1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> 6 <title>Language Compatibility</title> 7 <link type="text/css" rel="stylesheet" href="menu.css"> 8 <link type="text/css" rel="stylesheet" href="content.css"> 9 <style type="text/css"> 10 </style> 11 </head> 12 <body> 13 14 <!--#include virtual="menu.html.incl"--> 15 16 <div id="content"> 17 18 <!-- ======================================================================= --> 19 <h1>Language Compatibility</h1> 20 <!-- ======================================================================= --> 21 22 <p>Clang strives to both conform to current language standards (up to C11 23 and C++11) and also to implement many widely-used extensions available 24 in other compilers, so that most correct code will "just work" when 25 compiled with Clang. However, Clang is more strict than other 26 popular compilers, and may reject incorrect code that other 27 compilers allow. This page documents common compatibility and 28 portability issues with Clang to help you understand and fix the 29 problem in your code when Clang emits an error message.</p> 30 31 <ul> 32 <li><a href="#c">C compatibility</a> 33 <ul> 34 <li><a href="#inline">C99 inline functions</a></li> 35 <li><a href="#vector_builtins">"missing" vector __builtin functions</a></li> 36 <li><a href="#lvalue-cast">Lvalue casts</a></li> 37 <li><a href="#blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</a></li> 38 <li><a href="#block-variable-initialization">Non-initialization of <tt>__block</tt> variables</a></li> 39 <li><a href="#inline-asm">Inline assembly</a></li> 40 </ul> 41 </li> 42 <li><a href="#objective-c">Objective-C compatibility</a> 43 <ul> 44 <li><a href="#super-cast">Cast of super</a></li> 45 <li><a href="#sizeof-interface">Size of interfaces</a></li> 46 <li><a href="#objc_objs-cast">Internal Objective-C types</a></li> 47 <li><a href="#c_variables-class">C variables in @class or @protocol</a></li> 48 </ul> 49 </li> 50 <li><a href="#cxx">C++ compatibility</a> 51 <ul> 52 <li><a href="#vla">Variable-length arrays</a></li> 53 <li><a href="#dep_lookup">Unqualified lookup in templates</a></li> 54 <li><a href="#dep_lookup_bases">Unqualified lookup into dependent bases of class templates</a></li> 55 <li><a href="#undep_incomplete">Incomplete types in templates</a></li> 56 <li><a href="#bad_templates">Templates with no valid instantiations</a></li> 57 <li><a href="#default_init_const">Default initialization of const 58 variable of a class type requires user-defined default 59 constructor</a></li> 60 <li><a href="#param_name_lookup">Parameter name lookup</a></li> 61 </ul> 62 </li> 63 <li><a href="#cxx11">C++11 compatibility</a> 64 <ul> 65 <li><a href="#deleted-special-func">Deleted special member 66 functions</a></li> 67 </ul> 68 </li> 69 <li><a href="#objective-cxx">Objective-C++ compatibility</a> 70 <ul> 71 <li><a href="#implicit-downcasts">Implicit downcasts</a></li> 72 </ul> 73 <ul> 74 <li><a href="#class-as-property-name">Using <code>class</code> as a property name</a></li> 75 </ul> 76 </li> 77 </ul> 78 79 <!-- ======================================================================= --> 80 <h2 id="c">C compatibility</h2> 81 <!-- ======================================================================= --> 82 83 <!-- ======================================================================= --> 84 <h3 id="inline">C99 inline functions</h3> 85 <!-- ======================================================================= --> 86 <p>By default, Clang builds C code according to the C99 standard, 87 which provides different semantics for the <code>inline</code> keyword 88 than GCC's default behavior. For example, consider the following 89 code:</p> 90 <pre> 91 inline int add(int i, int j) { return i + j; } 92 93 int main() { 94 int i = add(4, 5); 95 return i; 96 } 97 </pre> 98 99 <p>In C99, <code>inline</code> means that a function's definition is 100 provided only for inlining, and that there is another definition 101 (without <code>inline</code>) somewhere else in the program. That 102 means that this program is incomplete, because if <code>add</code> 103 isn't inlined (for example, when compiling without optimization), then 104 <code>main</code> will have an unresolved reference to that other 105 definition. Therefore we'll get a (correct) link-time error like this:</p> 106 107 <pre> 108 Undefined symbols: 109 "_add", referenced from: 110 _main in cc-y1jXIr.o 111 </pre> 112 113 <p>By contrast, GCC's default behavior follows the GNU89 dialect, 114 which is the C89 standard plus a lot of extensions. C89 doesn't have 115 an <code>inline</code> keyword, but GCC recognizes it as an extension 116 and just treats it as a hint to the optimizer.</p> 117 118 <p>There are several ways to fix this problem:</p> 119 120 <ul> 121 <li>Change <code>add</code> to a <code>static inline</code> 122 function. This is usually the right solution if only one 123 translation unit needs to use the function. <code>static 124 inline</code> functions are always resolved within the translation 125 unit, so you won't have to add a non-<code>inline</code> definition 126 of the function elsewhere in your program.</li> 127 128 <li>Remove the <code>inline</code> keyword from this definition of 129 <code>add</code>. The <code>inline</code> keyword is not required 130 for a function to be inlined, nor does it guarantee that it will be. 131 Some compilers ignore it completely. Clang treats it as a mild 132 suggestion from the programmer.</li> 133 134 <li>Provide an external (non-<code>inline</code>) definition 135 of <code>add</code> somewhere else in your program. The two 136 definitions must be equivalent!</li> 137 138 <li>Compile with the GNU89 dialect by adding 139 <code>-std=gnu89</code> to the set of Clang options. This option is 140 only recommended if the program source cannot be changed or if the 141 program also relies on additional C89-specific behavior that cannot 142 be changed.</li> 143 </ul> 144 145 <p>All of this only applies to C code; the meaning of <code>inline</code> 146 in C++ is very different from its meaning in either GNU89 or C99.</p> 147 148 <!-- ======================================================================= --> 149 <h3 id="vector_builtins">"missing" vector __builtin functions</h3> 150 <!-- ======================================================================= --> 151 152 <p>The Intel and AMD manuals document a number "<tt><*mmintrin.h></tt>" 153 header files, which define a standardized API for accessing vector operations 154 on X86 CPUs. These functions have names like <tt>_mm_xor_ps</tt> and 155 <tt>_mm256_addsub_pd</tt>. Compilers have leeway to implement these functions 156 however they want. Since Clang supports an excellent set of <a 157 href="../docs/LanguageExtensions.html#vectors">native vector operations</a>, 158 the Clang headers implement these interfaces in terms of the native vector 159 operations. 160 </p> 161 162 <p>In contrast, GCC implements these functions mostly as a 1-to-1 mapping to 163 builtin function calls, like <tt>__builtin_ia32_paddw128</tt>. These builtin 164 functions are an internal implementation detail of GCC, and are not portable to 165 the Intel compiler, the Microsoft compiler, or Clang. If you get build errors 166 mentioning these, the fix is simple: switch to the *mmintrin.h functions.</p> 167 168 <p>The same issue occurs for NEON and Altivec for the ARM and PowerPC 169 architectures respectively. For these, make sure to use the <arm_neon.h> 170 and <altivec.h> headers.</p> 171 172 <p>For x86 architectures this <a href="builtins.py">script</a> should help with 173 the manual migration process. It will rewrite your source files in place to 174 use the APIs instead of builtin function calls. Just call it like this:</p> 175 176 <pre> 177 builtins.py *.c *.h 178 </pre> 179 180 <p>and it will rewrite all of the .c and .h files in the current directory to 181 use the API calls instead of calls like <tt>__builtin_ia32_paddw128</tt>.</p> 182 183 <!-- ======================================================================= --> 184 <h3 id="lvalue-cast">Lvalue casts</h3> 185 <!-- ======================================================================= --> 186 187 <p>Old versions of GCC permit casting the left-hand side of an assignment to a 188 different type. Clang produces an error on similar code, e.g.,</p> 189 190 <pre> 191 <b>lvalue.c:2:3: <span class="error">error:</span> assignment to cast is illegal, lvalue casts are not supported</b> 192 (int*)addr = val; 193 <span class="caret"> ^~~~~~~~~~ ~</span> 194 </pre> 195 196 <p>To fix this problem, move the cast to the right-hand side. In this 197 example, one could use:</p> 198 199 <pre> 200 addr = (float *)val; 201 </pre> 202 203 <!-- ======================================================================= --> 204 <h3 id="blocks-in-protected-scope">Jumps to within <tt>__block</tt> variable scope</h3> 205 <!-- ======================================================================= --> 206 207 <p>Clang disallows jumps into the scope of a <tt>__block</tt> 208 variable. Variables marked with <tt>__block</tt> require special 209 runtime initialization. A jump into the scope of a <tt>__block</tt> 210 variable bypasses this initialization, leaving the variable's metadata 211 in an invalid state. Consider the following code fragment:</p> 212 213 <pre> 214 int fetch_object_state(struct MyObject *c) { 215 if (!c->active) goto error; 216 217 __block int result; 218 run_specially_somehow(^{ result = c->state; }); 219 return result; 220 221 error: 222 fprintf(stderr, "error while fetching object state"); 223 return -1; 224 } 225 </pre> 226 227 <p>GCC accepts this code, but it produces code that will usually crash 228 when <code>result</code> goes out of scope if the jump is taken. (It's 229 possible for this bug to go undetected because it often won't crash if 230 the stack is fresh, i.e. still zeroed.) Therefore, Clang rejects this 231 code with a hard error:</p> 232 233 <pre> 234 <b>t.c:3:5: <span class="error">error:</span> goto into protected scope</b> 235 goto error; 236 <span class="caret"> ^</span> 237 <b>t.c:5:15: <span class="note">note:</note></b> jump bypasses setup of __block variable 238 __block int result; 239 <span class="caret"> ^</span> 240 </pre> 241 242 <p>The fix is to rewrite the code to not require jumping into a 243 <tt>__block</tt> variable's scope, e.g. by limiting that scope:</p> 244 245 <pre> 246 { 247 __block int result; 248 run_specially_somehow(^{ result = c->state; }); 249 return result; 250 } 251 </pre> 252 253 <!-- ======================================================================= --> 254 <h3 id="block-variable-initialization">Non-initialization of <tt>__block</tt> 255 variables</h3> 256 <!-- ======================================================================= --> 257 258 <p>In the following example code, the <tt>x</tt> variable is used before it is 259 defined:</p> 260 <pre> 261 int f0() { 262 __block int x; 263 return ^(){ return x; }(); 264 } 265 </pre> 266 267 <p>By an accident of implementation, GCC and llvm-gcc unintentionally always 268 zero initialized <tt>__block</tt> variables. However, any program which depends 269 on this behavior is relying on unspecified compiler behavior. Programs must 270 explicitly initialize all local block variables before they are used, as with 271 other local variables.</p> 272 273 <p>Clang does not zero initialize local block variables, and programs which rely 274 on such behavior will most likely break when built with Clang.</p> 275 276 277 <!-- ======================================================================= --> 278 <h3 id="inline-asm">Inline assembly</h3> 279 <!-- ======================================================================= --> 280 281 <p>In general, Clang is highly compatible with the GCC inline assembly 282 extensions, allowing the same set of constraints, modifiers and operands as GCC 283 inline assembly.</p> 284 285 <p>On targets that use the integrated assembler (such as most X86 targets), 286 inline assembly is run through the integrated assembler instead of your system 287 assembler (which is most commonly "gas", the GNU assembler). The LLVM 288 integrated assembler is extremely compatible with GAS, but there are a couple of 289 minor places where it is more picky, particularly due to outright GAS bugs.</p> 290 291 <p>One specific example is that the assembler rejects ambiguous X86 instructions 292 that don't have suffixes. For example:</p> 293 294 <pre> 295 asm("add %al, (%rax)"); 296 asm("addw $4, (%rax)"); 297 asm("add $4, (%rax)"); 298 </pre> 299 300 <p>Both clang and GAS accept the first instruction: because the first 301 instruction uses the 8-bit <tt>%al</tt> register as an operand, it is clear that 302 it is an 8-bit add. The second instruction is accepted by both because the "w" 303 suffix indicates that it is a 16-bit add. The last instruction is accepted by 304 GAS even though there is nothing that specifies the size of the instruction (and 305 the assembler randomly picks a 32-bit add). Because it is ambiguous, Clang 306 rejects the instruction with this error message: 307 </p> 308 309 <pre> 310 <b><inline asm>:3:1: <span class="error">error:</span> ambiguous instructions require an explicit suffix (could be 'addb', 'addw', 'addl', or 'addq')</b> 311 add $4, (%rax) 312 <span class="caret">^</span> 313 </pre> 314 315 <p>To fix this compatibility issue, add an explicit suffix to the instruction: 316 this makes your code more clear and is compatible with both GCC and Clang.</p> 317 318 <!-- ======================================================================= --> 319 <h2 id="objective-c">Objective-C compatibility</h2> 320 <!-- ======================================================================= --> 321 322 <!-- ======================================================================= --> 323 <h3 id="super-cast">Cast of super</h3> 324 <!-- ======================================================================= --> 325 326 <p>GCC treats the <code>super</code> identifier as an expression that 327 can, among other things, be cast to a different type. Clang treats 328 <code>super</code> as a context-sensitive keyword, and will reject a 329 type-cast of <code>super</code>:</p> 330 331 <pre> 332 <b>super.m:11:12: <span class="error">error:</span> cannot cast 'super' (it isn't an expression)</b> 333 [(Super*)super add:4]; 334 <span class="caret"> ~~~~~~~~^</span> 335 </pre> 336 337 <p>To fix this problem, remove the type cast, e.g.</p> 338 <pre> 339 [super add:4]; 340 </pre> 341 342 <!-- ======================================================================= --> 343 <h3 id="sizeof-interface">Size of interfaces</h3> 344 <!-- ======================================================================= --> 345 346 <p>When using the "non-fragile" Objective-C ABI in use, the size of an 347 Objective-C class may change over time as instance variables are added 348 (or removed). For this reason, Clang rejects the application of the 349 <code>sizeof</code> operator to an Objective-C class when using this 350 ABI:</p> 351 352 <pre> 353 <b>sizeof.m:4:14: <span class="error">error:</span> invalid application of 'sizeof' to interface 'NSArray' in non-fragile ABI</b> 354 int size = sizeof(NSArray); 355 <span class="caret"> ^ ~~~~~~~~~</span> 356 </pre> 357 358 <p>Code that relies on the size of an Objective-C class is likely to 359 be broken anyway, since that size is not actually constant. To address 360 this problem, use the Objective-C runtime API function 361 <code>class_getInstanceSize()</code>:</p> 362 363 <pre> 364 class_getInstanceSize([NSArray class]) 365 </pre> 366 367 <!-- ======================================================================= --> 368 <h3 id="objc_objs-cast">Internal Objective-C types</h3> 369 <!-- ======================================================================= --> 370 371 <p>GCC allows using pointers to internal Objective-C objects, <tt>struct objc_object*</tt>, 372 <tt>struct objc_selector*</tt>, and <tt>struct objc_class*</tt> in place of the types 373 <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> respectively. Clang treats the 374 internal Objective-C structures as implementation detail and won't do implicit conversions: 375 376 <pre> 377 <b>t.mm:11:2: <span class="error">error:</span> no matching function for call to 'f'</b> 378 f((struct objc_object *)p); 379 <span class="caret"> ^</span> 380 <b>t.mm:5:6: <span class="note">note:</note></b> candidate function not viable: no known conversion from 'struct objc_object *' to 'id' for 1st argument 381 void f(id x); 382 <span class="caret"> ^</span> 383 </pre> 384 385 <p>Code should use types <tt>id</tt>, <tt>SEL</tt>, and <tt>Class</tt> 386 instead of the internal types.</p> 387 388 <!-- ======================================================================= --> 389 <h3 id="c_variables-class">C variables in @interface or @protocol</h3> 390 <!-- ======================================================================= --> 391 392 <p>GCC allows the declaration of C variables in 393 an <code>@interface</code> or <code>@protocol</code> 394 declaration. Clang does not allow variable declarations to appear 395 within these declarations unless they are marked <code>extern</code>.</p> 396 397 <p>Variables may still be declared in an @implementation.</p> 398 399 <pre> 400 @interface XX 401 int a; // not allowed in clang 402 int b = 1; // not allowed in clang 403 extern int c; // allowed 404 @end 405 406 </pre> 407 408 <!-- ======================================================================= --> 409 <h2 id="cxx">C++ compatibility</h2> 410 <!-- ======================================================================= --> 411 412 <!-- ======================================================================= --> 413 <h3 id="vla">Variable-length arrays</h3> 414 <!-- ======================================================================= --> 415 416 <p>GCC and C99 allow an array's size to be determined at run 417 time. This extension is not permitted in standard C++. However, Clang 418 supports such variable length arrays in very limited circumstances for 419 compatibility with GNU C and C99 programs:</p> 420 421 <ul> 422 <li>The element type of a variable length array must be a POD 423 ("plain old data") type, which means that it cannot have any 424 user-declared constructors or destructors, any base classes, or any 425 members of non-POD type. All C types are POD types.</li> 426 427 <li>Variable length arrays cannot be used as the type of a non-type 428 template parameter.</li> </ul> 429 430 <p>If your code uses variable length arrays in a manner that Clang doesn't support, there are several ways to fix your code: 431 432 <ol> 433 <li>replace the variable length array with a fixed-size array if you can 434 determine a reasonable upper bound at compile time; sometimes this is as 435 simple as changing <tt>int size = ...;</tt> to <tt>const int size 436 = ...;</tt> (if the initializer is a compile-time constant);</li> 437 <li>use <tt>std::vector</tt> or some other suitable container type; 438 or</li> 439 <li>allocate the array on the heap instead using <tt>new Type[]</tt> - 440 just remember to <tt>delete[]</tt> it.</li> 441 </ol> 442 443 <!-- ======================================================================= --> 444 <h3 id="dep_lookup">Unqualified lookup in templates</h3> 445 <!-- ======================================================================= --> 446 447 <p>Some versions of GCC accept the following invalid code: 448 449 <pre> 450 template <typename T> T Squared(T x) { 451 return Multiply(x, x); 452 } 453 454 int Multiply(int x, int y) { 455 return x * y; 456 } 457 458 int main() { 459 Squared(5); 460 } 461 </pre> 462 463 <p>Clang complains: 464 465 <pre> 466 <b>my_file.cpp:2:10: <span class="error">error:</span> call to function 'Multiply' that is neither visible in the template definition nor found by argument-dependent lookup</b> 467 return Multiply(x, x); 468 <span class="caret"> ^</span> 469 <b>my_file.cpp:10:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Squared<int>' requested here 470 Squared(5); 471 <span class="caret"> ^</span> 472 <b>my_file.cpp:5:5: <span class="note">note:</span></b> 'Multiply' should be declared prior to the call site 473 int Multiply(int x, int y) { 474 <span class="caret"> ^</span> 475 </pre> 476 477 <p>The C++ standard says that unqualified names like <q>Multiply</q> 478 are looked up in two ways. 479 480 <p>First, the compiler does <i>unqualified lookup</i> in the scope 481 where the name was written. For a template, this means the lookup is 482 done at the point where the template is defined, not where it's 483 instantiated. Since <tt>Multiply</tt> hasn't been declared yet at 484 this point, unqualified lookup won't find it. 485 486 <p>Second, if the name is called like a function, then the compiler 487 also does <i>argument-dependent lookup</i> (ADL). (Sometimes 488 unqualified lookup can suppress ADL; see [basic.lookup.argdep]p3 for 489 more information.) In ADL, the compiler looks at the types of all the 490 arguments to the call. When it finds a class type, it looks up the 491 name in that class's namespace; the result is all the declarations it 492 finds in those namespaces, plus the declarations from unqualified 493 lookup. However, the compiler doesn't do ADL until it knows all the 494 argument types. 495 496 <p>In our example, <tt>Multiply</tt> is called with dependent 497 arguments, so ADL isn't done until the template is instantiated. At 498 that point, the arguments both have type <tt>int</tt>, which doesn't 499 contain any class types, and so ADL doesn't look in any namespaces. 500 Since neither form of lookup found the declaration 501 of <tt>Multiply</tt>, the code doesn't compile. 502 503 <p>Here's another example, this time using overloaded operators, 504 which obey very similar rules. 505 506 <pre>#include <iostream> 507 508 template<typename T> 509 void Dump(const T& value) { 510 std::cout << value << "\n"; 511 } 512 513 namespace ns { 514 struct Data {}; 515 } 516 517 std::ostream& operator<<(std::ostream& out, ns::Data data) { 518 return out << "Some data"; 519 } 520 521 void Use() { 522 Dump(ns::Data()); 523 }</pre> 524 525 <p>Again, Clang complains:</p> 526 527 <pre> 528 <b>my_file2.cpp:5:13: <span class="error">error:</span> call to function 'operator<<' that is neither visible in the template definition nor found by argument-dependent lookup</b> 529 std::cout << value << "\n"; 530 <span class="caret"> ^</span> 531 <b>my_file2.cpp:17:3: <span class="note">note:</span></b> in instantiation of function template specialization 'Dump<ns::Data>' requested here 532 Dump(ns::Data()); 533 <span class="caret"> ^</span> 534 <b>my_file2.cpp:12:15: <span class="note">note:</span></b> 'operator<<' should be declared prior to the call site or in namespace 'ns' 535 std::ostream& operator<<(std::ostream& out, ns::Data data) { 536 <span class="caret"> ^</span> 537 </pre> 538 539 <p>Just like before, unqualified lookup didn't find any declarations 540 with the name <tt>operator<<</tt>. Unlike before, the argument 541 types both contain class types: one of them is an instance of the 542 class template type <tt>std::basic_ostream</tt>, and the other is the 543 type <tt>ns::Data</tt> that we declared above. Therefore, ADL will 544 look in the namespaces <tt>std</tt> and <tt>ns</tt> for 545 an <tt>operator<<</tt>. Since one of the argument types was 546 still dependent during the template definition, ADL isn't done until 547 the template is instantiated during <tt>Use</tt>, which means that 548 the <tt>operator<<</tt> we want it to find has already been 549 declared. Unfortunately, it was declared in the global namespace, not 550 in either of the namespaces that ADL will look in! 551 552 <p>There are two ways to fix this problem:</p> 553 <ol><li>Make sure the function you want to call is declared before the 554 template that might call it. This is the only option if none of its 555 argument types contain classes. You can do this either by moving the 556 template definition, or by moving the function definition, or by 557 adding a forward declaration of the function before the template.</li> 558 <li>Move the function into the same namespace as one of its arguments 559 so that ADL applies.</li></ol> 560 561 <p>For more information about argument-dependent lookup, see 562 [basic.lookup.argdep]. For more information about the ordering of 563 lookup in templates, see [temp.dep.candidate]. 564 565 <!-- ======================================================================= --> 566 <h3 id="dep_lookup_bases">Unqualified lookup into dependent bases of class templates</h3> 567 <!-- ======================================================================= --> 568 569 Some versions of GCC accept the following invalid code: 570 571 <pre> 572 template <typename T> struct Base { 573 void DoThis(T x) {} 574 static void DoThat(T x) {} 575 }; 576 577 template <typename T> struct Derived : public Base<T> { 578 void Work(T x) { 579 DoThis(x); // Invalid! 580 DoThat(x); // Invalid! 581 } 582 }; 583 </pre> 584 585 Clang correctly rejects it with the following errors 586 (when <tt>Derived</tt> is eventually instantiated): 587 588 <pre> 589 <b>my_file.cpp:8:5: <span class="error">error:</span> use of undeclared identifier 'DoThis'</b> 590 DoThis(x); 591 <span class="caret"> ^</span> 592 this-> 593 <b>my_file.cpp:2:8: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class 594 void DoThis(T x) {} 595 <span class="caret"> ^</span> 596 <b>my_file.cpp:9:5: <span class="error">error:</span> use of undeclared identifier 'DoThat'</b> 597 DoThat(x); 598 <span class="caret"> ^</span> 599 this-> 600 <b>my_file.cpp:3:15: <span class="note">note:</note></b> must qualify identifier to find this declaration in dependent base class 601 static void DoThat(T x) {} 602 </pre> 603 604 Like we said <a href="#dep_lookup">above</a>, unqualified names like 605 <tt>DoThis</tt> and <tt>DoThat</tt> are looked up when the template 606 <tt>Derived</tt> is defined, not when it's instantiated. When we look 607 up a name used in a class, we usually look into the base classes. 608 However, we can't look into the base class <tt>Base<T></tt> 609 because its type depends on the template argument <tt>T</tt>, so the 610 standard says we should just ignore it. See [temp.dep]p3 for details. 611 612 <p>The fix, as Clang tells you, is to tell the compiler that we want a 613 class member by prefixing the calls with <tt>this-></tt>: 614 615 <pre> 616 void Work(T x) { 617 <b>this-></b>DoThis(x); 618 <b>this-></b>DoThat(x); 619 } 620 </pre> 621 622 Alternatively, you can tell the compiler exactly where to look: 623 624 <pre> 625 void Work(T x) { 626 <b>Base<T></b>::DoThis(x); 627 <b>Base<T></b>::DoThat(x); 628 } 629 </pre> 630 631 This works whether the methods are static or not, but be careful: 632 if <tt>DoThis</tt> is virtual, calling it this way will bypass virtual 633 dispatch! 634 635 <!-- ======================================================================= --> 636 <h3 id="undep_incomplete">Incomplete types in templates</h3> 637 <!-- ======================================================================= --> 638 639 The following code is invalid, but compilers are allowed to accept it: 640 641 <pre> 642 class IOOptions; 643 template <class T> bool read(T &value) { 644 IOOptions opts; 645 return read(opts, value); 646 } 647 648 class IOOptions { bool ForceReads; }; 649 bool read(const IOOptions &opts, int &x); 650 template bool read<>(int &); 651 </pre> 652 653 The standard says that types which don't depend on template parameters 654 must be complete when a template is defined if they affect the 655 program's behavior. However, the standard also says that compilers 656 are free to not enforce this rule. Most compilers enforce it to some 657 extent; for example, it would be an error in GCC to 658 write <tt>opts.ForceReads</tt> in the code above. In Clang, we feel 659 that enforcing the rule consistently lets us provide a better 660 experience, but unfortunately it also means we reject some code that 661 other compilers accept. 662 663 <p>We've explained the rule here in very imprecise terms; see 664 [temp.res]p8 for details. 665 666 <!-- ======================================================================= --> 667 <h3 id="bad_templates">Templates with no valid instantiations</h3> 668 <!-- ======================================================================= --> 669 670 The following code contains a typo: the programmer 671 meant <tt>init()</tt> but wrote <tt>innit()</tt> instead. 672 673 <pre> 674 template <class T> class Processor { 675 ... 676 void init(); 677 ... 678 }; 679 ... 680 template <class T> void process() { 681 Processor<T> processor; 682 processor.innit(); // <-- should be 'init()' 683 ... 684 } 685 </pre> 686 687 Unfortunately, we can't flag this mistake as soon as we see it: inside 688 a template, we're not allowed to make assumptions about "dependent 689 types" like <tt>Processor<T></tt>. Suppose that later on in 690 this file the programmer adds an explicit specialization 691 of <tt>Processor</tt>, like so: 692 693 <pre> 694 template <> class Processor<char*> { 695 void innit(); 696 }; 697 </pre> 698 699 Now the program will work — as long as the programmer only ever 700 instantiates <tt>process()</tt> with <tt>T = char*</tt>! This is why 701 it's hard, and sometimes impossible, to diagnose mistakes in a 702 template definition before it's instantiated. 703 704 <p>The standard says that a template with no valid instantiations is 705 ill-formed. Clang tries to do as much checking as possible at 706 definition-time instead of instantiation-time: not only does this 707 produce clearer diagnostics, but it also substantially improves 708 compile times when using pre-compiled headers. The downside to this 709 philosophy is that Clang sometimes fails to process files because they 710 contain broken templates that are no longer used. The solution is 711 simple: since the code is unused, just remove it. 712 713 <!-- ======================================================================= --> 714 <h3 id="default_init_const">Default initialization of const variable of a class type requires user-defined default constructor</h3> 715 <!-- ======================================================================= --> 716 717 If a <tt>class</tt> or <tt>struct</tt> has no user-defined default 718 constructor, C++ doesn't allow you to default construct a <tt>const</tt> 719 instance of it like this ([dcl.init], p9): 720 721 <pre> 722 class Foo { 723 public: 724 // The compiler-supplied default constructor works fine, so we 725 // don't bother with defining one. 726 ... 727 }; 728 729 void Bar() { 730 const Foo foo; // Error! 731 ... 732 } 733 </pre> 734 735 To fix this, you can define a default constructor for the class: 736 737 <pre> 738 class Foo { 739 public: 740 Foo() {} 741 ... 742 }; 743 744 void Bar() { 745 const Foo foo; // Now the compiler is happy. 746 ... 747 } 748 </pre> 749 750 <!-- ======================================================================= --> 751 <h3 id="param_name_lookup">Parameter name lookup</h3> 752 <!-- ======================================================================= --> 753 754 <p>Due to a bug in its implementation, GCC allows the redeclaration of function parameter names within a function prototype in C++ code, e.g.</p> 755 <blockquote> 756 <pre> 757 void f(int a, int a); 758 </pre> 759 </blockquote> 760 <p>Clang diagnoses this error (where the parameter name has been redeclared). To fix this problem, rename one of the parameters.</p> 761 762 <!-- ======================================================================= --> 763 <h2 id="cxx11">C++11 compatibility</h2> 764 <!-- ======================================================================= --> 765 766 <!-- ======================================================================= --> 767 <h3 id="deleted-special-func">Deleted special member functions</h3> 768 <!-- ======================================================================= --> 769 770 <p>In C++11, the explicit declaration of a move constructor or a move 771 assignment operator within a class deletes the implicit declaration 772 of the copy constructor and copy assignment operator. This change came 773 fairly late in the C++11 standardization process, so early 774 implementations of C++11 (including Clang before 3.0, GCC before 4.7, 775 and Visual Studio 2010) do not implement this rule, leading them to 776 accept this ill-formed code:</p> 777 778 <pre> 779 struct X { 780 X(X&&); <i>// deletes implicit copy constructor:</i> 781 <i>// X(const X&) = delete;</i> 782 }; 783 784 void f(X x); 785 void g(X x) { 786 f(x); <i>// error: X has a deleted copy constructor</i> 787 } 788 </pre> 789 790 <p>This affects some early C++11 code, including Boost's popular <a 791 href="http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm"><tt>shared_ptr</tt></a> 792 up to version 1.47.0. The fix for Boost's <tt>shared_ptr</tt> is 793 <a href="https://svn.boost.org/trac/boost/changeset/73202">available here</a>.</p> 794 795 <!-- ======================================================================= --> 796 <h2 id="objective-cxx">Objective-C++ compatibility</h2> 797 <!-- ======================================================================= --> 798 799 <!-- ======================================================================= --> 800 <h3 id="implicit-downcasts">Implicit downcasts</h3> 801 <!-- ======================================================================= --> 802 803 <p>Due to a bug in its implementation, GCC allows implicit downcasts 804 of Objective-C pointers (from a base class to a derived class) when 805 calling functions. Such code is inherently unsafe, since the object 806 might not actually be an instance of the derived class, and is 807 rejected by Clang. For example, given this code:</p> 808 809 <pre> 810 @interface Base @end 811 @interface Derived : Base @end 812 813 void f(Derived *p); 814 void g(Base *p) { 815 f(p); 816 } 817 </pre> 818 819 <p>Clang produces the following error:</p> 820 821 <pre> 822 <b>downcast.mm:6:3: <span class="error">error:</span> no matching function for call to 'f'</b> 823 f(p); 824 <span class="caret"> ^</span> 825 <b>downcast.mm:4:6: <span class="note">note:</note></b> candidate function not viable: cannot convert from 826 superclass 'Base *' to subclass 'Derived *' for 1st argument 827 void f(Derived *p); 828 <span class="caret"> ^</span> 829 </pre> 830 831 <p>If the downcast is actually correct (e.g., because the code has 832 already checked that the object has the appropriate type), add an 833 explicit cast:</p> 834 835 <pre> 836 f((Derived *)base); 837 </pre> 838 839 <!-- ======================================================================= --> 840 <h3 id="class-as-property-name">Using <code>class</code> as a property name</h3> 841 <!-- ======================================================================= --> 842 843 <p>In C and Objective-C, <code>class</code> is a normal identifier and 844 can be used to name fields, ivars, methods, and so on. In 845 C++, <code>class</code> is a keyword. For compatibility with existing 846 code, Clang permits <code>class</code> to be used as part of a method 847 selector in Objective-C++, but this does not extend to any other part 848 of the language. In particular, it is impossible to use property dot 849 syntax in Objective-C++ with the property name <code>class</code>, so 850 the following code will fail to parse:</p> 851 852 <pre> 853 @interface I { 854 int cls; 855 } 856 + (int)class; 857 @end 858 859 @implementation I 860 - (int) Meth { return I.class; } 861 @end 862 </pre> 863 864 <p>Use explicit message-send syntax instead, i.e. <code>[I class]</code>.</p> 865 866 </div> 867 </body> 868 </html> 869