Home | History | Annotate | Download | only in IterativeLinearSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_BICGSTAB_H
     12 #define EIGEN_BICGSTAB_H
     13 
     14 namespace Eigen {
     15 
     16 namespace internal {
     17 
     18 /** \internal Low-level bi conjugate gradient stabilized algorithm
     19   * \param mat The matrix A
     20   * \param rhs The right hand side vector b
     21   * \param x On input and initial solution, on output the computed solution.
     22   * \param precond A preconditioner being able to efficiently solve for an
     23   *                approximation of Ax=b (regardless of b)
     24   * \param iters On input the max number of iteration, on output the number of performed iterations.
     25   * \param tol_error On input the tolerance error, on output an estimation of the relative error.
     26   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.
     27   */
     28 template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
     29 bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
     30               const Preconditioner& precond, int& iters,
     31               typename Dest::RealScalar& tol_error)
     32 {
     33   using std::sqrt;
     34   using std::abs;
     35   typedef typename Dest::RealScalar RealScalar;
     36   typedef typename Dest::Scalar Scalar;
     37   typedef Matrix<Scalar,Dynamic,1> VectorType;
     38   RealScalar tol = tol_error;
     39   int maxIters = iters;
     40 
     41   int n = mat.cols();
     42   x = precond.solve(x);
     43   VectorType r  = rhs - mat * x;
     44   VectorType r0 = r;
     45 
     46   RealScalar r0_sqnorm = r0.squaredNorm();
     47   RealScalar rhs_sqnorm = rhs.squaredNorm();
     48   if(rhs_sqnorm == 0)
     49   {
     50     x.setZero();
     51     return true;
     52   }
     53   Scalar rho    = 1;
     54   Scalar alpha  = 1;
     55   Scalar w      = 1;
     56 
     57   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n);
     58   VectorType y(n),  z(n);
     59   VectorType kt(n), ks(n);
     60 
     61   VectorType s(n), t(n);
     62 
     63   RealScalar tol2 = tol*tol;
     64   RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
     65   int i = 0;
     66   int restarts = 0;
     67 
     68   while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters )
     69   {
     70     Scalar rho_old = rho;
     71 
     72     rho = r0.dot(r);
     73     if (abs(rho) < eps2*r0_sqnorm)
     74     {
     75       // The new residual vector became too orthogonal to the arbitrarily choosen direction r0
     76       // Let's restart with a new r0:
     77       r0 = r;
     78       rho = r0_sqnorm = r.squaredNorm();
     79       if(restarts++ == 0)
     80         i = 0;
     81     }
     82     Scalar beta = (rho/rho_old) * (alpha / w);
     83     p = r + beta * (p - w * v);
     84 
     85     y = precond.solve(p);
     86 
     87     v.noalias() = mat * y;
     88 
     89     alpha = rho / r0.dot(v);
     90     s = r - alpha * v;
     91 
     92     z = precond.solve(s);
     93     t.noalias() = mat * z;
     94 
     95     RealScalar tmp = t.squaredNorm();
     96     if(tmp>RealScalar(0))
     97       w = t.dot(s) / tmp;
     98     else
     99       w = Scalar(0);
    100     x += alpha * y + w * z;
    101     r = s - w * t;
    102     ++i;
    103   }
    104   tol_error = sqrt(r.squaredNorm()/rhs_sqnorm);
    105   iters = i;
    106   return true;
    107 }
    108 
    109 }
    110 
    111 template< typename _MatrixType,
    112           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
    113 class BiCGSTAB;
    114 
    115 namespace internal {
    116 
    117 template< typename _MatrixType, typename _Preconditioner>
    118 struct traits<BiCGSTAB<_MatrixType,_Preconditioner> >
    119 {
    120   typedef _MatrixType MatrixType;
    121   typedef _Preconditioner Preconditioner;
    122 };
    123 
    124 }
    125 
    126 /** \ingroup IterativeLinearSolvers_Module
    127   * \brief A bi conjugate gradient stabilized solver for sparse square problems
    128   *
    129   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient
    130   * stabilized algorithm. The vectors x and b can be either dense or sparse.
    131   *
    132   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
    133   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
    134   *
    135   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
    136   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
    137   * and NumTraits<Scalar>::epsilon() for the tolerance.
    138   *
    139   * This class can be used as the direct solver classes. Here is a typical usage example:
    140   * \code
    141   * int n = 10000;
    142   * VectorXd x(n), b(n);
    143   * SparseMatrix<double> A(n,n);
    144   * // fill A and b
    145   * BiCGSTAB<SparseMatrix<double> > solver;
    146   * solver(A);
    147   * x = solver.solve(b);
    148   * std::cout << "#iterations:     " << solver.iterations() << std::endl;
    149   * std::cout << "estimated error: " << solver.error()      << std::endl;
    150   * // update b, and solve again
    151   * x = solver.solve(b);
    152   * \endcode
    153   *
    154   * By default the iterations start with x=0 as an initial guess of the solution.
    155   * One can control the start using the solveWithGuess() method. Here is a step by
    156   * step execution example starting with a random guess and printing the evolution
    157   * of the estimated error:
    158   * * \code
    159   * x = VectorXd::Random(n);
    160   * solver.setMaxIterations(1);
    161   * int i = 0;
    162   * do {
    163   *   x = solver.solveWithGuess(b,x);
    164   *   std::cout << i << " : " << solver.error() << std::endl;
    165   *   ++i;
    166   * } while (solver.info()!=Success && i<100);
    167   * \endcode
    168   * Note that such a step by step excution is slightly slower.
    169   *
    170   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
    171   */
    172 template< typename _MatrixType, typename _Preconditioner>
    173 class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> >
    174 {
    175   typedef IterativeSolverBase<BiCGSTAB> Base;
    176   using Base::mp_matrix;
    177   using Base::m_error;
    178   using Base::m_iterations;
    179   using Base::m_info;
    180   using Base::m_isInitialized;
    181 public:
    182   typedef _MatrixType MatrixType;
    183   typedef typename MatrixType::Scalar Scalar;
    184   typedef typename MatrixType::Index Index;
    185   typedef typename MatrixType::RealScalar RealScalar;
    186   typedef _Preconditioner Preconditioner;
    187 
    188 public:
    189 
    190   /** Default constructor. */
    191   BiCGSTAB() : Base() {}
    192 
    193   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    194     *
    195     * This constructor is a shortcut for the default constructor followed
    196     * by a call to compute().
    197     *
    198     * \warning this class stores a reference to the matrix A as well as some
    199     * precomputed values that depend on it. Therefore, if \a A is changed
    200     * this class becomes invalid. Call compute() to update it with the new
    201     * matrix A, or modify a copy of A.
    202     */
    203   BiCGSTAB(const MatrixType& A) : Base(A) {}
    204 
    205   ~BiCGSTAB() {}
    206 
    207   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    208     * \a x0 as an initial solution.
    209     *
    210     * \sa compute()
    211     */
    212   template<typename Rhs,typename Guess>
    213   inline const internal::solve_retval_with_guess<BiCGSTAB, Rhs, Guess>
    214   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
    215   {
    216     eigen_assert(m_isInitialized && "BiCGSTAB is not initialized.");
    217     eigen_assert(Base::rows()==b.rows()
    218               && "BiCGSTAB::solve(): invalid number of rows of the right hand side matrix b");
    219     return internal::solve_retval_with_guess
    220             <BiCGSTAB, Rhs, Guess>(*this, b.derived(), x0);
    221   }
    222 
    223   /** \internal */
    224   template<typename Rhs,typename Dest>
    225   void _solveWithGuess(const Rhs& b, Dest& x) const
    226   {
    227     bool failed = false;
    228     for(int j=0; j<b.cols(); ++j)
    229     {
    230       m_iterations = Base::maxIterations();
    231       m_error = Base::m_tolerance;
    232 
    233       typename Dest::ColXpr xj(x,j);
    234       if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error))
    235         failed = true;
    236     }
    237     m_info = failed ? NumericalIssue
    238            : m_error <= Base::m_tolerance ? Success
    239            : NoConvergence;
    240     m_isInitialized = true;
    241   }
    242 
    243   /** \internal */
    244   template<typename Rhs,typename Dest>
    245   void _solve(const Rhs& b, Dest& x) const
    246   {
    247 //     x.setZero();
    248   x = b;
    249     _solveWithGuess(b,x);
    250   }
    251 
    252 protected:
    253 
    254 };
    255 
    256 
    257 namespace internal {
    258 
    259   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
    260 struct solve_retval<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
    261   : solve_retval_base<BiCGSTAB<_MatrixType, _Preconditioner>, Rhs>
    262 {
    263   typedef BiCGSTAB<_MatrixType, _Preconditioner> Dec;
    264   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    265 
    266   template<typename Dest> void evalTo(Dest& dst) const
    267   {
    268     dec()._solve(rhs(),dst);
    269   }
    270 };
    271 
    272 } // end namespace internal
    273 
    274 } // end namespace Eigen
    275 
    276 #endif // EIGEN_BICGSTAB_H
    277