Home | History | Annotate | Download | only in i18n
      1 /*
      2  **********************************************************************
      3  *   Copyright (C) 1999-2011, International Business Machines
      4  *   Corporation and others.  All Rights Reserved.
      5  **********************************************************************
      6  *   Date        Name        Description
      7  *   11/17/99    aliu        Creation.
      8  **********************************************************************
      9  */
     10 
     11 #include "unicode/utypes.h"
     12 
     13 #if !UCONFIG_NO_TRANSLITERATION
     14 
     15 #include "unicode/uobject.h"
     16 #include "unicode/parseerr.h"
     17 #include "unicode/parsepos.h"
     18 #include "unicode/putil.h"
     19 #include "unicode/uchar.h"
     20 #include "unicode/ustring.h"
     21 #include "unicode/uniset.h"
     22 #include "unicode/utf16.h"
     23 #include "cstring.h"
     24 #include "funcrepl.h"
     25 #include "hash.h"
     26 #include "quant.h"
     27 #include "rbt.h"
     28 #include "rbt_data.h"
     29 #include "rbt_pars.h"
     30 #include "rbt_rule.h"
     31 #include "strmatch.h"
     32 #include "strrepl.h"
     33 #include "unicode/symtable.h"
     34 #include "tridpars.h"
     35 #include "uvector.h"
     36 #include "hash.h"
     37 #include "patternprops.h"
     38 #include "util.h"
     39 #include "cmemory.h"
     40 #include "uprops.h"
     41 #include "putilimp.h"
     42 
     43 // Operators
     44 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
     45 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
     46 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
     47 #define FWDREV_RULE_OP  ((UChar)0x007E) /*~*/ // internal rep of <> op
     48 
     49 // Other special characters
     50 #define QUOTE             ((UChar)0x0027) /*'*/
     51 #define ESCAPE            ((UChar)0x005C) /*\*/
     52 #define END_OF_RULE       ((UChar)0x003B) /*;*/
     53 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
     54 
     55 #define SEGMENT_OPEN       ((UChar)0x0028) /*(*/
     56 #define SEGMENT_CLOSE      ((UChar)0x0029) /*)*/
     57 #define CONTEXT_ANTE       ((UChar)0x007B) /*{*/
     58 #define CONTEXT_POST       ((UChar)0x007D) /*}*/
     59 #define CURSOR_POS         ((UChar)0x007C) /*|*/
     60 #define CURSOR_OFFSET      ((UChar)0x0040) /*@*/
     61 #define ANCHOR_START       ((UChar)0x005E) /*^*/
     62 #define KLEENE_STAR        ((UChar)0x002A) /***/
     63 #define ONE_OR_MORE        ((UChar)0x002B) /*+*/
     64 #define ZERO_OR_ONE        ((UChar)0x003F) /*?*/
     65 
     66 #define DOT                ((UChar)46)     /*.*/
     67 
     68 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]";
     69     91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
     70     108, 58, 93, 92, 114, 92, 110, 36, 93, 0
     71 };
     72 
     73 // A function is denoted &Source-Target/Variant(text)
     74 #define FUNCTION           ((UChar)38)     /*&*/
     75 
     76 // Aliases for some of the syntax characters. These are provided so
     77 // transliteration rules can be expressed in XML without clashing with
     78 // XML syntax characters '<', '>', and '&'.
     79 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
     80 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
     81 #define ALT_FWDREV_RULE_OP  ((UChar)0x2194) // Left Right Arrow
     82 #define ALT_FUNCTION        ((UChar)0x2206) // Increment (~Greek Capital Delta)
     83 
     84 // Special characters disallowed at the top level
     85 static const UChar ILLEGAL_TOP[] = {41,0}; // ")"
     86 
     87 // Special characters disallowed within a segment
     88 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@"
     89 
     90 // Special characters disallowed within a function argument
     91 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"
     92 
     93 // By definition, the ANCHOR_END special character is a
     94 // trailing SymbolTable.SYMBOL_REF character.
     95 // private static final char ANCHOR_END       = '$';
     96 
     97 static const UChar gOPERATORS[] = { // "=><"
     98     VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
     99     ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
    100     0
    101 };
    102 
    103 static const UChar HALF_ENDERS[] = { // "=><;"
    104     VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
    105     ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
    106     END_OF_RULE,
    107     0
    108 };
    109 
    110 // These are also used in Transliterator::toRules()
    111 static const int32_t ID_TOKEN_LEN = 2;
    112 static const UChar   ID_TOKEN[]   = { 0x3A, 0x3A }; // ':', ':'
    113 
    114 /*
    115 commented out until we do real ::BEGIN/::END functionality
    116 static const int32_t BEGIN_TOKEN_LEN = 5;
    117 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'
    118 
    119 static const int32_t END_TOKEN_LEN = 3;
    120 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
    121 */
    122 
    123 U_NAMESPACE_BEGIN
    124 
    125 //----------------------------------------------------------------------
    126 // BEGIN ParseData
    127 //----------------------------------------------------------------------
    128 
    129 /**
    130  * This class implements the SymbolTable interface.  It is used
    131  * during parsing to give UnicodeSet access to variables that
    132  * have been defined so far.  Note that it uses variablesVector,
    133  * _not_ data.setVariables.
    134  */
    135 class ParseData : public UMemory, public SymbolTable {
    136 public:
    137     const TransliterationRuleData* data; // alias
    138 
    139     const UVector* variablesVector; // alias
    140 
    141     const Hashtable* variableNames; // alias
    142 
    143     ParseData(const TransliterationRuleData* data = 0,
    144               const UVector* variablesVector = 0,
    145               const Hashtable* variableNames = 0);
    146 
    147     virtual ~ParseData();
    148 
    149     virtual const UnicodeString* lookup(const UnicodeString& s) const;
    150 
    151     virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const;
    152 
    153     virtual UnicodeString parseReference(const UnicodeString& text,
    154                                          ParsePosition& pos, int32_t limit) const;
    155     /**
    156      * Return true if the given character is a matcher standin or a plain
    157      * character (non standin).
    158      */
    159     UBool isMatcher(UChar32 ch);
    160 
    161     /**
    162      * Return true if the given character is a replacer standin or a plain
    163      * character (non standin).
    164      */
    165     UBool isReplacer(UChar32 ch);
    166 
    167 private:
    168     ParseData(const ParseData &other); // forbid copying of this class
    169     ParseData &operator=(const ParseData &other); // forbid copying of this class
    170 };
    171 
    172 ParseData::ParseData(const TransliterationRuleData* d,
    173                      const UVector* sets,
    174                      const Hashtable* vNames) :
    175     data(d), variablesVector(sets), variableNames(vNames) {}
    176 
    177 ParseData::~ParseData() {}
    178 
    179 /**
    180  * Implement SymbolTable API.
    181  */
    182 const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
    183     return (const UnicodeString*) variableNames->get(name);
    184 }
    185 
    186 /**
    187  * Implement SymbolTable API.
    188  */
    189 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const {
    190     // Note that we cannot use data.lookupSet() because the
    191     // set array has not been constructed yet.
    192     const UnicodeFunctor* set = NULL;
    193     int32_t i = ch - data->variablesBase;
    194     if (i >= 0 && i < variablesVector->size()) {
    195         int32_t i = ch - data->variablesBase;
    196         set = (i < variablesVector->size()) ?
    197             (UnicodeFunctor*) variablesVector->elementAt(i) : 0;
    198     }
    199     return set;
    200 }
    201 
    202 /**
    203  * Implement SymbolTable API.  Parse out a symbol reference
    204  * name.
    205  */
    206 UnicodeString ParseData::parseReference(const UnicodeString& text,
    207                                         ParsePosition& pos, int32_t limit) const {
    208     int32_t start = pos.getIndex();
    209     int32_t i = start;
    210     UnicodeString result;
    211     while (i < limit) {
    212         UChar c = text.charAt(i);
    213         if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
    214             break;
    215         }
    216         ++i;
    217     }
    218     if (i == start) { // No valid name chars
    219         return result; // Indicate failure with empty string
    220     }
    221     pos.setIndex(i);
    222     text.extractBetween(start, i, result);
    223     return result;
    224 }
    225 
    226 UBool ParseData::isMatcher(UChar32 ch) {
    227     // Note that we cannot use data.lookup() because the
    228     // set array has not been constructed yet.
    229     int32_t i = ch - data->variablesBase;
    230     if (i >= 0 && i < variablesVector->size()) {
    231         UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
    232         return f != NULL && f->toMatcher() != NULL;
    233     }
    234     return TRUE;
    235 }
    236 
    237 /**
    238  * Return true if the given character is a replacer standin or a plain
    239  * character (non standin).
    240  */
    241 UBool ParseData::isReplacer(UChar32 ch) {
    242     // Note that we cannot use data.lookup() because the
    243     // set array has not been constructed yet.
    244     int i = ch - data->variablesBase;
    245     if (i >= 0 && i < variablesVector->size()) {
    246         UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
    247         return f != NULL && f->toReplacer() != NULL;
    248     }
    249     return TRUE;
    250 }
    251 
    252 //----------------------------------------------------------------------
    253 // BEGIN RuleHalf
    254 //----------------------------------------------------------------------
    255 
    256 /**
    257  * A class representing one side of a rule.  This class knows how to
    258  * parse half of a rule.  It is tightly coupled to the method
    259  * RuleBasedTransliterator.Parser.parseRule().
    260  */
    261 class RuleHalf : public UMemory {
    262 
    263 public:
    264 
    265     UnicodeString text;
    266 
    267     int32_t cursor; // position of cursor in text
    268     int32_t ante;   // position of ante context marker '{' in text
    269     int32_t post;   // position of post context marker '}' in text
    270 
    271     // Record the offset to the cursor either to the left or to the
    272     // right of the key.  This is indicated by characters on the output
    273     // side that allow the cursor to be positioned arbitrarily within
    274     // the matching text.  For example, abc{def} > | @@@ xyz; changes
    275     // def to xyz and moves the cursor to before abc.  Offset characters
    276     // must be at the start or end, and they cannot move the cursor past
    277     // the ante- or postcontext text.  Placeholders are only valid in
    278     // output text.  The length of the ante and post context is
    279     // determined at runtime, because of supplementals and quantifiers.
    280     int32_t cursorOffset; // only nonzero on output side
    281 
    282     // Position of first CURSOR_OFFSET on _right_.  This will be -1
    283     // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
    284     int32_t cursorOffsetPos;
    285 
    286     UBool anchorStart;
    287     UBool anchorEnd;
    288 
    289     /**
    290      * The segment number from 1..n of the next '(' we see
    291      * during parsing; 1-based.
    292      */
    293     int32_t nextSegmentNumber;
    294 
    295     TransliteratorParser& parser;
    296 
    297     //--------------------------------------------------
    298     // Methods
    299 
    300     RuleHalf(TransliteratorParser& parser);
    301     ~RuleHalf();
    302 
    303     int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status);
    304 
    305     int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
    306                          UnicodeString& buf,
    307                          const UnicodeString& illegal,
    308                          UBool isSegment,
    309                          UErrorCode& status);
    310 
    311     /**
    312      * Remove context.
    313      */
    314     void removeContext();
    315 
    316     /**
    317      * Return true if this half looks like valid output, that is, does not
    318      * contain quantifiers or other special input-only elements.
    319      */
    320     UBool isValidOutput(TransliteratorParser& parser);
    321 
    322     /**
    323      * Return true if this half looks like valid input, that is, does not
    324      * contain functions or other special output-only elements.
    325      */
    326     UBool isValidInput(TransliteratorParser& parser);
    327 
    328     int syntaxError(UErrorCode code,
    329                     const UnicodeString& rule,
    330                     int32_t start,
    331                     UErrorCode& status) {
    332         return parser.syntaxError(code, rule, start, status);
    333     }
    334 
    335 private:
    336     // Disallowed methods; no impl.
    337     RuleHalf(const RuleHalf&);
    338     RuleHalf& operator=(const RuleHalf&);
    339 };
    340 
    341 RuleHalf::RuleHalf(TransliteratorParser& p) :
    342     parser(p)
    343 {
    344     cursor = -1;
    345     ante = -1;
    346     post = -1;
    347     cursorOffset = 0;
    348     cursorOffsetPos = 0;
    349     anchorStart = anchorEnd = FALSE;
    350     nextSegmentNumber = 1;
    351 }
    352 
    353 RuleHalf::~RuleHalf() {
    354 }
    355 
    356 /**
    357  * Parse one side of a rule, stopping at either the limit,
    358  * the END_OF_RULE character, or an operator.
    359  * @return the index after the terminating character, or
    360  * if limit was reached, limit
    361  */
    362 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
    363     int32_t start = pos;
    364     text.truncate(0);
    365     pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status);
    366 
    367     if (cursorOffset > 0 && cursor != cursorOffsetPos) {
    368         return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    369     }
    370 
    371     return pos;
    372 }
    373 
    374 /**
    375  * Parse a section of one side of a rule, stopping at either
    376  * the limit, the END_OF_RULE character, an operator, or a
    377  * segment close character.  This method parses both a
    378  * top-level rule half and a segment within such a rule half.
    379  * It calls itself recursively to parse segments and nested
    380  * segments.
    381  * @param buf buffer into which to accumulate the rule pattern
    382  * characters, either literal characters from the rule or
    383  * standins for UnicodeMatcher objects including segments.
    384  * @param illegal the set of special characters that is illegal during
    385  * this parse.
    386  * @param isSegment if true, then we've already seen a '(' and
    387  * pos on entry points right after it.  Accumulate everything
    388  * up to the closing ')', put it in a segment matcher object,
    389  * generate a standin for it, and add the standin to buf.  As
    390  * a side effect, update the segments vector with a reference
    391  * to the segment matcher.  This works recursively for nested
    392  * segments.  If isSegment is false, just accumulate
    393  * characters into buf.
    394  * @return the index after the terminating character, or
    395  * if limit was reached, limit
    396  */
    397 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
    398                                UnicodeString& buf,
    399                                const UnicodeString& illegal,
    400                                UBool isSegment, UErrorCode& status) {
    401     int32_t start = pos;
    402     ParsePosition pp;
    403     UnicodeString scratch;
    404     UBool done = FALSE;
    405     int32_t quoteStart = -1; // Most recent 'single quoted string'
    406     int32_t quoteLimit = -1;
    407     int32_t varStart = -1; // Most recent $variableReference
    408     int32_t varLimit = -1;
    409     int32_t bufStart = buf.length();
    410 
    411     while (pos < limit && !done) {
    412         // Since all syntax characters are in the BMP, fetching
    413         // 16-bit code units suffices here.
    414         UChar c = rule.charAt(pos++);
    415         if (PatternProps::isWhiteSpace(c)) {
    416             // Ignore whitespace.  Note that this is not Unicode
    417             // spaces, but Java spaces -- a subset, representing
    418             // whitespace likely to be seen in code.
    419             continue;
    420         }
    421         if (u_strchr(HALF_ENDERS, c) != NULL) {
    422             if (isSegment) {
    423                 // Unclosed segment
    424                 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status);
    425             }
    426             break;
    427         }
    428         if (anchorEnd) {
    429             // Text after a presumed end anchor is a syntax err
    430             return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status);
    431         }
    432         if (UnicodeSet::resemblesPattern(rule, pos-1)) {
    433             pp.setIndex(pos-1); // Backup to opening '['
    434             buf.append(parser.parseSet(rule, pp, status));
    435             if (U_FAILURE(status)) {
    436                 return syntaxError(U_MALFORMED_SET, rule, start, status);
    437             }
    438             pos = pp.getIndex();
    439             continue;
    440         }
    441         // Handle escapes
    442         if (c == ESCAPE) {
    443             if (pos == limit) {
    444                 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status);
    445             }
    446             UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
    447             if (escaped == (UChar32) -1) {
    448                 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status);
    449             }
    450             if (!parser.checkVariableRange(escaped)) {
    451                 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
    452             }
    453             buf.append(escaped);
    454             continue;
    455         }
    456         // Handle quoted matter
    457         if (c == QUOTE) {
    458             int32_t iq = rule.indexOf(QUOTE, pos);
    459             if (iq == pos) {
    460                 buf.append(c); // Parse [''] outside quotes as [']
    461                 ++pos;
    462             } else {
    463                 /* This loop picks up a run of quoted text of the
    464                  * form 'aaaa' each time through.  If this run
    465                  * hasn't really ended ('aaaa''bbbb') then it keeps
    466                  * looping, each time adding on a new run.  When it
    467                  * reaches the final quote it breaks.
    468                  */
    469                 quoteStart = buf.length();
    470                 for (;;) {
    471                     if (iq < 0) {
    472                         return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status);
    473                     }
    474                     scratch.truncate(0);
    475                     rule.extractBetween(pos, iq, scratch);
    476                     buf.append(scratch);
    477                     pos = iq+1;
    478                     if (pos < limit && rule.charAt(pos) == QUOTE) {
    479                         // Parse [''] inside quotes as [']
    480                         iq = rule.indexOf(QUOTE, pos+1);
    481                         // Continue looping
    482                     } else {
    483                         break;
    484                     }
    485                 }
    486                 quoteLimit = buf.length();
    487 
    488                 for (iq=quoteStart; iq<quoteLimit; ++iq) {
    489                     if (!parser.checkVariableRange(buf.charAt(iq))) {
    490                         return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
    491                     }
    492                 }
    493             }
    494             continue;
    495         }
    496 
    497         if (!parser.checkVariableRange(c)) {
    498             return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
    499         }
    500 
    501         if (illegal.indexOf(c) >= 0) {
    502             syntaxError(U_ILLEGAL_CHARACTER, rule, start, status);
    503         }
    504 
    505         switch (c) {
    506 
    507         //------------------------------------------------------
    508         // Elements allowed within and out of segments
    509         //------------------------------------------------------
    510         case ANCHOR_START:
    511             if (buf.length() == 0 && !anchorStart) {
    512                 anchorStart = TRUE;
    513             } else {
    514               return syntaxError(U_MISPLACED_ANCHOR_START,
    515                                  rule, start, status);
    516             }
    517           break;
    518         case SEGMENT_OPEN:
    519             {
    520                 // bufSegStart is the offset in buf to the first
    521                 // character of the segment we are parsing.
    522                 int32_t bufSegStart = buf.length();
    523 
    524                 // Record segment number now, since nextSegmentNumber
    525                 // will be incremented during the call to parseSection
    526                 // if there are nested segments.
    527                 int32_t segmentNumber = nextSegmentNumber++; // 1-based
    528 
    529                 // Parse the segment
    530                 pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status);
    531 
    532                 // After parsing a segment, the relevant characters are
    533                 // in buf, starting at offset bufSegStart.  Extract them
    534                 // into a string matcher, and replace them with a
    535                 // standin for that matcher.
    536                 StringMatcher* m =
    537                     new StringMatcher(buf, bufSegStart, buf.length(),
    538                                       segmentNumber, *parser.curData);
    539                 if (m == NULL) {
    540                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    541                 }
    542 
    543                 // Record and associate object and segment number
    544                 parser.setSegmentObject(segmentNumber, m, status);
    545                 buf.truncate(bufSegStart);
    546                 buf.append(parser.getSegmentStandin(segmentNumber, status));
    547             }
    548             break;
    549         case FUNCTION:
    550         case ALT_FUNCTION:
    551             {
    552                 int32_t iref = pos;
    553                 TransliteratorIDParser::SingleID* single =
    554                     TransliteratorIDParser::parseFilterID(rule, iref);
    555                 // The next character MUST be a segment open
    556                 if (single == NULL ||
    557                     !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) {
    558                     return syntaxError(U_INVALID_FUNCTION, rule, start, status);
    559                 }
    560 
    561                 Transliterator *t = single->createInstance();
    562                 delete single;
    563                 if (t == NULL) {
    564                     return syntaxError(U_INVALID_FUNCTION, rule, start, status);
    565                 }
    566 
    567                 // bufSegStart is the offset in buf to the first
    568                 // character of the segment we are parsing.
    569                 int32_t bufSegStart = buf.length();
    570 
    571                 // Parse the segment
    572                 pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status);
    573 
    574                 // After parsing a segment, the relevant characters are
    575                 // in buf, starting at offset bufSegStart.
    576                 UnicodeString output;
    577                 buf.extractBetween(bufSegStart, buf.length(), output);
    578                 FunctionReplacer *r =
    579                     new FunctionReplacer(t, new StringReplacer(output, parser.curData));
    580                 if (r == NULL) {
    581                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    582                 }
    583 
    584                 // Replace the buffer contents with a stand-in
    585                 buf.truncate(bufSegStart);
    586                 buf.append(parser.generateStandInFor(r, status));
    587             }
    588             break;
    589         case SymbolTable::SYMBOL_REF:
    590             // Handle variable references and segment references "$1" .. "$9"
    591             {
    592                 // A variable reference must be followed immediately
    593                 // by a Unicode identifier start and zero or more
    594                 // Unicode identifier part characters, or by a digit
    595                 // 1..9 if it is a segment reference.
    596                 if (pos == limit) {
    597                     // A variable ref character at the end acts as
    598                     // an anchor to the context limit, as in perl.
    599                     anchorEnd = TRUE;
    600                     break;
    601                 }
    602                 // Parse "$1" "$2" .. "$9" .. (no upper limit)
    603                 c = rule.charAt(pos);
    604                 int32_t r = u_digit(c, 10);
    605                 if (r >= 1 && r <= 9) {
    606                     r = ICU_Utility::parseNumber(rule, pos, 10);
    607                     if (r < 0) {
    608                         return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
    609                                            rule, start, status);
    610                     }
    611                     buf.append(parser.getSegmentStandin(r, status));
    612                 } else {
    613                     pp.setIndex(pos);
    614                     UnicodeString name = parser.parseData->
    615                                     parseReference(rule, pp, limit);
    616                     if (name.length() == 0) {
    617                         // This means the '$' was not followed by a
    618                         // valid name.  Try to interpret it as an
    619                         // end anchor then.  If this also doesn't work
    620                         // (if we see a following character) then signal
    621                         // an error.
    622                         anchorEnd = TRUE;
    623                         break;
    624                     }
    625                     pos = pp.getIndex();
    626                     // If this is a variable definition statement,
    627                     // then the LHS variable will be undefined.  In
    628                     // that case appendVariableDef() will append the
    629                     // special placeholder char variableLimit-1.
    630                     varStart = buf.length();
    631                     parser.appendVariableDef(name, buf, status);
    632                     varLimit = buf.length();
    633                 }
    634             }
    635             break;
    636         case DOT:
    637             buf.append(parser.getDotStandIn(status));
    638             break;
    639         case KLEENE_STAR:
    640         case ONE_OR_MORE:
    641         case ZERO_OR_ONE:
    642             // Quantifiers.  We handle single characters, quoted strings,
    643             // variable references, and segments.
    644             //  a+      matches  aaa
    645             //  'foo'+  matches  foofoofoo
    646             //  $v+     matches  xyxyxy if $v == xy
    647             //  (seg)+  matches  segsegseg
    648             {
    649                 if (isSegment && buf.length() == bufStart) {
    650                     // The */+ immediately follows '('
    651                     return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status);
    652                 }
    653 
    654                 int32_t qstart, qlimit;
    655                 // The */+ follows an isolated character or quote
    656                 // or variable reference
    657                 if (buf.length() == quoteLimit) {
    658                     // The */+ follows a 'quoted string'
    659                     qstart = quoteStart;
    660                     qlimit = quoteLimit;
    661                 } else if (buf.length() == varLimit) {
    662                     // The */+ follows a $variableReference
    663                     qstart = varStart;
    664                     qlimit = varLimit;
    665                 } else {
    666                     // The */+ follows a single character, possibly
    667                     // a segment standin
    668                     qstart = buf.length() - 1;
    669                     qlimit = qstart + 1;
    670                 }
    671 
    672                 UnicodeFunctor *m =
    673                     new StringMatcher(buf, qstart, qlimit, 0, *parser.curData);
    674                 if (m == NULL) {
    675                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    676                 }
    677                 int32_t min = 0;
    678                 int32_t max = Quantifier::MAX;
    679                 switch (c) {
    680                 case ONE_OR_MORE:
    681                     min = 1;
    682                     break;
    683                 case ZERO_OR_ONE:
    684                     min = 0;
    685                     max = 1;
    686                     break;
    687                 // case KLEENE_STAR:
    688                 //    do nothing -- min, max already set
    689                 }
    690                 m = new Quantifier(m, min, max);
    691                 if (m == NULL) {
    692                     return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
    693                 }
    694                 buf.truncate(qstart);
    695                 buf.append(parser.generateStandInFor(m, status));
    696             }
    697             break;
    698 
    699         //------------------------------------------------------
    700         // Elements allowed ONLY WITHIN segments
    701         //------------------------------------------------------
    702         case SEGMENT_CLOSE:
    703             // assert(isSegment);
    704             // We're done parsing a segment.
    705             done = TRUE;
    706             break;
    707 
    708         //------------------------------------------------------
    709         // Elements allowed ONLY OUTSIDE segments
    710         //------------------------------------------------------
    711         case CONTEXT_ANTE:
    712             if (ante >= 0) {
    713                 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status);
    714             }
    715             ante = buf.length();
    716             break;
    717         case CONTEXT_POST:
    718             if (post >= 0) {
    719                 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status);
    720             }
    721             post = buf.length();
    722             break;
    723         case CURSOR_POS:
    724             if (cursor >= 0) {
    725                 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status);
    726             }
    727             cursor = buf.length();
    728             break;
    729         case CURSOR_OFFSET:
    730             if (cursorOffset < 0) {
    731                 if (buf.length() > 0) {
    732                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    733                 }
    734                 --cursorOffset;
    735             } else if (cursorOffset > 0) {
    736                 if (buf.length() != cursorOffsetPos || cursor >= 0) {
    737                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    738                 }
    739                 ++cursorOffset;
    740             } else {
    741                 if (cursor == 0 && buf.length() == 0) {
    742                     cursorOffset = -1;
    743                 } else if (cursor < 0) {
    744                     cursorOffsetPos = buf.length();
    745                     cursorOffset = 1;
    746                 } else {
    747                     return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
    748                 }
    749             }
    750             break;
    751 
    752 
    753         //------------------------------------------------------
    754         // Non-special characters
    755         //------------------------------------------------------
    756         default:
    757             // Disallow unquoted characters other than [0-9A-Za-z]
    758             // in the printable ASCII range.  These characters are
    759             // reserved for possible future use.
    760             if (c >= 0x0021 && c <= 0x007E &&
    761                 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
    762                   (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
    763                   (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
    764                 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
    765             }
    766             buf.append(c);
    767             break;
    768         }
    769     }
    770 
    771     return pos;
    772 }
    773 
    774 /**
    775  * Remove context.
    776  */
    777 void RuleHalf::removeContext() {
    778     //text = text.substring(ante < 0 ? 0 : ante,
    779     //                      post < 0 ? text.length() : post);
    780     if (post >= 0) {
    781         text.remove(post);
    782     }
    783     if (ante >= 0) {
    784         text.removeBetween(0, ante);
    785     }
    786     ante = post = -1;
    787     anchorStart = anchorEnd = FALSE;
    788 }
    789 
    790 /**
    791  * Return true if this half looks like valid output, that is, does not
    792  * contain quantifiers or other special input-only elements.
    793  */
    794 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) {
    795     for (int32_t i=0; i<text.length(); ) {
    796         UChar32 c = text.char32At(i);
    797         i += U16_LENGTH(c);
    798         if (!transParser.parseData->isReplacer(c)) {
    799             return FALSE;
    800         }
    801     }
    802     return TRUE;
    803 }
    804 
    805 /**
    806  * Return true if this half looks like valid input, that is, does not
    807  * contain functions or other special output-only elements.
    808  */
    809 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) {
    810     for (int32_t i=0; i<text.length(); ) {
    811         UChar32 c = text.char32At(i);
    812         i += U16_LENGTH(c);
    813         if (!transParser.parseData->isMatcher(c)) {
    814             return FALSE;
    815         }
    816     }
    817     return TRUE;
    818 }
    819 
    820 //----------------------------------------------------------------------
    821 // PUBLIC API
    822 //----------------------------------------------------------------------
    823 
    824 /**
    825  * Constructor.
    826  */
    827 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) :
    828 dataVector(statusReturn),
    829 idBlockVector(statusReturn),
    830 variablesVector(statusReturn),
    831 segmentObjects(statusReturn)
    832 {
    833     idBlockVector.setDeleter(uprv_deleteUObject);
    834     curData = NULL;
    835     compoundFilter = NULL;
    836     parseData = NULL;
    837     variableNames.setValueDeleter(uprv_deleteUObject);
    838 }
    839 
    840 /**
    841  * Destructor.
    842  */
    843 TransliteratorParser::~TransliteratorParser() {
    844     while (!dataVector.isEmpty())
    845         delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
    846     delete compoundFilter;
    847     delete parseData;
    848     while (!variablesVector.isEmpty())
    849         delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
    850 }
    851 
    852 void
    853 TransliteratorParser::parse(const UnicodeString& rules,
    854                             UTransDirection transDirection,
    855                             UParseError& pe,
    856                             UErrorCode& ec) {
    857     if (U_SUCCESS(ec)) {
    858         parseRules(rules, transDirection, ec);
    859         pe = parseError;
    860     }
    861 }
    862 
    863 /**
    864  * Return the compound filter parsed by parse().  Caller owns result.
    865  */
    866 UnicodeSet* TransliteratorParser::orphanCompoundFilter() {
    867     UnicodeSet* f = compoundFilter;
    868     compoundFilter = NULL;
    869     return f;
    870 }
    871 
    872 //----------------------------------------------------------------------
    873 // Private implementation
    874 //----------------------------------------------------------------------
    875 
    876 /**
    877  * Parse the given string as a sequence of rules, separated by newline
    878  * characters ('\n'), and cause this object to implement those rules.  Any
    879  * previous rules are discarded.  Typically this method is called exactly
    880  * once, during construction.
    881  * @exception IllegalArgumentException if there is a syntax error in the
    882  * rules
    883  */
    884 void TransliteratorParser::parseRules(const UnicodeString& rule,
    885                                       UTransDirection theDirection,
    886                                       UErrorCode& status)
    887 {
    888     // Clear error struct
    889     uprv_memset(&parseError, 0, sizeof(parseError));
    890     parseError.line = parseError.offset = -1;
    891 
    892     UBool parsingIDs = TRUE;
    893     int32_t ruleCount = 0;
    894 
    895     while (!dataVector.isEmpty()) {
    896         delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
    897     }
    898     if (U_FAILURE(status)) {
    899         return;
    900     }
    901 
    902     idBlockVector.removeAllElements();
    903     curData = NULL;
    904     direction = theDirection;
    905     ruleCount = 0;
    906 
    907     delete compoundFilter;
    908     compoundFilter = NULL;
    909 
    910     while (!variablesVector.isEmpty()) {
    911         delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
    912     }
    913     variableNames.removeAll();
    914     parseData = new ParseData(0, &variablesVector, &variableNames);
    915     if (parseData == NULL) {
    916         status = U_MEMORY_ALLOCATION_ERROR;
    917         return;
    918     }
    919 
    920     dotStandIn = (UChar) -1;
    921 
    922     UnicodeString *tempstr = NULL; // used for memory allocation error checking
    923     UnicodeString str; // scratch
    924     UnicodeString idBlockResult;
    925     int32_t pos = 0;
    926     int32_t limit = rule.length();
    927 
    928     // The compound filter offset is an index into idBlockResult.
    929     // If it is 0, then the compound filter occurred at the start,
    930     // and it is the offset to the _start_ of the compound filter
    931     // pattern.  Otherwise it is the offset to the _limit_ of the
    932     // compound filter pattern within idBlockResult.
    933     compoundFilter = NULL;
    934     int32_t compoundFilterOffset = -1;
    935 
    936     while (pos < limit && U_SUCCESS(status)) {
    937         UChar c = rule.charAt(pos++);
    938         if (PatternProps::isWhiteSpace(c)) {
    939             // Ignore leading whitespace.
    940             continue;
    941         }
    942         // Skip lines starting with the comment character
    943         if (c == RULE_COMMENT_CHAR) {
    944             pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1;
    945             if (pos == 0) {
    946                 break; // No "\n" found; rest of rule is a commnet
    947             }
    948             continue; // Either fall out or restart with next line
    949         }
    950 
    951         // skip empty rules
    952         if (c == END_OF_RULE)
    953             continue;
    954 
    955         // keep track of how many rules we've seen
    956         ++ruleCount;
    957 
    958         // We've found the start of a rule or ID.  c is its first
    959         // character, and pos points past c.
    960         --pos;
    961         // Look for an ID token.  Must have at least ID_TOKEN_LEN + 1
    962         // chars left.
    963         if ((pos + ID_TOKEN_LEN + 1) <= limit &&
    964                 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
    965             pos += ID_TOKEN_LEN;
    966             c = rule.charAt(pos);
    967             while (PatternProps::isWhiteSpace(c) && pos < limit) {
    968                 ++pos;
    969                 c = rule.charAt(pos);
    970             }
    971 
    972             int32_t p = pos;
    973 
    974             if (!parsingIDs) {
    975                 if (curData != NULL) {
    976                     if (direction == UTRANS_FORWARD)
    977                         dataVector.addElement(curData, status);
    978                     else
    979                         dataVector.insertElementAt(curData, 0, status);
    980                     curData = NULL;
    981                 }
    982                 parsingIDs = TRUE;
    983             }
    984 
    985             TransliteratorIDParser::SingleID* id =
    986                 TransliteratorIDParser::parseSingleID(rule, p, direction, status);
    987             if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) {
    988                 // Successful ::ID parse.
    989 
    990                 if (direction == UTRANS_FORWARD) {
    991                     idBlockResult.append(id->canonID).append(END_OF_RULE);
    992                 } else {
    993                     idBlockResult.insert(0, END_OF_RULE);
    994                     idBlockResult.insert(0, id->canonID);
    995                 }
    996 
    997             } else {
    998                 // Couldn't parse an ID.  Try to parse a global filter
    999                 int32_t withParens = -1;
   1000                 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL);
   1001                 if (f != NULL) {
   1002                     if (ICU_Utility::parseChar(rule, p, END_OF_RULE)
   1003                         && (direction == UTRANS_FORWARD) == (withParens == 0))
   1004                     {
   1005                         if (compoundFilter != NULL) {
   1006                             // Multiple compound filters
   1007                             syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status);
   1008                             delete f;
   1009                         } else {
   1010                             compoundFilter = f;
   1011                             compoundFilterOffset = ruleCount;
   1012                         }
   1013                     } else {
   1014                         delete f;
   1015                     }
   1016                 } else {
   1017                     // Invalid ::id
   1018                     // Can be parsed as neither an ID nor a global filter
   1019                     syntaxError(U_INVALID_ID, rule, pos, status);
   1020                 }
   1021             }
   1022             delete id;
   1023             pos = p;
   1024         } else {
   1025             if (parsingIDs) {
   1026                 tempstr = new UnicodeString(idBlockResult);
   1027                 // NULL pointer check
   1028                 if (tempstr == NULL) {
   1029                     status = U_MEMORY_ALLOCATION_ERROR;
   1030                     return;
   1031                 }
   1032                 if (direction == UTRANS_FORWARD)
   1033                     idBlockVector.addElement(tempstr, status);
   1034                 else
   1035                     idBlockVector.insertElementAt(tempstr, 0, status);
   1036                 idBlockResult.remove();
   1037                 parsingIDs = FALSE;
   1038                 curData = new TransliterationRuleData(status);
   1039                 // NULL pointer check
   1040                 if (curData == NULL) {
   1041                     status = U_MEMORY_ALLOCATION_ERROR;
   1042                     return;
   1043                 }
   1044                 parseData->data = curData;
   1045 
   1046                 // By default, rules use part of the private use area
   1047                 // E000..F8FF for variables and other stand-ins.  Currently
   1048                 // the range F000..F8FF is typically sufficient.  The 'use
   1049                 // variable range' pragma allows rule sets to modify this.
   1050                 setVariableRange(0xF000, 0xF8FF, status);
   1051             }
   1052 
   1053             if (resemblesPragma(rule, pos, limit)) {
   1054                 int32_t ppp = parsePragma(rule, pos, limit, status);
   1055                 if (ppp < 0) {
   1056                     syntaxError(U_MALFORMED_PRAGMA, rule, pos, status);
   1057                 }
   1058                 pos = ppp;
   1059             // Parse a rule
   1060             } else {
   1061                 pos = parseRule(rule, pos, limit, status);
   1062             }
   1063         }
   1064     }
   1065 
   1066     if (parsingIDs && idBlockResult.length() > 0) {
   1067         tempstr = new UnicodeString(idBlockResult);
   1068         // NULL pointer check
   1069         if (tempstr == NULL) {
   1070             status = U_MEMORY_ALLOCATION_ERROR;
   1071             return;
   1072         }
   1073         if (direction == UTRANS_FORWARD)
   1074             idBlockVector.addElement(tempstr, status);
   1075         else
   1076             idBlockVector.insertElementAt(tempstr, 0, status);
   1077     }
   1078     else if (!parsingIDs && curData != NULL) {
   1079         if (direction == UTRANS_FORWARD)
   1080             dataVector.addElement(curData, status);
   1081         else
   1082             dataVector.insertElementAt(curData, 0, status);
   1083     }
   1084 
   1085     if (U_SUCCESS(status)) {
   1086         // Convert the set vector to an array
   1087         int32_t i, dataVectorSize = dataVector.size();
   1088         for (i = 0; i < dataVectorSize; i++) {
   1089             TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
   1090             data->variablesLength = variablesVector.size();
   1091             if (data->variablesLength == 0) {
   1092                 data->variables = 0;
   1093             } else {
   1094                 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*));
   1095                 // NULL pointer check
   1096                 if (data->variables == NULL) {
   1097                     status = U_MEMORY_ALLOCATION_ERROR;
   1098                     return;
   1099                 }
   1100                 data->variablesAreOwned = (i == 0);
   1101             }
   1102 
   1103             for (int32_t j = 0; j < data->variablesLength; j++) {
   1104                 data->variables[j] =
   1105                     ((UnicodeSet*)variablesVector.elementAt(j));
   1106             }
   1107 
   1108             data->variableNames.removeAll();
   1109             int32_t pos = -1;
   1110             const UHashElement* he = variableNames.nextElement(pos);
   1111             while (he != NULL) {
   1112                 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone());
   1113                 if (tempus == NULL) {
   1114                     status = U_MEMORY_ALLOCATION_ERROR;
   1115                     return;
   1116                 }
   1117                 data->variableNames.put(*((UnicodeString*)(he->key.pointer)),
   1118                     tempus, status);
   1119                 he = variableNames.nextElement(pos);
   1120             }
   1121         }
   1122         variablesVector.removeAllElements();   // keeps them from getting deleted when we succeed
   1123 
   1124         // Index the rules
   1125         if (compoundFilter != NULL) {
   1126             if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) ||
   1127                 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) {
   1128                 status = U_MISPLACED_COMPOUND_FILTER;
   1129             }
   1130         }
   1131 
   1132         for (i = 0; i < dataVectorSize; i++) {
   1133             TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
   1134             data->ruleSet.freeze(parseError, status);
   1135         }
   1136         if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) {
   1137             idBlockVector.removeElementAt(0);
   1138         }
   1139     }
   1140 }
   1141 
   1142 /**
   1143  * Set the variable range to [start, end] (inclusive).
   1144  */
   1145 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) {
   1146     if (start > end || start < 0 || end > 0xFFFF) {
   1147         status = U_MALFORMED_PRAGMA;
   1148         return;
   1149     }
   1150 
   1151     curData->variablesBase = (UChar) start;
   1152     if (dataVector.size() == 0) {
   1153         variableNext = (UChar) start;
   1154         variableLimit = (UChar) (end + 1);
   1155     }
   1156 }
   1157 
   1158 /**
   1159  * Assert that the given character is NOT within the variable range.
   1160  * If it is, return FALSE.  This is neccesary to ensure that the
   1161  * variable range does not overlap characters used in a rule.
   1162  */
   1163 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const {
   1164     return !(ch >= curData->variablesBase && ch < variableLimit);
   1165 }
   1166 
   1167 /**
   1168  * Set the maximum backup to 'backup', in response to a pragma
   1169  * statement.
   1170  */
   1171 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
   1172     //TODO Finish
   1173 }
   1174 
   1175 /**
   1176  * Begin normalizing all rules using the given mode, in response
   1177  * to a pragma statement.
   1178  */
   1179 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) {
   1180     //TODO Finish
   1181 }
   1182 
   1183 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use "
   1184 
   1185 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"
   1186 
   1187 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"
   1188 
   1189 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"
   1190 
   1191 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"
   1192 
   1193 /**
   1194  * Return true if the given rule looks like a pragma.
   1195  * @param pos offset to the first non-whitespace character
   1196  * of the rule.
   1197  * @param limit pointer past the last character of the rule.
   1198  */
   1199 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) {
   1200     // Must start with /use\s/i
   1201     return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0;
   1202 }
   1203 
   1204 /**
   1205  * Parse a pragma.  This method assumes resemblesPragma() has
   1206  * already returned true.
   1207  * @param pos offset to the first non-whitespace character
   1208  * of the rule.
   1209  * @param limit pointer past the last character of the rule.
   1210  * @return the position index after the final ';' of the pragma,
   1211  * or -1 on failure.
   1212  */
   1213 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
   1214     int32_t array[2];
   1215 
   1216     // resemblesPragma() has already returned true, so we
   1217     // know that pos points to /use\s/i; we can skip 4 characters
   1218     // immediately
   1219     pos += 4;
   1220 
   1221     // Here are the pragmas we recognize:
   1222     // use variable range 0xE000 0xEFFF;
   1223     // use maximum backup 16;
   1224     // use nfd rules;
   1225     // use nfc rules;
   1226     int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array);
   1227     if (p >= 0) {
   1228         setVariableRange(array[0], array[1], status);
   1229         return p;
   1230     }
   1231 
   1232     p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array);
   1233     if (p >= 0) {
   1234         pragmaMaximumBackup(array[0]);
   1235         return p;
   1236     }
   1237 
   1238     p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL);
   1239     if (p >= 0) {
   1240         pragmaNormalizeRules(UNORM_NFD);
   1241         return p;
   1242     }
   1243 
   1244     p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL);
   1245     if (p >= 0) {
   1246         pragmaNormalizeRules(UNORM_NFC);
   1247         return p;
   1248     }
   1249 
   1250     // Syntax error: unable to parse pragma
   1251     return -1;
   1252 }
   1253 
   1254 /**
   1255  * MAIN PARSER.  Parse the next rule in the given rule string, starting
   1256  * at pos.  Return the index after the last character parsed.  Do not
   1257  * parse characters at or after limit.
   1258  *
   1259  * Important:  The character at pos must be a non-whitespace character
   1260  * that is not the comment character.
   1261  *
   1262  * This method handles quoting, escaping, and whitespace removal.  It
   1263  * parses the end-of-rule character.  It recognizes context and cursor
   1264  * indicators.  Once it does a lexical breakdown of the rule at pos, it
   1265  * creates a rule object and adds it to our rule list.
   1266  */
   1267 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
   1268     // Locate the left side, operator, and right side
   1269     int32_t start = pos;
   1270     UChar op = 0;
   1271     int32_t i;
   1272 
   1273     // Set up segments data
   1274     segmentStandins.truncate(0);
   1275     segmentObjects.removeAllElements();
   1276 
   1277     // Use pointers to automatics to make swapping possible.
   1278     RuleHalf _left(*this), _right(*this);
   1279     RuleHalf* left = &_left;
   1280     RuleHalf* right = &_right;
   1281 
   1282     undefinedVariableName.remove();
   1283     pos = left->parse(rule, pos, limit, status);
   1284     if (U_FAILURE(status)) {
   1285         return start;
   1286     }
   1287 
   1288     if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) {
   1289         return syntaxError(U_MISSING_OPERATOR, rule, start, status);
   1290     }
   1291     ++pos;
   1292 
   1293     // Found an operator char.  Check for forward-reverse operator.
   1294     if (op == REVERSE_RULE_OP &&
   1295         (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
   1296         ++pos;
   1297         op = FWDREV_RULE_OP;
   1298     }
   1299 
   1300     // Translate alternate op characters.
   1301     switch (op) {
   1302     case ALT_FORWARD_RULE_OP:
   1303         op = FORWARD_RULE_OP;
   1304         break;
   1305     case ALT_REVERSE_RULE_OP:
   1306         op = REVERSE_RULE_OP;
   1307         break;
   1308     case ALT_FWDREV_RULE_OP:
   1309         op = FWDREV_RULE_OP;
   1310         break;
   1311     }
   1312 
   1313     pos = right->parse(rule, pos, limit, status);
   1314     if (U_FAILURE(status)) {
   1315         return start;
   1316     }
   1317 
   1318     if (pos < limit) {
   1319         if (rule.charAt(--pos) == END_OF_RULE) {
   1320             ++pos;
   1321         } else {
   1322             // RuleHalf parser must have terminated at an operator
   1323             return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
   1324         }
   1325     }
   1326 
   1327     if (op == VARIABLE_DEF_OP) {
   1328         // LHS is the name.  RHS is a single character, either a literal
   1329         // or a set (already parsed).  If RHS is longer than one
   1330         // character, it is either a multi-character string, or multiple
   1331         // sets, or a mixture of chars and sets -- syntax error.
   1332 
   1333         // We expect to see a single undefined variable (the one being
   1334         // defined).
   1335         if (undefinedVariableName.length() == 0) {
   1336             // "Missing '$' or duplicate definition"
   1337             return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status);
   1338         }
   1339         if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
   1340             // "Malformed LHS"
   1341             return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
   1342         }
   1343         if (left->anchorStart || left->anchorEnd ||
   1344             right->anchorStart || right->anchorEnd) {
   1345             return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
   1346         }
   1347         // We allow anything on the right, including an empty string.
   1348         UnicodeString* value = new UnicodeString(right->text);
   1349         // NULL pointer check
   1350         if (value == NULL) {
   1351             return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
   1352         }
   1353         variableNames.put(undefinedVariableName, value, status);
   1354         ++variableLimit;
   1355         return pos;
   1356     }
   1357 
   1358     // If this is not a variable definition rule, we shouldn't have
   1359     // any undefined variable names.
   1360     if (undefinedVariableName.length() != 0) {
   1361         return syntaxError(// "Undefined variable $" + undefinedVariableName,
   1362                     U_UNDEFINED_VARIABLE,
   1363                     rule, start, status);
   1364     }
   1365 
   1366     // Verify segments
   1367     if (segmentStandins.length() > segmentObjects.size()) {
   1368         syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status);
   1369     }
   1370     for (i=0; i<segmentStandins.length(); ++i) {
   1371         if (segmentStandins.charAt(i) == 0) {
   1372             syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
   1373         }
   1374     }
   1375     for (i=0; i<segmentObjects.size(); ++i) {
   1376         if (segmentObjects.elementAt(i) == NULL) {
   1377             syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
   1378         }
   1379     }
   1380 
   1381     // If the direction we want doesn't match the rule
   1382     // direction, do nothing.
   1383     if (op != FWDREV_RULE_OP &&
   1384         ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
   1385         return pos;
   1386     }
   1387 
   1388     // Transform the rule into a forward rule by swapping the
   1389     // sides if necessary.
   1390     if (direction == UTRANS_REVERSE) {
   1391         left = &_right;
   1392         right = &_left;
   1393     }
   1394 
   1395     // Remove non-applicable elements in forward-reverse
   1396     // rules.  Bidirectional rules ignore elements that do not
   1397     // apply.
   1398     if (op == FWDREV_RULE_OP) {
   1399         right->removeContext();
   1400         left->cursor = -1;
   1401         left->cursorOffset = 0;
   1402     }
   1403 
   1404     // Normalize context
   1405     if (left->ante < 0) {
   1406         left->ante = 0;
   1407     }
   1408     if (left->post < 0) {
   1409         left->post = left->text.length();
   1410     }
   1411 
   1412     // Context is only allowed on the input side.  Cursors are only
   1413     // allowed on the output side.  Segment delimiters can only appear
   1414     // on the left, and references on the right.  Cursor offset
   1415     // cannot appear without an explicit cursor.  Cursor offset
   1416     // cannot place the cursor outside the limits of the context.
   1417     // Anchors are only allowed on the input side.
   1418     if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
   1419         (right->cursorOffset != 0 && right->cursor < 0) ||
   1420         // - The following two checks were used to ensure that the
   1421         // - the cursor offset stayed within the ante- or postcontext.
   1422         // - However, with the addition of quantifiers, we have to
   1423         // - allow arbitrary cursor offsets and do runtime checking.
   1424         //(right->cursorOffset > (left->text.length() - left->post)) ||
   1425         //(-right->cursorOffset > left->ante) ||
   1426         right->anchorStart || right->anchorEnd ||
   1427         !left->isValidInput(*this) || !right->isValidOutput(*this) ||
   1428         left->ante > left->post) {
   1429 
   1430         return syntaxError(U_MALFORMED_RULE, rule, start, status);
   1431     }
   1432 
   1433     // Flatten segment objects vector to an array
   1434     UnicodeFunctor** segmentsArray = NULL;
   1435     if (segmentObjects.size() > 0) {
   1436         segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *));
   1437         // Null pointer check
   1438         if (segmentsArray == NULL) {
   1439             return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
   1440         }
   1441         segmentObjects.toArray((void**) segmentsArray);
   1442     }
   1443     TransliterationRule* temptr = new TransliterationRule(
   1444             left->text, left->ante, left->post,
   1445             right->text, right->cursor, right->cursorOffset,
   1446             segmentsArray,
   1447             segmentObjects.size(),
   1448             left->anchorStart, left->anchorEnd,
   1449             curData,
   1450             status);
   1451     //Null pointer check
   1452     if (temptr == NULL) {
   1453         uprv_free(segmentsArray);
   1454         return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
   1455     }
   1456 
   1457     curData->ruleSet.addRule(temptr, status);
   1458 
   1459     return pos;
   1460 }
   1461 
   1462 /**
   1463  * Called by main parser upon syntax error.  Search the rule string
   1464  * for the probable end of the rule.  Of course, if the error is that
   1465  * the end of rule marker is missing, then the rule end will not be found.
   1466  * In any case the rule start will be correctly reported.
   1467  * @param msg error description
   1468  * @param rule pattern string
   1469  * @param start position of first character of current rule
   1470  */
   1471 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
   1472                                           const UnicodeString& rule,
   1473                                           int32_t pos,
   1474                                           UErrorCode& status)
   1475 {
   1476     parseError.offset = pos;
   1477     parseError.line = 0 ; /* we are not using line numbers */
   1478 
   1479     // for pre-context
   1480     const int32_t LEN = U_PARSE_CONTEXT_LEN - 1;
   1481     int32_t start = uprv_max(pos - LEN, 0);
   1482     int32_t stop  = pos;
   1483 
   1484     rule.extract(start,stop-start,parseError.preContext);
   1485     //null terminate the buffer
   1486     parseError.preContext[stop-start] = 0;
   1487 
   1488     //for post-context
   1489     start = pos;
   1490     stop  = uprv_min(pos + LEN, rule.length());
   1491 
   1492     rule.extract(start,stop-start,parseError.postContext);
   1493     //null terminate the buffer
   1494     parseError.postContext[stop-start]= 0;
   1495 
   1496     status = (UErrorCode)parseErrorCode;
   1497     return pos;
   1498 
   1499 }
   1500 
   1501 /**
   1502  * Parse a UnicodeSet out, store it, and return the stand-in character
   1503  * used to represent it.
   1504  */
   1505 UChar TransliteratorParser::parseSet(const UnicodeString& rule,
   1506                                           ParsePosition& pos,
   1507                                           UErrorCode& status) {
   1508     UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status);
   1509     // Null pointer check
   1510     if (set == NULL) {
   1511         status = U_MEMORY_ALLOCATION_ERROR;
   1512         return (UChar)0x0000; // Return empty character with error.
   1513     }
   1514     set->compact();
   1515     return generateStandInFor(set, status);
   1516 }
   1517 
   1518 /**
   1519  * Generate and return a stand-in for a new UnicodeFunctor.  Store
   1520  * the matcher (adopt it).
   1521  */
   1522 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) {
   1523     // assert(obj != null);
   1524 
   1525     // Look up previous stand-in, if any.  This is a short list
   1526     // (typical n is 0, 1, or 2); linear search is optimal.
   1527     for (int32_t i=0; i<variablesVector.size(); ++i) {
   1528         if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison
   1529             return (UChar) (curData->variablesBase + i);
   1530         }
   1531     }
   1532 
   1533     if (variableNext >= variableLimit) {
   1534         delete adopted;
   1535         status = U_VARIABLE_RANGE_EXHAUSTED;
   1536         return 0;
   1537     }
   1538     variablesVector.addElement(adopted, status);
   1539     return variableNext++;
   1540 }
   1541 
   1542 /**
   1543  * Return the standin for segment seg (1-based).
   1544  */
   1545 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) {
   1546     // Special character used to indicate an empty spot
   1547     UChar empty = curData->variablesBase - 1;
   1548     while (segmentStandins.length() < seg) {
   1549         segmentStandins.append(empty);
   1550     }
   1551     UChar c = segmentStandins.charAt(seg-1);
   1552     if (c == empty) {
   1553         if (variableNext >= variableLimit) {
   1554             status = U_VARIABLE_RANGE_EXHAUSTED;
   1555             return 0;
   1556         }
   1557         c = variableNext++;
   1558         // Set a placeholder in the master variables vector that will be
   1559         // filled in later by setSegmentObject().  We know that we will get
   1560         // called first because setSegmentObject() will call us.
   1561         variablesVector.addElement((void*) NULL, status);
   1562         segmentStandins.setCharAt(seg-1, c);
   1563     }
   1564     return c;
   1565 }
   1566 
   1567 /**
   1568  * Set the object for segment seg (1-based).
   1569  */
   1570 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) {
   1571     // Since we call parseSection() recursively, nested
   1572     // segments will result in segment i+1 getting parsed
   1573     // and stored before segment i; be careful with the
   1574     // vector handling here.
   1575     if (segmentObjects.size() < seg) {
   1576         segmentObjects.setSize(seg, status);
   1577     }
   1578     int32_t index = getSegmentStandin(seg, status) - curData->variablesBase;
   1579     if (segmentObjects.elementAt(seg-1) != NULL ||
   1580         variablesVector.elementAt(index) != NULL) {
   1581         // should never happen
   1582         status = U_INTERNAL_TRANSLITERATOR_ERROR;
   1583         return;
   1584     }
   1585     segmentObjects.setElementAt(adopted, seg-1);
   1586     variablesVector.setElementAt(adopted, index);
   1587 }
   1588 
   1589 /**
   1590  * Return the stand-in for the dot set.  It is allocated the first
   1591  * time and reused thereafter.
   1592  */
   1593 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) {
   1594     if (dotStandIn == (UChar) -1) {
   1595         UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status);
   1596         // Null pointer check.
   1597         if (tempus == NULL) {
   1598             status = U_MEMORY_ALLOCATION_ERROR;
   1599             return (UChar)0x0000;
   1600         }
   1601         dotStandIn = generateStandInFor(tempus, status);
   1602     }
   1603     return dotStandIn;
   1604 }
   1605 
   1606 /**
   1607  * Append the value of the given variable name to the given
   1608  * UnicodeString.
   1609  */
   1610 void TransliteratorParser::appendVariableDef(const UnicodeString& name,
   1611                                                   UnicodeString& buf,
   1612                                                   UErrorCode& status) {
   1613     const UnicodeString* s = (const UnicodeString*) variableNames.get(name);
   1614     if (s == NULL) {
   1615         // We allow one undefined variable so that variable definition
   1616         // statements work.  For the first undefined variable we return
   1617         // the special placeholder variableLimit-1, and save the variable
   1618         // name.
   1619         if (undefinedVariableName.length() == 0) {
   1620             undefinedVariableName = name;
   1621             if (variableNext >= variableLimit) {
   1622                 // throw new RuntimeException("Private use variables exhausted");
   1623                 status = U_ILLEGAL_ARGUMENT_ERROR;
   1624                 return;
   1625             }
   1626             buf.append((UChar) --variableLimit);
   1627         } else {
   1628             //throw new IllegalArgumentException("Undefined variable $"
   1629             //                                   + name);
   1630             status = U_ILLEGAL_ARGUMENT_ERROR;
   1631             return;
   1632         }
   1633     } else {
   1634         buf.append(*s);
   1635     }
   1636 }
   1637 
   1638 /**
   1639  * Glue method to get around access restrictions in C++.
   1640  */
   1641 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
   1642     return Transliterator::createBasicInstance(id, canonID);
   1643 }*/
   1644 
   1645 U_NAMESPACE_END
   1646 
   1647 U_CAPI int32_t
   1648 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) {
   1649     U_NAMESPACE_USE
   1650 
   1651     //const UChar *sourceStart = source;
   1652     const UChar *targetStart = target;
   1653     const UChar *sourceLimit = source+sourceLen;
   1654     UChar *targetLimit = target+sourceLen;
   1655     UChar32 c = 0;
   1656     UBool quoted = FALSE;
   1657     int32_t index;
   1658 
   1659     uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR);
   1660 
   1661     /* read the rules into the buffer */
   1662     while (source < sourceLimit)
   1663     {
   1664         index=0;
   1665         U16_NEXT_UNSAFE(source, index, c);
   1666         source+=index;
   1667         if(c == QUOTE) {
   1668             quoted = (UBool)!quoted;
   1669         }
   1670         else if (!quoted) {
   1671             if (c == RULE_COMMENT_CHAR) {
   1672                 /* skip comments and all preceding spaces */
   1673                 while (targetStart < target && *(target - 1) == 0x0020) {
   1674                     target--;
   1675                 }
   1676                 do {
   1677                     c = *(source++);
   1678                 }
   1679                 while (c != CR && c != LF);
   1680             }
   1681             else if (c == ESCAPE) {
   1682                 UChar32   c2 = *source;
   1683                 if (c2 == CR || c2 == LF) {
   1684                     /* A backslash at the end of a line. */
   1685                     /* Since we're stripping lines, ignore the backslash. */
   1686                     source++;
   1687                     continue;
   1688                 }
   1689                 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */
   1690                     int32_t escapeOffset = 0;
   1691                     UnicodeString escapedStr(source, 5);
   1692                     c2 = escapedStr.unescapeAt(escapeOffset);
   1693 
   1694                     if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0)
   1695                     {
   1696                         *status = U_PARSE_ERROR;
   1697                         return 0;
   1698                     }
   1699                     if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) {
   1700                         /* It was escaped for a reason. Write what it was suppose to be. */
   1701                         source+=5;
   1702                         c = c2;
   1703                     }
   1704                 }
   1705                 else if (c2 == QUOTE) {
   1706                     /* \' seen. Make sure we don't do anything when we see it again. */
   1707                     quoted = (UBool)!quoted;
   1708                 }
   1709             }
   1710         }
   1711         if (c == CR || c == LF)
   1712         {
   1713             /* ignore spaces carriage returns, and all leading spaces on the next line.
   1714             * and line feed unless in the form \uXXXX
   1715             */
   1716             quoted = FALSE;
   1717             while (source < sourceLimit) {
   1718                 c = *(source);
   1719                 if (c != CR && c != LF && c != 0x0020) {
   1720                     break;
   1721                 }
   1722                 source++;
   1723             }
   1724             continue;
   1725         }
   1726 
   1727         /* Append UChar * after dissembling if c > 0xffff*/
   1728         index=0;
   1729         U16_APPEND_UNSAFE(target, index, c);
   1730         target+=index;
   1731     }
   1732     if (target < targetLimit) {
   1733         *target = 0;
   1734     }
   1735     return (int32_t)(target-targetStart);
   1736 }
   1737 
   1738 #endif /* #if !UCONFIG_NO_TRANSLITERATION */
   1739