Home | History | Annotate | Download | only in www
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2           "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      6   <title>Language Compatibility</title>
      7   <link type="text/css" rel="stylesheet" href="menu.css">
      8   <link type="text/css" rel="stylesheet" href="content.css">
      9   <style type="text/css">
     10 </style>
     11 </head>
     12 <body>
     13 
     14 <!--#include virtual="menu.html.incl"-->
     15 
     16 <div id="content">
     17 
     18 <!-- ======================================================================= -->
     19 <h1>Language Compatibility</h1>
     20 <!-- ======================================================================= -->
     21 
     22 <p>Clang strives to both conform to current language standards (up to C11
     23   and C++11) and also to implement many widely-used extensions available
     24   in other compilers, so that most correct code will "just work" when
     25   compiled with Clang. However, Clang is more strict than other
     26   popular compilers, and may reject incorrect code that other
     27   compilers allow. This page documents common compatibility and
     28   portability issues with Clang to help you understand and fix the
     29   problem in your code when Clang emits an error message.</p>
     30   
     31 <ul>
     32   <li><a href="#c">C compatibility</a>
     33     <ul>
     34       <li><a href="#inline">C99 inline functions</a></li>
     35       <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li>
     36       <li><a href="#lvalue-cast">Lvalue casts</a></li>
     37       <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li>
     38       <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li>
     39       <li><a href="#inline-asm">Inline assembly</a></li>
     40     </ul>
     41   </li>
     42   <li><a href="#objective-c">Objective-C compatibility</a>
     43     <ul>
     44       <li><a href="#super-cast">Cast of super</a></li>
     45       <li><a href="#sizeof-interface">Size of interfaces</a></li>
     46       <li><a href="#objc_objs-cast">Internal Objective-C types</a></li>
     47       <li><a href="#c_variables-class">C variables in @class or @protocol</a></li>
     48     </ul>
     49   </li>
     50   <li><a href="#cxx">C++ compatibility</a>
     51     <ul>
     52       <li><a href="#vla">Variable-length arrays</a></li>
     53       <li><a href="#dep_lookup">Unqualified lookup in templates</a></li>
     54       <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li>
     55       <li><a href="#undep_incomplete">Incomplete types in templates</a></li>
     56       <li><a href="#bad_templates">Templates with no valid instantiations</a></li>
     57       <li><a href="#default_init_const">Default initialization of const
     58       variable of a class type requires user-defined default
     59       constructor</a></li>
     60       <li><a href="#param_name_lookup">Parameter name lookup</a></li>
     61     </ul>
     62   </li>
     63   <li><a href="#cxx11">C++11 compatibility</a>
     64     <ul>
     65       <li><a href="#deleted-special-func">Deleted special member
     66   functions</a></li>
     67     </ul>
     68   </li>
     69   <li><a href="#objective-cxx">Objective-C++ compatibility</a>
     70     <ul>
     71       <li><a href="#implicit-downcasts">Implicit downcasts</a></li>
     72     </ul>
     73     <ul>
     74       <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li>
     75     </ul>
     76   </li>
     77 </ul>
     78 
     79 <!-- ======================================================================= -->
     80 <h2 id="c">C compatibility</h2>
     81 <!-- ======================================================================= -->
     82 
     83 <!-- ======================================================================= -->
     84 <h3 id="inline">C99 inline functions</h3>
     85 <!-- ======================================================================= -->
     86 <p>By default, Clang builds C code according to the C99 standard,
     87 which provides different semantics for the <code>inline</code> keyword
     88 than GCC's default behavior. For example, consider the following
     89 code:</p>
     90 <pre>
     91 inline int add(int i, int j) { return i + j; }
     92 
     93 int main() {
     94   int i = add(4, 5);
     95   return i;
     96 }
     97 </pre>
     98 
     99 <p>In C99, <code>inline</code> means that a function's definition is
    100 provided only for inlining, and that there is another definition
    101 (without <code>inline</code>) somewhere else in the program.  That
    102 means that this program is incomplete, because if <code>add</code>
    103 isn't inlined (for example, when compiling without optimization), then
    104 <code>main</code> will have an unresolved reference to that other
    105 definition.  Therefore we'll get a (correct) link-time error like this:</p>
    106 
    107 <pre>
    108 Undefined symbols:
    109   "_add", referenced from:
    110       _main in cc-y1jXIr.o
    111 </pre>
    112 
    113 <p>By contrast, GCC's default behavior follows the GNU89 dialect,
    114 which is the C89 standard plus a lot of extensions.  C89 doesn't have
    115 an <code>inline</code> keyword, but GCC recognizes it as an extension
    116 and just treats it as a hint to the optimizer.</p>
    117 
    118 <p>There are several ways to fix this problem:</p>
    119 
    120 <ul>
    121   <li>Change <code>add</code> to a <code>static inline</code>
    122   function.  This is usually the right solution if only one
    123   translation unit needs to use the function.  <code>static
    124   inline</code> functions are always resolved within the translation
    125   unit, so you won't have to add a non-<code>inline</code> definition
    126   of the function elsewhere in your program.</li>
    127 
    128   <li>Remove the <code>inline</code> keyword from this definition of
    129   <code>add</code>.  The <code>inline</code> keyword is not required
    130   for a function to be inlined, nor does it guarantee that it will be.
    131   Some compilers ignore it completely.  Clang treats it as a mild
    132   suggestion from the programmer.</li>
    133      
    134   <li>Provide an external (non-<code>inline</code>) definition
    135   of <code>add</code> somewhere else in your program.  The two
    136   definitions must be equivalent!</li>
    137 
    138   <li>Compile with the GNU89 dialect by adding
    139   <code>-std=gnu89</code> to the set of Clang options. This option is
    140   only recommended if the program source cannot be changed or if the
    141   program also relies on additional C89-specific behavior that cannot
    142   be changed.</li>
    143 </ul>
    144 
    145 <p>All of this only applies to C code; the meaning of <code>inline</code>
    146 in C++ is very different from its meaning in either GNU89 or C99.</p>
    147 
    148 <!-- ======================================================================= -->
    149 <h3 id="vector_builtins">"missing" vector __builtin functions</h3>
    150 <!-- ======================================================================= -->
    151 
    152 <p>The Intel and AMD manuals document a number "<tt>&lt;*mmintrin.h&gt;</tt>"
    153 header files, which define a standardized API for accessing vector operations
    154 on X86 CPUs.  These functions have names like <tt>_mm_xor_ps</tt> and
    155 <tt>_mm256_addsub_pd</tt>.  Compilers have leeway to implement these functions
    156 however they want.  Since Clang supports an excellent set of <a 
    157 href="../docs/LanguageExtensions.html#vectors">native vector operations</a>,
    158 the Clang headers implement these interfaces in terms of the native vector 
    159 operations.
    160 </p>
    161 
    162 <p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to
    163 builtin function calls, like <tt>__builtin_ia32_paddw128</tt>.  These builtin
    164 functions are an internal implementation detail of GCC, and are not portable to
    165 the Intel compiler, the Microsoft compiler, or Clang.  If you get build errors
    166 mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p>
    167 
    168 <p>The same issue occurs for NEON and Altivec for the ARM and PowerPC
    169 architectures respectively.  For these, make sure to use the &lt;arm_neon.h&gt;
    170 and &lt;altivec.h&gt; headers.</p>
    171 
    172 <p>For x86 architectures this <a href="builtins.py">script</a> should help with
    173 the manual migration process.  It will rewrite your source files in place to
    174 use the APIs instead of builtin function calls. Just call it like this:</p>
    175 
    176 <pre>
    177   builtins.py *.c *.h
    178 </pre>
    179 
    180 <p>and it will rewrite all of the .c and .h files in the current directory to
    181 use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p>
    182 
    183 <!-- ======================================================================= -->
    184 <h3 id="lvalue-cast">Lvalue casts</h3>
    185 <!-- ======================================================================= -->
    186 
    187 <p>Old versions of GCC permit casting the left-hand side of an assignment to a
    188 different type. Clang produces an error on similar code, e.g.,</p>
    189 
    190 <pre>
    191 <b>lvalue.c:2:3: <span class="error">error:</span> assignment to cast is illegal, lvalue casts are not supported</b>
    192   (int*)addr = val;
    193 <span class="caret">  ^~~~~~~~~~ ~</span>
    194 </pre>
    195 
    196 <p>To fix this problem, move the cast to the right-hand side. In this
    197 example, one could use:</p>
    198 
    199 <pre>
    200   addr = (float *)val;
    201 </pre>
    202 
    203 <!-- ======================================================================= -->
    204 <h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3>
    205 <!-- ======================================================================= -->
    206 
    207 <p>Clang disallows jumps into the scope of a <tt>__block</tt>
    208 variable.  Variables marked with <tt>__block</tt> require special
    209 runtime initialization. A jump into the scope of a <tt>__block</tt>
    210 variable bypasses this initialization, leaving the variable's metadata
    211 in an invalid state.  Consider the following code fragment:</p>
    212 
    213 <pre>
    214 int fetch_object_state(struct MyObject *c) {
    215   if (!c->active) goto error;
    216 
    217   __block int result;
    218   run_specially_somehow(^{ result = c->state; });
    219   return result;
    220 
    221  error:
    222   fprintf(stderr, "error while fetching object state");
    223   return -1;
    224 }
    225 </pre>
    226 
    227 <p>GCC accepts this code, but it produces code that will usually crash
    228 when <code>result</code> goes out of scope if the jump is taken.  (It's
    229 possible for this bug to go undetected because it often won't crash if
    230 the stack is fresh, i.e. still zeroed.)  Therefore, Clang rejects this
    231 code with a hard error:</p>
    232 
    233 <pre>
    234 <b>t.c:3:5: <span class="error">error:</span> goto into protected scope</b>
    235     goto error;
    236 <span class="caret">    ^</span>
    237 <b>t.c:5:15: <span class="note">note:</note></b> jump bypasses setup of __block variable
    238   __block int result;
    239 <span class="caret">              ^</span>
    240 </pre>
    241 
    242 <p>The fix is to rewrite the code to not require jumping into a
    243 <tt>__block</tt> variable's scope, e.g. by limiting that scope:</p>
    244 
    245 <pre>
    246   {
    247     __block int result;
    248     run_specially_somehow(^{ result = c->state; });
    249     return result;
    250   }
    251 </pre>
    252 
    253 <!-- ======================================================================= -->
    254 <h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt>
    255 variables</h3>
    256 <!-- ======================================================================= -->
    257 
    258 <p>In the following example code, the <tt>x</tt> variable is used before it is
    259 defined:</p>
    260 <pre>
    261 int f0() {
    262   __block int x;
    263   return ^(){ return x; }();
    264 }
    265 </pre>
    266 
    267 <p>By an accident of implementation, GCC and llvm-gcc unintentionally always
    268 zero initialized <tt>__block</tt> variables. However, any program which depends
    269 on this behavior is relying on unspecified compiler behavior. Programs must
    270 explicitly initialize all local block variables before they are used, as with
    271 other local variables.</p>
    272 
    273 <p>Clang does not zero initialize local block variables, and programs which rely
    274 on such behavior will most likely break when built with Clang.</p>
    275 
    276 
    277 <!-- ======================================================================= -->
    278 <h3 id="inline-asm">Inline assembly</h3>
    279 <!-- ======================================================================= -->
    280 
    281 <p>In general, Clang is highly compatible with the GCC inline assembly
    282 extensions, allowing the same set of constraints, modifiers and operands as GCC
    283 inline assembly.</p>
    284 
    285 <p>On targets that use the integrated assembler (such as most X86 targets),
    286 inline assembly is run through the integrated assembler instead of your system
    287 assembler (which is most commonly "gas", the GNU assembler).  The LLVM
    288 integrated assembler is extremely compatible with GAS, but there are a couple of
    289 minor places where it is more picky, particularly due to outright GAS bugs.</p>
    290 
    291 <p>One specific example is that the assembler rejects ambiguous X86 instructions
    292 that don't have suffixes.  For example:</p>
    293 
    294 <pre>
    295   asm("add %al, (%rax)");
    296   asm("addw $4, (%rax)");
    297   asm("add $4, (%rax)");
    298 </pre>
    299 
    300 <p>Both clang and GAS accept the first instruction: because the first
    301 instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that
    302 it is an 8-bit add.  The second instruction is accepted by both because the "w"
    303 suffix indicates that it is a 16-bit add.  The last instruction is accepted by
    304 GAS even though there is nothing that specifies the size of the instruction (and
    305 the assembler randomly picks a 32-bit add).  Because it is ambiguous, Clang
    306 rejects the instruction with this error message:
    307 </p>
    308 
    309 <pre>
    310 <b>&lt;inline asm&gt;:3:1: <span class="error">error:</span> ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')</b>
    311 add $4, (%rax)
    312 <span class="caret">^</span>
    313 </pre>
    314 
    315 <p>To fix this compatibility issue, add an explicit suffix to the instruction:
    316 this makes your code more clear and is compatible with both GCC and Clang.</p>
    317 
    318 <!-- ======================================================================= -->
    319 <h2 id="objective-c">Objective-C compatibility</h2>
    320 <!-- ======================================================================= -->
    321 
    322 <!-- ======================================================================= -->
    323 <h3 id="super-cast">Cast of super</h3>
    324 <!-- ======================================================================= -->
    325 
    326 <p>GCC treats the <code>super</code> identifier as an expression that
    327 can, among other things, be cast to a different type. Clang treats
    328 <code>super</code> as a context-sensitive keyword, and will reject a
    329 type-cast of <code>super</code>:</p>
    330 
    331 <pre>
    332 <b>super.m:11:12: <span class="error">error:</span> cannot cast 'super' (it isn't an expression)</b>
    333   [(Super*)super add:4];
    334 <span class="caret">   ~~~~~~~~^</span>
    335 </pre>
    336 
    337 <p>To fix this problem, remove the type cast, e.g.</p>
    338 <pre>
    339   [super add:4];
    340 </pre>
    341 
    342 <!-- ======================================================================= -->
    343 <h3 id="sizeof-interface">Size of interfaces</h3>
    344 <!-- ======================================================================= -->
    345 
    346 <p>When using the "non-fragile" Objective-C ABI in use, the size of an
    347 Objective-C class may change over time as instance variables are added
    348 (or removed). For this reason, Clang rejects the application of the
    349 <code>sizeof</code> operator to an Objective-C class when using this
    350 ABI:</p>
    351 
    352 <pre>
    353 <b>sizeof.m:4:14: <span class="error">error:</span> invalid application of 'sizeof' to interface 'NSArray' in non-fragile ABI</b>
    354   int size = sizeof(NSArray);
    355 <span class="caret">             ^     ~~~~~~~~~</span>
    356 </pre>
    357 
    358 <p>Code that relies on the size of an Objective-C class is likely to
    359 be broken anyway, since that size is not actually constant. To address
    360 this problem, use the Objective-C runtime API function
    361 <code>class_getInstanceSize()</code>:</p>
    362 
    363 <pre>
    364   class_getInstanceSize([NSArray class])
    365 </pre>
    366 
    367 <!-- ======================================================================= -->
    368 <h3 id="objc_objs-cast">Internal Objective-C types</h3>
    369 <!-- ======================================================================= -->
    370 
    371 <p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>,
    372 <tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types
    373 <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the
    374 internal Objective-C structures as implementation detail and won't do implicit conversions:
    375 
    376 <pre>
    377 <b>t.mm:11:2: <span class="error">error:</span> no matching function for call to 'f'</b>
    378         f((struct objc_object *)p);
    379 <span class="caret">        ^</span>
    380 <b>t.mm:5:6: <span class="note">note:</note></b> candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument
    381 void f(id x);
    382 <span class="caret">     ^</span>
    383 </pre>
    384 
    385 <p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt>
    386 instead of the internal types.</p>
    387 
    388 <!-- ======================================================================= -->
    389 <h3 id="c_variables-class">C variables in @interface or @protocol</h3>
    390 <!-- ======================================================================= -->
    391 
    392 <p>GCC allows the declaration of C variables in
    393 an <code>@interface</code> or <code>@protocol</code>
    394 declaration. Clang does not allow variable declarations to appear
    395 within these declarations unless they are marked <code>extern</code>.</p>
    396 
    397 <p>Variables may still be declared in an @implementation.</p>
    398 
    399 <pre>
    400 @interface XX
    401 int a;         // not allowed in clang
    402 int b = 1;     // not allowed in clang
    403 extern int c;  // allowed 
    404 @end
    405 
    406 </pre>
    407 
    408 <!-- ======================================================================= -->
    409 <h2 id="cxx">C++ compatibility</h2>
    410 <!-- ======================================================================= -->
    411 
    412 <!-- ======================================================================= -->
    413 <h3 id="vla">Variable-length arrays</h3>
    414 <!-- ======================================================================= -->
    415 
    416 <p>GCC and C99 allow an array's size to be determined at run
    417 time. This extension is not permitted in standard C++. However, Clang
    418 supports such variable length arrays in very limited circumstances for
    419 compatibility with GNU C and C99 programs:</p>
    420 
    421 <ul>  
    422   <li>The element type of a variable length array must be a POD
    423   ("plain old data") type, which means that it cannot have any
    424   user-declared constructors or destructors, any base classes, or any
    425   members of non-POD type. All C types are POD types.</li>
    426 
    427   <li>Variable length arrays cannot be used as the type of a non-type
    428 template parameter.</li> </ul>
    429 
    430 <p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code:
    431 
    432 <ol>
    433 <li>replace the variable length array with a fixed-size array if you can
    434     determine a reasonable upper bound at compile time; sometimes this is as
    435     simple as changing <tt>int size = ...;</tt> to <tt>const int size
    436     = ...;</tt> (if the initializer is a compile-time constant);</li>
    437 <li>use <tt>std::vector</tt> or some other suitable container type;
    438     or</li>
    439 <li>allocate the array on the heap instead using <tt>new Type[]</tt> -
    440     just remember to <tt>delete[]</tt> it.</li>
    441 </ol>
    442 
    443 <!-- ======================================================================= -->
    444 <h3 id="dep_lookup">Unqualified lookup in templates</h3>
    445 <!-- ======================================================================= -->
    446 
    447 <p>Some versions of GCC accept the following invalid code:
    448 
    449 <pre>
    450 template &lt;typename T&gt; T Squared(T x) {
    451   return Multiply(x, x);
    452 }
    453 
    454 int Multiply(int x, int y) {
    455   return x * y;
    456 }
    457 
    458 int main() {
    459   Squared(5);
    460 }
    461 </pre>
    462 
    463 <p>Clang complains:
    464 
    465 <pre>
    466 <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b>
    467   return Multiply(x, x);
    468 <span class="caret">         ^</span>
    469 <b>my_file.cpp:10:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Squared&lt;int&gt;' requested here
    470   Squared(5);
    471 <span class="caret">  ^</span>
    472 <b>my_file.cpp:5:5: <span class="note">note:</span></b> 'Multiply' should be declared prior to the call site
    473 int Multiply(int x, int y) {
    474 <span class="caret">    ^</span>
    475 </pre>
    476 
    477 <p>The C++ standard says that unqualified names like <q>Multiply</q>
    478 are looked up in two ways.
    479 
    480 <p>First, the compiler does <i>unqualified lookup</i> in the scope
    481 where the name was written.  For a template, this means the lookup is
    482 done at the point where the template is defined, not where it's
    483 instantiated.  Since <tt>Multiply</tt> hasn't been declared yet at
    484 this point, unqualified lookup won't find it.
    485 
    486 <p>Second, if the name is called like a function, then the compiler
    487 also does <i>argument-dependent lookup</i> (ADL).  (Sometimes
    488 unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for
    489 more information.)  In ADL, the compiler looks at the types of all the
    490 arguments to the call.  When it finds a class type, it looks up the
    491 name in that class's namespace; the result is all the declarations it
    492 finds in those namespaces, plus the declarations from unqualified
    493 lookup.  However, the compiler doesn't do ADL until it knows all the
    494 argument types.
    495 
    496 <p>In our example, <tt>Multiply</tt> is called with dependent
    497 arguments, so ADL isn't done until the template is instantiated.  At
    498 that point, the arguments both have type <tt>int</tt>, which doesn't
    499 contain any class types, and so ADL doesn't look in any namespaces.
    500 Since neither form of lookup found the declaration
    501 of <tt>Multiply</tt>, the code doesn't compile.
    502 
    503 <p>Here's another example, this time using overloaded operators,
    504 which obey very similar rules.
    505 
    506 <pre>#include &lt;iostream&gt;
    507 
    508 template&lt;typename T&gt;
    509 void Dump(const T&amp; value) {
    510   std::cout &lt;&lt; value &lt;&lt; "\n";
    511 }
    512 
    513 namespace ns {
    514   struct Data {};
    515 }
    516 
    517 std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
    518   return out &lt;&lt; "Some data";
    519 }
    520 
    521 void Use() {
    522   Dump(ns::Data());
    523 }</pre>
    524 
    525 <p>Again, Clang complains:</p>
    526 
    527 <pre>
    528 <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator&lt;&lt;' that is neither visible in the template definition nor found by argument-dependent lookup</b>
    529   std::cout &lt;&lt; value &lt;&lt; "\n";
    530 <span class="caret">            ^</span>
    531 <b>my_file2.cpp:17:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Dump&lt;ns::Data&gt;' requested here
    532   Dump(ns::Data());
    533 <span class="caret">  ^</span>
    534 <b>my_file2.cpp:12:15: <span class="note">note:</span></b> 'operator&lt;&lt;' should be declared prior to the call site or in namespace 'ns'
    535 std::ostream&amp; operator&lt;&lt;(std::ostream&amp; out, ns::Data data) {
    536 <span class="caret">              ^</span>
    537 </pre>
    538 
    539 <p>Just like before, unqualified lookup didn't find any declarations
    540 with the name <tt>operator&lt;&lt;</tt>.  Unlike before, the argument
    541 types both contain class types: one of them is an instance of the
    542 class template type <tt>std::basic_ostream</tt>, and the other is the
    543 type <tt>ns::Data</tt> that we declared above.  Therefore, ADL will
    544 look in the namespaces <tt>std</tt> and <tt>ns</tt> for
    545 an <tt>operator&lt;&lt;</tt>.  Since one of the argument types was
    546 still dependent during the template definition, ADL isn't done until
    547 the template is instantiated during <tt>Use</tt>, which means that
    548 the <tt>operator&lt;&lt;</tt> we want it to find has already been
    549 declared.  Unfortunately, it was declared in the global namespace, not
    550 in either of the namespaces that ADL will look in!
    551 
    552 <p>There are two ways to fix this problem:</p>
    553 <ol><li>Make sure the function you want to call is declared before the
    554 template that might call it.  This is the only option if none of its
    555 argument types contain classes.  You can do this either by moving the
    556 template definition, or by moving the function definition, or by
    557 adding a forward declaration of the function before the template.</li>
    558 <li>Move the function into the same namespace as one of its arguments
    559 so that ADL applies.</li></ol>
    560 
    561 <p>For more information about argument-dependent lookup, see
    562 [basic.lookup.argdep].  For more information about the ordering of
    563 lookup in templates, see [temp.dep.candidate].
    564 
    565 <!-- ======================================================================= -->
    566 <h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3>
    567 <!-- ======================================================================= -->
    568 
    569 Some versions of GCC accept the following invalid code:
    570 
    571 <pre>
    572 template &lt;typename T&gt; struct Base {
    573   void DoThis(T x) {}
    574   static void DoThat(T x) {}
    575 };
    576 
    577 template &lt;typename T&gt; struct Derived : public Base&lt;T&gt; {
    578   void Work(T x) {
    579     DoThis(x);  // Invalid!
    580     DoThat(x);  // Invalid!
    581   }
    582 };
    583 </pre>
    584 
    585 Clang correctly rejects it with the following errors
    586 (when <tt>Derived</tt> is eventually instantiated):
    587 
    588 <pre>
    589 <b>my_file.cpp:8:5: <span class="error">error:</span> use of undeclared identifier 'DoThis'</b>
    590     DoThis(x);
    591 <span class="caret">    ^</span>
    592     this-&gt;
    593 <b>my_file.cpp:2:8: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class
    594   void DoThis(T x) {}
    595 <span class="caret">       ^</span>
    596 <b>my_file.cpp:9:5: <span class="error">error:</span> use of undeclared identifier 'DoThat'</b>
    597     DoThat(x);
    598 <span class="caret">    ^</span>
    599     this-&gt;
    600 <b>my_file.cpp:3:15: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class
    601   static void DoThat(T x) {}
    602 </pre>
    603 
    604 Like we said <a href="#dep_lookup">above</a>, unqualified names like
    605 <tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template
    606 <tt>Derived</tt> is defined, not when it's instantiated.  When we look
    607 up a name used in a class, we usually look into the base classes.
    608 However, we can't look into the base class <tt>Base&lt;T&gt;</tt>
    609 because its type depends on the template argument <tt>T</tt>, so the
    610 standard says we should just ignore it.  See [temp.dep]p3 for details.
    611 
    612 <p>The fix, as Clang tells you, is to tell the compiler that we want a
    613 class member by prefixing the calls with <tt>this-&gt;</tt>:
    614 
    615 <pre>
    616   void Work(T x) {
    617     <b>this-&gt;</b>DoThis(x);
    618     <b>this-&gt;</b>DoThat(x);
    619   }
    620 </pre>
    621 
    622 Alternatively, you can tell the compiler exactly where to look:
    623 
    624 <pre>
    625   void Work(T x) {
    626     <b>Base&lt;T&gt;</b>::DoThis(x);
    627     <b>Base&lt;T&gt;</b>::DoThat(x);
    628   }
    629 </pre>
    630 
    631 This works whether the methods are static or not, but be careful:
    632 if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual
    633 dispatch!
    634 
    635 <!-- ======================================================================= -->
    636 <h3 id="undep_incomplete">Incomplete types in templates</h3>
    637 <!-- ======================================================================= -->
    638 
    639 The following code is invalid, but compilers are allowed to accept it:
    640 
    641 <pre>
    642   class IOOptions;
    643   template &lt;class T&gt; bool read(T &amp;value) {
    644     IOOptions opts;
    645     return read(opts, value);
    646   }
    647 
    648   class IOOptions { bool ForceReads; };
    649   bool read(const IOOptions &amp;opts, int &amp;x);
    650   template bool read&lt;&gt;(int &amp;);
    651 </pre>
    652 
    653 The standard says that types which don't depend on template parameters
    654 must be complete when a template is defined if they affect the
    655 program's behavior.  However, the standard also says that compilers
    656 are free to not enforce this rule.  Most compilers enforce it to some
    657 extent; for example, it would be an error in GCC to
    658 write <tt>opts.ForceReads</tt> in the code above.  In Clang, we feel
    659 that enforcing the rule consistently lets us provide a better
    660 experience, but unfortunately it also means we reject some code that
    661 other compilers accept.
    662 
    663 <p>We've explained the rule here in very imprecise terms; see
    664 [temp.res]p8 for details.
    665 
    666 <!-- ======================================================================= -->
    667 <h3 id="bad_templates">Templates with no valid instantiations</h3>
    668 <!-- ======================================================================= -->
    669 
    670 The following code contains a typo: the programmer
    671 meant <tt>init()</tt> but wrote <tt>innit()</tt> instead.
    672 
    673 <pre>
    674   template &lt;class T&gt; class Processor {
    675     ...
    676     void init();
    677     ...
    678   };
    679   ...
    680   template &lt;class T&gt; void process() {
    681     Processor&lt;T&gt; processor;
    682     processor.innit();       // <-- should be 'init()'
    683     ...
    684   }
    685 </pre>
    686 
    687 Unfortunately, we can't flag this mistake as soon as we see it: inside
    688 a template, we're not allowed to make assumptions about "dependent
    689 types" like <tt>Processor&lt;T&gt;</tt>.  Suppose that later on in
    690 this file the programmer adds an explicit specialization
    691 of <tt>Processor</tt>, like so:
    692 
    693 <pre>
    694   template &lt;&gt; class Processor&lt;char*&gt; {
    695     void innit();
    696   };
    697 </pre>
    698 
    699 Now the program will work &mdash; as long as the programmer only ever
    700 instantiates <tt>process()</tt> with <tt>T = char*</tt>!  This is why
    701 it's hard, and sometimes impossible, to diagnose mistakes in a
    702 template definition before it's instantiated.
    703 
    704 <p>The standard says that a template with no valid instantiations is
    705 ill-formed.  Clang tries to do as much checking as possible at
    706 definition-time instead of instantiation-time: not only does this
    707 produce clearer diagnostics, but it also substantially improves
    708 compile times when using pre-compiled headers.  The downside to this
    709 philosophy is that Clang sometimes fails to process files because they
    710 contain broken templates that are no longer used.  The solution is
    711 simple: since the code is unused, just remove it.
    712 
    713 <!-- ======================================================================= -->
    714 <h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3>
    715 <!-- ======================================================================= -->
    716 
    717 If a <tt>class</tt> or <tt>struct</tt> has no user-defined default
    718 constructor, C++ doesn't allow you to default construct a <tt>const</tt>
    719 instance of it like this ([dcl.init], p9):
    720 
    721 <pre>
    722 class Foo {
    723  public:
    724   // The compiler-supplied default constructor works fine, so we
    725   // don't bother with defining one.
    726   ...
    727 };
    728 
    729 void Bar() {
    730   const Foo foo;  // Error!
    731   ...
    732 }
    733 </pre>
    734 
    735 To fix this, you can define a default constructor for the class:
    736 
    737 <pre>
    738 class Foo {
    739  public:
    740   Foo() {}
    741   ...
    742 };
    743 
    744 void Bar() {
    745   const Foo foo;  // Now the compiler is happy.
    746   ...
    747 }
    748 </pre>
    749 
    750 <!-- ======================================================================= -->
    751 <h3 id="param_name_lookup">Parameter name lookup</h3>
    752 <!-- ======================================================================= -->
    753 
    754 <p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p>
    755 <blockquote>
    756 <pre>
    757 void f(int a, int a);
    758 </pre>
    759 </blockquote>
    760 <p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p>
    761 
    762 <!-- ======================================================================= -->
    763 <h2 id="cxx11">C++11 compatibility</h2>
    764 <!-- ======================================================================= -->
    765 
    766 <!-- ======================================================================= -->
    767 <h3 id="deleted-special-func">Deleted special member functions</h3>
    768 <!-- ======================================================================= -->
    769 
    770 <p>In C++11, the explicit declaration of a move constructor or a move
    771 assignment operator within a class deletes the implicit declaration
    772 of the copy constructor and copy assignment operator. This change came
    773 fairly late in the C++11 standardization process, so early
    774 implementations of C++11 (including Clang before 3.0, GCC before 4.7,
    775 and Visual Studio 2010) do not implement this rule, leading them to
    776 accept this ill-formed code:</p>
    777 
    778 <pre>
    779 struct X {
    780   X(X&amp;&amp;); <i>// deletes implicit copy constructor:</i>
    781   <i>// X(const X&amp;) = delete;</i>
    782 };
    783 
    784 void f(X x);
    785 void g(X x) {
    786   f(x); <i>// error: X has a deleted copy constructor</i>
    787 }
    788 </pre>
    789 
    790 <p>This affects some early C++11 code, including Boost's popular <a
    791 href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a>
    792 up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is
    793 <a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p>
    794 
    795 <!-- ======================================================================= -->
    796 <h2 id="objective-cxx">Objective-C++ compatibility</h2>
    797 <!-- ======================================================================= -->
    798 
    799 <!-- ======================================================================= -->
    800 <h3 id="implicit-downcasts">Implicit downcasts</h3>
    801 <!-- ======================================================================= -->
    802 
    803 <p>Due to a bug in its implementation, GCC allows implicit downcasts
    804 of Objective-C pointers (from a base class to a derived class) when
    805 calling functions. Such code is inherently unsafe, since the object
    806 might not actually be an instance of the derived class, and is
    807 rejected by Clang. For example, given this code:</p>
    808 
    809 <pre>
    810 @interface Base @end
    811 @interface Derived : Base @end
    812 
    813 void f(Derived *p);
    814 void g(Base *p) {
    815   f(p);
    816 }
    817 </pre>
    818 
    819 <p>Clang produces the following error:</p>
    820 
    821 <pre>
    822 <b>downcast.mm:6:3: <span class="error">error:</span> no matching function for call to 'f'</b>
    823   f(p);
    824 <span class="caret">  ^</span>
    825 <b>downcast.mm:4:6: <span class="note">note:</note></b> candidate function not viable: cannot convert from
    826       superclass 'Base *' to subclass 'Derived *' for 1st argument
    827 void f(Derived *p);
    828 <span class="caret">     ^</span>
    829 </pre>
    830 
    831 <p>If the downcast is actually correct (e.g., because the code has
    832 already checked that the object has the appropriate type), add an
    833 explicit cast:</p>
    834 
    835 <pre>
    836   f((Derived *)base);
    837 </pre>
    838 
    839 <!-- ======================================================================= -->
    840 <h3 id="class-as-property-name">Using <code>class</code> as a property name</h3>
    841 <!-- ======================================================================= -->
    842 
    843 <p>In C and Objective-C, <code>class</code> is a normal identifier and
    844 can be used to name fields, ivars, methods, and so on.  In
    845 C++, <code>class</code> is a keyword.  For compatibility with existing
    846 code, Clang permits <code>class</code> to be used as part of a method
    847 selector in Objective-C++, but this does not extend to any other part
    848 of the language.  In particular, it is impossible to use property dot
    849 syntax in Objective-C++ with the property name <code>class</code>, so
    850 the following code will fail to parse:</p>
    851 
    852 <pre>
    853 @interface I {
    854 int cls;
    855 }
    856 + (int)class;
    857 @end
    858 
    859 @implementation  I
    860 - (int) Meth { return I.class; }
    861 @end
    862 </pre>
    863 
    864 <p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p>
    865 
    866 </div>
    867 </body>
    868 </html>
    869