContext().getTemplateOrSpecializationInfo(this)
   2144         .dyn_cast<MemberSpecializationInfo *>();
   2145   return nullptr;
   2146 }
   2147 
   2148 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   2149                                          SourceLocation PointOfInstantiation) {
   2150   assert((isa<VarTemplateSpecializationDecl>(this) ||
   2151           getMemberSpecializationInfo()) &&
   2152          "not a variable or static data member template specialization");
   2153 
   2154   if (VarTemplateSpecializationDecl *Spec =
   2155           dyn_cast<VarTemplateSpecializationDecl>(this)) {
   2156     Spec->setSpecializationKind(TSK);
   2157     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
   2158         Spec->getPointOfInstantiation().isInvalid())
   2159       Spec->setPointOfInstantiation(PointOfInstantiation);
   2160   }
   2161 
   2162   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
   2163     MSI->setTemplateSpecializationKind(TSK);
   2164     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
   2165         MSI->getPointOfInstantiation().isInvalid())
   2166       MSI->setPointOfInstantiation(PointOfInstantiation);
   2167   }
   2168 }
   2169 
   2170 void
   2171 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
   2172                                             TemplateSpecializationKind TSK) {
   2173   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
   2174          "Previous template or instantiation?");
   2175   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
   2176 }
   2177 
   2178 //===----------------------------------------------------------------------===//
   2179 // ParmVarDecl Implementation
   2180 //===----------------------------------------------------------------------===//
   2181 
   2182 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
   2183                                  SourceLocation StartLoc,
   2184                                  SourceLocation IdLoc, IdentifierInfo *Id,
   2185                                  QualType T, TypeSourceInfo *TInfo,
   2186                                  StorageClass S, Expr *DefArg) {
   2187   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
   2188                                  S, DefArg);
   2189 }
   2190 
   2191 QualType ParmVarDecl::getOriginalType() const {
   2192   TypeSourceInfo *TSI = getTypeSourceInfo();
   2193   QualType T = TSI ? TSI->getType() : getType();
   2194   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
   2195     return DT->getOriginalType();
   2196   return T;
   2197 }
   2198 
   2199 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2200   return new (C, ID)
   2201       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
   2202                   nullptr, QualType(), nullptr, SC_None, nullptr);
   2203 }
   2204 
   2205 SourceRange ParmVarDecl::getSourceRange() const {
   2206   if (!hasInheritedDefaultArg()) {
   2207     SourceRange ArgRange = getDefaultArgRange();
   2208     if (ArgRange.isValid())
   2209       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
   2210   }
   2211 
   2212   // DeclaratorDecl considers the range of postfix types as overlapping with the
   2213   // declaration name, but this is not the case with parameters in ObjC methods.
   2214   if (isa<ObjCMethodDecl>(getDeclContext()))
   2215     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
   2216 
   2217   return DeclaratorDecl::getSourceRange();
   2218 }
   2219 
   2220 Expr *ParmVarDecl::getDefaultArg() {
   2221   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
   2222   assert(!hasUninstantiatedDefaultArg() &&
   2223          "Default argument is not yet instantiated!");
   2224 
   2225   Expr *Arg = getInit();
   2226   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
   2227     return E->getSubExpr();
   2228 
   2229   return Arg;
   2230 }
   2231 
   2232 SourceRange ParmVarDecl::getDefaultArgRange() const {
   2233   if (const Expr *E = getInit())
   2234     return E->getSourceRange();
   2235 
   2236   if (hasUninstantiatedDefaultArg())
   2237     return getUninstantiatedDefaultArg()->getSourceRange();
   2238 
   2239   return SourceRange();
   2240 }
   2241 
   2242 bool ParmVarDecl::isParameterPack() const {
   2243   return isa<PackExpansionType>(getType());
   2244 }
   2245 
   2246 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
   2247   getASTContext().setParameterIndex(this, parameterIndex);
   2248   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
   2249 }
   2250 
   2251 unsigned ParmVarDecl::getParameterIndexLarge() const {
   2252   return getASTContext().getParameterIndex(this);
   2253 }
   2254 
   2255 //===----------------------------------------------------------------------===//
   2256 // FunctionDecl Implementation
   2257 //===----------------------------------------------------------------------===//
   2258 
   2259 void FunctionDecl::getNameForDiagnostic(
   2260     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
   2261   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
   2262   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
   2263   if (TemplateArgs)
   2264     TemplateSpecializationType::PrintTemplateArgumentList(
   2265         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
   2266 }
   2267 
   2268 bool FunctionDecl::isVariadic() const {
   2269   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
   2270     return FT->isVariadic();
   2271   return false;
   2272 }
   2273 
   2274 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
   2275   for (auto I : redecls()) {
   2276     if (I->Body || I->IsLateTemplateParsed) {
   2277       Definition = I;
   2278       return true;
   2279     }
   2280   }
   2281 
   2282   return false;
   2283 }
   2284 
   2285 bool FunctionDecl::hasTrivialBody() const
   2286 {
   2287   Stmt *S = getBody();
   2288   if (!S) {
   2289     // Since we don't have a body for this function, we don't know if it's
   2290     // trivial or not.
   2291     return false;
   2292   }
   2293 
   2294   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
   2295     return true;
   2296   return false;
   2297 }
   2298 
   2299 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
   2300   for (auto I : redecls()) {
   2301     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
   2302         I->hasAttr<AliasAttr>()) {
   2303       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
   2304       return true;
   2305     }
   2306   }
   2307 
   2308   return false;
   2309 }
   2310 
   2311 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
   2312   if (!hasBody(Definition))
   2313     return nullptr;
   2314 
   2315   if (Definition->Body)
   2316     return Definition->Body.get(getASTContext().getExternalSource());
   2317 
   2318   return nullptr;
   2319 }
   2320 
   2321 void FunctionDecl::setBody(Stmt *B) {
   2322   Body = B;
   2323   if (B)
   2324     EndRangeLoc = B->getLocEnd();
   2325 }
   2326 
   2327 void FunctionDecl::setPure(bool P) {
   2328   IsPure = P;
   2329   if (P)
   2330     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
   2331       Parent->markedVirtualFunctionPure();
   2332 }
   2333 
   2334 template<std::size_t Len>
   2335 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
   2336   IdentifierInfo *II = ND->getIdentifier();
   2337   return II && II->isStr(Str);
   2338 }
   2339 
   2340 bool FunctionDecl::isMain() const {
   2341   const TranslationUnitDecl *tunit =
   2342     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
   2343   return tunit &&
   2344          !tunit->getASTContext().getLangOpts().Freestanding &&
   2345          isNamed(this, "main");
   2346 }
   2347 
   2348 bool FunctionDecl::isMSVCRTEntryPoint() const {
   2349   const TranslationUnitDecl *TUnit =
   2350       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
   2351   if (!TUnit)
   2352     return false;
   2353 
   2354   // Even though we aren't really targeting MSVCRT if we are freestanding,
   2355   // semantic analysis for these functions remains the same.
   2356 
   2357   // MSVCRT entry points only exist on MSVCRT targets.
   2358   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
   2359     return false;
   2360 
   2361   // Nameless functions like constructors cannot be entry points.
   2362   if (!getIdentifier())
   2363     return false;
   2364 
   2365   return llvm::StringSwitch<bool>(getName())
   2366       .Cases("main",     // an ANSI console app
   2367              "wmain",    // a Unicode console App
   2368              "WinMain",  // an ANSI GUI app
   2369              "wWinMain", // a Unicode GUI app
   2370              "DllMain",  // a DLL
   2371              true)
   2372       .Default(false);
   2373 }
   2374 
   2375 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
   2376   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
   2377   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
   2378          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
   2379          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
   2380          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
   2381 
   2382   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
   2383     return false;
   2384 
   2385   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
   2386   if (proto->getNumParams() != 2 || proto->isVariadic())
   2387     return false;
   2388 
   2389   ASTContext &Context =
   2390     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
   2391       ->getASTContext();
   2392 
   2393   // The result type and first argument type are constant across all
   2394   // these operators.  The second argument must be exactly void*.
   2395   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
   2396 }
   2397 
   2398 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
   2399   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
   2400     return false;
   2401   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
   2402       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
   2403       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
   2404       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
   2405     return false;
   2406 
   2407   if (isa<CXXRecordDecl>(getDeclContext()))
   2408     return false;
   2409 
   2410   // This can only fail for an invalid 'operator new' declaration.
   2411   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
   2412     return false;
   2413 
   2414   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
   2415   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
   2416     return false;
   2417 
   2418   // If this is a single-parameter function, it must be a replaceable global
   2419   // allocation or deallocation function.
   2420   if (FPT->getNumParams() == 1)
   2421     return true;
   2422 
   2423   // Otherwise, we're looking for a second parameter whose type is
   2424   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
   2425   QualType Ty = FPT->getParamType(1);
   2426   ASTContext &Ctx = getASTContext();
   2427   if (Ctx.getLangOpts().SizedDeallocation &&
   2428       Ctx.hasSameType(Ty, Ctx.getSizeType()))
   2429     return true;
   2430   if (!Ty->isReferenceType())
   2431     return false;
   2432   Ty = Ty->getPointeeType();
   2433   if (Ty.getCVRQualifiers() != Qualifiers::Const)
   2434     return false;
   2435   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
   2436   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
   2437 }
   2438 
   2439 FunctionDecl *
   2440 FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const {
   2441   ASTContext &Ctx = getASTContext();
   2442   if (!Ctx.getLangOpts().SizedDeallocation)
   2443     return nullptr;
   2444 
   2445   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
   2446     return nullptr;
   2447   if (getDeclName().getCXXOverloadedOperator() != OO_Delete &&
   2448       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
   2449     return nullptr;
   2450   if (isa<CXXRecordDecl>(getDeclContext()))
   2451     return nullptr;
   2452 
   2453   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
   2454     return nullptr;
   2455 
   2456   if (getNumParams() != 2 || isVariadic() ||
   2457       !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getParamType(1),
   2458                        Ctx.getSizeType()))
   2459     return nullptr;
   2460 
   2461   // This is a sized deallocation function. Find the corresponding unsized
   2462   // deallocation function.
   2463   lookup_const_result R = getDeclContext()->lookup(getDeclName());
   2464   for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE;
   2465        ++RI)
   2466     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI))
   2467       if (FD->getNumParams() == 1 && !FD->isVariadic())
   2468         return FD;
   2469   return nullptr;
   2470 }
   2471 
   2472 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
   2473   return getDeclLanguageLinkage(*this);
   2474 }
   2475 
   2476 bool FunctionDecl::isExternC() const {
   2477   return isDeclExternC(*this);
   2478 }
   2479 
   2480 bool FunctionDecl::isInExternCContext() const {
   2481   return getLexicalDeclContext()->isExternCContext();
   2482 }
   2483 
   2484 bool FunctionDecl::isInExternCXXContext() const {
   2485   return getLexicalDeclContext()->isExternCXXContext();
   2486 }
   2487 
   2488 bool FunctionDecl::isGlobal() const {
   2489   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
   2490     return Method->isStatic();
   2491 
   2492   if (getCanonicalDecl()->getStorageClass() == SC_Static)
   2493     return false;
   2494 
   2495   for (const DeclContext *DC = getDeclContext();
   2496        DC->isNamespace();
   2497        DC = DC->getParent()) {
   2498     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
   2499       if (!Namespace->getDeclName())
   2500         return false;
   2501       break;
   2502     }
   2503   }
   2504 
   2505   return true;
   2506 }
   2507 
   2508 bool FunctionDecl::isNoReturn() const {
   2509   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
   2510          hasAttr<C11NoReturnAttr>() ||
   2511          getType()->getAs<FunctionType>()->getNoReturnAttr();
   2512 }
   2513 
   2514 void
   2515 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
   2516   redeclarable_base::setPreviousDecl(PrevDecl);
   2517 
   2518   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
   2519     FunctionTemplateDecl *PrevFunTmpl
   2520       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
   2521     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
   2522     FunTmpl->setPreviousDecl(PrevFunTmpl);
   2523   }
   2524 
   2525   if (PrevDecl && PrevDecl->IsInline)
   2526     IsInline = true;
   2527 }
   2528 
   2529 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
   2530   return getFirstDecl();
   2531 }
   2532 
   2533 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
   2534 
   2535 /// \brief Returns a value indicating whether this function
   2536 /// corresponds to a builtin function.
   2537 ///
   2538 /// The function corresponds to a built-in function if it is
   2539 /// declared at translation scope or within an extern "C" block and
   2540 /// its name matches with the name of a builtin. The returned value
   2541 /// will be 0 for functions that do not correspond to a builtin, a
   2542 /// value of type \c Builtin::ID if in the target-independent range
   2543 /// \c [1,Builtin::First), or a target-specific builtin value.
   2544 unsigned FunctionDecl::getBuiltinID() const {
   2545   if (!getIdentifier())
   2546     return 0;
   2547 
   2548   unsigned BuiltinID = getIdentifier()->getBuiltinID();
   2549   if (!BuiltinID)
   2550     return 0;
   2551 
   2552   ASTContext &Context = getASTContext();
   2553   if (Context.getLangOpts().CPlusPlus) {
   2554     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
   2555         getFirstDecl()->getDeclContext());
   2556     // In C++, the first declaration of a builtin is always inside an implicit
   2557     // extern "C".
   2558     // FIXME: A recognised library function may not be directly in an extern "C"
   2559     // declaration, for instance "extern "C" { namespace std { decl } }".
   2560     if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
   2561       return 0;
   2562   }
   2563 
   2564   // If the function is marked "overloadable", it has a different mangled name
   2565   // and is not the C library function.
   2566   if (hasAttr<OverloadableAttr>())
   2567     return 0;
   2568 
   2569   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
   2570     return BuiltinID;
   2571 
   2572   // This function has the name of a known C library
   2573   // function. Determine whether it actually refers to the C library
   2574   // function or whether it just has the same name.
   2575 
   2576   // If this is a static function, it's not a builtin.
   2577   if (getStorageClass() == SC_Static)
   2578     return 0;
   2579 
   2580   return BuiltinID;
   2581 }
   2582 
   2583 
   2584 /// getNumParams - Return the number of parameters this function must have
   2585 /// based on its FunctionType.  This is the length of the ParamInfo array
   2586 /// after it has been created.
   2587 unsigned FunctionDecl::getNumParams() const {
   2588   const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
   2589   return FPT ? FPT->getNumParams() : 0;
   2590 }
   2591 
   2592 void FunctionDecl::setParams(ASTContext &C,
   2593                              ArrayRef<ParmVarDecl *> NewParamInfo) {
   2594   assert(!ParamInfo && "Already has param info!");
   2595   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
   2596 
   2597   // Zero params -> null pointer.
   2598   if (!NewParamInfo.empty()) {
   2599     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
   2600     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   2601   }
   2602 }
   2603 
   2604 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
   2605   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
   2606 
   2607   if (!NewDecls.empty()) {
   2608     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
   2609     std::copy(NewDecls.begin(), NewDecls.end(), A);
   2610     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
   2611     // Move declarations introduced in prototype to the function context.
   2612     for (auto I : NewDecls) {
   2613       DeclContext *DC = I->getDeclContext();
   2614       // Forward-declared reference to an enumeration is not added to
   2615       // declaration scope, so skip declaration that is absent from its
   2616       // declaration contexts.
   2617       if (DC->containsDecl(I)) {
   2618           DC->removeDecl(I);
   2619           I->setDeclContext(this);
   2620           addDecl(I);
   2621       }
   2622     }
   2623   }
   2624 }
   2625 
   2626 /// getMinRequiredArguments - Returns the minimum number of arguments
   2627 /// needed to call this function. This may be fewer than the number of
   2628 /// function parameters, if some of the parameters have default
   2629 /// arguments (in C++) or are parameter packs (C++11).
   2630 unsigned FunctionDecl::getMinRequiredArguments() const {
   2631   if (!getASTContext().getLangOpts().CPlusPlus)
   2632     return getNumParams();
   2633 
   2634   unsigned NumRequiredArgs = 0;
   2635   for (auto *Param : params())
   2636     if (!Param->isParameterPack() && !Param->hasDefaultArg())
   2637       ++NumRequiredArgs;
   2638   return NumRequiredArgs;
   2639 }
   2640 
   2641 /// \brief The combination of the extern and inline keywords under MSVC forces
   2642 /// the function to be required.
   2643 ///
   2644 /// Note: This function assumes that we will only get called when isInlined()
   2645 /// would return true for this FunctionDecl.
   2646 bool FunctionDecl::isMSExternInline() const {
   2647   assert(isInlined() && "expected to get called on an inlined function!");
   2648 
   2649   const ASTContext &Context = getASTContext();
   2650   if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
   2651     return false;
   2652 
   2653   for (const FunctionDecl *FD = this; FD; FD = FD->getPreviousDecl())
   2654     if (FD->getStorageClass() == SC_Extern)
   2655       return true;
   2656 
   2657   return false;
   2658 }
   2659 
   2660 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
   2661   if (Redecl->getStorageClass() != SC_Extern)
   2662     return false;
   2663 
   2664   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
   2665        FD = FD->getPreviousDecl())
   2666     if (FD->getStorageClass() == SC_Extern)
   2667       return false;
   2668 
   2669   return true;
   2670 }
   2671 
   2672 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
   2673   // Only consider file-scope declarations in this test.
   2674   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
   2675     return false;
   2676 
   2677   // Only consider explicit declarations; the presence of a builtin for a
   2678   // libcall shouldn't affect whether a definition is externally visible.
   2679   if (Redecl->isImplicit())
   2680     return false;
   2681 
   2682   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
   2683     return true; // Not an inline definition
   2684 
   2685   return false;
   2686 }
   2687 
   2688 /// \brief For a function declaration in C or C++, determine whether this
   2689 /// declaration causes the definition to be externally visible.
   2690 ///
   2691 /// For instance, this determines if adding the current declaration to the set
   2692 /// of redeclarations of the given functions causes
   2693 /// isInlineDefinitionExternallyVisible to change from false to true.
   2694 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
   2695   assert(!doesThisDeclarationHaveABody() &&
   2696          "Must have a declaration without a body.");
   2697 
   2698   ASTContext &Context = getASTContext();
   2699 
   2700   if (Context.getLangOpts().MSVCCompat) {
   2701     const FunctionDecl *Definition;
   2702     if (hasBody(Definition) && Definition->isInlined() &&
   2703         redeclForcesDefMSVC(this))
   2704       return true;
   2705   }
   2706 
   2707   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2708     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
   2709     // an externally visible definition.
   2710     //
   2711     // FIXME: What happens if gnu_inline gets added on after the first
   2712     // declaration?
   2713     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
   2714       return false;
   2715 
   2716     const FunctionDecl *Prev = this;
   2717     bool FoundBody = false;
   2718     while ((Prev = Prev->getPreviousDecl())) {
   2719       FoundBody |= Prev->Body.isValid();
   2720 
   2721       if (Prev->Body) {
   2722         // If it's not the case that both 'inline' and 'extern' are
   2723         // specified on the definition, then it is always externally visible.
   2724         if (!Prev->isInlineSpecified() ||
   2725             Prev->getStorageClass() != SC_Extern)
   2726           return false;
   2727       } else if (Prev->isInlineSpecified() &&
   2728                  Prev->getStorageClass() != SC_Extern) {
   2729         return false;
   2730       }
   2731     }
   2732     return FoundBody;
   2733   }
   2734 
   2735   if (Context.getLangOpts().CPlusPlus)
   2736     return false;
   2737 
   2738   // C99 6.7.4p6:
   2739   //   [...] If all of the file scope declarations for a function in a
   2740   //   translation unit include the inline function specifier without extern,
   2741   //   then the definition in that translation unit is an inline definition.
   2742   if (isInlineSpecified() && getStorageClass() != SC_Extern)
   2743     return false;
   2744   const FunctionDecl *Prev = this;
   2745   bool FoundBody = false;
   2746   while ((Prev = Prev->getPreviousDecl())) {
   2747     FoundBody |= Prev->Body.isValid();
   2748     if (RedeclForcesDefC99(Prev))
   2749       return false;
   2750   }
   2751   return FoundBody;
   2752 }
   2753 
   2754 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
   2755   const TypeSourceInfo *TSI = getTypeSourceInfo();
   2756   if (!TSI)
   2757     return SourceRange();
   2758   FunctionTypeLoc FTL =
   2759       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
   2760   if (!FTL)
   2761     return SourceRange();
   2762 
   2763   // Skip self-referential return types.
   2764   const SourceManager &SM = getASTContext().getSourceManager();
   2765   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
   2766   SourceLocation Boundary = getNameInfo().getLocStart();
   2767   if (RTRange.isInvalid() || Boundary.isInvalid() ||
   2768       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
   2769     return SourceRange();
   2770 
   2771   return RTRange;
   2772 }
   2773 
   2774 /// \brief For an inline function definition in C, or for a gnu_inline function
   2775 /// in C++, determine whether the definition will be externally visible.
   2776 ///
   2777 /// Inline function definitions are always available for inlining optimizations.
   2778 /// However, depending on the language dialect, declaration specifiers, and
   2779 /// attributes, the definition of an inline function may or may not be
   2780 /// "externally" visible to other translation units in the program.
   2781 ///
   2782 /// In C99, inline definitions are not externally visible by default. However,
   2783 /// if even one of the global-scope declarations is marked "extern inline", the
   2784 /// inline definition becomes externally visible (C99 6.7.4p6).
   2785 ///
   2786 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
   2787 /// definition, we use the GNU semantics for inline, which are nearly the
   2788 /// opposite of C99 semantics. In particular, "inline" by itself will create
   2789 /// an externally visible symbol, but "extern inline" will not create an
   2790 /// externally visible symbol.
   2791 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
   2792   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
   2793   assert(isInlined() && "Function must be inline");
   2794   ASTContext &Context = getASTContext();
   2795 
   2796   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
   2797     // Note: If you change the logic here, please change
   2798     // doesDeclarationForceExternallyVisibleDefinition as well.
   2799     //
   2800     // If it's not the case that both 'inline' and 'extern' are
   2801     // specified on the definition, then this inline definition is
   2802     // externally visible.
   2803     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
   2804       return true;
   2805 
   2806     // If any declaration is 'inline' but not 'extern', then this definition
   2807     // is externally visible.
   2808     for (auto Redecl : redecls()) {
   2809       if (Redecl->isInlineSpecified() &&
   2810           Redecl->getStorageClass() != SC_Extern)
   2811         return true;
   2812     }
   2813 
   2814     return false;
   2815   }
   2816 
   2817   // The rest of this function is C-only.
   2818   assert(!Context.getLangOpts().CPlusPlus &&
   2819          "should not use C inline rules in C++");
   2820 
   2821   // C99 6.7.4p6:
   2822   //   [...] If all of the file scope declarations for a function in a
   2823   //   translation unit include the inline function specifier without extern,
   2824   //   then the definition in that translation unit is an inline definition.
   2825   for (auto Redecl : redecls()) {
   2826     if (RedeclForcesDefC99(Redecl))
   2827       return true;
   2828   }
   2829 
   2830   // C99 6.7.4p6:
   2831   //   An inline definition does not provide an external definition for the
   2832   //   function, and does not forbid an external definition in another
   2833   //   translation unit.
   2834   return false;
   2835 }
   2836 
   2837 /// getOverloadedOperator - Which C++ overloaded operator this
   2838 /// function represents, if any.
   2839 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
   2840   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
   2841     return getDeclName().getCXXOverloadedOperator();
   2842   else
   2843     return OO_None;
   2844 }
   2845 
   2846 /// getLiteralIdentifier - The literal suffix identifier this function
   2847 /// represents, if any.
   2848 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
   2849   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
   2850     return getDeclName().getCXXLiteralIdentifier();
   2851   else
   2852     return nullptr;
   2853 }
   2854 
   2855 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
   2856   if (TemplateOrSpecialization.isNull())
   2857     return TK_NonTemplate;
   2858   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
   2859     return TK_FunctionTemplate;
   2860   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
   2861     return TK_MemberSpecialization;
   2862   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
   2863     return TK_FunctionTemplateSpecialization;
   2864   if (TemplateOrSpecialization.is
   2865                                <DependentFunctionTemplateSpecializationInfo*>())
   2866     return TK_DependentFunctionTemplateSpecialization;
   2867 
   2868   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
   2869 }
   2870 
   2871 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
   2872   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
   2873     return cast<FunctionDecl>(Info->getInstantiatedFrom());
   2874 
   2875   return nullptr;
   2876 }
   2877 
   2878 void
   2879 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
   2880                                                FunctionDecl *FD,
   2881                                                TemplateSpecializationKind TSK) {
   2882   assert(TemplateOrSpecialization.isNull() &&
   2883          "Member function is already a specialization");
   2884   MemberSpecializationInfo *Info
   2885     = new (C) MemberSpecializationInfo(FD, TSK);
   2886   TemplateOrSpecialization = Info;
   2887 }
   2888 
   2889 bool FunctionDecl::isImplicitlyInstantiable() const {
   2890   // If the function is invalid, it can't be implicitly instantiated.
   2891   if (isInvalidDecl())
   2892     return false;
   2893 
   2894   switch (getTemplateSpecializationKind()) {
   2895   case TSK_Undeclared:
   2896   case TSK_ExplicitInstantiationDefinition:
   2897     return false;
   2898 
   2899   case TSK_ImplicitInstantiation:
   2900     return true;
   2901 
   2902   // It is possible to instantiate TSK_ExplicitSpecialization kind
   2903   // if the FunctionDecl has a class scope specialization pattern.
   2904   case TSK_ExplicitSpecialization:
   2905     return getClassScopeSpecializationPattern() != nullptr;
   2906 
   2907   case TSK_ExplicitInstantiationDeclaration:
   2908     // Handled below.
   2909     break;
   2910   }
   2911 
   2912   // Find the actual template from which we will instantiate.
   2913   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
   2914   bool HasPattern = false;
   2915   if (PatternDecl)
   2916     HasPattern = PatternDecl->hasBody(PatternDecl);
   2917 
   2918   // C++0x [temp.explicit]p9:
   2919   //   Except for inline functions, other explicit instantiation declarations
   2920   //   have the effect of suppressing the implicit instantiation of the entity
   2921   //   to which they refer.
   2922   if (!HasPattern || !PatternDecl)
   2923     return true;
   2924 
   2925   return PatternDecl->isInlined();
   2926 }
   2927 
   2928 bool FunctionDecl::isTemplateInstantiation() const {
   2929   switch (getTemplateSpecializationKind()) {
   2930     case TSK_Undeclared:
   2931     case TSK_ExplicitSpecialization:
   2932       return false;
   2933     case TSK_ImplicitInstantiation:
   2934     case TSK_ExplicitInstantiationDeclaration:
   2935     case TSK_ExplicitInstantiationDefinition:
   2936       return true;
   2937   }
   2938   llvm_unreachable("All TSK values handled.");
   2939 }
   2940 
   2941 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
   2942   // Handle class scope explicit specialization special case.
   2943   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
   2944     return getClassScopeSpecializationPattern();
   2945 
   2946   // If this is a generic lambda call operator specialization, its
   2947   // instantiation pattern is always its primary template's pattern
   2948   // even if its primary template was instantiated from another
   2949   // member template (which happens with nested generic lambdas).
   2950   // Since a lambda's call operator's body is transformed eagerly,
   2951   // we don't have to go hunting for a prototype definition template
   2952   // (i.e. instantiated-from-member-template) to use as an instantiation
   2953   // pattern.
   2954 
   2955   if (isGenericLambdaCallOperatorSpecialization(
   2956           dyn_cast<CXXMethodDecl>(this))) {
   2957     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
   2958                                    "generated from a primary call operator "
   2959                                    "template");
   2960     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
   2961            "A generic lambda call operator template must always have a body - "
   2962            "even if instantiated from a prototype (i.e. as written) member "
   2963            "template");
   2964     return getPrimaryTemplate()->getTemplatedDecl();
   2965   }
   2966 
   2967   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
   2968     while (Primary->getInstantiatedFromMemberTemplate()) {
   2969       // If we have hit a point where the user provided a specialization of
   2970       // this template, we're done looking.
   2971       if (Primary->isMemberSpecialization())
   2972         break;
   2973       Primary = Primary->getInstantiatedFromMemberTemplate();
   2974     }
   2975 
   2976     return Primary->getTemplatedDecl();
   2977   }
   2978 
   2979   return getInstantiatedFromMemberFunction();
   2980 }
   2981 
   2982 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
   2983   if (FunctionTemplateSpecializationInfo *Info
   2984         = TemplateOrSpecialization
   2985             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   2986     return Info->Template.getPointer();
   2987   }
   2988   return nullptr;
   2989 }
   2990 
   2991 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
   2992     return getASTContext().getClassScopeSpecializationPattern(this);
   2993 }
   2994 
   2995 const TemplateArgumentList *
   2996 FunctionDecl::getTemplateSpecializationArgs() const {
   2997   if (FunctionTemplateSpecializationInfo *Info
   2998         = TemplateOrSpecialization
   2999             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   3000     return Info->TemplateArguments;
   3001   }
   3002   return nullptr;
   3003 }
   3004 
   3005 const ASTTemplateArgumentListInfo *
   3006 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
   3007   if (FunctionTemplateSpecializationInfo *Info
   3008         = TemplateOrSpecialization
   3009             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
   3010     return Info->TemplateArgumentsAsWritten;
   3011   }
   3012   return nullptr;
   3013 }
   3014 
   3015 void
   3016 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
   3017                                                 FunctionTemplateDecl *Template,
   3018                                      const TemplateArgumentList *TemplateArgs,
   3019                                                 void *InsertPos,
   3020                                                 TemplateSpecializationKind TSK,
   3021                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
   3022                                           SourceLocation PointOfInstantiation) {
   3023   assert(TSK != TSK_Undeclared &&
   3024          "Must specify the type of function template specialization");
   3025   FunctionTemplateSpecializationInfo *Info
   3026     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   3027   if (!Info)
   3028     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
   3029                                                       TemplateArgs,
   3030                                                       TemplateArgsAsWritten,
   3031                                                       PointOfInstantiation);
   3032   TemplateOrSpecialization = Info;
   3033   Template->addSpecialization(Info, InsertPos);
   3034 }
   3035 
   3036 void
   3037 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
   3038                                     const UnresolvedSetImpl &Templates,
   3039                              const TemplateArgumentListInfo &TemplateArgs) {
   3040   assert(TemplateOrSpecialization.isNull());
   3041   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
   3042   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
   3043   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
   3044   void *Buffer = Context.Allocate(Size);
   3045   DependentFunctionTemplateSpecializationInfo *Info =
   3046     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
   3047                                                              TemplateArgs);
   3048   TemplateOrSpecialization = Info;
   3049 }
   3050 
   3051 DependentFunctionTemplateSpecializationInfo::
   3052 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
   3053                                       const TemplateArgumentListInfo &TArgs)
   3054   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
   3055 
   3056   d.NumTemplates = Ts.size();
   3057   d.NumArgs = TArgs.size();
   3058 
   3059   FunctionTemplateDecl **TsArray =
   3060     const_cast<FunctionTemplateDecl**>(getTemplates());
   3061   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
   3062     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
   3063 
   3064   TemplateArgumentLoc *ArgsArray =
   3065     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
   3066   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
   3067     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
   3068 }
   3069 
   3070 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
   3071   // For a function template specialization, query the specialization
   3072   // information object.
   3073   FunctionTemplateSpecializationInfo *FTSInfo
   3074     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
   3075   if (FTSInfo)
   3076     return FTSInfo->getTemplateSpecializationKind();
   3077 
   3078   MemberSpecializationInfo *MSInfo
   3079     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
   3080   if (MSInfo)
   3081     return MSInfo->getTemplateSpecializationKind();
   3082 
   3083   return TSK_Undeclared;
   3084 }
   3085 
   3086 void
   3087 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   3088                                           SourceLocation PointOfInstantiation) {
   3089   if (FunctionTemplateSpecializationInfo *FTSInfo
   3090         = TemplateOrSpecialization.dyn_cast<
   3091                                     FunctionTemplateSpecializationInfo*>()) {
   3092     FTSInfo->setTemplateSpecializationKind(TSK);
   3093     if (TSK != TSK_ExplicitSpecialization &&
   3094         PointOfInstantiation.isValid() &&
   3095         FTSInfo->getPointOfInstantiation().isInvalid())
   3096       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
   3097   } else if (MemberSpecializationInfo *MSInfo
   3098              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
   3099     MSInfo->setTemplateSpecializationKind(TSK);
   3100     if (TSK != TSK_ExplicitSpecialization &&
   3101         PointOfInstantiation.isValid() &&
   3102         MSInfo->getPointOfInstantiation().isInvalid())
   3103       MSInfo->setPointOfInstantiation(PointOfInstantiation);
   3104   } else
   3105     llvm_unreachable("Function cannot have a template specialization kind");
   3106 }
   3107 
   3108 SourceLocation FunctionDecl::getPointOfInstantiation() const {
   3109   if (FunctionTemplateSpecializationInfo *FTSInfo
   3110         = TemplateOrSpecialization.dyn_cast<
   3111                                         FunctionTemplateSpecializationInfo*>())
   3112     return FTSInfo->getPointOfInstantiation();
   3113   else if (MemberSpecializationInfo *MSInfo
   3114              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
   3115     return MSInfo->getPointOfInstantiation();
   3116 
   3117   return SourceLocation();
   3118 }
   3119 
   3120 bool FunctionDecl::isOutOfLine() const {
   3121   if (Decl::isOutOfLine())
   3122     return true;
   3123 
   3124   // If this function was instantiated from a member function of a
   3125   // class template, check whether that member function was defined out-of-line.
   3126   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
   3127     const FunctionDecl *Definition;
   3128     if (FD->hasBody(Definition))
   3129       return Definition->isOutOfLine();
   3130   }
   3131 
   3132   // If this function was instantiated from a function template,
   3133   // check whether that function template was defined out-of-line.
   3134   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
   3135     const FunctionDecl *Definition;
   3136     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
   3137       return Definition->isOutOfLine();
   3138   }
   3139 
   3140   return false;
   3141 }
   3142 
   3143 SourceRange FunctionDecl::getSourceRange() const {
   3144   return SourceRange(getOuterLocStart(), EndRangeLoc);
   3145 }
   3146 
   3147 unsigned FunctionDecl::getMemoryFunctionKind() const {
   3148   IdentifierInfo *FnInfo = getIdentifier();
   3149 
   3150   if (!FnInfo)
   3151     return 0;
   3152 
   3153   // Builtin handling.
   3154   switch (getBuiltinID()) {
   3155   case Builtin::BI__builtin_memset:
   3156   case Builtin::BI__builtin___memset_chk:
   3157   case Builtin::BImemset:
   3158     return Builtin::BImemset;
   3159 
   3160   case Builtin::BI__builtin_memcpy:
   3161   case Builtin::BI__builtin___memcpy_chk:
   3162   case Builtin::BImemcpy:
   3163     return Builtin::BImemcpy;
   3164 
   3165   case Builtin::BI__builtin_memmove:
   3166   case Builtin::BI__builtin___memmove_chk:
   3167   case Builtin::BImemmove:
   3168     return Builtin::BImemmove;
   3169 
   3170   case Builtin::BIstrlcpy:
   3171     return Builtin::BIstrlcpy;
   3172   case Builtin::BIstrlcat:
   3173     return Builtin::BIstrlcat;
   3174 
   3175   case Builtin::BI__builtin_memcmp:
   3176   case Builtin::BImemcmp:
   3177     return Builtin::BImemcmp;
   3178 
   3179   case Builtin::BI__builtin_strncpy:
   3180   case Builtin::BI__builtin___strncpy_chk:
   3181   case Builtin::BIstrncpy:
   3182     return Builtin::BIstrncpy;
   3183 
   3184   case Builtin::BI__builtin_strncmp:
   3185   case Builtin::BIstrncmp:
   3186     return Builtin::BIstrncmp;
   3187 
   3188   case Builtin::BI__builtin_strncasecmp:
   3189   case Builtin::BIstrncasecmp:
   3190     return Builtin::BIstrncasecmp;
   3191 
   3192   case Builtin::BI__builtin_strncat:
   3193   case Builtin::BI__builtin___strncat_chk:
   3194   case Builtin::BIstrncat:
   3195     return Builtin::BIstrncat;
   3196 
   3197   case Builtin::BI__builtin_strndup:
   3198   case Builtin::BIstrndup:
   3199     return Builtin::BIstrndup;
   3200 
   3201   case Builtin::BI__builtin_strlen:
   3202   case Builtin::BIstrlen:
   3203     return Builtin::BIstrlen;
   3204 
   3205   default:
   3206     if (isExternC()) {
   3207       if (FnInfo->isStr("memset"))
   3208         return Builtin::BImemset;
   3209       else if (FnInfo->isStr("memcpy"))
   3210         return Builtin::BImemcpy;
   3211       else if (FnInfo->isStr("memmove"))
   3212         return Builtin::BImemmove;
   3213       else if (FnInfo->isStr("memcmp"))
   3214         return Builtin::BImemcmp;
   3215       else if (FnInfo->isStr("strncpy"))
   3216         return Builtin::BIstrncpy;
   3217       else if (FnInfo->isStr("strncmp"))
   3218         return Builtin::BIstrncmp;
   3219       else if (FnInfo->isStr("strncasecmp"))
   3220         return Builtin::BIstrncasecmp;
   3221       else if (FnInfo->isStr("strncat"))
   3222         return Builtin::BIstrncat;
   3223       else if (FnInfo->isStr("strndup"))
   3224         return Builtin::BIstrndup;
   3225       else if (FnInfo->isStr("strlen"))
   3226         return Builtin::BIstrlen;
   3227     }
   3228     break;
   3229   }
   3230   return 0;
   3231 }
   3232 
   3233 //===----------------------------------------------------------------------===//
   3234 // FieldDecl Implementation
   3235 //===----------------------------------------------------------------------===//
   3236 
   3237 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
   3238                              SourceLocation StartLoc, SourceLocation IdLoc,
   3239                              IdentifierInfo *Id, QualType T,
   3240                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
   3241                              InClassInitStyle InitStyle) {
   3242   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
   3243                                BW, Mutable, InitStyle);
   3244 }
   3245 
   3246 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3247   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
   3248                                SourceLocation(), nullptr, QualType(), nullptr,
   3249                                nullptr, false, ICIS_NoInit);
   3250 }
   3251 
   3252 bool FieldDecl::isAnonymousStructOrUnion() const {
   3253   if (!isImplicit() || getDeclName())
   3254     return false;
   3255 
   3256   if (const RecordType *Record = getType()->getAs<RecordType>())
   3257     return Record->getDecl()->isAnonymousStructOrUnion();
   3258 
   3259   return false;
   3260 }
   3261 
   3262 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
   3263   assert(isBitField() && "not a bitfield");
   3264   Expr *BitWidth = InitializerOrBitWidth.getPointer();
   3265   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
   3266 }
   3267 
   3268 unsigned FieldDecl::getFieldIndex() const {
   3269   const FieldDecl *Canonical = getCanonicalDecl();
   3270   if (Canonical != this)
   3271     return Canonical->getFieldIndex();
   3272 
   3273   if (CachedFieldIndex) return CachedFieldIndex - 1;
   3274 
   3275   unsigned Index = 0;
   3276   const RecordDecl *RD = getParent();
   3277 
   3278   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   3279        I != E; ++I, ++Index)
   3280     I->getCanonicalDecl()->CachedFieldIndex = Index + 1;
   3281 
   3282   assert(CachedFieldIndex && "failed to find field in parent");
   3283   return CachedFieldIndex - 1;
   3284 }
   3285 
   3286 SourceRange FieldDecl::getSourceRange() const {
   3287   if (const Expr *E = InitializerOrBitWidth.getPointer())
   3288     return SourceRange(getInnerLocStart(), E->getLocEnd());
   3289   return DeclaratorDecl::getSourceRange();
   3290 }
   3291 
   3292 void FieldDecl::setBitWidth(Expr *Width) {
   3293   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
   3294          "bit width or initializer already set");
   3295   InitializerOrBitWidth.setPointer(Width);
   3296 }
   3297 
   3298 void FieldDecl::setInClassInitializer(Expr *Init) {
   3299   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
   3300          "bit width or initializer already set");
   3301   InitializerOrBitWidth.setPointer(Init);
   3302 }
   3303 
   3304 //===----------------------------------------------------------------------===//
   3305 // TagDecl Implementation
   3306 //===----------------------------------------------------------------------===//
   3307 
   3308 SourceLocation TagDecl::getOuterLocStart() const {
   3309   return getTemplateOrInnerLocStart(this);
   3310 }
   3311 
   3312 SourceRange TagDecl::getSourceRange() const {
   3313   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
   3314   return SourceRange(getOuterLocStart(), E);
   3315 }
   3316 
   3317 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
   3318 
   3319 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
   3320   NamedDeclOrQualifier = TDD;
   3321   if (const Type *T = getTypeForDecl()) {
   3322     (void)T;
   3323     assert(T->isLinkageValid());
   3324   }
   3325   assert(isLinkageValid());
   3326 }
   3327 
   3328 void TagDecl::startDefinition() {
   3329   IsBeingDefined = true;
   3330 
   3331   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
   3332     struct CXXRecordDecl::DefinitionData *Data =
   3333       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
   3334     for (auto I : redecls())
   3335       cast<CXXRecordDecl>(I)->DefinitionData = Data;
   3336   }
   3337 }
   3338 
   3339 void TagDecl::completeDefinition() {
   3340   assert((!isa<CXXRecordDecl>(this) ||
   3341           cast<CXXRecordDecl>(this)->hasDefinition()) &&
   3342          "definition completed but not started");
   3343 
   3344   IsCompleteDefinition = true;
   3345   IsBeingDefined = false;
   3346 
   3347   if (ASTMutationListener *L = getASTMutationListener())
   3348     L->CompletedTagDefinition(this);
   3349 }
   3350 
   3351 TagDecl *TagDecl::getDefinition() const {
   3352   if (isCompleteDefinition())
   3353     return const_cast<TagDecl *>(this);
   3354 
   3355   // If it's possible for us to have an out-of-date definition, check now.
   3356   if (MayHaveOutOfDateDef) {
   3357     if (IdentifierInfo *II = getIdentifier()) {
   3358       if (II->isOutOfDate()) {
   3359         updateOutOfDate(*II);
   3360       }
   3361     }
   3362   }
   3363 
   3364   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
   3365     return CXXRD->getDefinition();
   3366 
   3367   for (auto R : redecls())
   3368     if (R->isCompleteDefinition())
   3369       return R;
   3370 
   3371   return nullptr;
   3372 }
   3373 
   3374 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
   3375   if (QualifierLoc) {
   3376     // Make sure the extended qualifier info is allocated.
   3377     if (!hasExtInfo())
   3378       NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
   3379     // Set qualifier info.
   3380     getExtInfo()->QualifierLoc = QualifierLoc;
   3381   } else {
   3382     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
   3383     if (hasExtInfo()) {
   3384       if (getExtInfo()->NumTemplParamLists == 0) {
   3385         getASTContext().Deallocate(getExtInfo());
   3386         NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
   3387       }
   3388       else
   3389         getExtInfo()->QualifierLoc = QualifierLoc;
   3390     }
   3391   }
   3392 }
   3393 
   3394 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
   3395                                             unsigned NumTPLists,
   3396                                             TemplateParameterList **TPLists) {
   3397   assert(NumTPLists > 0);
   3398   // Make sure the extended decl info is allocated.
   3399   if (!hasExtInfo())
   3400     // Allocate external info struct.
   3401     NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
   3402   // Set the template parameter lists info.
   3403   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
   3404 }
   3405 
   3406 //===----------------------------------------------------------------------===//
   3407 // EnumDecl Implementation
   3408 //===----------------------------------------------------------------------===//
   3409 
   3410 void EnumDecl::anchor() { }
   3411 
   3412 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
   3413                            SourceLocation StartLoc, SourceLocation IdLoc,
   3414                            IdentifierInfo *Id,
   3415                            EnumDecl *PrevDecl, bool IsScoped,
   3416                            bool IsScopedUsingClassTag, bool IsFixed) {
   3417   EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
   3418                                         IsScoped, IsScopedUsingClassTag,
   3419                                         IsFixed);
   3420   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3421   C.getTypeDeclType(Enum, PrevDecl);
   3422   return Enum;
   3423 }
   3424 
   3425 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3426   EnumDecl *Enum =
   3427       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
   3428                            nullptr, nullptr, false, false, false);
   3429   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3430   return Enum;
   3431 }
   3432 
   3433 SourceRange EnumDecl::getIntegerTypeRange() const {
   3434   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
   3435     return TI->getTypeLoc().getSourceRange();
   3436   return SourceRange();
   3437 }
   3438 
   3439 void EnumDecl::completeDefinition(QualType NewType,
   3440                                   QualType NewPromotionType,
   3441                                   unsigned NumPositiveBits,
   3442                                   unsigned NumNegativeBits) {
   3443   assert(!isCompleteDefinition() && "Cannot redefine enums!");
   3444   if (!IntegerType)
   3445     IntegerType = NewType.getTypePtr();
   3446   PromotionType = NewPromotionType;
   3447   setNumPositiveBits(NumPositiveBits);
   3448   setNumNegativeBits(NumNegativeBits);
   3449   TagDecl::completeDefinition();
   3450 }
   3451 
   3452 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
   3453   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
   3454     return MSI->getTemplateSpecializationKind();
   3455 
   3456   return TSK_Undeclared;
   3457 }
   3458 
   3459 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
   3460                                          SourceLocation PointOfInstantiation) {
   3461   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
   3462   assert(MSI && "Not an instantiated member enumeration?");
   3463   MSI->setTemplateSpecializationKind(TSK);
   3464   if (TSK != TSK_ExplicitSpecialization &&
   3465       PointOfInstantiation.isValid() &&
   3466       MSI->getPointOfInstantiation().isInvalid())
   3467     MSI->setPointOfInstantiation(PointOfInstantiation);
   3468 }
   3469 
   3470 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
   3471   if (SpecializationInfo)
   3472     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
   3473 
   3474   return nullptr;
   3475 }
   3476 
   3477 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
   3478                                             TemplateSpecializationKind TSK) {
   3479   assert(!SpecializationInfo && "Member enum is already a specialization");
   3480   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
   3481 }
   3482 
   3483 //===----------------------------------------------------------------------===//
   3484 // RecordDecl Implementation
   3485 //===----------------------------------------------------------------------===//
   3486 
   3487 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
   3488                        DeclContext *DC, SourceLocation StartLoc,
   3489                        SourceLocation IdLoc, IdentifierInfo *Id,
   3490                        RecordDecl *PrevDecl)
   3491     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
   3492   HasFlexibleArrayMember = false;
   3493   AnonymousStructOrUnion = false;
   3494   HasObjectMember = false;
   3495   HasVolatileMember = false;
   3496   LoadedFieldsFromExternalStorage = false;
   3497   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
   3498 }
   3499 
   3500 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
   3501                                SourceLocation StartLoc, SourceLocation IdLoc,
   3502                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
   3503   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
   3504                                          StartLoc, IdLoc, Id, PrevDecl);
   3505   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3506 
   3507   C.getTypeDeclType(R, PrevDecl);
   3508   return R;
   3509 }
   3510 
   3511 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
   3512   RecordDecl *R =
   3513       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
   3514                              SourceLocation(), nullptr, nullptr);
   3515   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
   3516   return R;
   3517 }
   3518 
   3519 bool RecordDecl::isInjectedClassName() const {
   3520   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
   3521     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
   3522 }
   3523 
   3524 RecordDecl::field_iterator RecordDecl::field_begin() const {
   3525   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
   3526     LoadFieldsFromExternalStorage();
   3527 
   3528   return field_iterator(decl_iterator(FirstDecl));
   3529 }
   3530 
   3531 /// completeDefinition - Notes that the definition of this type is now
   3532 /// complete.
   3533 void RecordDecl::completeDefinition() {
   3534   assert(!isCompleteDefinition() && "Cannot redefine record!");
   3535   TagDecl::completeDefinition();
   3536 }
   3537 
   3538 /// isMsStruct - Get whether or not this record uses ms_struct layout.
   3539 /// This which can be turned on with an attribute, pragma, or the
   3540 /// -mms-bitfields command-line option.
   3541 bool RecordDecl::isMsStruct(const ASTContext &C) const {
   3542   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
   3543 }
   3544 
   3545 static bool isFieldOrIndirectField(Decl::Kind K) {
   3546   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
   3547 }
   3548 
   3549 void RecordDecl::LoadFieldsFromExternalStorage() const {
   3550   ExternalASTSource *Source = getASTContext().getExternalSource();
   3551   assert(hasExternalLexicalStorage() && Source && "No external storage?");
   3552 
   3553   // Notify that we have a RecordDecl doing some initialization.
   3554   ExternalASTSource::Deserializing TheFields(Source);
   3555 
   3556   SmallVector<Decl*, 64> Decls;
   3557   LoadedFieldsFromExternalStorage = true;
   3558   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
   3559                                            Decls)) {
   3560   case ELR_Success:
   3561     break;
   3562 
   3563   case ELR_AlreadyLoaded:
   3564   case ELR_Failure:
   3565     return;
   3566   }
   3567 
   3568 #ifndef NDEBUG
   3569   // Check that all decls we got were FieldDecls.
   3570   for (unsigned i=0, e=Decls.size(); i != e; ++i)
   3571     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
   3572 #endif
   3573 
   3574   if (Decls.empty())
   3575     return;
   3576 
   3577   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
   3578                                                  /*FieldsAlreadyLoaded=*/false);
   3579 }
   3580 
   3581 //===----------------------------------------------------------------------===//
   3582 // BlockDecl Implementation
   3583 //===----------------------------------------------------------------------===//
   3584 
   3585 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
   3586   assert(!ParamInfo && "Already has param info!");
   3587 
   3588   // Zero params -> null pointer.
   3589   if (!NewParamInfo.empty()) {
   3590     NumParams = NewParamInfo.size();
   3591     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
   3592     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
   3593   }
   3594 }
   3595 
   3596 void BlockDecl::setCaptures(ASTContext &Context,
   3597                             const Capture *begin,
   3598                             const Capture *end,
   3599                             bool capturesCXXThis) {
   3600   CapturesCXXThis = capturesCXXThis;
   3601 
   3602   if (begin == end) {
   3603     NumCaptures = 0;
   3604     Captures = nullptr;
   3605     return;
   3606   }
   3607 
   3608   NumCaptures = end - begin;
   3609 
   3610   // Avoid new Capture[] because we don't want to provide a default
   3611   // constructor.
   3612   size_t allocationSize = NumCaptures * sizeof(Capture);
   3613   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
   3614   memcpy(buffer, begin, allocationSize);
   3615   Captures = static_cast<Capture*>(buffer);
   3616 }
   3617 
   3618 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
   3619   for (const auto &I : captures())
   3620     // Only auto vars can be captured, so no redeclaration worries.
   3621     if (I.getVariable() == variable)
   3622       return true;
   3623 
   3624   return false;
   3625 }
   3626 
   3627 SourceRange BlockDecl::getSourceRange() const {
   3628   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
   3629 }
   3630 
   3631 //===----------------------------------------------------------------------===//
   3632 // Other Decl Allocation/Deallocation Method Implementations
   3633 //===----------------------------------------------------------------------===//
   3634 
   3635 void TranslationUnitDecl::anchor() { }
   3636 
   3637 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
   3638   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
   3639 }
   3640 
   3641 void LabelDecl::anchor() { }
   3642 
   3643 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   3644                              SourceLocation IdentL, IdentifierInfo *II) {
   3645   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
   3646 }
   3647 
   3648 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
   3649                              SourceLocation IdentL, IdentifierInfo *II,
   3650                              SourceLocation GnuLabelL) {
   3651   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
   3652   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
   3653 }
   3654 
   3655 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3656   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
   3657                                SourceLocation());
   3658 }
   3659 
   3660 void ValueDecl::anchor() { }
   3661 
   3662 bool ValueDecl::isWeak() const {
   3663   for (const auto *I : attrs())
   3664     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
   3665       return true;
   3666 
   3667   return isWeakImported();
   3668 }
   3669 
   3670 void ImplicitParamDecl::anchor() { }
   3671 
   3672 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
   3673                                              SourceLocation IdLoc,
   3674                                              IdentifierInfo *Id,
   3675                                              QualType Type) {
   3676   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
   3677 }
   3678 
   3679 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
   3680                                                          unsigned ID) {
   3681   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
   3682                                        QualType());
   3683 }
   3684 
   3685 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
   3686                                    SourceLocation StartLoc,
   3687                                    const DeclarationNameInfo &NameInfo,
   3688                                    QualType T, TypeSourceInfo *TInfo,
   3689                                    StorageClass SC,
   3690                                    bool isInlineSpecified,
   3691                                    bool hasWrittenPrototype,
   3692                                    bool isConstexprSpecified) {
   3693   FunctionDecl *New =
   3694       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
   3695                                SC, isInlineSpecified, isConstexprSpecified);
   3696   New->HasWrittenPrototype = hasWrittenPrototype;
   3697   return New;
   3698 }
   3699 
   3700 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3701   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
   3702                                   DeclarationNameInfo(), QualType(), nullptr,
   3703                                   SC_None, false, false);
   3704 }
   3705 
   3706 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   3707   return new (C, DC) BlockDecl(DC, L);
   3708 }
   3709 
   3710 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3711   return new (C, ID) BlockDecl(nullptr, SourceLocation());
   3712 }
   3713 
   3714 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
   3715                                    unsigned NumParams) {
   3716   return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
   3717       CapturedDecl(DC, NumParams);
   3718 }
   3719 
   3720 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   3721                                                unsigned NumParams) {
   3722   return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
   3723       CapturedDecl(nullptr, NumParams);
   3724 }
   3725 
   3726 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
   3727                                            SourceLocation L,
   3728                                            IdentifierInfo *Id, QualType T,
   3729                                            Expr *E, const llvm::APSInt &V) {
   3730   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
   3731 }
   3732 
   3733 EnumConstantDecl *
   3734 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3735   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
   3736                                       QualType(), nullptr, llvm::APSInt());
   3737 }
   3738 
   3739 void IndirectFieldDecl::anchor() { }
   3740 
   3741 IndirectFieldDecl *
   3742 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
   3743                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
   3744                           unsigned CHS) {
   3745   return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
   3746 }
   3747 
   3748 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
   3749                                                          unsigned ID) {
   3750   return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
   3751                                        DeclarationName(), QualType(), nullptr,
   3752                                        0);
   3753 }
   3754 
   3755 SourceRange EnumConstantDecl::getSourceRange() const {
   3756   SourceLocation End = getLocation();
   3757   if (Init)
   3758     End = Init->getLocEnd();
   3759   return SourceRange(getLocation(), End);
   3760 }
   3761 
   3762 void TypeDecl::anchor() { }
   3763 
   3764 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
   3765                                  SourceLocation StartLoc, SourceLocation IdLoc,
   3766                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
   3767   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
   3768 }
   3769 
   3770 void TypedefNameDecl::anchor() { }
   3771 
   3772 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3773   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
   3774                                  nullptr, nullptr);
   3775 }
   3776 
   3777 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
   3778                                      SourceLocation StartLoc,
   3779                                      SourceLocation IdLoc, IdentifierInfo *Id,
   3780                                      TypeSourceInfo *TInfo) {
   3781   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
   3782 }
   3783 
   3784 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3785   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
   3786                                    SourceLocation(), nullptr, nullptr);
   3787 }
   3788 
   3789 SourceRange TypedefDecl::getSourceRange() const {
   3790   SourceLocation RangeEnd = getLocation();
   3791   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
   3792     if (typeIsPostfix(TInfo->getType()))
   3793       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3794   }
   3795   return SourceRange(getLocStart(), RangeEnd);
   3796 }
   3797 
   3798 SourceRange TypeAliasDecl::getSourceRange() const {
   3799   SourceLocation RangeEnd = getLocStart();
   3800   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
   3801     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
   3802   return SourceRange(getLocStart(), RangeEnd);
   3803 }
   3804 
   3805 void FileScopeAsmDecl::anchor() { }
   3806 
   3807 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
   3808                                            StringLiteral *Str,
   3809                                            SourceLocation AsmLoc,
   3810                                            SourceLocation RParenLoc) {
   3811   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
   3812 }
   3813 
   3814 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
   3815                                                        unsigned ID) {
   3816   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
   3817                                       SourceLocation());
   3818 }
   3819 
   3820 void EmptyDecl::anchor() {}
   3821 
   3822 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
   3823   return new (C, DC) EmptyDecl(DC, L);
   3824 }
   3825 
   3826 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   3827   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
   3828 }
   3829 
   3830 //===----------------------------------------------------------------------===//
   3831 // ImportDecl Implementation
   3832 //===----------------------------------------------------------------------===//
   3833 
   3834 /// \brief Retrieve the number of module identifiers needed to name the given
   3835 /// module.
   3836 static unsigned getNumModuleIdentifiers(Module *Mod) {
   3837   unsigned Result = 1;
   3838   while (Mod->Parent) {
   3839     Mod = Mod->Parent;
   3840     ++Result;
   3841   }
   3842   return Result;
   3843 }
   3844 
   3845 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   3846                        Module *Imported,
   3847                        ArrayRef<SourceLocation> IdentifierLocs)
   3848   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
   3849     NextLocalImport()
   3850 {
   3851   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
   3852   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
   3853   memcpy(StoredLocs, IdentifierLocs.data(),
   3854          IdentifierLocs.size() * sizeof(SourceLocation));
   3855 }
   3856 
   3857 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
   3858                        Module *Imported, SourceLocation EndLoc)
   3859   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
   3860     NextLocalImport()
   3861 {
   3862   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
   3863 }
   3864 
   3865 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
   3866                                SourceLocation StartLoc, Module *Imported,
   3867                                ArrayRef<SourceLocation> IdentifierLocs) {
   3868   return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
   3869       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
   3870 }
   3871 
   3872 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
   3873                                        SourceLocation StartLoc,
   3874                                        Module *Imported,
   3875                                        SourceLocation EndLoc) {
   3876   ImportDecl *Import =
   3877       new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
   3878                                                      Imported, EndLoc);
   3879   Import->setImplicit();
   3880   return Import;
   3881 }
   3882 
   3883 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
   3884                                            unsigned NumLocations) {
   3885   return new (C, ID, NumLocations * sizeof(SourceLocation))
   3886       ImportDecl(EmptyShell());
   3887 }
   3888 
   3889 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
   3890   if (!ImportedAndComplete.getInt())
   3891     return None;
   3892 
   3893   const SourceLocation *StoredLocs
   3894     = reinterpret_cast<const SourceLocation *>(this + 1);
   3895   return ArrayRef<SourceLocation>(StoredLocs,
   3896                                   getNumModuleIdentifiers(getImportedModule()));
   3897 }
   3898 
   3899 SourceRange ImportDecl::getSourceRange() const {
   3900   if (!ImportedAndComplete.getInt())
   3901     return SourceRange(getLocation(),
   3902                        *reinterpret_cast<const SourceLocation *>(this + 1));
   3903 
   3904   return SourceRange(getLocation(), getIdentifierLocs().back());
   3905 }
   3906