Home | History | Annotate | Download | only in bench
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 // The computeRoots function included in this is based on materials
     11 // covered by the following copyright and license:
     12 //
     13 // Geometric Tools, LLC
     14 // Copyright (c) 1998-2010
     15 // Distributed under the Boost Software License, Version 1.0.
     16 //
     17 // Permission is hereby granted, free of charge, to any person or organization
     18 // obtaining a copy of the software and accompanying documentation covered by
     19 // this license (the "Software") to use, reproduce, display, distribute,
     20 // execute, and transmit the Software, and to prepare derivative works of the
     21 // Software, and to permit third-parties to whom the Software is furnished to
     22 // do so, all subject to the following:
     23 //
     24 // The copyright notices in the Software and this entire statement, including
     25 // the above license grant, this restriction and the following disclaimer,
     26 // must be included in all copies of the Software, in whole or in part, and
     27 // all derivative works of the Software, unless such copies or derivative
     28 // works are solely in the form of machine-executable object code generated by
     29 // a source language processor.
     30 //
     31 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     32 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     33 // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
     34 // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
     35 // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
     36 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     37 // DEALINGS IN THE SOFTWARE.
     38 
     39 #include <iostream>
     40 #include <Eigen/Core>
     41 #include <Eigen/Eigenvalues>
     42 #include <Eigen/Geometry>
     43 #include <bench/BenchTimer.h>
     44 
     45 using namespace Eigen;
     46 using namespace std;
     47 
     48 template<typename Matrix, typename Roots>
     49 inline void computeRoots(const Matrix& m, Roots& roots)
     50 {
     51   typedef typename Matrix::Scalar Scalar;
     52   const Scalar s_inv3 = 1.0/3.0;
     53   const Scalar s_sqrt3 = internal::sqrt(Scalar(3.0));
     54 
     55   // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
     56   // eigenvalues are the roots to this equation, all guaranteed to be
     57   // real-valued, because the matrix is symmetric.
     58   Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
     59   Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
     60   Scalar c2 = m(0,0) + m(1,1) + m(2,2);
     61 
     62   // Construct the parameters used in classifying the roots of the equation
     63   // and in solving the equation for the roots in closed form.
     64   Scalar c2_over_3 = c2*s_inv3;
     65   Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
     66   if (a_over_3 > Scalar(0))
     67     a_over_3 = Scalar(0);
     68 
     69   Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
     70 
     71   Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
     72   if (q > Scalar(0))
     73     q = Scalar(0);
     74 
     75   // Compute the eigenvalues by solving for the roots of the polynomial.
     76   Scalar rho = internal::sqrt(-a_over_3);
     77   Scalar theta = std::atan2(internal::sqrt(-q),half_b)*s_inv3;
     78   Scalar cos_theta = internal::cos(theta);
     79   Scalar sin_theta = internal::sin(theta);
     80   roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
     81   roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
     82   roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
     83 
     84   // Sort in increasing order.
     85   if (roots(0) >= roots(1))
     86     std::swap(roots(0),roots(1));
     87   if (roots(1) >= roots(2))
     88   {
     89     std::swap(roots(1),roots(2));
     90     if (roots(0) >= roots(1))
     91       std::swap(roots(0),roots(1));
     92   }
     93 }
     94 
     95 template<typename Matrix, typename Vector>
     96 void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
     97 {
     98   typedef typename Matrix::Scalar Scalar;
     99   // Scale the matrix so its entries are in [-1,1].  The scaling is applied
    100   // only when at least one matrix entry has magnitude larger than 1.
    101 
    102   Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
    103   scale = std::max(scale,Scalar(1));
    104   Matrix scaledMat = mat / scale;
    105 
    106   // Compute the eigenvalues
    107 //   scaledMat.setZero();
    108   computeRoots(scaledMat,evals);
    109 
    110   // compute the eigen vectors
    111   // **here we assume 3 differents eigenvalues**
    112 
    113   // "optimized version" which appears to be slower with gcc!
    114 //     Vector base;
    115 //     Scalar alpha, beta;
    116 //     base <<   scaledMat(1,0) * scaledMat(2,1),
    117 //               scaledMat(1,0) * scaledMat(2,0),
    118 //              -scaledMat(1,0) * scaledMat(1,0);
    119 //     for(int k=0; k<2; ++k)
    120 //     {
    121 //       alpha = scaledMat(0,0) - evals(k);
    122 //       beta  = scaledMat(1,1) - evals(k);
    123 //       evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
    124 //     }
    125 //     evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
    126 
    127 //   // naive version
    128 //   Matrix tmp;
    129 //   tmp = scaledMat;
    130 //   tmp.diagonal().array() -= evals(0);
    131 //   evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
    132 //
    133 //   tmp = scaledMat;
    134 //   tmp.diagonal().array() -= evals(1);
    135 //   evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
    136 //
    137 //   tmp = scaledMat;
    138 //   tmp.diagonal().array() -= evals(2);
    139 //   evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
    140 
    141   // a more stable version:
    142   if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon())
    143   {
    144     evecs.setIdentity();
    145   }
    146   else
    147   {
    148     Matrix tmp;
    149     tmp = scaledMat;
    150     tmp.diagonal ().array () -= evals (2);
    151     evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized ();
    152 
    153     tmp = scaledMat;
    154     tmp.diagonal ().array () -= evals (1);
    155     evecs.col(1) = tmp.row (0).cross(tmp.row (1));
    156     Scalar n1 = evecs.col(1).norm();
    157     if(n1<=Eigen::NumTraits<Scalar>::epsilon())
    158       evecs.col(1) = evecs.col(2).unitOrthogonal();
    159     else
    160       evecs.col(1) /= n1;
    161 
    162     // make sure that evecs[1] is orthogonal to evecs[2]
    163     evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
    164     evecs.col(0) = evecs.col(2).cross(evecs.col(1));
    165   }
    166 
    167   // Rescale back to the original size.
    168   evals *= scale;
    169 }
    170 
    171 int main()
    172 {
    173   BenchTimer t;
    174   int tries = 10;
    175   int rep = 400000;
    176   typedef Matrix3f Mat;
    177   typedef Vector3f Vec;
    178   Mat A = Mat::Random(3,3);
    179   A = A.adjoint() * A;
    180 
    181   SelfAdjointEigenSolver<Mat> eig(A);
    182   BENCH(t, tries, rep, eig.compute(A));
    183   std::cout << "Eigen:  " << t.best() << "s\n";
    184 
    185   Mat evecs;
    186   Vec evals;
    187   BENCH(t, tries, rep, eigen33(A,evecs,evals));
    188   std::cout << "Direct: " << t.best() << "s\n\n";
    189 
    190   std::cerr << "Eigenvalue/eigenvector diffs:\n";
    191   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
    192   for(int k=0;k<3;++k)
    193     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
    194       evecs.col(k) = -evecs.col(k);
    195   std::cerr << evecs - eig.eigenvectors() << "\n\n";
    196 }
    197