1 /* 2 * taken from https://github.com/swenson/sort 3 * Kept as is for the moment to be able to apply upstream patches for that 4 * code, currently used only to speed up XPath node sorting, see xpath.c 5 */ 6 7 /* 8 * All code in this header, unless otherwise specified, is hereby licensed under the MIT Public License: 9 10 Copyright (c) 2010 Christopher Swenson 11 12 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: 13 14 The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. 15 16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 17 */ 18 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <string.h> 22 #ifdef HAVE_STDINT_H 23 #include <stdint.h> 24 #else 25 #ifdef HAVE_INTTYPES_H 26 #include <inttypes.h> 27 #elif defined(WIN32) 28 typedef __int64 int64_t; 29 typedef unsigned __int64 uint64_t; 30 #endif 31 #endif 32 33 #ifndef MK_UINT64 34 #if defined(WIN32) && defined(_MSC_VER) && _MSC_VER < 1300 35 #define MK_UINT64(x) ((uint64_t)(x)) 36 #else 37 #define MK_UINT64(x) x##ULL 38 #endif 39 #endif 40 41 #ifndef MAX 42 #define MAX(x,y) (((x) > (y) ? (x) : (y))) 43 #endif 44 #ifndef MIN 45 #define MIN(x,y) (((x) < (y) ? (x) : (y))) 46 #endif 47 48 int compute_minrun(uint64_t); 49 50 #ifndef CLZ 51 #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3)) 52 #define CLZ __builtin_clzll 53 #else 54 55 int clzll(uint64_t); 56 57 /* adapted from Hacker's Delight */ 58 int clzll(uint64_t x) /* {{{ */ 59 { 60 int n; 61 62 if (x == 0) return(64); 63 n = 0; 64 if (x <= 0x00000000FFFFFFFFL) {n = n + 32; x = x << 32;} 65 if (x <= 0x0000FFFFFFFFFFFFL) {n = n + 16; x = x << 16;} 66 if (x <= 0x00FFFFFFFFFFFFFFL) {n = n + 8; x = x << 8;} 67 if (x <= 0x0FFFFFFFFFFFFFFFL) {n = n + 4; x = x << 4;} 68 if (x <= 0x3FFFFFFFFFFFFFFFL) {n = n + 2; x = x << 2;} 69 if (x <= 0x7FFFFFFFFFFFFFFFL) {n = n + 1;} 70 return n; 71 } 72 /* }}} */ 73 74 #define CLZ clzll 75 #endif 76 #endif 77 78 int compute_minrun(uint64_t size) /* {{{ */ 79 { 80 const int top_bit = 64 - CLZ(size); 81 const int shift = MAX(top_bit, 6) - 6; 82 const int minrun = size >> shift; 83 const uint64_t mask = (MK_UINT64(1) << shift) - 1; 84 if (mask & size) return minrun + 1; 85 return minrun; 86 } 87 /* }}} */ 88 89 #ifndef SORT_NAME 90 #error "Must declare SORT_NAME" 91 #endif 92 93 #ifndef SORT_TYPE 94 #error "Must declare SORT_TYPE" 95 #endif 96 97 #ifndef SORT_CMP 98 #define SORT_CMP(x, y) ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1)) 99 #endif 100 101 102 #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;} 103 104 #define SORT_CONCAT(x, y) x ## _ ## y 105 #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y) 106 #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x) 107 108 #define BINARY_INSERTION_FIND SORT_MAKE_STR(binary_insertion_find) 109 #define BINARY_INSERTION_SORT_START SORT_MAKE_STR(binary_insertion_sort_start) 110 #define BINARY_INSERTION_SORT SORT_MAKE_STR(binary_insertion_sort) 111 #define REVERSE_ELEMENTS SORT_MAKE_STR(reverse_elements) 112 #define COUNT_RUN SORT_MAKE_STR(count_run) 113 #define CHECK_INVARIANT SORT_MAKE_STR(check_invariant) 114 #define TIM_SORT SORT_MAKE_STR(tim_sort) 115 #define TIM_SORT_RESIZE SORT_MAKE_STR(tim_sort_resize) 116 #define TIM_SORT_MERGE SORT_MAKE_STR(tim_sort_merge) 117 #define TIM_SORT_COLLAPSE SORT_MAKE_STR(tim_sort_collapse) 118 119 #define TIM_SORT_RUN_T SORT_MAKE_STR(tim_sort_run_t) 120 #define TEMP_STORAGE_T SORT_MAKE_STR(temp_storage_t) 121 122 typedef struct { 123 int64_t start; 124 int64_t length; 125 } TIM_SORT_RUN_T; 126 127 void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size); 128 void TIM_SORT(SORT_TYPE *dst, const size_t size); 129 130 /* Function used to do a binary search for binary insertion sort */ 131 static int64_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x, const size_t size) 132 { 133 int64_t l, c, r; 134 SORT_TYPE lx; 135 SORT_TYPE cx; 136 l = 0; 137 r = size - 1; 138 c = r >> 1; 139 lx = dst[l]; 140 141 /* check for beginning conditions */ 142 if (SORT_CMP(x, lx) < 0) 143 return 0; 144 else if (SORT_CMP(x, lx) == 0) 145 { 146 int64_t i = 1; 147 while (SORT_CMP(x, dst[i]) == 0) i++; 148 return i; 149 } 150 151 cx = dst[c]; 152 while (1) 153 { 154 const int val = SORT_CMP(x, cx); 155 if (val < 0) 156 { 157 if (c - l <= 1) return c; 158 r = c; 159 } 160 else if (val > 0) 161 { 162 if (r - c <= 1) return c + 1; 163 l = c; 164 lx = cx; 165 } 166 else 167 { 168 do 169 { 170 cx = dst[++c]; 171 } while (SORT_CMP(x, cx) == 0); 172 return c; 173 } 174 c = l + ((r - l) >> 1); 175 cx = dst[c]; 176 } 177 } 178 179 /* Binary insertion sort, but knowing that the first "start" entries are sorted. Used in timsort. */ 180 static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) 181 { 182 int64_t i; 183 for (i = start; i < (int64_t) size; i++) 184 { 185 int64_t j; 186 SORT_TYPE x; 187 int64_t location; 188 /* If this entry is already correct, just move along */ 189 if (SORT_CMP(dst[i - 1], dst[i]) <= 0) continue; 190 191 /* Else we need to find the right place, shift everything over, and squeeze in */ 192 x = dst[i]; 193 location = BINARY_INSERTION_FIND(dst, x, i); 194 for (j = i - 1; j >= location; j--) 195 { 196 dst[j + 1] = dst[j]; 197 } 198 dst[location] = x; 199 } 200 } 201 202 /* Binary insertion sort */ 203 void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) 204 { 205 BINARY_INSERTION_SORT_START(dst, 1, size); 206 } 207 208 /* timsort implementation, based on timsort.txt */ 209 210 static void REVERSE_ELEMENTS(SORT_TYPE *dst, int64_t start, int64_t end) 211 { 212 while (1) 213 { 214 if (start >= end) return; 215 SORT_SWAP(dst[start], dst[end]); 216 start++; 217 end--; 218 } 219 } 220 221 static int64_t COUNT_RUN(SORT_TYPE *dst, const int64_t start, const size_t size) 222 { 223 int64_t curr; 224 if (size - start == 1) return 1; 225 if (start >= (int64_t) size - 2) 226 { 227 if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) 228 SORT_SWAP(dst[size - 2], dst[size - 1]); 229 return 2; 230 } 231 232 curr = start + 2; 233 234 if (SORT_CMP(dst[start], dst[start + 1]) <= 0) 235 { 236 /* increasing run */ 237 while (1) 238 { 239 if (curr == (int64_t) size - 1) break; 240 if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) break; 241 curr++; 242 } 243 return curr - start; 244 } 245 else 246 { 247 /* decreasing run */ 248 while (1) 249 { 250 if (curr == (int64_t) size - 1) break; 251 if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) break; 252 curr++; 253 } 254 /* reverse in-place */ 255 REVERSE_ELEMENTS(dst, start, curr - 1); 256 return curr - start; 257 } 258 } 259 260 #define PUSH_NEXT() do {\ 261 len = COUNT_RUN(dst, curr, size);\ 262 run = minrun;\ 263 if (run < minrun) run = minrun;\ 264 if (run > (int64_t) size - curr) run = size - curr;\ 265 if (run > len)\ 266 {\ 267 BINARY_INSERTION_SORT_START(&dst[curr], len, run);\ 268 len = run;\ 269 }\ 270 {\ 271 run_stack[stack_curr].start = curr;\ 272 run_stack[stack_curr].length = len;\ 273 stack_curr++;\ 274 }\ 275 curr += len;\ 276 if (curr == (int64_t) size)\ 277 {\ 278 /* finish up */ \ 279 while (stack_curr > 1) \ 280 { \ 281 TIM_SORT_MERGE(dst, run_stack, stack_curr, store); \ 282 run_stack[stack_curr - 2].length += run_stack[stack_curr - 1].length; \ 283 stack_curr--; \ 284 } \ 285 if (store->storage != NULL)\ 286 {\ 287 free(store->storage);\ 288 store->storage = NULL;\ 289 }\ 290 return;\ 291 }\ 292 }\ 293 while (0) 294 295 static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) 296 { 297 int64_t A, B, C; 298 if (stack_curr < 2) return 1; 299 if (stack_curr == 2) 300 { 301 const int64_t A1 = stack[stack_curr - 2].length; 302 const int64_t B1 = stack[stack_curr - 1].length; 303 if (A1 <= B1) return 0; 304 return 1; 305 } 306 A = stack[stack_curr - 3].length; 307 B = stack[stack_curr - 2].length; 308 C = stack[stack_curr - 1].length; 309 if ((A <= B + C) || (B <= C)) return 0; 310 return 1; 311 } 312 313 typedef struct { 314 size_t alloc; 315 SORT_TYPE *storage; 316 } TEMP_STORAGE_T; 317 318 319 static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) 320 { 321 if (store->alloc < new_size) 322 { 323 SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE)); 324 if (tempstore == NULL) 325 { 326 fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes", sizeof(SORT_TYPE) * new_size); 327 exit(1); 328 } 329 store->storage = tempstore; 330 store->alloc = new_size; 331 } 332 } 333 334 static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr, TEMP_STORAGE_T *store) 335 { 336 const int64_t A = stack[stack_curr - 2].length; 337 const int64_t B = stack[stack_curr - 1].length; 338 const int64_t curr = stack[stack_curr - 2].start; 339 SORT_TYPE *storage; 340 int64_t i, j, k; 341 342 TIM_SORT_RESIZE(store, MIN(A, B)); 343 storage = store->storage; 344 345 /* left merge */ 346 if (A < B) 347 { 348 memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE)); 349 i = 0; 350 j = curr + A; 351 352 for (k = curr; k < curr + A + B; k++) 353 { 354 if ((i < A) && (j < curr + A + B)) 355 { 356 if (SORT_CMP(storage[i], dst[j]) <= 0) 357 dst[k] = storage[i++]; 358 else 359 dst[k] = dst[j++]; 360 } 361 else if (i < A) 362 { 363 dst[k] = storage[i++]; 364 } 365 else 366 dst[k] = dst[j++]; 367 } 368 } 369 /* right merge */ 370 else 371 { 372 memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE)); 373 i = B - 1; 374 j = curr + A - 1; 375 376 for (k = curr + A + B - 1; k >= curr; k--) 377 { 378 if ((i >= 0) && (j >= curr)) 379 { 380 if (SORT_CMP(dst[j], storage[i]) > 0) 381 dst[k] = dst[j--]; 382 else 383 dst[k] = storage[i--]; 384 } 385 else if (i >= 0) 386 dst[k] = storage[i--]; 387 else 388 dst[k] = dst[j--]; 389 } 390 } 391 } 392 393 static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr, TEMP_STORAGE_T *store, const size_t size) 394 { 395 while (1) 396 { 397 int64_t A, B, C; 398 /* if the stack only has one thing on it, we are done with the collapse */ 399 if (stack_curr <= 1) break; 400 /* if this is the last merge, just do it */ 401 if ((stack_curr == 2) && 402 (stack[0].length + stack[1].length == (int64_t) size)) 403 { 404 TIM_SORT_MERGE(dst, stack, stack_curr, store); 405 stack[0].length += stack[1].length; 406 stack_curr--; 407 break; 408 } 409 /* check if the invariant is off for a stack of 2 elements */ 410 else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) 411 { 412 TIM_SORT_MERGE(dst, stack, stack_curr, store); 413 stack[0].length += stack[1].length; 414 stack_curr--; 415 break; 416 } 417 else if (stack_curr == 2) 418 break; 419 420 A = stack[stack_curr - 3].length; 421 B = stack[stack_curr - 2].length; 422 C = stack[stack_curr - 1].length; 423 424 /* check first invariant */ 425 if (A <= B + C) 426 { 427 if (A < C) 428 { 429 TIM_SORT_MERGE(dst, stack, stack_curr - 1, store); 430 stack[stack_curr - 3].length += stack[stack_curr - 2].length; 431 stack[stack_curr - 2] = stack[stack_curr - 1]; 432 stack_curr--; 433 } 434 else 435 { 436 TIM_SORT_MERGE(dst, stack, stack_curr, store); 437 stack[stack_curr - 2].length += stack[stack_curr - 1].length; 438 stack_curr--; 439 } 440 } 441 /* check second invariant */ 442 else if (B <= C) 443 { 444 TIM_SORT_MERGE(dst, stack, stack_curr, store); 445 stack[stack_curr - 2].length += stack[stack_curr - 1].length; 446 stack_curr--; 447 } 448 else 449 break; 450 } 451 return stack_curr; 452 } 453 454 void TIM_SORT(SORT_TYPE *dst, const size_t size) 455 { 456 int minrun; 457 TEMP_STORAGE_T _store, *store; 458 TIM_SORT_RUN_T run_stack[128]; 459 int stack_curr = 0; 460 int64_t len, run; 461 int64_t curr = 0; 462 463 if (size < 64) 464 { 465 BINARY_INSERTION_SORT(dst, size); 466 return; 467 } 468 469 /* compute the minimum run length */ 470 minrun = compute_minrun(size); 471 472 /* temporary storage for merges */ 473 store = &_store; 474 store->alloc = 0; 475 store->storage = NULL; 476 477 PUSH_NEXT(); 478 PUSH_NEXT(); 479 PUSH_NEXT(); 480 481 while (1) 482 { 483 if (!CHECK_INVARIANT(run_stack, stack_curr)) 484 { 485 stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size); 486 continue; 487 } 488 PUSH_NEXT(); 489 } 490 } 491 492 #undef SORT_CONCAT 493 #undef SORT_MAKE_STR1 494 #undef SORT_MAKE_STR 495 #undef SORT_NAME 496 #undef SORT_TYPE 497 #undef SORT_CMP 498 #undef TEMP_STORAGE_T 499 #undef TIM_SORT_RUN_T 500 #undef PUSH_NEXT 501 #undef SORT_SWAP 502 #undef SORT_CONCAT 503 #undef SORT_MAKE_STR1 504 #undef SORT_MAKE_STR 505 #undef BINARY_INSERTION_FIND 506 #undef BINARY_INSERTION_SORT_START 507 #undef BINARY_INSERTION_SORT 508 #undef REVERSE_ELEMENTS 509 #undef COUNT_RUN 510 #undef TIM_SORT 511 #undef TIM_SORT_RESIZE 512 #undef TIM_SORT_COLLAPSE 513 #undef TIM_SORT_RUN_T 514 #undef TEMP_STORAGE_T 515