Home | History | Annotate | Download | only in Geometry
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <g.gael (at) free.fr>
      5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
     12 
     13 namespace Eigen {
     14 
     15 // Note that we have to pass Dim and HDim because it is not allowed to use a template
     16 // parameter to define a template specialization. To be more precise, in the following
     17 // specializations, it is not allowed to use Dim+1 instead of HDim.
     18 template< typename Other,
     19           int Dim,
     20           int HDim,
     21           int OtherRows=Other::RowsAtCompileTime,
     22           int OtherCols=Other::ColsAtCompileTime>
     23 struct ei_transform_product_impl;
     24 
     25 /** \geometry_module \ingroup Geometry_Module
     26   *
     27   * \class Transform
     28   *
     29   * \brief Represents an homogeneous transformation in a N dimensional space
     30   *
     31   * \param _Scalar the scalar type, i.e., the type of the coefficients
     32   * \param _Dim the dimension of the space
     33   *
     34   * The homography is internally represented and stored as a (Dim+1)^2 matrix which
     35   * is available through the matrix() method.
     36   *
     37   * Conversion methods from/to Qt's QMatrix and QTransform are available if the
     38   * preprocessor token EIGEN_QT_SUPPORT is defined.
     39   *
     40   * \sa class Matrix, class Quaternion
     41   */
     42 template<typename _Scalar, int _Dim>
     43 class Transform
     44 {
     45 public:
     46   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
     47   enum {
     48     Dim = _Dim,     ///< space dimension in which the transformation holds
     49     HDim = _Dim+1   ///< size of a respective homogeneous vector
     50   };
     51   /** the scalar type of the coefficients */
     52   typedef _Scalar Scalar;
     53   /** type of the matrix used to represent the transformation */
     54   typedef Matrix<Scalar,HDim,HDim> MatrixType;
     55   /** type of the matrix used to represent the linear part of the transformation */
     56   typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
     57   /** type of read/write reference to the linear part of the transformation */
     58   typedef Block<MatrixType,Dim,Dim> LinearPart;
     59   /** type of read/write reference to the linear part of the transformation */
     60   typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
     61   /** type of a vector */
     62   typedef Matrix<Scalar,Dim,1> VectorType;
     63   /** type of a read/write reference to the translation part of the rotation */
     64   typedef Block<MatrixType,Dim,1> TranslationPart;
     65   /** type of a read/write reference to the translation part of the rotation */
     66   typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
     67   /** corresponding translation type */
     68   typedef Translation<Scalar,Dim> TranslationType;
     69   /** corresponding scaling transformation type */
     70   typedef Scaling<Scalar,Dim> ScalingType;
     71 
     72 protected:
     73 
     74   MatrixType m_matrix;
     75 
     76 public:
     77 
     78   /** Default constructor without initialization of the coefficients. */
     79   inline Transform() { }
     80 
     81   inline Transform(const Transform& other)
     82   {
     83     m_matrix = other.m_matrix;
     84   }
     85 
     86   inline explicit Transform(const TranslationType& t) { *this = t; }
     87   inline explicit Transform(const ScalingType& s) { *this = s; }
     88   template<typename Derived>
     89   inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
     90 
     91   inline Transform& operator=(const Transform& other)
     92   { m_matrix = other.m_matrix; return *this; }
     93 
     94   template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
     95   struct construct_from_matrix
     96   {
     97     static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
     98     {
     99       transform->matrix() = other;
    100     }
    101   };
    102 
    103   template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
    104   {
    105     static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
    106     {
    107       transform->linear() = other;
    108       transform->translation().setZero();
    109       transform->matrix()(Dim,Dim) = Scalar(1);
    110       transform->matrix().template block<1,Dim>(Dim,0).setZero();
    111     }
    112   };
    113 
    114   /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
    115   template<typename OtherDerived>
    116   inline explicit Transform(const MatrixBase<OtherDerived>& other)
    117   {
    118     construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
    119   }
    120 
    121   /** Set \c *this from a (Dim+1)^2 matrix. */
    122   template<typename OtherDerived>
    123   inline Transform& operator=(const MatrixBase<OtherDerived>& other)
    124   { m_matrix = other; return *this; }
    125 
    126   #ifdef EIGEN_QT_SUPPORT
    127   inline Transform(const QMatrix& other);
    128   inline Transform& operator=(const QMatrix& other);
    129   inline QMatrix toQMatrix(void) const;
    130   inline Transform(const QTransform& other);
    131   inline Transform& operator=(const QTransform& other);
    132   inline QTransform toQTransform(void) const;
    133   #endif
    134 
    135   /** shortcut for m_matrix(row,col);
    136     * \sa MatrixBase::operaror(int,int) const */
    137   inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
    138   /** shortcut for m_matrix(row,col);
    139     * \sa MatrixBase::operaror(int,int) */
    140   inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
    141 
    142   /** \returns a read-only expression of the transformation matrix */
    143   inline const MatrixType& matrix() const { return m_matrix; }
    144   /** \returns a writable expression of the transformation matrix */
    145   inline MatrixType& matrix() { return m_matrix; }
    146 
    147   /** \returns a read-only expression of the linear (linear) part of the transformation */
    148   inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
    149   /** \returns a writable expression of the linear (linear) part of the transformation */
    150   inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
    151 
    152   /** \returns a read-only expression of the translation vector of the transformation */
    153   inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
    154   /** \returns a writable expression of the translation vector of the transformation */
    155   inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
    156 
    157   /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
    158   *
    159   * The right hand side \a other might be either:
    160   * \li a vector of size Dim,
    161   * \li an homogeneous vector of size Dim+1,
    162   * \li a transformation matrix of size Dim+1 x Dim+1.
    163   */
    164   // note: this function is defined here because some compilers cannot find the respective declaration
    165   template<typename OtherDerived>
    166   inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
    167   operator * (const MatrixBase<OtherDerived> &other) const
    168   { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
    169 
    170   /** \returns the product expression of a transformation matrix \a a times a transform \a b
    171     * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
    172   template<typename OtherDerived>
    173   friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
    174   operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
    175   { return a.derived() * b.matrix(); }
    176 
    177   /** Contatenates two transformations */
    178   inline const Transform
    179   operator * (const Transform& other) const
    180   { return Transform(m_matrix * other.matrix()); }
    181 
    182   /** \sa MatrixBase::setIdentity() */
    183   void setIdentity() { m_matrix.setIdentity(); }
    184   static const typename MatrixType::IdentityReturnType Identity()
    185   {
    186     return MatrixType::Identity();
    187   }
    188 
    189   template<typename OtherDerived>
    190   inline Transform& scale(const MatrixBase<OtherDerived> &other);
    191 
    192   template<typename OtherDerived>
    193   inline Transform& prescale(const MatrixBase<OtherDerived> &other);
    194 
    195   inline Transform& scale(Scalar s);
    196   inline Transform& prescale(Scalar s);
    197 
    198   template<typename OtherDerived>
    199   inline Transform& translate(const MatrixBase<OtherDerived> &other);
    200 
    201   template<typename OtherDerived>
    202   inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
    203 
    204   template<typename RotationType>
    205   inline Transform& rotate(const RotationType& rotation);
    206 
    207   template<typename RotationType>
    208   inline Transform& prerotate(const RotationType& rotation);
    209 
    210   Transform& shear(Scalar sx, Scalar sy);
    211   Transform& preshear(Scalar sx, Scalar sy);
    212 
    213   inline Transform& operator=(const TranslationType& t);
    214   inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
    215   inline Transform operator*(const TranslationType& t) const;
    216 
    217   inline Transform& operator=(const ScalingType& t);
    218   inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
    219   inline Transform operator*(const ScalingType& s) const;
    220   friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
    221   {
    222     Transform res = t;
    223     res.matrix().row(Dim) = t.matrix().row(Dim);
    224     res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
    225     return res;
    226   }
    227 
    228   template<typename Derived>
    229   inline Transform& operator=(const RotationBase<Derived,Dim>& r);
    230   template<typename Derived>
    231   inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
    232   template<typename Derived>
    233   inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
    234 
    235   LinearMatrixType rotation() const;
    236   template<typename RotationMatrixType, typename ScalingMatrixType>
    237   void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
    238   template<typename ScalingMatrixType, typename RotationMatrixType>
    239   void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
    240 
    241   template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
    242   Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    243     const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
    244 
    245   inline const MatrixType inverse(TransformTraits traits = Affine) const;
    246 
    247   /** \returns a const pointer to the column major internal matrix */
    248   const Scalar* data() const { return m_matrix.data(); }
    249   /** \returns a non-const pointer to the column major internal matrix */
    250   Scalar* data() { return m_matrix.data(); }
    251 
    252   /** \returns \c *this with scalar type casted to \a NewScalarType
    253     *
    254     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    255     * then this function smartly returns a const reference to \c *this.
    256     */
    257   template<typename NewScalarType>
    258   inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
    259   { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
    260 
    261   /** Copy constructor with scalar type conversion */
    262   template<typename OtherScalarType>
    263   inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
    264   { m_matrix = other.matrix().template cast<Scalar>(); }
    265 
    266   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    267     * determined by \a prec.
    268     *
    269     * \sa MatrixBase::isApprox() */
    270   bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
    271   { return m_matrix.isApprox(other.m_matrix, prec); }
    272 
    273   #ifdef EIGEN_TRANSFORM_PLUGIN
    274   #include EIGEN_TRANSFORM_PLUGIN
    275   #endif
    276 
    277 protected:
    278 
    279 };
    280 
    281 /** \ingroup Geometry_Module */
    282 typedef Transform<float,2> Transform2f;
    283 /** \ingroup Geometry_Module */
    284 typedef Transform<float,3> Transform3f;
    285 /** \ingroup Geometry_Module */
    286 typedef Transform<double,2> Transform2d;
    287 /** \ingroup Geometry_Module */
    288 typedef Transform<double,3> Transform3d;
    289 
    290 /**************************
    291 *** Optional QT support ***
    292 **************************/
    293 
    294 #ifdef EIGEN_QT_SUPPORT
    295 /** Initialises \c *this from a QMatrix assuming the dimension is 2.
    296   *
    297   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
    298   */
    299 template<typename Scalar, int Dim>
    300 Transform<Scalar,Dim>::Transform(const QMatrix& other)
    301 {
    302   *this = other;
    303 }
    304 
    305 /** Set \c *this from a QMatrix assuming the dimension is 2.
    306   *
    307   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
    308   */
    309 template<typename Scalar, int Dim>
    310 Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
    311 {
    312   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
    313   m_matrix << other.m11(), other.m21(), other.dx(),
    314               other.m12(), other.m22(), other.dy(),
    315               0, 0, 1;
    316    return *this;
    317 }
    318 
    319 /** \returns a QMatrix from \c *this assuming the dimension is 2.
    320   *
    321   * \warning this convertion might loss data if \c *this is not affine
    322   *
    323   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
    324   */
    325 template<typename Scalar, int Dim>
    326 QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
    327 {
    328   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
    329   return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
    330                  m_matrix.coeff(0,1), m_matrix.coeff(1,1),
    331                  m_matrix.coeff(0,2), m_matrix.coeff(1,2));
    332 }
    333 
    334 /** Initialises \c *this from a QTransform assuming the dimension is 2.
    335   *
    336   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
    337   */
    338 template<typename Scalar, int Dim>
    339 Transform<Scalar,Dim>::Transform(const QTransform& other)
    340 {
    341   *this = other;
    342 }
    343 
    344 /** Set \c *this from a QTransform assuming the dimension is 2.
    345   *
    346   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
    347   */
    348 template<typename Scalar, int Dim>
    349 Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
    350 {
    351   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
    352   m_matrix << other.m11(), other.m21(), other.dx(),
    353               other.m12(), other.m22(), other.dy(),
    354               other.m13(), other.m23(), other.m33();
    355    return *this;
    356 }
    357 
    358 /** \returns a QTransform from \c *this assuming the dimension is 2.
    359   *
    360   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
    361   */
    362 template<typename Scalar, int Dim>
    363 QTransform Transform<Scalar,Dim>::toQTransform(void) const
    364 {
    365   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
    366   return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
    367                     m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
    368                     m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
    369 }
    370 #endif
    371 
    372 /*********************
    373 *** Procedural API ***
    374 *********************/
    375 
    376 /** Applies on the right the non uniform scale transformation represented
    377   * by the vector \a other to \c *this and returns a reference to \c *this.
    378   * \sa prescale()
    379   */
    380 template<typename Scalar, int Dim>
    381 template<typename OtherDerived>
    382 Transform<Scalar,Dim>&
    383 Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
    384 {
    385   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
    386   linear() = (linear() * other.asDiagonal()).lazy();
    387   return *this;
    388 }
    389 
    390 /** Applies on the right a uniform scale of a factor \a c to \c *this
    391   * and returns a reference to \c *this.
    392   * \sa prescale(Scalar)
    393   */
    394 template<typename Scalar, int Dim>
    395 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
    396 {
    397   linear() *= s;
    398   return *this;
    399 }
    400 
    401 /** Applies on the left the non uniform scale transformation represented
    402   * by the vector \a other to \c *this and returns a reference to \c *this.
    403   * \sa scale()
    404   */
    405 template<typename Scalar, int Dim>
    406 template<typename OtherDerived>
    407 Transform<Scalar,Dim>&
    408 Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
    409 {
    410   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
    411   m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
    412   return *this;
    413 }
    414 
    415 /** Applies on the left a uniform scale of a factor \a c to \c *this
    416   * and returns a reference to \c *this.
    417   * \sa scale(Scalar)
    418   */
    419 template<typename Scalar, int Dim>
    420 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
    421 {
    422   m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
    423   return *this;
    424 }
    425 
    426 /** Applies on the right the translation matrix represented by the vector \a other
    427   * to \c *this and returns a reference to \c *this.
    428   * \sa pretranslate()
    429   */
    430 template<typename Scalar, int Dim>
    431 template<typename OtherDerived>
    432 Transform<Scalar,Dim>&
    433 Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
    434 {
    435   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
    436   translation() += linear() * other;
    437   return *this;
    438 }
    439 
    440 /** Applies on the left the translation matrix represented by the vector \a other
    441   * to \c *this and returns a reference to \c *this.
    442   * \sa translate()
    443   */
    444 template<typename Scalar, int Dim>
    445 template<typename OtherDerived>
    446 Transform<Scalar,Dim>&
    447 Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
    448 {
    449   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
    450   translation() += other;
    451   return *this;
    452 }
    453 
    454 /** Applies on the right the rotation represented by the rotation \a rotation
    455   * to \c *this and returns a reference to \c *this.
    456   *
    457   * The template parameter \a RotationType is the type of the rotation which
    458   * must be known by ei_toRotationMatrix<>.
    459   *
    460   * Natively supported types includes:
    461   *   - any scalar (2D),
    462   *   - a Dim x Dim matrix expression,
    463   *   - a Quaternion (3D),
    464   *   - a AngleAxis (3D)
    465   *
    466   * This mechanism is easily extendable to support user types such as Euler angles,
    467   * or a pair of Quaternion for 4D rotations.
    468   *
    469   * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
    470   */
    471 template<typename Scalar, int Dim>
    472 template<typename RotationType>
    473 Transform<Scalar,Dim>&
    474 Transform<Scalar,Dim>::rotate(const RotationType& rotation)
    475 {
    476   linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
    477   return *this;
    478 }
    479 
    480 /** Applies on the left the rotation represented by the rotation \a rotation
    481   * to \c *this and returns a reference to \c *this.
    482   *
    483   * See rotate() for further details.
    484   *
    485   * \sa rotate()
    486   */
    487 template<typename Scalar, int Dim>
    488 template<typename RotationType>
    489 Transform<Scalar,Dim>&
    490 Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
    491 {
    492   m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
    493                                          * m_matrix.template block<Dim,HDim>(0,0);
    494   return *this;
    495 }
    496 
    497 /** Applies on the right the shear transformation represented
    498   * by the vector \a other to \c *this and returns a reference to \c *this.
    499   * \warning 2D only.
    500   * \sa preshear()
    501   */
    502 template<typename Scalar, int Dim>
    503 Transform<Scalar,Dim>&
    504 Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
    505 {
    506   EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
    507   VectorType tmp = linear().col(0)*sy + linear().col(1);
    508   linear() << linear().col(0) + linear().col(1)*sx, tmp;
    509   return *this;
    510 }
    511 
    512 /** Applies on the left the shear transformation represented
    513   * by the vector \a other to \c *this and returns a reference to \c *this.
    514   * \warning 2D only.
    515   * \sa shear()
    516   */
    517 template<typename Scalar, int Dim>
    518 Transform<Scalar,Dim>&
    519 Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
    520 {
    521   EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
    522   m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
    523   return *this;
    524 }
    525 
    526 /******************************************************
    527 *** Scaling, Translation and Rotation compatibility ***
    528 ******************************************************/
    529 
    530 template<typename Scalar, int Dim>
    531 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
    532 {
    533   linear().setIdentity();
    534   translation() = t.vector();
    535   m_matrix.template block<1,Dim>(Dim,0).setZero();
    536   m_matrix(Dim,Dim) = Scalar(1);
    537   return *this;
    538 }
    539 
    540 template<typename Scalar, int Dim>
    541 inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
    542 {
    543   Transform res = *this;
    544   res.translate(t.vector());
    545   return res;
    546 }
    547 
    548 template<typename Scalar, int Dim>
    549 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
    550 {
    551   m_matrix.setZero();
    552   linear().diagonal() = s.coeffs();
    553   m_matrix.coeffRef(Dim,Dim) = Scalar(1);
    554   return *this;
    555 }
    556 
    557 template<typename Scalar, int Dim>
    558 inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
    559 {
    560   Transform res = *this;
    561   res.scale(s.coeffs());
    562   return res;
    563 }
    564 
    565 template<typename Scalar, int Dim>
    566 template<typename Derived>
    567 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
    568 {
    569   linear() = ei_toRotationMatrix<Scalar,Dim>(r);
    570   translation().setZero();
    571   m_matrix.template block<1,Dim>(Dim,0).setZero();
    572   m_matrix.coeffRef(Dim,Dim) = Scalar(1);
    573   return *this;
    574 }
    575 
    576 template<typename Scalar, int Dim>
    577 template<typename Derived>
    578 inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
    579 {
    580   Transform res = *this;
    581   res.rotate(r.derived());
    582   return res;
    583 }
    584 
    585 /************************
    586 *** Special functions ***
    587 ************************/
    588 
    589 /** \returns the rotation part of the transformation
    590   * \nonstableyet
    591   *
    592   * \svd_module
    593   *
    594   * \sa computeRotationScaling(), computeScalingRotation(), class SVD
    595   */
    596 template<typename Scalar, int Dim>
    597 typename Transform<Scalar,Dim>::LinearMatrixType
    598 Transform<Scalar,Dim>::rotation() const
    599 {
    600   LinearMatrixType result;
    601   computeRotationScaling(&result, (LinearMatrixType*)0);
    602   return result;
    603 }
    604 
    605 
    606 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
    607   * not necessarily positive.
    608   *
    609   * If either pointer is zero, the corresponding computation is skipped.
    610   *
    611   * \nonstableyet
    612   *
    613   * \svd_module
    614   *
    615   * \sa computeScalingRotation(), rotation(), class SVD
    616   */
    617 template<typename Scalar, int Dim>
    618 template<typename RotationMatrixType, typename ScalingMatrixType>
    619 void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
    620 {
    621   JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
    622   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
    623   Matrix<Scalar, Dim, 1> sv(svd.singularValues());
    624   sv.coeffRef(0) *= x;
    625   if(scaling)
    626   {
    627     scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
    628   }
    629   if(rotation)
    630   {
    631     LinearMatrixType m(svd.matrixU());
    632     m.col(0) /= x;
    633     rotation->noalias() = m * svd.matrixV().adjoint();
    634   }
    635 }
    636 
    637 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
    638   * not necessarily positive.
    639   *
    640   * If either pointer is zero, the corresponding computation is skipped.
    641   *
    642   * \nonstableyet
    643   *
    644   * \svd_module
    645   *
    646   * \sa computeRotationScaling(), rotation(), class SVD
    647   */
    648 template<typename Scalar, int Dim>
    649 template<typename ScalingMatrixType, typename RotationMatrixType>
    650 void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
    651 {
    652   JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
    653   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
    654   Matrix<Scalar, Dim, 1> sv(svd.singularValues());
    655   sv.coeffRef(0) *= x;
    656   if(scaling)
    657   {
    658     scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
    659   }
    660   if(rotation)
    661   {
    662     LinearMatrixType m(svd.matrixU());
    663     m.col(0) /= x;
    664     rotation->noalias() = m * svd.matrixV().adjoint();
    665   }
    666 }
    667 
    668 /** Convenient method to set \c *this from a position, orientation and scale
    669   * of a 3D object.
    670   */
    671 template<typename Scalar, int Dim>
    672 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
    673 Transform<Scalar,Dim>&
    674 Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    675   const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
    676 {
    677   linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
    678   linear() *= scale.asDiagonal();
    679   translation() = position;
    680   m_matrix.template block<1,Dim>(Dim,0).setZero();
    681   m_matrix(Dim,Dim) = Scalar(1);
    682   return *this;
    683 }
    684 
    685 /** \nonstableyet
    686   *
    687   * \returns the inverse transformation matrix according to some given knowledge
    688   * on \c *this.
    689   *
    690   * \param traits allows to optimize the inversion process when the transformion
    691   * is known to be not a general transformation. The possible values are:
    692   *  - Projective if the transformation is not necessarily affine, i.e., if the
    693   *    last row is not guaranteed to be [0 ... 0 1]
    694   *  - Affine is the default, the last row is assumed to be [0 ... 0 1]
    695   *  - Isometry if the transformation is only a concatenations of translations
    696   *    and rotations.
    697   *
    698   * \warning unless \a traits is always set to NoShear or NoScaling, this function
    699   * requires the generic inverse method of MatrixBase defined in the LU module. If
    700   * you forget to include this module, then you will get hard to debug linking errors.
    701   *
    702   * \sa MatrixBase::inverse()
    703   */
    704 template<typename Scalar, int Dim>
    705 inline const typename Transform<Scalar,Dim>::MatrixType
    706 Transform<Scalar,Dim>::inverse(TransformTraits traits) const
    707 {
    708   if (traits == Projective)
    709   {
    710     return m_matrix.inverse();
    711   }
    712   else
    713   {
    714     MatrixType res;
    715     if (traits == Affine)
    716     {
    717       res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
    718     }
    719     else if (traits == Isometry)
    720     {
    721       res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
    722     }
    723     else
    724     {
    725       ei_assert("invalid traits value in Transform::inverse()");
    726     }
    727     // translation and remaining parts
    728     res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
    729     res.template corner<1,Dim>(BottomLeft).setZero();
    730     res.coeffRef(Dim,Dim) = Scalar(1);
    731     return res;
    732   }
    733 }
    734 
    735 /*****************************************************
    736 *** Specializations of operator* with a MatrixBase ***
    737 *****************************************************/
    738 
    739 template<typename Other, int Dim, int HDim>
    740 struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
    741 {
    742   typedef Transform<typename Other::Scalar,Dim> TransformType;
    743   typedef typename TransformType::MatrixType MatrixType;
    744   typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
    745   static ResultType run(const TransformType& tr, const Other& other)
    746   { return tr.matrix() * other; }
    747 };
    748 
    749 template<typename Other, int Dim, int HDim>
    750 struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
    751 {
    752   typedef Transform<typename Other::Scalar,Dim> TransformType;
    753   typedef typename TransformType::MatrixType MatrixType;
    754   typedef TransformType ResultType;
    755   static ResultType run(const TransformType& tr, const Other& other)
    756   {
    757     TransformType res;
    758     res.translation() = tr.translation();
    759     res.matrix().row(Dim) = tr.matrix().row(Dim);
    760     res.linear() = (tr.linear() * other).lazy();
    761     return res;
    762   }
    763 };
    764 
    765 template<typename Other, int Dim, int HDim>
    766 struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
    767 {
    768   typedef Transform<typename Other::Scalar,Dim> TransformType;
    769   typedef typename TransformType::MatrixType MatrixType;
    770   typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
    771   static ResultType run(const TransformType& tr, const Other& other)
    772   { return tr.matrix() * other; }
    773 };
    774 
    775 template<typename Other, int Dim, int HDim>
    776 struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
    777 {
    778   typedef typename Other::Scalar Scalar;
    779   typedef Transform<Scalar,Dim> TransformType;
    780   typedef Matrix<Scalar,Dim,1> ResultType;
    781   static ResultType run(const TransformType& tr, const Other& other)
    782   { return ((tr.linear() * other) + tr.translation())
    783           * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
    784 };
    785 
    786 } // end namespace Eigen
    787