Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 static int nb_temporaries;
     11 
     12 inline void on_temporary_creation(int size) {
     13   // here's a great place to set a breakpoint when debugging failures in this test!
     14   if(size!=0) nb_temporaries++;
     15 }
     16 
     17 
     18 #define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { on_temporary_creation(size); }
     19 
     20 #include "main.h"
     21 
     22 #define VERIFY_EVALUATION_COUNT(XPR,N) {\
     23     nb_temporaries = 0; \
     24     XPR; \
     25     if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
     26     VERIFY( (#XPR) && nb_temporaries==N ); \
     27   }
     28 
     29 template<typename MatrixType> void product_notemporary(const MatrixType& m)
     30 {
     31   /* This test checks the number of temporaries created
     32    * during the evaluation of a complex expression */
     33   typedef typename MatrixType::Index Index;
     34   typedef typename MatrixType::Scalar Scalar;
     35   typedef typename MatrixType::RealScalar RealScalar;
     36   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
     37   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
     38   typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> ColMajorMatrixType;
     39   typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType;
     40 
     41   Index rows = m.rows();
     42   Index cols = m.cols();
     43 
     44   ColMajorMatrixType m1 = MatrixType::Random(rows, cols),
     45                      m2 = MatrixType::Random(rows, cols),
     46                      m3(rows, cols);
     47   RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows);
     48   ColVectorType cv1 = ColVectorType::Random(cols), cvres(cols);
     49   RowMajorMatrixType rm3(rows, cols);
     50 
     51   Scalar s1 = internal::random<Scalar>(),
     52          s2 = internal::random<Scalar>(),
     53          s3 = internal::random<Scalar>();
     54 
     55   Index c0 = internal::random<Index>(4,cols-8),
     56         c1 = internal::random<Index>(8,cols-c0),
     57         r0 = internal::random<Index>(4,cols-8),
     58         r1 = internal::random<Index>(8,rows-r0);
     59 
     60   VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1);
     61   VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0);
     62 
     63   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * (m1 * m2.transpose()), 0);
     64 
     65   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0);
     66   VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1);
     67   VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0);
     68   VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0);
     69   VERIFY_EVALUATION_COUNT( m3.noalias() -= s1 * (m1.transpose() * m2), 0);
     70 
     71   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0);
     72   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() -= s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1) ), 0);
     73 
     74   // NOTE this is because the Block expression is not handled yet by our expression analyser
     75   VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() = s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1) ), 1);
     76 
     77   VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).template triangularView<Lower>() * m2, 0);
     78   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1);
     79   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), 0);
     80 
     81   VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() = (m1 * m2.adjoint()), 0);
     82   VERIFY_EVALUATION_COUNT( m3.template triangularView<Upper>() -= (m1 * m2.adjoint()), 0);
     83 
     84   // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products
     85   VERIFY_EVALUATION_COUNT( rm3.col(c0).noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * (s2*m2.row(c0)).adjoint(), 1);
     86 
     87   VERIFY_EVALUATION_COUNT( m1.template triangularView<Lower>().solveInPlace(m3), 0);
     88   VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<Lower>().solveInPlace(m3.transpose()), 0);
     89 
     90   VERIFY_EVALUATION_COUNT( m3.noalias() -= (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2*s3).adjoint(), 0);
     91   VERIFY_EVALUATION_COUNT( m3.noalias() = s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<Upper>(), 0);
     92   VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template selfadjointView<Lower>() * m2.adjoint(), 0);
     93 
     94   // NOTE this is because the blas_traits require innerstride==1 to avoid a temporary, but that doesn't seem to be actually needed for the triangular products
     95   VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() = (s1 * m1).adjoint().template selfadjointView<Lower>() * (-m2.row(c0)*s3).adjoint(), 1);
     96   VERIFY_EVALUATION_COUNT( m3.col(c0).noalias() -= (s1 * m1).adjoint().template selfadjointView<Upper>() * (-m2.row(c0)*s3).adjoint(), 1);
     97 
     98   VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() += m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * (s1*m2.block(r0,c0,r1,c1)), 0);
     99   VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1).noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Upper>() * m2.block(r0,c0,r1,c1), 0);
    100 
    101   VERIFY_EVALUATION_COUNT( m3.template selfadjointView<Lower>().rankUpdate(m2.adjoint()), 0);
    102 
    103   // Here we will get 1 temporary for each resize operation of the lhs operator; resize(r1,c1) would lead to zero temporaries
    104   m3.resize(1,1);
    105   VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template selfadjointView<Lower>() * m2.block(r0,c0,r1,c1), 1);
    106   m3.resize(1,1);
    107   VERIFY_EVALUATION_COUNT( m3.noalias() = m1.block(r0,r0,r1,r1).template triangularView<UnitUpper>()  * m2.block(r0,c0,r1,c1), 1);
    108 
    109   // Zero temporaries for lazy products ...
    110   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose().lazyProduct(m3)).diagonal().sum(), 0 );
    111 
    112   // ... and even no temporary for even deeply (>=2) nested products
    113   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().sum(), 0 );
    114   VERIFY_EVALUATION_COUNT( Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /  (m3.transpose() * m3).diagonal().array().abs().sum(), 0 );
    115 
    116   // Zero temporaries for ... CoeffBasedProductMode
    117   // - does not work with GCC because of the <..>, we'ld need variadic macros ...
    118   //VERIFY_EVALUATION_COUNT( m3.col(0).head<5>() * m3.col(0).transpose() + m3.col(0).head<5>() * m3.col(0).transpose(), 0 );
    119 
    120   // Check matrix * vectors
    121   VERIFY_EVALUATION_COUNT( cvres.noalias() = m1 * cv1, 0 );
    122   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * cv1, 0 );
    123   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.col(0), 0 );
    124   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * rv1.adjoint(), 0 );
    125   VERIFY_EVALUATION_COUNT( cvres.noalias() -= m1 * m2.row(0).transpose(), 0 );
    126 }
    127 
    128 void test_product_notemporary()
    129 {
    130   int s;
    131   for(int i = 0; i < g_repeat; i++) {
    132     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE);
    133     CALL_SUBTEST_1( product_notemporary(MatrixXf(s, s)) );
    134     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE);
    135     CALL_SUBTEST_2( product_notemporary(MatrixXd(s, s)) );
    136     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2);
    137     CALL_SUBTEST_3( product_notemporary(MatrixXcf(s,s)) );
    138     s = internal::random<int>(16,EIGEN_TEST_MAX_SIZE/2);
    139     CALL_SUBTEST_4( product_notemporary(MatrixXcd(s,s)) );
    140   }
    141 }
    142